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Abstract

The relation between weak convergence of probabilities on a smooth Banach space
and uniform convergence over a certain class of smooth functions is established. This
leads to an extension of Lindeberg’s proof of the central limit theorem in a Banach
space framework. As a result, asymptotic normality is proved for sums of Banach
space random variables including triangular arrays and weighted linear processes.
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1 Introduction

In this paper, we consider sums of Banach space valued random variables with the
aim to establish conditions for their asymptotic normality using a generalization of
Lindeberg’s elementary proof of the central limit theorem of 1922 [18].

Lindeberg’s method is simple and elegant. It is based on replacing one by one
non-Gaussian random variables by Gaussian ones and then using Taylor expansion to
get approximation bounds. This principle has been applied for proving central limit
theorems for sums of independent random variables with values in a Hilbert space
by Giné and Ledén [12], or to estimate rates of convergence in a central limit theorem
in Banach spaces (see, e.g., Bentkus et al. [4], Paulauskas and Rackauskas [19]) as
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well. Its potential for proving more general invariance results has been discovered by
many researchers and led to results on matrices with exchangeable entries [7], on the
universality of local laws [24, 25] on matrices with correlated entries [1-3] and many
others. Various kernel type density (regression function) estimators produce sums of
an array of random functions to which Lindeberg CLT can be applied to help solve
various statistical problems (see, e.g., [13] and references therein).

The idea of Lindeberg was carefully examined and generalized by Zolotarev [26]
through the introduction of the so-called ¢ metrics, which metrizes weak convergence
in the case of distributions in Hilbert space as later proved by Giné and Leén [12].
Although for Banach spaces such metrization of weak convergence is not possible in
general, however, it is possible to connect weak convergence of probability measures
with uniform convergence over a suitable class of differentiable functions in the case
where the norm of Banach space is smooth enough (see Sect. 2). This leads to an
extension of Lindeberg method for smooth Banach spaces. In turn, we prove central
limit theorem for a triangular array of random elements with values in such Banach
spaces (see Sect. 4) and establish asymptotic normality of sums of Banach space valued
linear processes as well of weighted sums of independent identically distributed B-
valued random variables (Sect. 5). In Sect. 3, we present some remarks concerning
differentiability of norm and some examples of smooth Banach spaces.

Abstract theory of smoothness in infinite-dimensional real Banach spaces and its
connections with geometrical properties has been investigated by many authors. For a
very detailed exposition of the theory, we refer to the book by Hajek and Johanis [14].
The existence of a p-smooth bump function for 1 < p < 2 was shown to be equivalent
to certain martingale moment inequality and appeared as sufficient property to some
probability limit theorems in Banach spaces, see, e.g., Pisier [20] and Rosifiski [22].

2 Weak Convergence via Smooth Functions

In what follows, B denotes a real separable Banach space. The norm of an element
x € Bis denoted by |x||g, or, if no confusion can arise, simply by ||x||. The Banach
space topological dual of B is B¥, and we shall use the notation {x, y*) := y*(x) for
the duality pairing of the elements x € Band y* € B*. Let L(B) be the Banach space of
all continuous linear operators u : B — B, endowed with the norm |[u|| = sup{|jux]|| :
x € B, ||x|| < 1}, Ig € L(B) is the identity operator. By .%; (B), we denote the Banach
space of bounded k-linear operators 7 : B — R with the supremum norm

1T = sup{|T (hy, ..., k)l = Il <= 1, oo Akl < 1.

To simplify the writing, the overloading of the notation | z|| for the norm is used
throughout the text whenever the nature of the argument z dispels any doubt on the
Banach space involved : B or one of the associated spaces of continuous operators
L(B), Z(B), k > 1.
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The set of all probability distributions on the measurable space (B, %p) is denoted
by £ (B), where %3 is the o-algebra of Borel subsets of B. Throughout we use

Pf 1=/Bf(X)P(dx)

for any probability P € 27(B) and any P-integrable function f : B — R. Let us
recall here that a sequence (P,) C £?(B) converges weakly to P € Z?(B) (denoted

P, — P)if
n—oQ

lim P,f =Pf foreach f € C,(B),
n—oQ

where C;(B) is the class of all bounded continuous functions f : B — R. It is
sometimes convenient to prove weak convergence of probability measures by showing
that P, f — P f for aclass .% of functions f : B — R which is smaller than the class
Cj(B). In this case, it is said that .% determines the weak convergence of probabilities.
A well known example is provided by the class of bounded Lipschitz functions. Recall
the function f : B — R is bounded Lipschitz if

