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Abstract
Let X1,N � X2,N � · · · � XN ,N be the order statistics of independent identically
distributed random variables Xk (1 � k � N ). For fixed natural K and a nonnegative
bounded deterministic function GN on R

N satisfying mild conditions of Lebesgue’s
measurability, we obtain the following bound for the expectations:

EGN
(
X1,N , X2,N , . . . , XK ,N , XK+1,N , . . . , XN ,N

)

� T · EGN
(
X (1)
1,N , X (2)

1,N , . . . , X (K )
1,N , XK+1,N , . . . , XN ,N

)+ ϑT

for any T � T0(K ) and any N � N0(T ) large enough; here constants ϑT > 0 tend
to zero as T approaches infinity; X (i)

1,N (1 � i � K ) are mutually independent copies

of the maximum X1,N ; and each X (i)
1,N is also independent of the sample {Xk}1�k�N .

With GN as relevant indicator functions and N → ∞, these bounds are applied to
study o- andO-type asymptotic properties of the following functions on order statistics:
(Appl-1) the numbers of observations near the K th extremes XK ,N and (Appl-2) the
sums of negative powers of spacings XK ,N − Xi,N (K + 1 � i � N ).

Keywords Functions on order statistics · Extremes · Expectation · Approximation of
multidimensional integrals · Number of near-extremes · Weak law of large numbers

Mathematics Subject Classification 2020 60E15 · 60G70 · 60F05 · 60F99 · 62G30 ·
28A25 · 41A45

B Arvydas Astrauskas
arvydas.astrauskas@mif.vu.lt

1 Institute of Data Science and Digital Technologies, Vilnius University,
Akademijos str. 4, LT-08412 Vilnius, Lithuania

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10959-022-01179-9&domain=pdf
http://orcid.org/0000-0002-1871-113X


Journal of Theoretical Probability (2023) 36:1116–1147 1117

1 Introduction: Bounds for Expectations of Functions on Order
Statistics and their Motivation

Throughout the paper, let X , Xk (k ∈ N := {1, 2, . . .}) be independent identi-
cally distributed (i.i.d.) random variables on a probability space (Ω,F, P), with
the common hazard rate function Q(x) := − logP(X > x) and the right end-
point x∗ := sup {x : Q(x) < ∞} � ∞. (Sometimes we use the additional notation
F := e−Q for the tail distribution function). Denote by

X1,N � X2,N � · · · � XN ,N (1.1)

the order statistics (variational series) based on the sample {Xk}1�k�N . For fixed K ,
the terms XK ,N are referred to as the K th extremes.

In the present paper we derive, for any large N , asymptotic bounds for the expecta-
tionEGN

(
X1,N , X2,N , . . . , XN ,N

)
for an arbitrary nonnegative bounded functionGN

on R
N satisfying certain conditions of (Lebesgue’s) measurability, when the largest

order statistics essentially contribute to the expectation of the function GN . Loosely
speaking, the aforementioned expectation is bounded by a similar expectation mul-
tiplied by a large constant T but with the first K extremes replaced by independent
versions of maxima, making asymptotic formulas for such expectations less compli-
cated (see Proposition 1.1 in the present section). In the important case when GN are
indicator functions based on order statistics, the corresponding bounds hold true for
distributions, rather than expectations.

In the second part of the paper, we apply the present bounds for expectations
and distributions (i.e. Proposition 1.1) to investigate the following functions on order
statistics, as the sample size N tends to infinity:

(Appl-1) In Sect. 2, we study o- and O-type asymptotic properties in probability of
the numbers of observations near the K th extremes (shortly, numbers of near-extremes)
defined as the cardinality NK :N (I AN ) of the subset of the sample observations Xi

(1 � i � N ) that fall into the scaled interval XK ,N + I AN , where AN > 0 are
normalizing constants and I ⊂ R is a bounded interval such that 0 ∈ I , the closure
of I ; see Theorem 2.1. In Theorem 2.1, the corresponding o- and O-type conditions
on regular variation of the function F = e−Q at the right endpoint x∗ are given in
terms that are closely related to assumptions of the maximum domain of attraction for
i.i.d. samples. In the proof, we essentially explore key formula (2.1) for the random
variables NK :N (I AN ). Our Theorem 2.1 extends the corresponding results of Pakes
and Steutel [37], who have considered the numbers of near-maxima when K = 1,
AN ≡ const > 0 and I = (−1, 0], with continuous Q. The numbers of near-extremes
have been extensively studied in the mathematical and statistical literature because of
several applications including:

(I) actuarial mathematics that deals with models of insurance claims; see, e.g. [25,
26, 32].

(II) estimation theory that deals with estimating the distributional parameters includ-
ing the tail index and the right endpoint of the random sample; see, e.g. [25–27,
33].
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See also [38] for a physical background and further applications of the numbers of
near-extremes, and [16, 34] for a brief review and a comprehensive reference list on
the subject including distributional properties and limit theorems for the numbers of
near-extremes and related quantities.

(Appl-2) Section 3 presents the weak law of large numbers for the sums S(r)
K :N

(3.1) of negative powers of spacings XK ,N − Xi,N (K + 1 � i � N ) with fixed
K and N → ∞, assuming a finiteness of certain expectations and regular variation
of the function F = e−Q at x∗ in terms of singular integrals; see Theorem 3.1.
These results are crucial to the extreme value theory for eigenvalues of rank-one
perturbations of random diagonal matrices (i.e. randommean-field Hamiltonians) and
the large-time intermittency theory for the related branching random walks in random
potential {Xk}k∈N. For a physical background of the random mean field models, see
[13, 14]. Asymptotic properties of the sums S(r)

K :N (3.1) and their applications to the
aforementioned models have been earlier studied in the following papers: [14] dealing
with the case of Gaussian i.i.d. Xk (k ∈ N); [22, 23] treating the case of i.i.d. Xk = ηk
(k ∈ N) with the exponential distribution; finally, [4, 6] treating the case of i.i.d.
variables Xk (k ∈ N) with the tail distribution F = e−Q satisfying certain conditions
on smoothness and (integral-type) regular variation at x∗. Theorem 3.1 of the present
paper extends the corresponding results from [4, 6, 14, 22, 23].

It isworth noting that, in the aforementioned articles, the functions onorder statistics
as in (Appl-1) and (Appl-2) have been introduced to study various aspects of the
asymptotic structure of the sample observations that fall into a neighbourhood of the
extreme order statistics. See Sects. 2 and 3 for more discussions on applications of
the functions on order statistics under consideration, with emphasis on the discrete
distributions.

InRemark 2.5 of Sect. 2,we provide the key steps in the proof of the results in (Appl-
1) and (Appl-2). The methods of our paper (i.e. application of Proposition 1.1 dealing
with asymptotic bounds for expectations of relevant indicator functions based on
order statistics; truncation of independent maxima; Lebesgue’s bounded convergence
theorem, etc.) can be also applied to study the asymptotic behaviour of the following
functions on order statistics: spacings and ratios of extreme order statistics, ratios of the
sums of positive i.i.d. randomvariables to their extreme terms,multiplicity of extremes
of discrete random variables, etc. These and many others functions on order statistics
and their asymptotic properties play an important role in several areas of applications,
including mathematical statistics, finance and insurance, meteorology and hydrology
[3, 10, 18, 20, 30], as well as statistical physics and statistical mechanics [5, 24, 29,
38], among others.

Throughout the paper, we explore the following representation of order statistics
(1.1) of the i.i.d. sample {Xk}1�k�N : For the hazard rate function Q and the right end-
point x∗ � ∞ of the random variable X , we define the generalized inverse Q← by

Q←(y) := inf {x : Q(x) � y} (y > 0) (1.2)

(thus, Q← is a finite-valued left-continuous nondecreasing function on R+ := (0,∞)

such that Q←(y) → x∗ as y → ∞). Let ηk (k ∈ N) be i.i.d. random vari-
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ables on a probability space (Ω,F, P), with the exponential distribution function
P(η1 > x) = e−x , x > 0. (Shortly, {ηk}k∈N is referred to as i.i.d. Exp(1) sequence).
Denote by η1,N > η2,N > . . . > ηN ,N > 0 the order statistics based on the sample
{ηk}1�k�N ; here the inequalities are strict with probability 1, because of the continuity
of the exponential distribution. Then, according to Lemma 4.1.9 from [20], we obtain

that Xk
d= Q←(ηk) (k ∈ N) and

(
X1,N , X2,N , . . . , XN ,N

) d= (
Q←(η1,N ), Q←(η2,N ), . . . , Q←(ηN ,N )

)
, (1.3)

where
d= means that the distributions of the random vectors in both sides of (1.3) are

identical.
Throughout the paper, we also use the following abbreviations. Let R

N be the N -
dimensional real vector space, and letRN+ ⊂ R

N be the N -dimensional cone of vectors
with positive coordinates. Let 1I U stand for the indicator function of the set U , i.e.
1I U (x) = 1 if x ∈ U and 1I U (x) = 0 otherwise. By T0 ∈ R+, N0 ∈ R+, etc., we
denote various large numbers, values of whichmay change from one appearance to the
next. Similarly, const , const ′, etc., stand for various positive constants. Let sequences
{Xk}k∈N, {X (i)

k }k∈N (i = 1, 2, . . .) be independent copies of the i.i.d. sequence with

the common hazard rate function Q, and write X (i)
1,N for the maxima of the random

variables X (i)
k (1 � k � N ). (The samenotion is transferred to i.i.d.Exp(1) sequences).

Finally, for N ∈ N and Q← given by (1.2), define the function q : R
N+ → R

N by
q(y) := (Q←(y1), Q←(y2), . . . , Q←(yN )) for any y = (y1, y2, . . . , yN ) ∈ R

N+ .
With these abbreviations, we now state the following proposition.

Proposition 1.1 Fix constants C ∈ R+ and K ∈ N, and assume that GN : R
N →

[0,C] is a deterministic function such that GN ◦ q(·) := GN (q(·)) is measurable on
R

N+ . Then, for any T � T0(K ) and any N � N0(T ),

EGN
(
X1,N , X2,N , . . . , XK ,N , XK+1,N , . . . , XN ,N

)

� T · EGN
(
X (1)
1,N , X (2)

1,N , . . . , X (K )
1,N , XK+1,N , . . . , XN ,N

)+ C · εT (1.4)

and

EGN
(
X1,N , X2,N , . . . , XK ,N , XK+1,N , . . . , XN ,N

)

�T NK ·EGN
(
X (1)
1 , X (2)

1 , . . . , X (K )
1 , XK+1,N , . . . , XN ,N

)+C ·̃εT ; (1.5)

here constants εT > 0 and ε̃T > 0 depend only on T and K such that εT → 0 and
ε̃T → 0 as T → ∞.

