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Abstract
We are concerned with zeros of random power series with coefficients being a sta-
tionary, centered, complex Gaussian process. We show that the expected number of
zeros in every smooth domain in the disk of convergence is less than that of the hyper-
bolic Gaussian analytic function with i.i.d. coefficients. When coefficients are finitely
dependent, i.e., the spectral density is a trigonometric polynomial, we derive precise
asymptotics of the expected number of zeros inside the disk of radius r centered at the
origin as r tends to the radius of convergence, in the proof of which we clarify that
the negative contribution to the number of zeros stems from the zeros of the spectral
density.
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1 Introduction

Let {ζk}∞k=0 be independent, identically distributed (i.i.d.) standard complex Gaus-
sian random variables. Peres and Virág studied the zeros of random power series
fPV(z) =∑∞

k=0 ζk zk and found that the zero point process
∑

z∈C: fPV(z)=0 δz becomes
a determinantal point process associated with the Bergman kernel [15]. The stud-
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ies around this Gaussian analytic function (GAF) have been developing in several
directions (cf. [2, 5, 7, 8, 10–13, 16–18]); however, it seems that there are relatively
few works on zeros of random power series with dependent Gaussian coefficients.
Recently, Mukeru, Mulaudzi, Nazabanita and Mpanda studied the zeros of Gaussian
random power series fH (z) on the unit disk with coefficients�(H) = {ξ (H)

k }∞k=0 being
a fractional Gaussian noise (fGn) with Hurst index 0 ≤ H < 1. They gave an estimate
for the expected number of zeros of fH (z) inside D(r) := {z ∈ C : |z| < r} and show
that it is smaller than that of fPV(z) by O((1− r2)−1/2) [14], whose proof was based
on the maximum principle via an integral representation on D(r) of the expectation.
In this paper, we will give a precise asymptotics as r → 1− of the expected number
of zeros in D(r) of a random power series f�(z) =∑∞

k=0 ξk zk when � = {ξk}∞k=0 is
a stationary, centered, finitely dependent complex Gaussian process, i.e., its spectral
density is a trigonometric polynomial of degree n. As will be seen later, the essential
idea of our proof is to represent the expected number of zeros as a contour integral
on ∂D(r) by using the Stokes theorem similar to [4, 11] and keep track of the poles
of the integrand indexed by r , i.e., the zeros of a (scaled) spectral density for �, as
r → 1−. We found that the degeneracy of zeros of spectral density sensitively affects
on the order of the difference between the expected number of zeros of f�(z) and that
of fPV(z).

Let � = {ξk}k∈Z be a stationary, centered, complex Gaussian process with unit
variance and covariance function

E[ξkξl ] = γ (l − k), k, l ∈ Z, (1.1)

where γ (0) = 1 and γ (−k) = γ (k). Throughout this paper, we always assume the
variance to be 1. We consider the following random power series

f�(z) =
∞∑

k=0

ξk z
k . (1.2)

For the sake of simplicity, in what follows, we often omit the subscript � in f�. The
covariance matrix of the Gaussian analytic function (GAF) defined in (1.2) is given
by

K f (z, w) = E[ f (z) f (w)] = 1

1 − zw
G2(z, w), (1.3)

where

G2(z, w) = 1 + G(z) + G(w), G(z) =
∞∑

k=1

γ (k)zk . (1.4)

Since |γ (k)| ≤ γ (0) = 1 follows from positive definiteness, the convergence radius
of G(z) is more than or equal to 1. The covariance function γ (k) can be represented
as γ (k) = (2π)−1

∫ 2π
0 e

√−1kθd
(θ), where 
(θ) is called the spectral function of
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�. When 
(θ) is absolutely continuous with respect to the Lebesgue measure, the
density 
′(θ) = d
(θ)/dθ is called the spectral density of � (cf. [6]). We note that
G2(e

√−1θ , e
√−1θ ) gives the spectral density of the Gaussian process � if G(z) is

analytic in a neighborhood of D. When {ξk}k∈Z are i.i.d., γ (k) = δ0,k (Kronecker’s
delta) and K f (z, w) is the Szegő kernel. As mentioned before, Peres-Virág showed
that the zeros of fPV(z) with i.i.d. Gaussian coefficients form the determinantal point
process associated with the Bergman kernel [15]. In the present paper, we compare
the expected number of zeros of f (z) with finitely dependent Gaussian coefficients
with that of fPV(z).

We first deal with the case of 2-dependent stationary Gaussian processes with
covariance function

γ (k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 k = 0,

a |k| = 1,

b |k| = 2,

0 otherwise.

(1.5)

We easily verify that {γ (k)}k∈Z is positive definite if and only if (a, b) is in the region
P = P1 ∪ P2 with

P1 =
{

(a, b) ∈ R
2 : a

2

8
+
(

b − 1

4

)2
≤ 1

16

}

and

P2 =
{

(a, b) ∈ R
2 : a

2

8
+
(

b − 1

4

)2
≥ 1

16
, |a| − 1

2
≤ b ≤ 1

6

}

.

See Fig. 1.We consider the GAF fa,b(z) associated with (1.5). Since we normalized
the variance of ξk to be 1, the convergence radius of the power series fa,b(z) is 1 a.s.
for any (a, b) ∈ P .