Il fllLip := sup | f (x)| 4 sup If&) = fO)I -
xeB xty M=yl

Moreover, the bounded Lipschitz distance
dpP. @ =swp {[Pf —Qf|: I flp =1}, P.Qe 2®),

metrizes weak convergence that is P, —" 5 Pifand only if lim,_, » dpL.(P,; P) = 0.
n— o0

Another example is known in the case where B = 7 is a separable Hilbert space.
As proved by Giné and Le6n [12], for (P,P,,n € N) C £ (), in order to check

weak convergence P, 2 Pitis enough to show that P, f —— P f for every
n—oQ n—o0

f : A — R continuous, bounded and with bounded derivatives of all orders. So the
situation in a separable Hilbert space is just as in the case of a finite dimensional space.

In what follows for a number p > 1, we denote by | p] the unique integer satisfying
p — 1 < |p] < p and agree that {p} := p — | p]. The reader is warned about the
difference with the classical “floor” and “fractional part” functions, e.g., [3.9] =
3, but |[4] = 3 and {n} = 1 for any integer n. This is motivated by our wish to
interpolate between spaces CZ_I and Cy of functions with, respectively, bounded
(n — 1) derivatives or n derivatives by spaces of functions whose (n — 1)th derivatives
satisfy a Holder condition with exponent 0 < o < 1, the special case « = 1 giving
Lipschitz (n — 1) derivatives.
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More precisely, we introduce for any real p > 1 the class C(p )(B) of functions
f € Cp(B) that are | p|-times continuously Fréchet differentiable and such that

Lp]
1l =D sup I © ) + sup

k= OXG

LAY @) — PP
llx =y t7)

00, (1

where f® denotes the k™ Fréchet derivative of the function f with f© := f. For
the definition of Fréchet derivatives and properties of Fréchet differentiable functions
in infinite dimensional Banach spaces, we refer to [6]. Clearly, Cl(,l) (B) coincides with
the class of Lipschitz functions, and || f]l;, = Il fllLip for £ € Cy’(B). By C°(B),
we denote the class of infinitely many times differentiable functions with bounded

derivatives.
Define for P, Q € & (B),

6P, Q) :=sup {[Pf = Qf[: /€ C®). Ifly = 1. 2)

A natural question is then: for which Banach spaces B, does the class C(p ) B),p=>1,
determine the weak convergence of probability measures? Roughly speakjng, this is
true in the case where the norm of B is sufficiently smooth. To be more precise, we
define first what we mean by smoothness of a norm.

Definition 1 Let p > 1. We say that a Banach space B is p-smooth if its norm v (x) :=
x|, x € B, is | p]-times continuously Fréchet differentiable on the set B \ {0}, and

& (V) _ (e
D sup IO+ sup Iy — v PPl

= Ixl=1 xy, =l =1 lx = ylIt)

3

Evidently every Banach space is 1-smooth. If B is g-smooth for some g > 1, it is also
p-smooth for 1 < p < ¢g. Examples of p-smooth spaces, where p > 1, are given
below (see Examples 12 and 14).

Remark 2 Our definition of p-smoothness, tailored for the Lindeberg method, looks
different of the p-smoothability as in, e.g., Rosifiski [22, p. 159] where B is said to be
p-smoothable (1 < p < 2), if there exists an equivalent norm | - | on B such that the
modulus of smoothness

X +eyl+x —ty|
2

p(t) == sup{ 1:|x|=|y|=1}=0(t”), ast — 0.

By Lemma 19 p.246 in [14], this condition means that | - | is CL-P=! smooth in the
sense of [14, Def. 124, p. 55]. So for 1 < p < 2, p-smoothability and p smoothness
in the sense of Definition 1 are similar up to the equivalence of norms. But the use
of p.|(¢) to define the p-smoothability induces the restriction p < 2 while we need
p > 2 for the Lindeberg method.
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Remark 3 1t seems worth noticing here the two following facts about .

(a) For any Banach space B, there is no Fréchet derivative of ¢ at 0. Indeed should
¥ be Fréchet derivable at 0, the same should hold for its restriction to the one
dimensional subspace D = {ru, t € R}, for some fixed u € B\ {0}. This in turn
would imply the derivability at O (in the classical elementary sense) of the function
t > |t|, which clearly fails.