Bound (1.4) tells us that, in the expectation of functions on order statistics, the first K
largest order statistics can be replaced by the independent versions of maximum at the
cost of largemultiplier T plus the small errorCεT . Meanwhile, bound (1.5) means that
the first K largest order statistics can be simply replaced by the i.i.d. random variables
at the cost of large multiplier T NK plus the small error C ε̃T . Recall that the order
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statistics Xk,N (k = 1, 2, . . .) are strongly correlated random variables. Therefore, one
may think of the assertions of Proposition 1.1 as a simplification of distributions or
expectations of functions onorder statistics in large N limit, especially for the functions
mentioned in (Appl-1)–(Appl-2) above and for the functions that depend only on the
extreme order statistics. On the other hand, bounds (1.4)–(1.5) are relevant tools for
the investigation of o- and O-type asymptotic properties in probability (for instance,
the weak laws of large numbers, stochastic boundedness and compactness, etc.) of
functions on order statistics, rather than the weak convergence of these quantities to a
limit with a nondegenerate distribution.

Proof of Proposition 1.1 is given in Sect. 4 and relies on the following two obser-
vations:

(J) Consider the function GN (η1,N , . . . , ηN ,N ) on the exponential order statis-
tics. For any N , the function GN is approximated in L1 by a step function defined
as a finite linear combination of indicator functions 1I Ik of rectangles Ik ⊂ R

N

with sides parallel to the axes of R
N (cf. Lemma 4.1). Therefore, the expectation

EGN (η1,N , . . . , ηN ,N ) is approximated by a finite linear combination of the expecta-
tions E1I Ik (η1,N , . . . , ηN ,N );

(JJ) Since 1I Ik is the function with separated variables, we repeatedly apply the
Markov property of the sequence ηN−l+1,N (l = 1, 2, . . . , N ) (cf. Lemma 4.4) and the
exact asymptotic bounds for the extremes ηK ,N (cf. Lemma 4.2) to derive the bounds
for E1I Ik (η1,N , . . . , ηN ,N ) like in (1.4) and (1.5) (cf. Lemma 4.3). This together with
the approximation results from part (J) yields the assertions of Proposition 1.1.

In Proposition 1.1 with the i.i.d. Exp(1) random variables Xk = ηk (k ∈ N) (so
that q is the identity function), it suffices to claim the measurability of GN itself. The
following proposition provides the classes of measurable functions that are useful for
applications.

Proposition 1.2 (I) For M ∈ N, if g : R
N → R

M is continuous, then g ◦ q : R
N+ →

R
M is measurable.

(II) If h : R
N → R

M is measurable and B ⊂ R
M is a Borel set, then 1I {x∈RN : h(x)∈B}

is a measurable function. Moreover, the sum and product of two finite-valued
measurable functions are both measurable.

Remark 1.3 For fixed constants K and T , and N tending to infinity, the right-hand
side of (1.5) is bounded from above by a constant const(K , T ) independent of N .
(However, const(K , T ) becomes arbitrarily large as T approaches infinity).

Proof of Remark 1.3 For simplicity of notation, consider the function GN (η1,N , . . . ,

ηN ,N ) on the exponential order statistics. We first notice that the support of GN in
(1.5) can be restricted to the cone R

N
con := {(x1, x2, . . . , xN ) ∈ R

N : x1> x2 > · · ·>
xN > 0}. Consequently, since 0 � GN � C and the random variables η

(1)
1 , η

(2)
1 , . . . ,

η
(K )
1 , ηK+1,N are mutually independent, we obtain that the right-hand side of (1.5)

does not exceed

CT NK
P

(
η

(1)
1 > · · · > η

(K )
1 > ηK+1,N

)
+ C ε̃T �CT NK

E

(
e−KηK+1,N

)
+ C ε̃T .
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Here the random variable e−ηK+1,N is beta-distributed with the density

(K + 1)

(
N

K + 1

)
xK (1 − x)N−K−1 (0 < x < 1).

Therefore, simple calculations of beta functions show that E
(
e−KηK+1,N

)
is of the

order N−K ; in particular, E
(
e−KηK+1,N

)
� (2K )!N−K for all N � K + 1. These

estimates imply that, for any N large enough, the right-hand side of (1.5) does not
exceed constant const(K , T ) > 0 depending only on K and T , as claimed. ��
Remark 1.4 Notice that the values of constants T0(K ), N0(T ), εT and ε̃T introduced
in Proposition 1.1 can be found in Sect. 4 (the proof of Proposition 1.1). However, a
derivation of the optimal values of these constants is beyond the scope of the present
paper. ��

The organization of the remaining sections of the paper is as follows: Sect. 2 pro-
vides o- and O-type asymptotic results in probability for the numbers of observations
near extremes. In Sect. 3, we state the weak law of large numbers for the sums of
negative powers of spacings. The results of Sect. 1, i.e. Propositions 1.1 and 1.2, are
proved in Sect. 4. The main result of Sect. 2, i.e. Theorem 2.1, is proved in Sect. 5.
Finally, Theorem 3.1 of Sect. 3 is derived in Sect. 6.

2 Applications to the Numbers of Near-Extremes

Let X , Xk (k ∈ N) be the i.i.d. randomvariables with the common distribution function
1− e−Q and the right endpoint x∗ � ∞. Let Xk,N (1 � k � N ) be the order statistics
defined in (1.1)–(1.3). By I0 we denote a collection of bounded intervals I ⊂ R

(closed, open, semiclosed) such that 0 ∈ I , the closure of I . The main object of the
present section is the number of near-extremes defined by

NK :N (I A) := #{i ∈ [1, N ]\{K } : Xi,N ∈ XK ,N + I A}

=
N∑

i=1,i =K

1I {Xi,N∈XK ,N+I A}, (2.1)

where I ∈ I0, K ∈ N and A = AN ∈ R+ are positive constants that may or not may
depend on N . Here x + I A stands for the shifted and scaled interval {x + yA : y ∈ I }.
For I = {0}, the random variableMK :N := NK :N ({0}) denotes the multiplicity of the
K th order statistics. For K = 1 and I = (−1, 0], Eq. (2.1) appears in the context of
insurance mathematics: If X1,N denotes the maximum of N claims X1, X2, . . . , XN ,
then N1:N ((−A, 0]) gives the number of claims close to X1,N ; see e.g. [25, 32, 37].

The asymptotic behaviour of sequence (2.1) (as N → ∞) has been first studied
by Pakes and Steutel [37] in the case of K = 1 and I = (−1, 0]. In particular, they
have considered N1:N ((−A, 0]), the numbers of observations near maxima with a
fixed interval length A, by assuming that x∗ = ∞ and Q is the continuous function
satisfying the following condition: there exists a constant 0 � ρ � ∞ such that
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lim
x→∞ Q(x + c) − Q(x) = ρc for any c ∈ R+. (2.2)

Here ρ = 0 (resp., ρ = ∞) refers to the heavy tails (resp., light tails) of distributions.

Pakes and Steutel [37] have established that N1:N ((−A, 0]) P−→ 0 as N → ∞ when

ρ = 0, and N1:N ((−A, 0]) P−→ ∞ as N → ∞ when ρ = ∞; here
P−→ denotes the

convergence in probability. Moreover, the sequenceN1:N ((−A, 0]) converges weakly
(as N → ∞) to a geometrically distributed random variable when 0 < ρ < ∞. The
latter limit theorem (i.e. the weak convergence to a nondegenerate random variable)
has been extended and generalized by many authors to the numbers of observations
near extreme order statisticswith N -dependent or -independent interval lengths, where
the distribution 1− e−Q is typically assumed to be continuous and lay in themaximum
domain of attraction (MDA); e.g. [8, 28, 34–37]. See also [16, 34] for a review of limit
theorems for the numbers of observations near order statistics and references therein.
Recall that, by the definition, 1 − e−Q ∈ MDA if and only if there exist constants
AN ∈ R+ and BN ∈ R such that the sequence (X1,N − BN )/AN convergences
weakly to a nondegenerate random variable. From Chapter 1 in [18] we know that
1 − e−Q ∈ MDA if and only if there exists a positive auxiliary function h(·) > 0 on
(−∞, x∗) such that

lim
x↑x∗(Q(x + ch(x)) − Q(x)) = 1

γ
log(1 + γ c)

for some γ ∈ R and for any cwith 1 + γ c > 0. (2.3)

Notice that, for γ = 0, the right-hand side of (2.3) is interpreted as c. Moreover, for
0 < ρ < ∞, condition (2.2) coincides with (2.3) where γ = 0 and h(·) ≡ 1/ρ. On
closer inspection of Sections 1.1.3 and 1.2 in [18], one finds that 1− e−Q ∈ MDA if
and only if (2.3) is fulfilled with h = a( eQ) for some continuous auxiliary function
a(·) > 0 onR+ such that there exists a finite and positive limit limx→∞ a(cx)/a(x) for
any c > 0 (i.e.a(·) isKaramata’s regularly varying at infinity; see [12]). In this case, the
normalizing constants AN > 0 in limit theorems for the sequences (X1,N − BN )/AN

andNK :N (I AN ) are allowed to be proportional to the quantities a(N ) defined above;
cf. also [34, 37]. For instance, using the expressions for distributions of the random
variablesNK :N ((−AN , 0)) in terms of certain distributions of the normalized spacings
(XK ,N − X j,N )/AN ( j > K ), Nagaraja et al. [34] have derived limit theorems for
NK :N ((−AN , 0)) from that for the spacings. The inverse statements, including the
derivation of limit theorems for the spacings from that for the numbers of near-maxima,
have been discussed in [37].