We denote the zeros of GAF f by Z f and let

N f (r) = #{z ∈ Z f : |z| < r}, r ∈ (0, 1)

be the number of zeros within D(r), the disk of radius r centered at the origin. From
now on, for simplicity, we write r → 1 instead of r → 1−.

Theorem 1.1 Let fa,b be the GAF defined in (1.2) with covariance function of the
form (1.5) with (a, b) ∈ P . Then, the asymptotic behavior of the expected number of
zeros is as follows.
(I) If (a, b) satisfies a2/8 + (b − 1/4)2 = 1/16 and 1/6 < b ≤ 1/2, then

EN fa,b (r) = r2

1 − r2
−
√

2b

6b − 1

1

(1 − r2)1/2
+ O(1), r → 1. (1.6)
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(II) If (a, b) satisfies b = |a| − 1/2 and −1/2 ≤ b < 1/6, then

EN fa,b (r) = r2

1 − r2
− 1

2

√
1 − 2b

1 − 6b

1

(1 − r2)1/2
+ O(1), r → 1. (1.7)

(III) If (a, b) = (±2/3, 1/6), then

EN fa,b (r) = r2

1 − r2
− 1

25/4
1

(1 − r2)3/4
+ O

(
1

(1 − r2)1/4

)

, r → 1. (1.8)

(IV) If (a, b) is in the interior of P , then there exists a nonnegative constant C(a, b)
such that

EN fa,b (r) = r2

1 − r2
− C(a, b) + O

(
1 − r2

)
, r → 1. (1.9)

The constant C(a, b) is positive except for (a, b) = (0, 0). The numbers (I)–(IV) in
Theorem 1.1 correspond to those in Fig. 1.

The case of (a, b) = (0, 0) corresponds to the case of Peres-Virág, fPV(z), and it
is known that

EN f0,0(r) = EN fPV(r) = r2

1 − r2
. (1.10)

Therefore, for all cases, the expected number of zeros is less than that of fPV(z) at
least in the limit as r → 1. In fact, we can show the following stronger result.

Theorem 1.2 Let f be a GAF defined in (1.2) with (1.3) and (1.4). Let D ⊂ D be
a domain with smooth boundaries and N f (D) be the number of zeros of f inside

Fig. 1 The region P of positive definiteness of γ (k) defined in (1.5). The red and black dashed ellipse is
the boundary ofP1, the green points are (a, b) = (±2/3, 1/6), and the blue line segments is b = |a|− 1/2
for −1/2 ≤ b ≤ 1/6. The similar figure can be found in [3, p.72]. In fact, the region P is equivalent to the
invertibility conditions for moving averages (MA(2) processes) (Color figure online)
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D. Then, EN f (D) is always less than or equal to EN fPV(D). Moreover, the equality
holds for some (hence any) domain D if and only if f is equal to fPV in law.

As was seen in the above, the asymptotic behavior at (a, b) = (±2/3, 1/6) corre-
sponding to Case (III) is special since G2(z, z) is the most degenerated in the sense
that

G2(z, z) = 1 ± 2

3
(z + z−1) + 1

6
(z2 + z−2) = 1

6
z−2(z ± 1)4

for z ∈ ∂D = {z ∈ C : |z| = 1}. The above G2(z, z) has the degenerated zero at
z = ∓1. The phenomena are the same in both cases and so we only deal with the +
case below. Now, we focus on the n-dependent stationary Gaussian process � with
covariance function {γn(k)}k∈Z which is the most degenerated in the sense above, i.e.,

γn(k) =
{( 2n

n+k

)(2n
n

)−1
if |k| = 0, 1, 2, . . . , n,

0 otherwise,
(1.11)

which is normalized as γn(0) = 1. It is easy to see that

G2(z, z) =
n∑

k=−n

γn(k)z
k =
(
2n

n

)−1

z−n(z + 1)2n (1.12)

for z ∈ ∂D and z = −1 is the zero of order 2n. We remark that for this Gaussian
process � we have the following moving-average representation:

ξk =
(
2n

n

)−1/2 n∑

j=0

(
n

j

)

ζk− j , k = 0, 1, . . . ,

where {ζ j } j∈Z is an i.i.d. standard complex Gaussian sequence. In this case, we have
the following asymptotics, which include (1.8) as a special case of n = 2.

Theorem 1.3 Let γn(k) be defined as (1.11) and � = {ξk}k∈Z be the stationary, cen-
tered, complex Gaussian process with covariance function {γn(k)}k∈Z. The expected
number of zeros of the power series f with coefficients � within D(r) is given by

EN f (r) = r2

1 − r2
− Dn(1 − r2)−

2n−1
2n + O((1 − r2)−

2n−3
2n ), r → 1, (1.13)

where

Dn = 1

2n sin π
2n

{(
2(n − 1)

n − 1

)} 1
2n

.

Remark 1.4 The term of order (1− r2)− 2n−2
2n in (1.13) vanishes by a cancellation. See

the proof of Theorem 1.3 and Remark 4.4.
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As will be seen in the proof of the theorems, the order of the second term in the
asymptotic expansion comes from the behavior of the zeros of G2(z, z) in the case of
n-dependent Gaussian processes. If G2(z, z) has a zero of multiplicity 2k on ∂D, i.e.,
so does the spectral density, then the term of order (1− r2)−(2k−1)/(2k) appears in the
asymptotics of EN f (r) as r → 1. Hence, the zeros of the spectral density with the
most multiplicity determines the asymptotics of the second order term. Therefore, we
obtain the following result for general finitely dependent cases.