The above considerations serve as a starting point for the O-and o-type asymptotic
results of the present section on the numbers of near-extremes. Let us introduce the
related abbreviations and notations. For functions f (·) � 0 and g(·) > 0 on (−∞, x0),
we write f (x) = O(g(x)) (resp., f (x) � g(x)) as x ↑ x0, if the ratios f (x)/g(x)
(resp., f (x)/g(x) + g(x)/ f (x)) are bounded from above for all x close to but less
than x0. A measurable function f (·) > 0 on R+ is said to be in the class ORV , if
f (cx) � f (x) as x → ∞, for any c ∈ R+. For a detailed account of alternative
definitions and properties of f ∈ ORV , see [1] or Chapter 2 in [12]. For random
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variablesYN (N ∈ N), wewriteYN
P=O(1) as N → ∞, if limsup N P(|YN | > T ) → 0

as T → ∞. Moreover, YN
P−→ C means the convergence in probability of YN to

C ∈ R ∪ {∞}. Finally, Q−(x) := Q(x−) denotes the left-continuous version of Q.

Theorem 2.1 Let Q−(x∗) = ∞. Fix an arbitrary positive function a(·) ∈ ORV , and
write AN := a(N ) (N ∈ N). Then for K ∈ N and intervals I ∈ I0 fixed arbitrarily,
we have the following limits in probability for the random variables NK :N (I AN ) as
N → ∞:

(i) If Q(x) − Q(x − ca( eQ(x))) = O(1) as x ↑ x∗, for any c ∈ R+, then
NK :N (I AN )

P=O(1).
(ii) If Q(x) − Q(x − ca( eQ(x))) → 0 as x ↑ x∗, for any c ∈ R+, then

NK :N (I AN )
P−→ 0.

(iii) Let

Q−(x) − Q−(x − ca( eQ
−(x))) → ∞ as x ↑ x∗, for any c ∈ R+, (2.4)

and assume additionally that either Q(x) − Q−(x) = O(1) as x ↑ x∗, or the
function a(·) is nondecreasing on R+; then

NK :N (I AN )
P−→ ∞,

provided (−I ) ∩ R+ is an interval of positive length.

Theorem 2.1 extends the corresponding results in [37], mentioned at the beginning
of this section.

Example 2.2 (vonMises distribution) Consider the function Q(x) = x+sin x (x � 0).
Notice that the distribution 1 − e−Q does not belong to the maximum domain of
attraction according to Exercise 1.18 in [18], pp. 36. However, the function Q satisfies
the corresponding conditions of Theorem 2.1(i), (ii) and (iii), provided a(x) = O(1),
a(x) → 0 and a(x) → ∞, respectively. ��

Another important example is the i.i.d. random variables X , Xk (k ∈ N) with
discrete distribution. In this case, we are interested in the multiplicity MK :N :=
NK :N ({0}) of the K th extreme order statistics XK ,N . Parts (i) and (ii) of Theorem 2.1
immediately imply, respectively, parts (i) and (ii) of the following corollary.

Corollary 2.3 (The multiplicity MK :N of the K th extreme order statistics in the case
of discrete distributions with heavy and medium tails) Assume that P(X ∈ N) = 1
and x∗ = ∞. Then for fixed K ∈ N, we have the following limits in probability for
the random variables MK :N := NK :N ({0}) as N → ∞:

(i) If Q(x) − Q(x − 1) = O(1) as x → ∞, then MK :N
P=O(1);

(ii) If Q(x) − Q(x − 1) → 0 as x → ∞, then MK :N
P−→ 0. ��

For K = 1, the assertion in part (ii) of Corollary 2.3 is well-known in mathematical
literature, where the necessity of the condition in (ii) is also established; e.g. [9, 15].
Notice that case (ii) refers to the heavy tails e−Q , i.e. Q(x) = o(x) as x → ∞.
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Remark 2.4 (The multiplicityMK :N of the K th extreme order statistics in the case of
discrete distributions with light tails.)

(j) Assume that P(X ∈ N) = 1 and x∗ < ∞. Then, for any natural M � 2, the
sequence P(M1:N � M − 2) = P(X1,N − XM,N � 1) tends to zero (therefore,

MK :N
P−→ ∞), according to the obvious statement that almost surely Xk,N = x∗

for any N � N0(ω) with k ∈ N fixed arbitrarily.
(jj) Assume now that P(X ∈ N) = 1, x∗ = ∞ and

limsup
x→∞

(Q(x) − Q(x − 1)) > 0. (2.5)

[Class (2.5) includes the functions Q with Q(x)−Q(x−1) → ∞ (x → ∞) referring
to the light tails e−Q]. Then Theorem 1.3 from [7] yields that, for any m ∈ N ∪ {0},
the limit limN P(M1:N = m) does not exist. Therefore, limsup N P(M1:N � m) > 0
and limsup N P(M1:N > m) > 0. These limits imply that the sequence M1:N does
not approach infinity with probability close to one. In particular, for the discrete case
with Q(x) − Q(x − 1) → ∞ (x → ∞), the analogue of Theorem 2.1(iii) does not
hold.

For discrete distributions with light tails, clustering properties of the extreme order
statistics have been studied in [2, 7, 39], among others. ��
Remark 2.5 Proof of Theorem 2.1 is given in Sect. 5. We now present the key steps of
the proof of Theorem 2.1(i) in the case of K = 1 and I = (−1, 0], i.e. for the number
N1:N := N1:N ((−AN , 0]) of observations near maxima:

(I) (Application of Proposition 1.1 dealing with asymptotic bounds for expectations
of relevant indicator functions based on order statistics). Introduce the auxiliary
quantities Ñ1:N := #{1 � i � N : X̃1,N − AN < Xi � X̃1,N }, the number
of observations near independent maxima X̃1,N . Using bound (1.4) in Proposi-
tion 1.1 with K = 1 and GN (X1,N , . . . , XN ,N ) := 1I {N1:N>T } for T > 0, we
obtain the following bound for any small ε > 0:

limsup
N

P(N1:N > T ) � ε−1 limsup
N

P
(
Ñ1:N > T

)+ ε

= ε−1 limsup
N

EP
(
Ñ1:N > T | X̃1,N

)+ ε. (2.6)

Notice that, conditioning on X̃1,N , the random variable Ñ1:N is binomially
distributed with the sample size N and success probability pN (X̃1,N ) :=
P
(
X̃1,N − AN < X � X̃1,N | X̃1,N

)
.

(II) (Truncation of independent maxima). Next, we prove that there exist constants
lT :N and LT :N (N ∈ N, T � T0) such that lT :N � X̃1,N � LT :N with high
probability 1 − o(1) as first N → ∞ and then T → ∞; see Lemma 5.2. Thus,
for T large enough, the right-hand side of (2.6) does not exceed

ε−1 limsup
N

E

(
P
(
Ñ1:N > T | X̃1,N

)
1I {lT :N�X̃1,N�LT :N }

)
+ 2ε. (2.7)

123



Journal of Theoretical Probability (2023) 36:1116–1147 1125

(III) (Lebesgue’s bounded convergence theorem and limit theorems for sums of inde-
pendent random variables). Consider Eq. (2.7). We first apply the Lebesgue’s
bounded convergence theorem (i.e. Lemma 5.1) to interchange the operations
limsup N and E in (2.7). The last limit is then reduced (by using relevant limit
theorems for the sequence of binomially distributed random variables) to the
condition of Theorem 2.1(i). I.e. as T → ∞, expression (2.7) tends to the con-
stant 2ε > 0, picked arbitrarily small. The latter concludes the proof of Theorem
2.1(i). ��

The same arguments as those inRemark 2.5(I)–(III) are applied to prove the remain-
ing asymptotic results of the present section and Sect. 3 dealing with the sums of
negative powers of spacings; cf. Sects. 5 and 6 below. They are thought to be useful in
the study of asymptotic behaviour of other functions on order statistics. In this paper,
we do not prove the necessity of the conditions on limit theorems for functions on
order statistics under consideration. However, the proof of the results of Sect. 2 and
3 suggests that our assumptions on the tail distribution F = e−Q are very close to
necessary conditions.

3 Applications to Sums of Negative Powers of Spacings

As before, let X , X1, X2, . . . be i.i.d. random variables with the common tail distribu-
tion function F = e−Q and the right endpoint x∗ � ∞. Let X0,N := x∗ � X1,N �
· · · � XN ,N be the “extended” variational series based on the sample X j (1 � j � N ).

In the present section, we provide the weak law of large numbers (WLLN) for the
sum N−1S(r)

K :N as N → ∞, where

S(r)
K :N :=

N∑

j=K+1

(
XK ,N − X j,N

)−r (3.1)

for fixed constants K ∈ N and r ∈ R+. Of course, sum (3.1) is allowed to take the value
+∞. (Here and in what follows, 1/0+ = +∞ and 1/∞ = 0, by convention). For
continuous F , with probability one sum (3.1) is finite for all N , since the inequalities
in (1.1) are strict. On the other side, if F has an atom at x∗ < ∞, then with probability
one sum (3.1) is infinite for any N large enough, since a few extreme order statistics
coincide for such N ; cf. Remark 2.4(j). Notice that, for K = 0, Eq. (3.1) is the sum
of nonnegative i.i.d. random variables; therefore, N−1S(r)

0:N converges in probability
to the expectation E

(
(x∗ − X)−r

)
� ∞ due to the classical WLLN. We will prove

the same WLLN for N−1S(r)
K :N (K � 1) under the additional condition on regular

variation of the function F at the right endpoint x∗; see Theorems 3.1 and 3.2. This
condition is given in terms of singular integrals of the function F and ensures that the
sum of the first o(N ) terms in (3.1) is negligible in large N limit.

Limit theorems for the functions N−1S(r)
K :N (r = 1 and =2) play a crucial role

in the extreme value theory for eigenvalues eK (HN ) of N × N symmetric random
matrices HN := XN ,diag + JN with N → ∞, known as rank one perturbations of
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random diagonal matrices XN ,diag := diag {X1, X2, . . . , XN }, where {Xi }i∈N is the
i.i.d. sequence as above and JN are N × N deterministic matrices whose every entry
is equal to N−1. Under appropriate conditions on the tail distribution F (in particular,
continuity conditions of F), Astrauskas and Molchanov [6] and Astrauskas [4] have
established the following phase transition in the asymptotic behaviour of the extreme
eigenvalues eK (HN ):

(POI) if the function N−1S(1)
K :N is asymptotically small enough (i.e. a low statistical

concentration of observations Xi (1 � i � N ) close to XK ,N ), then the eigenvalues
eK (HN ) take on a Poissonian character in the limit N → ∞;
(CLT) if the function N−1S(1)

K :N is asymptotically large enough (i.e. a high statistical
concentration of observations Xi (1 � i � N ) close to XK ,N ), then the central
limit theorem for the maximal eigenvalue e1(HN ) holds true.