Corollary 1.5 Let � = {ξk}k∈Z be a stationary, centered, finitely dependent, complex
Gaussian process. When the spectral density of � has zeros θ j of multiplicity 2k j for
j = 1, 2, . . . , p, we set α = (2k − 1)/(2k) with k = max1≤ j≤p k j ; α = 0 otherwise.
Then, there exists a positive constant C� such that the expected number of zeros of
the GAF f with coefficients � within D(r) is given by

EN f (r) = r2

1 − r2
− C�(1 − r2)−α + o((1 − r2)−α), r → 1.

For example, the Gaussian process � with G2(z, z) = (const .)
∏p

j=1 |z + a j |2k j for
z, a1, . . . , ap ∈ ∂D and k1, . . . , kp ≥ 1 gives an example of the GAF described in
Corollary 1.5.

This paper is organized as follows. In Sect. 2, we recall the Edelman–Kostlan for-
mula and derive its variants for later use and prove Theorem 1.2. We also give some
examples to give our idea for computation of the expected number of zeros. In Sect. 3
3, we prove Theorem 1.1. In Sect. 4, we briefly recall the method of Puiseux expansion
and prove Theorem 1.3.

2 The Expected Number of Zeros: Examples

2.1 Expected Numbers of Zeros

To prove Theorems 1.1 and 1.3, we recall the Edelman–Kostlan formula for the
expected number of zeros of GAF.

Proposition 2.1 Let D ⊂ C be a domain with smooth boundaries, f be a GAF defined
in a neighborhood of D, and N f (D) be the number of zeros of f inside D. Then,

EN f (D) = 1

4π

∫

D

 log K f (z, z)dm(z) = 1

2π i

∮

∂D
∂z log K f (z, z)dz,

assuming that no singularity lies on ∂D for the second equality, where dm(z) is the
Lebesgue measure on the complex plane C and i = √−1 is the imaginary unit.

For the proof of the first equality, see [8]. For the second equality, the Stokes theorem
is used as in [4, 11]. In our setting, we have much simpler expressions for EN f (r).
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Corollary 2.2 Let f be a GAF defined in (1.2) with (1.3) and (1.4). Let D ⊂ D be a
domain with smooth boundaries and N f (D) be the number of zeros inside D. Then,

EN f (D) = 1

2π i

∮

∂D

z

1 − |z|2 dz + J (D), (2.14)

where J (D) has two expressions as follows:

J (D) = 1

2π i

∮

∂D

G ′(z)
G2(z, z)

dz (2.15)

and

J (D) = − 1

π

∫

D

( |G ′(z)|
G2(z, z)

)2
dm(z). (2.16)

In particular, when D = D(r), (2.14) becomes

EN f (r) = r2

1 − r2
+ J (r), (2.17)

where we simply write J (r) for J (D(r)).

Proof The first expression (2.15) directly follows from (1.3), (1.4) and the sec-
ond equality in Proposition 2.1. For the second expression (2.16), since ∂zG(z) =
∂z(G(z)), it is easy to see from the first equality in Proposition 2.1 that

J (D) = 1

π

∫

D
∂z∂z logG2(z, z)dm(z) = − 1

π

∫

D

|∂zG(z)|2
(1 + G(z) + G(z))2

dm(z).

This completes the proof. �

The expression (2.16) essentially, but not explicitly, appeared in [14]. They derived

a similar expression from one-point correlation and used to evaluate the expected
number of zeros in the case of fractional Gaussian noise.

Remark 2.3 In our setting, G(z) is a polynomial. By the change of variables z �→ r z
in (2.15) with D = D(r), we have

J (r) = r

2π i

∮

∂D

G ′(r z)
�(r , z)

dz, (2.18)

where�(r , z) is the rational function of z obtained fromG2(r z, r z) by putting z = z−1

on ∂D. In particular, when γ (k) is real for every k ∈ Z, we have

�(r , z) =
∑

k∈Z
γ (k)r |k|zk .
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Note that �(1, eiθ ) is the spectral density at least for finitely dependent Gaussian
processes. Then, one can apply the residue theorem, and from this point of view, the
behavior of zeros of �(r , z) as r → 1 is essential for the order of J (r).

Theorem 1.2 is a direct consequence of the second expression (2.16) of J (D).

Proof of Theorem 1.2 The error term J (D) is clearly non-positive from (2.16). More-
over, the right-hand side of (2.16) is zero if and only if G ′(z) = 0 m-a.e. D. It follows
from the uniqueness theorem that G ′(z) is identically zero on D, and thus so is G(z)
since G(0) = 0. Therefore, f is equal to fPV in law. �


2.2 Examples

In this subsection, we show two examples to see how the expected number of zeros
behaves as r → 1. Although all computations are rather straightforward, they are
helpful for understanding of the situation.

Example 2.4 (Ornstein–Uhlenbeck process) Let γ (k) = ρ|k| (0 < ρ < 1). The cor-
responding stationary Gaussian process is the (discrete time) Ornstein–Uhlenbeck
process. In this case, we see that G(z) = ρz(1 − ρz)−1 and

G2(z, w) = 1 − ρ2zw

(1 − ρz)(1 − ρw)
.

By using z = z−1 for z ∈ ∂D, we see that

�(r , z) = z(1 − ρ2r2)

(1 − ρr z)(z − ρr)
.