On the other hand, by applying limit theorems for the two largest eigenval-
ues eK (HN ) (K = 1, 2) and, as a by-product, asymptotic properties of the sums
N−1S(1)

1:N and spacings X1,N − X2,N , Bogachev and Molchanov [14], Fleischmann
and Molchanov [23], Fleischmann and Greven [22] have studied long-time localiza-
tion properties of the solutions 0 � U (t, ·) = {U (t, k) : k = 1, 2, . . . , N } (t ∈ R+) to
the random “heat” equations ∂U (t, ·)/∂t = HNU (t, ·) with certain initial conditions,
provided t and N both tend to infinity in a suitable relation. Recall that the solution
U (t, ·) is represented as a linear combination of N orthonormal eigenvectors ofHN . It
is shown that the main asymptotic contribution toU (t, ·) comes from the term associ-
ated with the maximal eigenvalue and eigenvector, and the contribution from the other
terms associated with lower eigenvalues is asymptotically negligible—therefore, the
asymptotic properties of U (t, ·) are determined by that of the maximal eigenvalue
and eigenvector of matrices HN . The model is thought to exhibit the localization–
delocalization transition at the boundary between the cases (POI) and (CLT) as above;
cf. Section 1 in [4].

To state the main theorems of the section, we write t ∧ s := min(t, s) and, for
c ∈ R+, abbreviate

Jr (x; c) :=
(x∗−x)∧1∫

c(F(x))1/r

y−r−1(F(x − y) − F(x)) dy (3.2)

for any x smaller than but close to x∗.

Theorem 3.1 (Weak law of large numbers) Let x∗ � ∞, r ∈ R+ and K ∈ N be fixed
constants. If m(r) := E

(
(x∗ − X)−r

)
< ∞ and

Jr (x; c) → 0 as x ↑ x∗, for any c ∈ R+, (3.3)

then

N−1S(r)
K :N

P−→ m(r) as N → ∞.
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Recall that, for x∗ = ∞, the expectation m(r) is zero, by convention. Theorem 3.1
is complemented by the following theorem.

Theorem 3.2 (Asymptotic negligibility of the maximal term in sums (3.1)) Let x∗ �
∞ and K ∈ N be fixed constants.

(I) If r ∈ R+ ∪ {∞} and

F
(
x − c

(
F(x)

)1/r)/
F(x) → 1 as x ↑ x∗, for any c ∈ R+, (3.4)

then

N 1/r (XK ,N − XK+1,N
) P−→ ∞ as N → ∞.

(II) If r ∈ R+ and F(x)(x∗ − x)−r → 0 as x ↑ x∗, then

N 1/r (x∗ − X1,N
) P−→ ∞ as N → ∞.

Proof of Theorem 3.1 is given in Sect. 6, and it heavily relies on Proposition 1.1
and Lemmas 5.1 and 5.2. Part (I) of Theorem 3.2 follows from Lemma 5.4 with
a(x) ≡ x−1/r (x ∈ R+). For x∗ < ∞, part (II) of Theorem 3.2 follows from the
obvious bound P

(
N 1/r (x∗ − X1,N ) < T

)
� NF(x∗ − T N−1/r ) → 0 as N → ∞,

for any T ∈ R+. ��
Remark 3.3 Let us overview the previous papers on limit theorems for sums (3.1).
For the Gaussian i.i.d. random variables Xk (k ∈ N), Bogachev and Molchanov [14]
derived the strong LLN for N−1S(1)

1:N by exploring the explicit almost sure bounds for
certain spacings in (3.1). Similarly, in the case of exponentially distributed i.i.d. random
variables Xk = ηk (k ∈ N), Fleischmann and Molchanov [23] proved the WLLN for
N−1S(1)

1:N , and later on, Fleischmann andGreven [22] extended this result, in particular,
determining the convergence rate in the WLLN (cf. Lemma 2.2 in [22]). Astrauskas
and Molchanov [6] established the convergence of N−1S(1)

1:N in L1 norm, provided the
density function p = (−F)′ satisfies certain conditions of regular variation in terms of
singular integrals of p. Astrauskas [4] gave the sketch proof of theWLLNfor N−1S(r)

K :N
with r ∈ {1, 2} and K ∈ N, provided F is a smooth function satisfying conditions like
those in Theorems 3.1 and 3.2. In [4, 6], the authors derived further limit theorems for
the (properly normalized) sums S(1)

K :N and related quantities in the case of x∗ < ∞ and
Fα(x) = (x∗ − x)α for x close to x∗; here α > 0. Notice that, for α > r , the function
Fα satisfies the assumptions of Theorem 3.1; meanwhile, for α � r , the conditions of
Theorem 3.1 do not hold. The various WLLN for N−1S(r)

K :N from [4, 6, 14, 22, 23] are
extended and generalized in Theorem 3.1 of the present paper, where r is an arbitrary
positive constant, K ∈ N and F is allowed to be a discontinuous function. Recall that
limit theorems for sums (3.1) and related functions on order statistics play a major role
in studying asymptotic properties of the random matrix models mentioned above. ��
Remark 3.4 (Comparison of the conditions of Theorems 3.1 and 3.2)
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(I) For any r ∈ R+, a finiteness of the expectation

m(r) = E
(
(x∗ − X)−r ) = r

∫ x∗

−∞
(x∗ − x)−r−1F(x) dx < ∞

implies that F(x)(x∗ − x)−r → 0 as x ↑ x∗ (cf. Section V.6 in [21]). For
x∗ < ∞, the latter limit yields that F is continuous at x∗. Also, condition (3.4)
of Theorem 3.2 implies a continuity of F at x∗ < ∞. On the other hand, if F
is discontinuous at x∗ < ∞, then m(r) = ∞ and almost surely N−1S(r)

K :N = ∞
for any N large enough [cf. Remark 2.4(j)].

(II) For any r ∈ R+, the conditions of Theorem 3.1 imply assumption (3.4) of
Theorem 3.2.

(III) Let x∗ = ∞, and assume that

F (x − c)
/
F(x) → 1 as x → ∞, for any c ∈ R+, (3.5)

i.e. Assumption (3.4) with r = ∞ (or equivalently, condition (2.2) with ρ =
0 introduced by Pakes and Steutel [37]). Then F satisfies the conditions of
Theorem 3.1 for any r ∈ R+. Condition (3.5) is well-known in the classical
theory of regularly varying functions; see Chapter 1 in [12]. In particular, (3.5)
is equivalent to the slow variation of the function F(log(·)) at infinity; therefore,
− log(F(x)) = o(x), i.e. heavy tails.

(IV) Assume now that

P(X ∈ N) = 1, x∗ = ∞ and limsup
x→∞

F(x − 1)

F(x)
> 1,

i.e. condition (2.5) of Remark 2.4(jj) holds true. Then, for r ∈ R+, we have that
m(r) = 0; however, condition (3.3) of Theorem 3.1 does not hold. (Indeed, there
exists a sequence x = xn ∈ N (n = 1, 2, . . .) tending to infinity such that the
left-hand side of (3.4) converges to const > 1; therefore, (3.3) fails according to
part (II) of the present remark). On the other hand, Remark 2.4(jj) with m = 0
implies that

limsup
N

P(S(r)
1:N = ∞) = limsup

N
P(M1:N � 1) > 0 and

limsup
N

P(N−1S(r)
1:N � 1) � limsup

N
P(M1:N = 0) > 0,

so that the sequence N−1S(r)
1:N does not converge to a constant (finite or infinite)

with probability close to one.
(V) If limit (3.4) is fulfilled for all c ∈ R (this is a slightly stronger than (3.4) for

c ∈ R+), then limit (3.4) holds true uniformly in any compact interval of real c

due to the monotonicity of F . In this case, the function
(
F(x)

)1/r
is called self-

neglecting as x approaches x∗. The class of self-neglecting functions at infinity
is characterized in Section 2.11 of [12].
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Let us prove assertions (II)–(III) of Remark 3.4. As for (II), assuming a finiteness
of E

(
(x∗ − X)−r

)
and taking into account the first assertion of (I), we obtain the

implication (3.3) ⇒ (3.4) from the following simple estimates for any c ∈ R+ and
any x close to x∗:

Jr (x; c) �
2c
(
F(x)

)1/r
∫

c
(
F(x)

)1/r

y−r−1(F(x − y) − F(x)) dy

�
2c
(
F(x)

)1/r
∫

c
(
F(x)

)1/r

y−r−1 dy
[
F
(
x − c

(
F(x)

)1/r)− F(x)
]

= const
[
F
(
x − c

(
F(x)

)1/r) (
F(x)

)−1 − 1
]

� 0.

In part (III), the implication (3.5) ⇒ (3.3) follows from the bounds

Jr (x; c) � (F(x − 1) − F(x))
∫ 1

c
(
F(x)

)1/r y
−r−1 dy

� const (F(x − 1) − F(x))/F(x) for any x � x0.

��
Remark 3.5 (Alternative conditions for the assertions of Theorems 3.1 and 3.2, pro-
vided F := 1 − F is smooth enough) Suppose that there exists a density p := F ′ of
the distribution function F . Fix r ∈ N.

(J) Letm(r) < ∞, and assume that p has the r th derivatives p(r) in (x0, x∗) satisfying
the following conditions as x ↑ x∗:

for r = 1, p(x) log

(
F(x)

(x∗ − x) ∧ 1

)

→ 0 and p′(x)
(
(x∗ − x) ∧ 1

) → 0;
(3.6)

for r = 2, 3, . . . , p(i)(x)
(
F(x)

) i+1−r
r → 0 (0 � i � r − 2) and

p(r−1)(x) log

( (
F(x)

)1/r

(x∗ − x) ∧ 1

)

→ 0, and p(r)(x)
(
(x∗ − x) ∧ 1

) → 0;
(3.7)

with p(0) := p. Then condition (3.3) is fulfilled.

(JJ) If p(x)
(
F(x)

)(1−r)/r → 0 as x ↑ x∗, then
(
F
)1/r

is self-neglecting at x∗, so
that condition (3.4) is fulfilled.
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Let us prove assertions (J) and (JJ), provided x∗ = ∞. For finite x∗, the proof is
similar. In order to prove the convergence of integral (3.2) to zero under conditions
(3.6)–(3.7), we apply Taylor’s theorem to expand the differences F(x − y) − F(x) =
F(x) − F(x − y) in powers of y up to order r + 1. Namely, for all x � x0 and
0 < y � 1,

F(x − y) − F(x) =
r∑

i=1

(−1)i−1 p(i−1)(x)

i ! yi + hr (v)yr+1, (3.8)

where |hr (v)| = |p(r)(v)|/(r + 1)! for some v such that x − y � v � x . By the
last Assumptions in (3.6)–(3.7) with x∗ = ∞, we have that supx−1�v�x |hr (v)| → 0
as x → ∞. Taking into account the latter limit and Assumptions (3.6)–(3.7) with
x∗ = ∞, we now substitute (3.8) into (3.2) to find that the right-hand side of (3.2)
tends to zero as x → ∞.