We apply (2.18) to this case. The only zero z = 0 of �(r , z), which does not move in
r , contributes to the residue as the only pole. Hence, we have

EN f (r) = r2

1 − r2
− ρ2r2

1 − ρ2r2
= r2

1 − r2
− ρ2

1 − ρ2 + O(1 − r2), r → 1.

In this case, G(z) is analytic in D(1/ρ) and �(1, z), or equivalently G2(z, z), does
not vanish on ∂D.

Remark 2.5 As was seen in this example, the second term J (r) is O(1) as r → 1
whenever G(z) is analytic in a neighborhood of D := D ∪ ∂D and �(r , z) does not
vanish on ∂D.

Example 2.6 For 0 < ρ < 1, let ζ and {ηk}k∈Z be i.i.d. complex standard normal
random variables and define the Gaussian process � = {ξk}k∈Z by

ξk = √
ρζ +√1 − ρηk for k ∈ Z.
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Then, the corresponding GAF is equal in law to

√
ρ

ζ

1 − z
+√1 − ρ fPV(z) (2.19)

and its covariance function is given by

γ (k) =
{
1 k = 0,

ρ otherwise.

In this case, G(z) = ρz(1 − z)−1 and

G2(z, z) = 1 − (1 − ρ)(z + z) + (1 − 2ρ)|z|2
(1 − z)(1 − z)

,

and hence

�(r , z) = − (1 − ρ)r z2 − (1 + (1 − 2ρ)r2)z + (1 − ρ)r

(1 − r z)(z − r)

The zeros of �(r , z) are ν and ν−1, where ν = δ−√
δ2−4
2 and δ = 1+(1−2ρ)r2

(1−ρ)r . Note

that ν (resp., ν−1) is inside (resp., outside)D. By using (2.18) and the residue theorem,
we have

EN f (r) = r2

1 − r2
− ρ

1 − ρ

ν − r

(ν − ν−1)(1 − νr)
.

As r → 1, we have

EN f (r) = r2

1 − r2
− 1

2

√
ρ

1 − ρ

1√
1 − r2

+ O(1).

Remark 2.7 (i) The convergence radius of G(z) is 1, and its singularity is located only
at z = 1. The zeros of �(r , z) are ν and ν−1 given above, where ν (resp., ν−1) is
inside (resp., outside) D(r). Both ν and ν−1 converge to 1 as r → 1, and the second
term of O((1 − r2)−1/2) comes from (ν − ν−1)−1 as the residue at z = ν.
(ii) From (2.19), we intuitively observe that near z = 1, the first term ζ/(1− z) pushes
up the absolute values of

√
1 − ρ fPV(z) and decreases the number of zeros.

We would like to emphasize that the behavior of zeros of�(r , z) as r → 1 is essential
for the asymptotic behavior of the error term J (r).

3 2-Dependent Cases

In this section, we prove Theorem 1.1.
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3.1 Case (I)

First we show Case (I).

Proof of Case (I) in Theorem 1.1 First we note thatG(z) = az+bz2 and then�(r , z) =
1 + ar(z + z−1) + br2(z2 + z−2). From (2.18), we have

J (r) = r

2π i

∮

∂D

a + 2brz

1 + ar(z + z−1) + br2(z2 + z−2)
dz, (3.20)

We suppose (a, b) ∈ ∂P1 ∩∂P , i.e., a = ±2
√
b(1 − 2b)with 1/6 ≤ b ≤ 1/2. By the

symmetry, it is enough to consider the case a > 0. Since the denominator is reciprocal,
if γ is one of its roots, then the roots are given as γ, γ −1, γ̄ , γ̄ −1. Here, we suppose
γ ∈ D and in the upper-half plane. Thus, γ, γ̄ (resp., γ −1, γ̄ −1) are inside (resp.,
outside) D. By taking the residues at γ and γ̄ , we see that

J (r) = 1

2π ibr

∮

∂D

z2(a + 2brz)

(z − γ )(z − γ̄ )(z − γ −1)(z − γ̄ −1)
dz

= 2

br
�
(

γ 2(a + 2brγ )

(γ − γ̄ )(γ − γ −1)(γ − γ̄ −1)

)

.

Let X = z + z−1 and rewrite the denominator as br2X2 + ar X + 1 − 2br2, whose
roots are distinct and given by X± = (−a ± i2

√
2b

√
1 − r2)/(2br). It is easy to see

that

γ =
X− +

√
X2− − 4

2
, γ̄ =

X+ +
√
X2+ − 4

2
,

γ −1 =
X− −

√
X2− − 4

2
, γ̄ −1 =

X+ −
√
X2+ − 4

2
.

Here, we take the branch of
√
z such that

√
1 = 1 and analytic in C \ (−∞, 0]. Note

that

γ − γ −1 =
√
X2− − 4 = 1

br

⎛

⎝

√

α +√α2 + β2

2
+ i

√

−α +√α2 + β2

2

⎞

⎠ (3.21)

with α = b − 2b2(r2 + 2) and β = 2b
√
2(1 − r2)b(1 − 2b). It is easy to see that

(γ − γ̄ )(γ − γ̄ −1) = γ (X− − X+) = −γ
2
√
2(1 − r2)

r
i

and hence

J (r) = − 1

b
√
2(1 − r2)

�
(

γ (a + 2brγ )

γ − γ −1

)

. (3.22)
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We note that γ = (X− + γ − γ −1)/2. Substituting it to the numerator and expanding
it by Y := γ − γ −1, we have

γ (a + 2brγ )

γ − γ −1 = 1

2Y

(
X−(a + br X−) + (a + 2br X−)Y + brY 2

)

= 2br2 − 1

2r
Y−1 − ib

√
2(1 − r2) + brY

2
. (3.23)

Here,weused the fact that X− is a solution of the equationbr2X2+ar X+1−2br2 = 0.
Since α = −b(6b − 1) + O(1 − r2) and β = 2b

√
2b(1 − 2b)

√
1 − r2, we see that

�Y =
√
6b − 1

b
+ O(1 − r2), �Y−1 = −

√
b

6b − 1
+ O(1 − r2), r → 1.

(3.24)

Hence, it follows from (3.22), (3.23) and (3.24) that

J (r) = −
√

2b

6b − 1

1√
1 − r2

+ O(1), r → 1.

This completes the proof of Case (I). �


3.2 Case (II)

Next we prove Case (II).

Proof of Case (II) in Theorem 1.1 By the symmetry, it is enough to consider the case
b = a − 1/2 (−1/2 ≤ b ≤ 1/6). We divide the proof of Case (II) into two cases, i.e.,
(i) 0 < b ≤ 1/6 and (ii) −1/2 ≤ b ≤ 0. In this subsection, we always consider the
situation for r sufficiently close to 1 depending on b.

First we prove the case (i). The roots of br2X2 + ar X + 1 − 2br2 = 0 are real
and given by X± = (−a ± λ)/2br ∈ R with λ = √

a2 − 4b2 + 8b2r2. Note that
X2± − 4 ≥ 0, and X+ → −2 and X− → (2b − 1)/(2b) as r → 1 As in Case (I),
by (3.20), since the denominator is reciprocal, if two real roots γ and κ lie inside D
such that γ < κ < 0, then all the roots are given as γ, γ −1, κ, κ−1. Here γ, κ (resp.
γ −1, κ−1) are in D ∩ R (resp. in Dc ∩ R), which are given by

γ =
X+ +

√
X2+ − 4

2
, γ −1 =

X+ −
√
X2+ − 4

2
,

κ =
X− +

√
X2− − 4

2
, κ−1 =

X− −
√
X2− − 4

2
. (3.25)

By (3.20) and the residue theorem, we see that

J (r) = 1

2π ibr

∮

∂D

z2(a + 2brz)

(z − γ )(z − γ −1)(z − κ)(z − κ−1)
dz
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= 1

br

{
γ 2(a + 2brγ )

(γ − γ −1)(γ − κ)(γ − κ−1)
+ κ2(a + 2brκ)

(κ − γ )(κ − γ −1)(κ − κ−1)

}

= 1

λ

{
γ (a + 2brγ )

γ − γ −1 − κ(a + 2brκ)

κ − κ−1

}

. (3.26)

Here, we used

(γ − κ)(γ − κ−1) = γ (X+ − X−) = γ λ

br
,

(κ − γ )(κ − γ −1) = κ(X− − X+) = −κλ

br
.

Since (κ − κ−1)−1 = O(1), it suffices to focus on the first term of (3.26). We again
use the expansion in (3.23) and have

Y = γ − γ −1 = 2

√
1 − 2b

1 − 6b

√
1 − r2 + O(1 − r2), r → 1.

Therefore,

J (r) = −1

2

√
1 − 2b

1 − 6b

1√
1 − r2

+ O(1), r → 1.

Next we prove the case (ii) of (II). Computation is almost the same as in the case (i) of
(II), but we only need to change the roles of γ, γ −1, κ, κ−1. Indeed, γ and κ−1 (resp.
γ −1, κ) in (3.25) are in D ∩ R (resp. in D

c ∩ R). By (3.20), (3.25) and

(κ−1 − γ )(κ−1 − γ −1) = κ−1(X− − X+) = −κ−1λ

2br
,

we see that

J (r) = 1

br

{
γ 2(a + 2brγ )

(γ − γ −1)(γ − κ)(γ − κ−1)
+ κ−2(a + 2brκ−1)

(κ−1 − γ )(κ−1 − γ −1)(κ−1 − κ)

}

= 2

λ

{
γ (a + 2brγ )

γ − γ −1 − κ−1(a + 2brκ−1)

κ−1 − κ

}

= −1

2

√
1 − 2b

1 − 6b

1√
1 − r2

+ O(1), r → 1.

This completes the proof of Case (II). �

Remark 3.1 By the continuity, we have the same asymptotic in Case (II), but the
behavior of roots γ, γ −1, κ, κ−1 in (II) is completely different from Case (I). Indeed,
γ, γ −1 → −1 and κ, κ−1 → (2b − 1)/4b ± √

(1 − 6b)(1 + 2b)/2|b| as r → 1 in
Case (II). That is, there is only one pair of roots toward the boundary ∂D as r → 1
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except b = −1/2. This implies that the asymptotic order is affected by the degeneracy
of roots of �(1, z) located on the boundary ∂D.

3.3 Case (III)

We give a proof of Case (III).