To prove assertion (JJ) for x∗ = ∞, we consider the density pr := r−1(F)(1−r)/r p
of the function 1 − (F)1/r , so that pr (x) → 0 as x → ∞ by the assumption. Fix
c ∈ R\{0}, and write f (x) := c(F(x))1/r . According to the mean value theorem for
the function 1 − (F)1/r , we have that for any x � x0 there exists a real y such that
x − f (x) � y � x and

[(
F(x − f (x))

)1/r − (
F(x)

)1/r] (
F(x)

)−1/r = pr (y) f (x)
(
F(x)

)−1/r = pr (y)c.

Since pr (y) � supx−1�z�x pr (z) → 0 as x → ∞, we obtain the assertion (JJ) for
x∗ = ∞. ��

4 Proof of Propositions 1.1 and 1.2

Proof of Proposition 1.1 Denote by IN := {I } the set of all rectangles I ⊆ R
N (open,

closed, semi-open) with sides parallel to the axes of R
N . Let μN be the probability

measure onR
N generated by the random vector (η1,N , η2,N , . . . , ηN ,N ). Similarly, let

μ
(1)
K :N and μ

(2)
K :N be the probability measures on R

N generated by the random vectors,

respectively, (η(1)
1,N , . . . , η

(K )
1,N , ηK+1,N , . . . , ηN ,N ) and (η

(1)
1 , . . . , η

(K )
1 , ηK+1,N , . . . ,

ηN ,N ) defined above Proposition 1.1. (Throughout we use the abbreviation
∫
g dμ :=∫

RN g(x) dμ(x) for the integral with respect to the measure μ on R
N ; thus, μ(D) :=∫

1I D dμ for a measurable D ⊆ R
N ).

The first lemma tells us that the function GN is approximated in L1(μN ) and
L1(μ

(i)
K :N ) by a step function, i.e. a finite linear combination of indicator functions of

rectangles in R
N . ��

Lemma 4.1 Fix K ∈ N andmeasurable functions GN : R
N → [0,C]. For any N > K

and any ε > 0, there exists a step function SN := ∑L
j=1 α j1I I j for some constants

L = L(N , ε) ∈ N, α j = α j (N , ε) ∈ (0,C] and rectangles I j = I j (N , ε) ∈ IN such
that
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∫
|GN − SN | dμN < ε and

∫
|GN − SN | dμ(i)

K :N < ε for i = 1, 2.

(4.1)

Lemma 4.1 is proved below by using the standard arguments of the Lebesgue’s
theory of measures and integration; see, e.g. Theorem 2.4 (Chapter 2) in [40] or
Theorem 1.3.20 in [41] and their proof. However, we need to be careful with N which
is arbitrarily large, and ε > 0 which is arbitrarily small. Moreover, we work with three
different measures μN and μ

(i)
K :N (i = 1, 2) on R

N . Thus, we give a sketch of the
proof, with emphasis on the basic ideas of the Lebesgue’s theory.

For K ∈ N, R ∈ R+ and N � N0(K , R), define the subset

ΩK ,R,N :=
{
(x1, x2, . . . , xN ) ∈ R

N : max
1�i�K+1

|xi − log N | � log R

}
. (4.2)

The next lemma follows simply from the formulas for distributions of the normalized
exponential order statistics ηK ,N − log N .

Lemma 4.2 For any K ∈ N, any R � 1 and any natural N � K + 1,

μN

(
R

N\ΩK ,R,N

)
� P

(
ηK+1,N < log(N/R)

)+ P
(
η1,N > log(N R)

)

� ρ(R) := (K + 1)R−1 + 1 − e−2/R .

Proof of Lemma 4.2 For N � K + 1 and R ∈ R+, the Markov’s inequality implies

P
(
ηK+1,N < log(N/R)

)
� N

R
E
(
e−ηK+1,N

) = N

R
· K + 1

N + 1
<

K + 1

R
,

where the expression for the last expectation is derived by the same arguments as
in the proof of Remark 1.3 above. Using the inequality log(1 − x) � −2x for all
0 � x � 1/2, we obtain that

P
(
η1,N > log(N R)

) = 1 − exp

{
N log

(
1 − 1

N R

)}
� 1 − e−2/R

provided N R � 2. Lemma 4.2 is proved. ��
FromLemma 4.1we see that the expectation of the functionGN can be replaced (up

to a small error) by a linear combination of the functions (indicators) with separated
variables. A real-valued function g(x), x = (x1, x2, . . . , xN ) ∈ R

N , is said to be the
function with separated variables if

g(x) ≡
N∏

k=1

fk(xk) for some fk : R → R (1 � k � N ). (4.3)
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For such g instead of GN , we are able to prove Proposition 1.1 by applying straight-
forwardly the Markov property of the random sequence ηN−l+1,N (l = 1, 2, . . . , N ).
I.e. with (4.2) and the abbreviations given above Lemma 4.1, we have the following
lemma.

Lemma 4.3 Fix K ∈ N. Assume that gN : R
N → R+ are functions with separated

variables, determined by products (4.3) of N measurable nonnegative bounded func-
tions on R. Then, for any R � R0(K ) and any N � N0(R),

∫
gN1IΩK ,R,N dμN � τi (N , R)

∫
gN1IΩK ,R,N dμ(i)

K :N for i = 1, 2;

here τ1(N , R) := e2RK RK K ! and τ2(N , R) := NK RK K !.
Lemma 4.3 is proved below.
We now derive the claimed assertions of Proposition 1.1 by applying Lem-

mas 4.1, 4.2 and 4.3. Using the abbreviations given above Lemmas 4.1 and 4.2, we
have that, for any R � R0(K ) and any N � N0(R),

∫
GN dμN =

∫
GN1IΩK ,R,M dμN +

∫
GN1I RN \ΩK ,R,M

dμN

�
∫

GN1IΩK ,R,M dμN + C · �(R) (4.4)

by Lemma 4.2.
We first apply Lemma 4.1 [i.e. the first bound in (4.1)] to the last integral in (4.4);

afterwards, we apply Lemma 4.3 to the integrals of the corresponding indicator func-
tions; and finally, we again use Lemma 4.1 (i.e. the second bound in (4.1)) to estimate
the integral of the corresponding step function with respect to the measures μ

(i)
K :N

(i = 1, 2). More precisely, for any R � R0(K ), any N � N0(R) and any ε > 0,

∫
GN1IΩK ,R,M dμN �

L∑

j=1

α j

∫
1I I j 1IΩK ,R,N dμN + ε

� τi (N , R)

L∑

j=1

α j

∫
1I I j 1IΩK ,R,N dμ(i)

K :N + ε

� τi (N , R)

∫
GN dμ(i)

K :N + ε · τi (N , R) + ε

for i = 1, 2. With ε = Cρ(R)
(
τi (N , R) + 1

)−1, the last estimate and (4.4) imply

∫
GN dμN � τi (N , R)

∫
GN dμ(i)

K :N + C · 2ρ(R) (4.5)

for R, N and i as above; here ρ(R) and τi (N , R) are defined in Lemmas 4.2 and 4.3,
respectively.
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For i = 1, we use the following substitutions: T := τ1(N , R) = τ1(R) :=
e2RK RK K !; therefore, R = τ←

1 (T ) and εT := 2ρ
(
τ←
1 (T )

)
. Notice that εT → 0

as T → ∞. Thus, substituting these abbreviations into (4.5), we obtain assertion (1.4)
of Proposition 1.1.

Similarly, for i = 2, we use the following substitutions: τ2(N , R) =: NK T where
T := RK K !; therefore, R = (T /K !)1/K and ε̃T := 2ρ

(
(T /K !)1/K ). Notice that

ε̃T → 0 as T → ∞. Thus, substituting these abbreviations into (4.5), we obtain
assertion (1.5) of Proposition 1.1.

It remains to prove Lemmas 4.1 and 4.3.

Proof of Lemma 4.1 Throughout the proof, fix N ∈ N, N > K , and ε > 0 arbitrarily.
It suffices to prove Lemma 4.1 for the “unified” measure on R

N

μ̃N := μN + μ
(1)
K :N + μ

(2)
K :N (4.6)

instead of the measures μN and μ
(i)
K :N (i = 1, 2). Notice that the measure μ̃N is

absolutely continuous with respect to the Lebesgue measure mN on R
N , and the

density of μ̃N is bounded and continuous mN -a.e. Moreover, μ̃N (RN ) = 3. Because
of such regularity properties of μ̃N , the theory of the Lebesguemeasure and integration
remains valid for μ̃N instead of mN ; see Chapters 1 and 2 of [40].

First, define the simple functions

S0N :=
∑

j

( jε/9)1I Dj (4.7)

where Dj = Dj (N , ε) := {
x ∈ R

N : jε/9 � GN (x) < ( j + 1)ε/9
}
.

Obviously, S0N : R
N → [0,C] is a measurable function, with a finite number J =

J (N , ε,C) of summands, such that

sup
x

|GN (x) − S0N (x)| < ε/9. (4.8)

Because of a regularity of μ̃N , there are open subsets D∗
j = D∗

j (N , ε) ⊂ R
N such

that D∗
j ⊃ Dj and μ̃N (D∗

j \Dj ) < ε2− j/(3C) for all j ∈ [1, J ]; see Theorem 3.4(i)
(Chapter 1) in [40]. Define the function S∗

N as in (4.7) with Dj replaced by D∗
j for

each j ∈ [1, J ]. Thus S∗
N � S0N and, therefore,

∫
|S0N − S∗

N | dμ̃N =
∫

(S∗
N − S0N ) dμ̃N

=
J∑

j=1

jε

9
μ̃N (D∗

j \Dj ) <
ε

3

∑

j∈N
2− j = ε

3
. (4.9)

On the other side, for fixed j , the (open) subset D∗
j can be written as a countable

union of closed rectangles Im, j = Im, j (N , ε) ∈ IN with disjoint interiors I intm, j , i.e.
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D∗
j = ⋃

m∈N Im, j where I intm, j ∩ I intn, j = ∅ for all m = n; see Theorem 1.4 (Chapter

1) in [40]. Thus, D∗
j = (⋃

m∈N I intm, j

)⋃
B, where B is the countable union of the

boundaries of the rectangles Im, j (m ∈ N), so that μ̃N (B) = 0. Therefore, because of
the finiteness of the series

∑

m∈N
μ̃N (Im, j ) =

∑

m∈N
μ̃N (I intm, j ) = μ̃N

(
⋃

m∈N
I intm, j

)

= μ̃N (D∗
j ) < ∞,

there exists M = M(N , ε, j) ∈ N such that

∣∣
∣∣∣
μ̃N (D∗

j ) −
M∑

m=1

μ̃N (Im, j )

∣∣
∣∣∣
� ε

3C2 j
. (4.10)

Write now

SN :=
J∑

j=1

M∑

m=1

jε

9
1I Im, j .