Proof of Case (III) in Theorem 1.1 Suppose (a, b) = (2/3, 1/6). Since α = 1
18 (1 − r2)

and β = 1
9

√
2(1 − r2), by (3.21), we have

Y = γ − γ −1

= 1

r

(√

(1 − r2) +
√

(1 − r2)(9 − r2) + i
√

−(1 − r2) +
√

(1 − r2)(9 − r2)

)

.

It easily follows from this expression that �Y = O
(
(1 − r2)1/4

)
and

�Y−1 = −2−7/4(1 − r2)−1/4 + O
(
(1 − r2)1/4

)
, r → 1.

Hence, from (3.22) and (3.23), we can conclude that

J (r) = −2−5/4(1 − r2)−3/4 + O
(
(1 − r2)−1/4

)
, r → 1.

This completes the proof of Case (III). �


3.4 Case (IV)

Finally, we give a sketch of the proof of Case (IV). Since all zeros of�(r , z) stay away
from ∂D as r → 1 when (a, b) is in the interior of P , any singularity contributing to
the asymptotic behavior does not appear on the boundary ∂D, and hence, it suffices to
consider as r equals to 1. Here we only consider the interior of P1 and a > 0. We use
the same notations in the proof of Case (I). In this case, X± = (−a ± iλ(a, b))/(2b)
with λ(a, b) = √

4b − 8b2 − a2 andwe see that (γ −γ )(γ −γ −1) = −γ b−1λ(a, b)i.
Hence,

C(a, b) = −J (1) = 2

λ(a, b)
�
(

γ (a + 2bγ )

γ − γ −1

)

.

A little more computation shows that

C(a, b) = μ(a, b) − (2b − 1)

2λ(a, b)μ(a, b)

√
4b2 + 2b − a2 + 2bμ(a, b) − 1,

where μ(a, b) = √(1 + 2b)2 − 4a2 and that C(a, b) > 0 unless (a, b) = (0, 0).
We omit the other cases since we obtain the results just by repeating the similar
computation.
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4 Degenerated Cases

In this section, we give a proof of Theorem 1.3. From (2.18), we have

J (r) = r

2π i

∮

∂D

G ′(z)
�(r , z)

dz = r

2π i

∮

∂D

pn(r , z)

qn(r , z)
dz

where pn(r , z) = zn
(2n
n

)
G ′(w)|w=r z and

qn(r , z) := zn
(
2n

n

)

�(r , z) = zn
n∑

k=−n

(
2n

n + k

)

r |k|zk .

We note from (1.12) that

qn(1, z) = (z + 1)2n .

To see the asymptotic behavior of EN f (r) as r → 1, we need that of z(r) for
qn(r , z(r)) = 0.

4.1 Behavior of the Root z(r) as r → 1

We first note that qn(1,−1) = 0 and ∂zqn(r , z)|(r ,z)=(1,−1) = 0. Hence, we cannot
apply the implicit function theorem in the variable z to qn(r , z). Alternatively, we
follow a strategy of using Puiseux series expansion and Newton polygon method (cf.
[19]).

First we note that

∂r qn(r , z)|(r ,z)=(1,−1) = 2
n∑

k=1

k(−1)n+k
(

2n

n + k

)

= (−1)n+1 n + 1

2n − 1

(
2n

n + 1

)

�= 0.

By shifting (r , z) → (1 − r , z + 1) in qn(r , z), we consider

Qn(x, y) :=
2n∑

l=0

(
2n

l

)

(1 − x)|l−n|(y − 1)l . (4.27)

Note that Qn(0, y) = y2n . Following [19], we denote by C{x, y} (resp., C{x}) the
ring of convergent power series defined by two variables x, y (resp., one variable x).
If f ∈ C{x, y} satisfies f (0, y) = ym A(y) with A(0) �= 0, then we say f is regular
in y of order m [19, p.20]. In our setting, Qn(x, y) is regular in y of order 2n. We can
use the following theorem from [19, p.20, Theorem 2.2.6] to guarantee the existence
of 2n distinct solutions to the equation Qn(x, y) = 0 around (x, y) = (0, 0).
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Theorem 4.1 [19] (i) Any equation f (x, y) = 0 where f ∈ C{x, y} with f (0, 0) = 0,
f (0, y) �≡ 0 admits at least one solution of the form y = g(x1/m1) ∈ C{x}.
(ii) If f is regular in y of order m, and we write f = UF with U a unit and F a

monic polynomial of degree m in y, there are m such solutions g j (x1/m j ), all distinct
unless the discriminant of F vanishes identically, and F(y) ≡∏m

j=1

(
y − g j (x1/m j )

)
.

For our purpose, we need more explicit form of g j ’s so that we directly perform
the Newton polygon method below.

The solution y(x) to Qn(x, y) = 0 around the neighborhood of the origin (0, 0)
is described by this theorem since Qn(x, y) is a bivariate polynomial. Now, we will
compute the asymptotic expansion of y = y(x) in Qn(x, y(x)) = 0 at the origin
(0, 0) following the Newton polygon method [19, p.15, Theorem 2.1.1]. Here, we
give a brief description of the algorithm following [19]. Firstly, given f (x, y) = 0, we
plot a point (r , s) of exponents for each term cr ,s xr ys of f (x, y) onR2 if cr ,s �= 0 and
then we have the convex hull containing all points plotted. Its boundary is made up of
straight line segments which do not lie on the coordinate axes. It is called the Newton
polygon. Secondly, we denote by m1 one of the reciprocal numbers of the negative
of a slope among these segments. Then, we consider f (x, xm1(a1 + y1)) and solve
a1 by focusing on the terms of the lowest degrees in x due to f (x, y) = 0. Thirdly,
let f (1)(x, y1) = x−l f (x, xm1(a1 + y1) where l is the intersection of s-axes. Repeat
the above process and then we can obtain the solution y = a1xm1 + a2xm1+m2 + · · ·
of f (x, y) = 0 for f ∈ C{x, y}. For Qn(x, y), its Newton polygon joins (1, 0) and
(0, 2n) as shown in Fig. 2 for n = 4.