Taking into account the definitions of functions S∗
N and SN , we see that SN � S∗

N
μ̃N -a.e. Therefore, we obtain from (4.10) that

∫
|S∗

N − SN | dμ̃N =
∫

S∗
N dμ̃N −

∫
SN dμ̃N

=
J∑

j=1

jε

9
μ̃N (D∗

j ) −
J∑

j=1

M∑

m=1

jε

9
μ̃N (Im, j )

=
J∑

j=1

jε

9

(

μ̃N (D∗
j ) −

M∑

m=1

μ̃N (Im, j )

)

<
ε

3

∑

j∈N
2− j = ε

3
.

(4.11)

In view of the definition of measure μ̃N (4.6), from estimates (4.8), (4.9) and (4.11)
we obtain the desired assertions of Lemma 4.1. ��
Proof of Lemma 4.3 Wewill use the probabilistic arguments involving Lemma 4.2 and
the Markov property of the exponential order statistics. Similarly as in (4.2), we now
introduce the event:

ΩK ,R,N := {
log(N/R) � ηK+1,N < η1,N � log(N R)

} ⊂ Ω; (4.12)

therefore,

1IΩK ,R,N =
K+1∏

j=1

ΘR,N (η j,N ) with ΘR,N (η) := 1I [log(N/R),log(N R)](η). (4.13)
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Throughout the proof, let h : R → R+ and f : R
N−k → R+ be measurable bounded

functions where 1 � k � K and K ∈ N. Fix integers R � 2 and N � 2R + K . With
these abbreviations, it suffices to prove that

E

⎛

⎝h(ηk,N ) f (ηk+1,N , . . . , ηN ,N )

K+1∏

j=k

ΘR,N (η j,N )

⎞

⎠

� N RkE

(
h(η1)ΘR,N (η1)

)
E

⎛

⎝ f (ηk+1,N , . . . , ηN ,N )

K+1∏

j=k+1

ΘR,N (η j,N )

⎞

⎠

(4.14)

� e2R RkE

(
h(η1,N )ΘR,N (η1,N )

)
E

⎛

⎝ f (ηk+1,N , . . . , ηN ,N )

K+1∏

j=k+1

ΘR,N (η j,N )

⎞

⎠.

(4.15)

Indeed, taking into account the definition of the probability measures μN and μ
(i)
K :N

(i = 1, 2) given above Lemma 4.1 and iterating bounds (4.14) and (4.15) over k ∈
[1, K ] ∩ N, we obtain the claimed assertions of Lemma 4.3.

To prove (4.14) and (4.15), we need the following property of the exponential order
statistics.

Lemma 4.4 The random sequence ηN−l+1,N (l = 1, 2, . . . , N ) is a nonhomogeneous
Markov chain with transition probabilities (by inverting “time” N − l + 1 = k):

P
(
ηk,N > x | ηk+1,N , . . . , ηN ,N

) = P
(
ηk,N > x | ηk+1,N

)

=
{
e−k(x−ηk+1,N ) if x > ηk+1,N

1 if x � ηk+1,N

almost surely, for all 1 � k � N − 1 and N � 3.

Remark 4.5 For the proof of the Markov property of order statistics of an i.i.d. sample
with absolutely continuous distribution, see Theorem 2.4.3 and Section 3.4 in the
monograph [3]. In Section 3.4 of [3], the authors also provide a counterexample of
i.i.d. sample with discrete distribution, whose order statistics do not obey the Markov
property.

Alternatively, Lemma 4.4 can be proved by using the fact that the normalized
spacingsη1,N−η2,N , 2(η2,N−η3,N ), . . . , N (ηN ,N−ηN+1,N ) are i.i.d.Exp(1) random
variables; here ηN+1,N := 0. Cf. also Examples 4.1.5 and 4.1.6 in [20]. ��

Now, using Lemma 4.4 and notation (4.12)–(4.13), we obtain that the left-hand side
of (4.14) is equal to
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E

⎡

⎣h(ηk,N )ΘR,N (ηk,N ) f (ηk+1,N , . . . , ηN ,N )

K+1∏

j=k+1

ΘR,N (η j,N )

⎤

⎦

= E

[
E(h(ηk,N )ΘR,N (ηk,N )|ηk+1,N )

× f (ηk+1,N , . . . , ηN ,N )

K+1∏

j=k+1

ΘR,N (η j,N )

⎤

⎦ ; (4.16)

here, assuming log(N/R) � ηk+1,N � log(N R) (or, equivalently, ΘR,N (ηk+1,N )

≡ 1), we have that

E

(
h(ηk,N )ΘR,N (ηk,N ) | ηk+1,N

)

= k ekηk+1,N

∫ ∞

ηk+1,N

h(x)ΘR,N (x) e−kx dx

� N Rk
∫ ∞

0
h(x)ΘR,N (x) e−x dx = N RkE

(
h(η1)ΘR,N (η1)

)
(4.17)

with probability one. Equations (4.16) and (4.17) imply (4.14).
Further, we notice that the right-hand side of (4.17) is equal to

N Rk
∫ ∞

0
h(x)ΘR,N (x) e−x dx

= Rk
∫ ∞

0
h(x)

(
1 − e−x)1−N

ΘR,N (x) · N(1 − e−x)N−1 e−x dx

� e2R Rk
∫ ∞

0
h(x)ΘR,N (x) · N(1 − e−x)N−1 e−x dx

= e2R RkE
(
h(η1,N )ΘR,N (η1,N )

)
,

where the last bound follows from the inequality
(
1 − e−x

)1−N � e2R provided
x � log(N/R) and N � 2R � 2. This and (4.16)–(4.17) imply (4.15), as claimed.

Lemma 4.3 is proved, and this concludes the proof of Proposition 1.1. ��
Proof of Proposition 1.2 (I) We first prove that q : R

N+ → R
N is measurable. Recall

that Q is a finite-valued right-continuous nondecreasing function on (−∞, x∗) such
that Q(x) → 0 as x → −∞, and Q(x) = ∞ for all x � x∗. Here and inwhat follows,
we explore the following well-known properties of the left-continuous inverse Q← of
the function Q defined in (1.2):

Lemma 4.6 (see Section 2 in [19])

(I) Q← is a finite-valued nondecreasing function on R+ such that Q←(y) tends to
x∗ as y → ∞.
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(II) For any y ∈ R+ and any x < x∗,

y � Q(x) if and only if Q←(y) � x .

(III) For any y ∈ R+,

Q(Q←(y)−) � y � Q(Q←(y)).

Further on, from Section 4.1 (Chapter 1) of [40] we learn that q : R
N+ → R

N is
measurable, if for any (x1, x2, . . . , xN ) ∈ R

N , the subset

{
(y1, y2, . . . , yN ) ∈ R

N+ : Q←(y1) � x1, Q
←(y2) � x2, . . . , Q

←(yN ) � xN
}

(4.18)

is measurable. Let us consider (4.18). We first notice that, for x � x∗, the set
{y ∈ R+ : Q←(y) � x} is equal to R+. For x < x∗, using Lemma 4.6(II) we obtain
that {y ∈ R+ : Q←(y) � x} is either the empty set or the interval (0, Q(x)]. Summa-
rizing, subset (4.18) is either the empty set or the rectangle I ∈ IN , I ⊆ R

N+ . I.e. we
obtain that q : R

N+ → R
N is a measurable finite-valued function. This and a continu-

ity of g : R
N → R

M imply (by Property 2 in [40], pp. 29) that g ◦ q : R
N+ → R

M is
measurable, as claimed. Part (I) is proved.

Part (II) follows from the definition of measurable functions; cf. Section 4.1 (Chap-
ter 1) in [40]. This concludes the proof of Proposition 1.2. ��

5 Proof of Theorem 2.1

(i)By an appropriate linear transformation of constants AN = a(N ), it suffices to prove
assertion (i) for the counts N+

N := #{K < j � N : XK ,N − AN < X j,N � XK ,N }
instead of NK :N (I AN ) (2.1). Notice that N+

N is the function on order statistics
XK ,N , . . . , XN ,N satisfying themeasurability conditions of Proposition 1.1; cf. Propo-
sition 1.2.We apply bound (1.4) in Proposition 1.1 to replace XK ,N by the independent
maxima X̃1,N , i.e. X̃1,N := max{X̃1, . . . , X̃ N } where the i.i.d. sequence {X̃i }i∈N is
an independent copy of {Xi }i∈N. Thus, abbreviating for λ ∈ R,

YN (λ) := #{1 � j � N : λ − AN < X j � λ}, (5.1)

we obtain that, for any M > 0, any ε > 0 small enough and any N � N0(ε),

P(N+
N > M) � ε−1

P
(
#{K < j �N: X̃1,N −AN < X j,N � X̃1,N}>M

)+ε

� ε−1
P
(
YN (X̃1,N ) > M

)+ ε. (5.2)

Passing in (5.2) to the limits first N → ∞ and afterwards M → ∞, and taking into

account that ε > 0 is arbitrarily small, we find that the claimed limit N+
N

P= O(1)
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follows from YN (X̃1,N )
P= O(1) as N → ∞. To prove the latter limit we need the

following auxiliary lemmas.

Lemma 5.1 (Bounded convergence theorem) Assume that ZN (N ∈ N) are real ran-
dom variables, and let lT :N � LT :N (N ∈ N, T ∈ R+) be real truncation constants
such that

limsup
N→∞

(P(ZN < lT :N ) + P(ZN > LT :N )) → 0 as T → ∞.

Assume further that the functions hN : R → R satisfy the following conditions:

(C1) hN (ZN ) are random variables on (Ω,F, P) such that |hN (ZN )| � const almost
surely for some const > 0 and for any N ∈ N;

(C2) for any large T ∈ R+ and for any sequence {λN }N∈N ⊂ R such that lT :N �
λN � LT :N (N ∈ N), one has hN (λN ) → 0 as N → ∞.

Then E|hN (ZN )| → 0 as N → ∞.

Lemma 5.1 is complimented by the following assertion describing truncation con-
stants for extremes of the i.i.d. sample {Xk}1�k�N .

Lemma 5.2 (Truncation of the K th largest order statistics) Abbreviate LT :N :=
Q←(log N + log T ) and lT :N := Q←(log N − log T ). For fixed K ∈ N, any
T � T0(K ) and any N � N0(T ), we have that

P(XK ,N > LT :N ) � 1/T and P(XK ,N < lT :N ) � T K e−T .

Lemmas 5.1 and 5.2 are proved below.
We now represent the last probability in (5.2) as the integral with respect to the

probabilitymeasure onR
N+1 induced by the random sample {X1, X2, . . . , XN , X̃1,N }

of mutually independent variables. Applying Fubini’s theorem to this integral, we
observe that the quantities ZN := X̃1,N , hN (ZN ) := P(YN (ZN ) > M | ZN ) satisfy
the condition (C1) of Lemma 5.1. Therefore, by Lemma 5.1 with ZN and hN (ZN ) as
above and the constants lT :N � LT :N as in Lemma 5.2, we obtain the claimed limit

limsup
N

P(YN (X̃1,N ) > M)

= limsup
N

EP(YN (X̃1,N ) > M | X̃1,N ) → 0 as M → ∞,

provided the following limit holds true:

limsup
N

P(YN (λN ) > M) → 0 as M → ∞, (5.3)

for any nondecreasing sequence of constants λN such that lT :N � λN � LT :N (N �
N0(T )) with T > 1 fixed arbitrarily. Since the random variable YN (λN ) is binomially
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distributed with sample size N and success probability pN (λN ) := P(λN − AN <

X � λN ), desired limit (5.3) is fulfilled if and only if

NpN (λN ) ≡ N e−Q(λN )
(
exp{Q(λN ) − Q(λN − AN )} − 1

) = O(1) (5.4)

as N → ∞; cf. Theorem 2.1.1 and its proof in [31]. To show (5.4), we need the
following technical lemma on some properties of the functions Q and a defined in
Theorem 2.1. ��
Lemma 5.3 (i) If Q(x) − Q(x−) = O(1) as x ↑ x∗, then for the constants lT :N �

λN � LT :N defined in Lemma 5.2 with fixed T > 1 we have

eQ(λN ) � N as N → ∞.

(ii) If a(·) ∈ ORV , then a(cx) � a(x) (x → ∞) uniformly in compact subsets of
c ∈ R+.

Proof Part (i) follows from the definition of constants lT :N � LT :N and the bounds in
Lemma 4.6(III). Part (ii) follows from Theorem 1 in [1]. ��

We now notice that the condition of Theorem 2.1(i) implies the assumption of
Lemma 5.3(i). Thus, taking into account that λN ↑ x∗ and using Lemma 5.3, we
obtain that, as N → ∞,

NpN (λN ) � const exp{Q(λN ) − Q(λN − a(N ))}
� const exp

{
Q(λN ) − Q

(
λN − const ′a

(
eQ(λN )

))} = O(1) (5.5)

by the condition of Theorem 2.1(i). Thus, Eq. (5.4) is proved, as claimed.
It remains to prove Lemmas 5.1 and 5.2.

Proof of Lemma 5.1 Using the conditions of Lemma 5.1, we have that

E|hN (ZN )| � E
(|hN (ZN )|1I {lT :N�ZN�LT :N }

)

+ const
(
P(ZN < lT :N ) + P(ZN > LT :N )

)
.

Therefore, for any ε > 0, there exists T0 = T0(ε) such that for any T � T0

limsup
N

E|hN (ZN )| � limsup
N

E
(|hN (ZN )|1I {lT :N�ZN�LT :N }

)+ ε. (5.6)

Fix T � T0. Since |hN (ZN )| � const with probability 1, it follows from the
bounded convergence theorem (see, e.g. Theorem 16.5 in [11]) that the last limit in
(5.6) is equal to zero, if hN (ZN )1I {lT :N�ZN�LT :N } converges almost surely to zero, as
N → ∞. The latter convergence holds true, if for any sequence {λN }N∈N ⊂ R, one
has

hN (λN )1I {lT :N�λN�LT :N } → 0 as N → ∞.
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This in turn follows from condition (C2) of Lemma 5.1, concluding the proof. ��
Proof of Lemma 5.2 Fix K ∈ N. By the definition of LT :N and Q, we obtain that, for
any N � N0(T ),

P
(
XK ,N > LT :N

)
� P

(
X1,N > LT :N

)

� N e−Q(LT :N ) = N exp{−Q ◦ Q←(log(NT ))} � 1/T

according to the right-hand side bound in Lemma 4.6(III) with y = log(NT ).
For T � T0 and N � N0(T ), consider the probabilities

pN := P(X � lT :N ) = exp{−Q(lT :N−)} = exp{−Q (Q←(log(N/T ))−)}.

Using the properties of the functions Q and Q←, in particular, the left-hand side
inequality in Lemma 4.6(III) with y = log(N/T ), we obtain that NpN � T and
pN → 0 as N → ∞. Therefore, for T and N large enough, the following simple
estimates hold true:

P
(
XK ,N < lT :N

) =
K−1∑

j=0

(
N

j

)
p j
N (1 − pN )N− j �

K−1∑

j=0

(NpN ) j (1 − pN )N−K

� K (NpN )K−1(1 − pN )N−K

= K (NpN )K−1 exp{(N − K ) log(1 − pN )}
� const (NpN )K−1 e−NpN � T K e−T .

Lemma 5.2 is proved, and this concludes the proof of Theorem 2.1(i). ��
(ii) This case is simply reduced to asymptotic properties of spacings associated

with the extreme order statistics. Indeed, the claimed assertion of part (ii) is fulfilled,

ifNK :N ((−t AN , t AN ]) P−→ 0 as N → ∞, for certain t ∈ R+. This in turn holds true, if
min(XK−1,N − XK ,N , XK ,N − XK+1,N )/AN

P−→ ∞ as N → ∞; here X0,N := +∞.
Thus, it remains to prove the following lemma that generalizes Theorem 3.2(I) in
Sect. 3.

Lemma 5.4 Under the conditions of Theorem 2.1(ii),

(XK ,N − XK+1,N )/AN
P−→ ∞ as N → ∞, for fixed K ∈ N.

Proof Let X̃1,N be the independent maxima as above, and F := 1 − e−Q . Using
bound (1.4) in Proposition 1.1 with

GN (XK ,N , XK+1,N ) = 1I {0�XK ,N−XK+1,N<MAN }

for M > 1 and K ∈ N, we obtain that, for any ε > 0 small enough, T := ε−2 and for
any N � N0(ε),
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P
(
XK ,N − XK+1,N < MAN

)
� ε−1

P
(
0 � X̃1,N − X1,N < MAN

)+ ε

= ε−1
P
(
X̃1,N − MAN < X1,N � X̃1,N

)+ ε

� ε−1
E

[(
FN (X̃1,N

)− FN (X̃1,N − MAN
))

1I {lT :N�X̃1,N�LT :N }
]

+ 3ε, (5.7)

where the last bound in (5.7) follows from Lemma 5.2 with T = ε−2. By Lemma 5.1,
the last expectation in (5.7) tends to 0, provided

FN (λN ) − FN (λN − MAN ) → 0 as N → ∞ (5.8)

for anynondecreasing sequenceλN ↑ x∗ such that lT :N � λN � LT :N . To estimate the
left-hand side of (5.8), we apply the inequality cN −bN � N (c−b) for 0 � b � c � 1
and then use the same arguments as in the proof of (5.5). Namely,

FN (λN ) − FN (λN − MAN ) � N
(
F (λN ) − F (λN − MAN )

)

� const
[
exp

{
Q(λN ) − Q

(
λN − const ′a

(
eQ(λN )

))}− 1
]

→ 0,

as N → ∞, by the condition of Theorem 2.1(ii). This concludes the proof of Lemma
5.4, and therefore, part (ii) of Theorem 2.1 is shown.

(iii) The proof of part (iii) is similar to that of part (i). As in part (i), we need to
prove that the sequenceN−

N := #{K < j � N : XK ,N − AN � X j,N < XK ,N } tends
to infinity with probability 1 + o(1). As in Eq. (5.2), we obtain, that for any M > 1,
any ε > 0 and any N � N0(M, ε)

P(N−
N � M) � ε−1

P
(
#{K < j � N : X̃1,N − AN � X j,N < X̃1,N } � M

)+ ε

� ε−1
P
(
Y−
N (X̃1,N ) � M + K

)+ ε,

where Y−
N (λ) := #{1 � j � N : λ − AN � X j < λ} for λ ∈ R. Since here ε > 0

is arbitrarily small, it suffices to prove that Y−
N (X̃1,N )

P−→ ∞ as N → ∞. Similarly

as in part (i), the last limit follows from the limit Y−
N (λN )

P−→ ∞ for any sequence of
constants λN ↑ x∗ such that lT :N � λN � LT :N (N � N0(T )), where T > 0 is fixed
arbitrarily. With AN ≡ a(N ) and the abbreviation p−

N (λN ) := P(λN − a(N ) � X <

λN ), this limit holds true if and only if

Np−
N (λN ) ≡ N e−Q−(λN )

(
eQ

−(λN )−Q−(λN−a(N )) − 1
)

→ ∞ (5.9)

as N → ∞; cf. Theorem 2.1.1 and its proof in [31]. To prove the limit in (5.9), we first
find from the left-hand side inequality in Lemma 4.6(III) that N e−Q−(λN ) � 1/T .
Then using the conditions of Theorem 2.1(iii) on the functions Q(·) and a(·) similarly
as in part (i), we obtain that a(N ) � const a

(
eQ

−(λN )
)
. Applying these bounds to

the expression on the left-hand side of (5.9) and using condition (2.4), we obtain that
Np−