Thus, it is guaranteed that Qn(x, y) = 0 has the solution of the form

y = x1/(2n)(a1 + y1),

Fig. 2 Newton polygon of Qn(x, y) for n = 4. A point (r , s) is marked when the coefficient xr ys of
Qn(x, y) is nonzero
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where y1 = xm2(a2 + y2) with m2 ∈ Q being positive. Setting t = x1/(2n) (equiva-
lently x = t2n) in (4.27) for simplicity, we have

Qn(t
2n, t(a1 + y1)) =

2n∑

l=0

(
2n

l

)

(1 − t2n)|l−n|(t(a1 + y1) − 1)l = 0

and the left-hand side can be expanded as follows:

Qn(t
2n, t(a1 + y1))

=
(

2n∑

l=0

(
2n

l

)

|l − n|(−1)l+1 + a2n1 + 2na2n−1
1 y1 +

(
2n

2

)

a2n−2
1 y21

)

t2n

+
2n∑

l=0

(
2n

l

)

|l − n|l(−1)l(a1 + y1)t
2n+1

+
2n∑

l=0

(
2n

l

)

|l − n|
(
l

2

)

(−1)l−1(a1 + y1)
2t2n+2 + O(t2n+3)

Since y1 = O(xm2) = O(t2nm2) for positive m ∈ Q, the leading term is of order t2n

and its coefficient is given by

a2n1 +
2n∑

l=0

(
2n

l

)

|l − n|(−1)l+1 = a2n1 + 2(−1)n
(
2(n − 1)

n − 1

)

.

Thus, a1 is characterized by the solution of the equation

a2n1 + 2(−1)n
(
2(n − 1)

n − 1

)

= 0. (4.28)

For this a1, the term of the lowest order t2n in Qn(t2n, t(a1 + y1)) vanishes and we
have

Q(1)
n (t, y1) := t−2nQn(t

2n, t(a1 + y1)) (4.29)

= 2na2n−1
1 y1 + n(2n − 1)a2n−2

1 y21

+ c(a1 + y1)t +
2n∑

l=0

(
2n

l

)

|l − n|
(
l

2

)

(−1)l−1(a1 + y1)
2t2 + O(t3),

where

c =
2n∑

l=0

(
2n

l

)

|l − n|l(−1)l = (−1)n+12n

(
2(n − 1)

n − 1

)

�= 0,
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which implies y1 = O(t). Now, we repeat the same procedure for Q(1)
n (t, y1). We

substitute y1 = t(a2 + y2) in Q(1)
n (t, y1) and compare the term of order t to obtain

ca1 + 2na2n−1
1 a2 = 0,

and hence

a2 = −ca−2(n−1)
1

2n
= −1

2
a21 . (4.30)

Putting y1 = t(a2 + y2) in (4.29) and using (4.28) and (4.30) yields

t−1Q(1)
n (t, t(a2 + y2)) = 2na2n−1

1 y2 + (c′ + cy2 + · · · ) t + O(t2),

where

c′ = n(2n − 1)a2n−2
1 a22 + ca2 +

2n∑

l=0

(
2n

l

)

|l − n|
(
l

2

)

(−1)l−1a21 �= 0,

which implies y2 = O(t). In summary, by taking (4.28), (4.30) and y = t{a1+ t(a2 +
O(t))} into account, the solutions to the equation Qn(x, y) = 0 around x = 0 are of
the form

y(n)
j (x) = b(n)

j x1/(2n) − 1

2
(b(n)

j )2x1/n + O(x3/(2n)), as x → 0, (4.31)

for j = 0, 1, . . . , 2n − 1, where {b(n)
j }2n−1

j=0 are the solutions of (4.28).

Proposition 4.2 Let qn(r , z) = zn
∑n

k=−n

( 2n
n+k

)
r |k|zk . Then, the solutions z = z(n)

j (r)
to the equation qn(r , z) = 0 are of the form

z(n)
j (r) = −1 + b(n)

j (1 − r)
1
2n − 1

2
(b(n)

j )2(1 − r)
1
n + O((1 − r)

3
2n ), r → 1,

(4.32)

where

b(n)
j =
{

2

(
2(n − 1)

n − 1

)}1/(2n)

exp

(
2 j − n + 1

2n
π i
)

( j = 0, 1, . . . , 2n − 1).

(4.33)

Proof Since z(n)
j (r) = −1 + y(n)

j (1 − r), putting x = 1 − r and y = z + 1 in (4.31)
yields

z(n)
j (r) + 1 = b(n)

j (1 − r)
1
2n − 1

2
(b(n)

j )2(1 − r)
1
n + O

(
(1 − r)

3
2n

)
,
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as r → 1. We obtain the assertion. �


4.2 Proof of Theorem 1.3

We first observe the following asymptotics.