N (λN ) tends to infinity, as claimed.
Theorem 2.1 is proved. ��
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6 Proof of Theorem 3.1

Since F(x)(x∗ − x)−r → 0 as x ↑ x∗ (see Remark 3.4(I)), we notice that X < x∗
almost surely. Abbreviate

H(x; λ) := (λ − x)−r − (x∗ − x)−r for x � λ < x∗. (6.1)

Using the weak law of large numbers (WLLN) for the i.i.d. random variables (x∗ −
X j )

−r (1 � j � N ) and taking into account that, for fixed k ∈ N, the extreme terms
(x∗ − Xk,N )−r are of order o(N ) in probability (cf. Theorem 3.2(II)), we find that the
assertion of Theorem 3.1 follows from the limit

N−1
N∑

j=K+1

H(X j,N ; XK ,N )
P−→ 0 as N → ∞. (6.2)

Let us prove (6.2). We first notice from Theorem 3.2(I) that, for any δ > 0 and
N → ∞,

P

⎛

⎝N−1
N∑

j=K+1

H(X j,N ; XK ,N ) > δ

⎞

⎠

= P

⎛

⎝N−1
N∑

j=K+1

H(X j,N ; XK ,N ) > δ, N (XK ,N − XK+1,N )r � 1

⎞

⎠+ o(1)

= P

⎛

⎝N−1
N∑

j=K+1

H(X j,N ; XK ,N )1I {N (XK ,N−XK+1,N )r�1} > δ

⎞

⎠+ o(1)

� P

⎛

⎝N−1
N∑

j=K+1

H(X j,N ; XK ,N )1I {N (XK ,N−X j,N )r�1} > δ

⎞

⎠+ o(1). (6.3)

By using Propositions 1.1 and 1.2, we obtain that, for any δ > 0, any ε > 0 small
enough and any N � N0(δ, ε), the right-hand side of (6.3) does not exceed

ε−1
P

⎛

⎝N−1
N∑

j=K+1

H(X j,N ; X̃1,N )1I {N (X̃1,N−X j,N )r�1} > δ

⎞

⎠+ ε

� ε−1
P

⎛

⎝N−1
N∑

j=1

H(X j ; X̃1,N )1I {N (X̃1,N−X j )
r�1} > δ

⎞

⎠+ ε, (6.4)

where X̃1,N is the independent maxima as in the proof of Theorem 2.1(i) in Sect. 5.
Applying Lemmas 5.1 and 5.2 to the last probability in (6.4) similarly as in the proof
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of Theorem 2.1(i) in Sect. 5, we obtain that the right-hand side of (6.4) tends to ε as
N → ∞, provided the following limit holds true:

lim
N

P

⎛

⎝N−1
N∑

j=1

H(X j ; λN )1I {N (λN−X j )
r�1} > δ

⎞

⎠ = 0 for any δ > 0, (6.5)

for any sequence of constants λN ↑ x∗ such that lT :N � λN � LT :N for any N �
N0(T ). Recall that lT :N � LT :N are the truncation constants defined in Lemma 5.2
with T > 1 fixed arbitrarily. Summarizing the above considerations with ε > 0
arbitrarily small, we see that (6.5) yields desired limit (6.2). To prove (6.5), we first
notice that the quantities

Y (N )
j := H(X j ; λN )1I {N (λN−X j )

r�1} for 1 � j � N

are nonnegative bounded i.i.d. randomvariables. Therefore, limit (6.5), i.e. N−1∑N
j=1

Y (N )
j

P−→ 0, is fulfilled if and only if EY (N )
1 → 0 as N → 0; see, e.g. Theorem 1

(Section IX.9) in [21] or Theorem 2.2.11 in [17]. Thus, abbreviating F := 1− F , we
need to prove that

EY (N )
1 =

∫
H(x; λN )1I (−∞,λN−N−1/r ](x) dF(x) → 0 as N → ∞ (6.6)

for λN as above. Here recall that the function H is defined in (6.1). Also, N−1/r �
(F(λN ))1/r as N → ∞byLemma5.3(i)with Q = − log F . This implies the inclusion
(−∞, λN − N−1/r ] ⊂ (−∞, λN − c(F(λN ))1/r ] for some c > 0 and any N � N0,
which in turn is applied to the left-hand side of (6.6) to find that desired limit (6.6) is
a consequence of the following condition:

lim
λ↑x∗

∫
H(x; λ)1I (−∞,λ−c(F(λ))1/r ](x) dF(x) = 0 for any c ∈ R+. (6.7)

Proof of Theorem 3.1 is concluded by observing that limit (6.7) is a straightforward
consequence of the conditions of Theorem 3.1 (cf. also Remark 3.4(I)–(II)) and the
following lemma.

Lemma 6.1 Fix x∗ � ∞ and r ∈ R+, and assume that F(x)(x∗ − x)−r → 0 as
x ↑ x∗. Then, for any c ∈ R+,

∫
H(x; λ)1I (−∞,λ−c(F(λ))1/r ](x) dF(x)

= r Jr (λ; c) + c−r
(
1 − F

(
λ − c(F(λ))1/r

)(
F(λ)

)−1
)

+ o(1) as λ ↑ x∗.
(6.8)

123



1144 Journal of Theoretical Probability (2023) 36:1116–1147

It remains to prove Lemma 6.1. For fixed c > 0, we write f (λ) := c(F(λ))1/r for the
transformed tail distribution, so that

f (λ) > 0 for λ < x∗, and f (λ)/(x∗ − λ) → 0 as λ ↑ x∗.

Notice that, for fixed λ < x∗, the function H(·; λ) : (−∞, λ − f (λ)] → R+ is con-
tinuously differentiable nonnegative bounded function with the nonnegative bounded
derivative

H (1)
λ (x) := dH(x; λ)

dx
= r(λ − x)−r−1 − r(x∗ − x)−r−1. (6.9)

For such H and F , we apply the integration by parts formula (e.g. Section V.6 in [21])
and then use the condition of Lemma 6.1, to obtain that

∫
H(·; λ)1I (−∞,λ− f (λ)] dF

= −H(λ − f (λ); λ)F(λ − f (λ)) +
∫ λ− f (λ)

−∞
H (1)

λ F

= − F(λ − f (λ))

cr F(λ)
+ F(λ − f (λ))

(x∗ − λ + f (λ))r
+
∫ λ− f (λ)

−∞
H (1)

λ F

= − F(λ − f (λ))

cr F(λ)
+
∫ λ− f (λ)

−∞
H (1)

λ F + o(1)

= − F(λ − f (λ))

cr F(λ)
+
∫ λ−τ

−∞
H (1)

λ F +
∫ λ− f (λ)

λ−τ

H (1)
λ F + o(1) (6.10)

as λ ↑ x∗, for τ ∈ R+ specified below.
Let us consider the last two integrals in (6.10). Assume first that x∗ < ∞. By using

the inequality

s−r−1 − t−r−1 � (r + 1)(t − s)t−1s−r−1 for all 0 < s � t and r > 0,

we obtain the following bound for H (1)
λ (6.9):

H (1)
λ (x) � r(r + 1)(x∗ − λ)(x∗ − x)−1(λ − x)−r−1 for x < λ < x∗. (6.11)

It follows from (6.11) that, for any τ > 0,

∫ λ−τ

−∞
H (1)

λ F � const (x∗ − λ)

∫ λ−τ

−∞
(λ − x)−r−2 dx

= const ′τ−r−1(x∗ − λ) → 0 as λ ↑ x∗. (6.12)

We now split the last integral in (6.10) into two integrals over the intervals (λ −
τ, 2λ − x∗] and (2λ − x∗, λ − f (λ)], respectively. Let us estimate the first integral
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∫ 2λ−x∗
λ−τ

. For any ε > 0,we have F(x) � ε (x∗−x)r (λ−τ < x < x∗), providedλ ↑ x∗
and τ > 0 is small enough. For such λ and τ , we apply this bound together with (6.11),
and afterwards we use a change of integration variables y = (x∗ − λ)(λ − x)−1 + 1,
to obtain that

∫ 2λ−x∗

λ−τ

H (1)
λ F�const ε(x∗−λ)

∫ 2λ−x∗

λ−τ

(λ−x)−r−1(x∗−x)r−1 dx

= const ′ε
∫ 2

(x∗−λ+τ)/τ

yr−1 dy � const ′′ε. (6.13)

In view of (6.10), (6.12) and (6.13), it remains to estimate the last integral
∫ λ− f (λ)

2λ−x∗ .
Obviously, as λ ↑ x∗,

∫ λ− f (λ)

2λ−x∗
H (1)

λ (x)F(x) dx =
∫ λ− f (λ)

2λ−x∗
(λ − x)−r−1 (F(x) − F(λ)

)
dx

+r F(λ)

∫ λ− f (λ)

2λ−x∗
(λ−x)−r−1 dx−r

∫ λ− f (λ)

2λ−x∗
(λ−x)−r−1F(x) dx (6.14)

= r Jr (λ; c) + c−r − r
∫ λ− f (λ)

2λ−x∗
(λ − x)−r−1F(x) dx + o(1) (6.15)

by changing variables y = λ − x in integral (6.14) [cf. also (3.2)] and using the
condition of Lemma 6.1. Similarly, for any ε > 0, we obtain the bound F(x) �
ε(x∗ − x)r for 2λ − x∗ < x < x∗, provided λ approaches x∗. Consequently, the
last integral in (6.15) does not exceed ε

∫ λ

2λ−x∗(x∗ − x)−1 dx = ε log 2. Taking into
account (6.10) with λ ↑ x∗ and summarizing the last bound and bounds (6.12)–(6.15)
with τ > 0 and ε > 0 chosen arbitrarily small, we finally obtain the assertion of
Lemma 6.1 for x∗ < ∞.

Assume now that x∗ = ∞. Consider the last two integrals on the right-hand side
of (6.10) with τ > 1. The first integral does not exceed r

∫ λ−τ

−∞ (λ− x)−r−1 dx = τ−r .
Meanwhile, the second integral on the right-hand side of (6.10) (by changing variables
y = λ − x and letting λ → ∞) is equal to

r
∫ 1

f (λ)

y−r−1 (F(λ − y) − F(λ)
)
dy + c−r + o(1).

With τ chosen arbitrarily large, these bounds imply that the right-hand side of (6.10)
is equal to the right-hand side of (6.8), as claimed.

Lemma 6.1 is proved, and this concludes the proof of Theorem 3.1. ��
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