Lemma 4.3 For k = 0, 1, . . . , 2n − 1, as r → 1,

2n−1∏

j=0
j �=k

(z(n)
k (r) − z(n)

j (r)) = (2n)(−1)n−1(e(n)
k )−1

{(
2(n − 1)

n − 1

)} 2n−1
2n

(1 − r2)
2n−1
2n

×
{
1 − Cne

(n)
k (1 − r2)

1
2n + O

(
(1 − r2)

1
n

)}
,

where Cn is a constant depending only on n and

e(n)
k = exp

(
2k − n + 1

2n
π i
)

(k = 0, 1, . . . , 2n − 1). (4.34)

Proof From Proposition 4.2, we have

2n−1∏

j=0
j �=k

(z(n)
k (r) − z(n)

j (r)) =
2n−1∏

j=0
j �=k

(b(n)
k − b(n)

j ) · (1 − r)
2n−1
2n − 1

2

2n−1∑

l=0
l �=k

2n−1∏

j=0
j �=k,l

(b(n)
k − b(n)

j )

·
{
(b(n)

k )2 − (b(n)
l )2)
}

· (1 − r)
2n
2n + O

(
(1 − r)

2n+1
2n

)
.

Since
2n−1∏

j=0

(z − e
j−k
n π i) = z2n − 1, by differentiating both sides and putting z = 1, we

obtain
2n−1∏

j=0
j �=k

(1 − e
j−k
n π i) = 2n for every k = 0, 1, . . . , 2n − 1. Hence, we have

2n−1∏

j=0
j �=k

(e(n)
k − e(n)

j ) = (e(n)
k )2n−1

2n−1∏

j=0
j �=k

(1 − e
j−k
n π i) = 2n(−1)n−1(e(n)

k )−1.

and thus, by (4.33),

2n−1∏

j=0
j �=k

(b(n)
k − b(n)

j ) =
{

2

(
2(n − 1)

n − 1

)} 2n−1
2n

2n(−1)n−1(e(n)
k )−1.
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Similarly,

2n−1∑

l=0
l �=k

2n−1∏

j=0
j �=k,l

(b(n)
k − b(n)

j ) ·
{
(b(n)

k )2 − (b(n)
l )2
}

= 2

(
2(n − 1)

n − 1

)

2n(−1)n−1(e(n)
k )−1

2n−1∑

l=0
l �=k

(e(n)
k + e(n)

l )

= (−1)n−18n(n − 1)

(
2(n − 1)

n − 1

)

.

Since 1 − r = 1−r2
2 + O((1 − r2)2), we obtain the assertion. �


Now, we give a proof of Theorem 1.3. We appeal to (2.15) to obtain the asymptotic
behavior of J (r). First we remark that the constant b(n)

j in (4.33) lies in the right-half
plane {z ∈ C : �z > 0} for j = 0, 1, . . . , n − 1 and the left-half plane {z ∈ C :
�z < 0} for j = n, n + 1, . . . , 2n − 1. Thus, if r is sufficiently close to 1, z(n)

j (r)

for j = 0, 1, . . . , n − 1 lie inside D and z(n)
j (r) for j = n + 1, n + 2, . . . , 2n − 1 lie

outside D. Therefore, we have

J (r) = r

2π i

∮

∂D

pn(r , z)

qn(r , z)
dz

= r
n−1∑

k=0

Res

(
pn(r , z)

∏2n−1
j=0 (z − z(n)

j (r))
; z = z(n)

k (r)

)

= r
n−1∑

k=0

pn(r , z
(n)
k (r))

∏2n−1
j=0, j �=k(z

(n)
k (r) − z(n)

j (r))
. (4.35)

Since pn(1,−1) = (−1)n
(2(n−1)

n−1

)
, from Lemma 4.3 and

pn(r , z
(n)
k (r)) = pn(1,−1)

{
1 + C ′

ne
(n)
k (1 − r2)1/(2n) + O

(
(1 − r2)1/n

)}
,

we have

pn(r , z
(n)
k (r))

∏2n−1
j=0, j �=k(z

(n)
k (r) − z(n)

j (r))
= −1

2n

(
2(n − 1)

n − 1

) 1
2n
e(n)
k (1 − r2)− 2n−1

2n

×
{
1 + (Cn + C ′

n)e
(n)
k (1 − r2)

1
2n + O

(
(1 − r2)

2
2n
)}

,
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where C ′
n is a constant depending only on n. It is easy to see that

n−1∑

k=0

e(n)
k = (sin

π

2n
)−1,

n−1∑

k=0

(e(n)
k )2 = 0. (4.36)

Therefore, from (4.35), we obtain

J (r) = −1

2n sin( π
2n )

(
2(n − 1)

n − 1

) 1
2n

(1 − r2)−
2n−1
2n

(
1 + O

(
(1 − r2)

2
2n
))

.

This completes the proof.

Remark 4.4 A naive computation gives only the error term O
(
(1 − r)−(n−1)/n

)
.

Here, we saw the cancellation as the second equality in (4.36) to obtain O
(
(1 −

r)−(2n−3)/(2n)
)
, which matches the direct computation in Case (III) for n = 2.

Remark 4.5 This method can be applied to all cases of finitely dependent Gaussian
processes. Indeed, the zero of �(1, eiθ ) of order 2k contributes to J (r) as constant

multiple of (1 − r2)− 2k−1
2k .
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