(b) If ¥ is Fréchet differentiable on B \ {0}, then

WWm=wm(i),xeme. )

[lxl

In particular, ¥ is bounded on B\ {0} if and only if it is bounded on {x €
B, ||x|| = 1}. Another obvious consequence of (4) is that

vV ex) =y D), ceR\{0}, x € B\ {0} ()

To check (4), we note that the Fréchet differentiability of ¢ means that for each
fixed x # 0,

llx + Al = Ixll =P @) )| = ok, h— 0.

Puting y := x/ |lx|l, u := h/ | x| and recalling that (U (x) is a linear operator
B — R, lead to

v (v +u) — () — v D) @ =o(lul), u—0,

whence ¥ (x) = ¢ (D (y).
The main result in this section is the following theorem.

Theorem 4 Let p > 1. If the Banach space B is p-smooth, then for (P, P,,n € N) C
P (B), the following statements are equivalent

() Py —— P;
n—0o
(ii) P, f — Pf forany f € C" (B);
e . n_)m
(iii) limy—co é—p(Pn» P)=0.

The proof of the theorem will be achieved by establishing the cycle of implications:
(1) = (i) = (i) = @).

For (i) = (iii), we note that for p > 1, the unit ball U, of C[(,p )(B) is an equicon-
tinuous family in Cj (B), uniformly bounded by the constant 1. Then, the convergence
P f — Pf is uniform on U, by Theorem 3.1 in Ranga Rao [21].

(iii) = (ii) is obvious for f in U, and extends to any f in Cl()p )(B) by linearity of

the integral.
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The hard part is (ii)) = (i) which we detail now.
Proof of (i1) = (i) To this aim, it is enough to prove that if (ii) holds, then for each
finite intersection A of open balls, we have P,,(A) —— P(A), provided A is a P-
n— oo

continuity set (see, e.g., Billingsley [5], Corollary 2 to Th. 2.2, p.15). Recall, A € %p is
P-continuity setif P(d A) = 0, where d A denotes the boundary of A, thatisdA = Z\fi
where A and A are the closure and the interior of A, respectively.

Letforx e Bandr > 0, B(x,r) ={y € B: |y — x| <r}. Set

m
A:ﬂB(xi,ri), XlyeosXm €B, r1, ..., > 0.
i=1

It suffices to prove, that

P.(A) — P(A) whenever P(0A) = 0. (6)

To this aim, define for 0 < & < rp := minj<; <, i,
m m
A¢ ::ﬂB(xi,ri+£), Ag :=ﬂB(Xi,Vi—5)~
i=1 i=1

It is easily seen that

U A, = A,

O<e<rg

[ A=A ={xeB:|x—x|<r 1<i<m) @)

O<e<rp

As intersection of closed balls, A’ is closed and since A C A’, the closure A of A
is included in A’. Tt is not difficult to find examples where this inclusion is strict
when A is empty. Of course, this special case may be discarded since with A = {,
the convergence (6) is trivial. When A is non-empty, one can check that A’ = A as
follows. Let x be an arbitrary elementin A’. There is at least one element yq in A. Then,
we define y; 1= 252 Fori = 1,...,m, [y1 — x| < 3 llx —x; [ + 3 llyo — xi[l. As
fori =1,...,m, ||x —x;|| <r and ||yo — x;|| < ri, we see that ||y; — x;|| < ri,
hence, y; is in A. Iterating this argument, we construct the sequence (y,) is A such
that y, = % Since [|x — y,|l <27 |lx — yoll, » > 1, x belongs to A as limit of
a sequence of points of A. Therefore, if A # ¢,

ﬁ A® =A. (8)

O<e<rg
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Next, we construct for A # @ and 0 < & < rg, the functions f¢, f. € Cl(f’ )(B) such
that

1a,(x) < fe(x) < 1a(x) < 15(x) < f7(x) < 1as(x) ©
for all x € B, where 14 is the indicator function of A. Assume for a moment that these
functions are already constructed. From (7) and (8), we obtain by monotone sequential

continuity of the probability measure P,

g&} P(A,) = P(A), 13?8 P(A®) = P(A).

In view of (9) and recalling that A is a P-continuity set, this gives

lgi&} Pfe =P(A) =P(A) = Ef(} PO, (10)

From (9) and the hypothesis (ii) applied with f¢, f*,

limsup P, (A) < limsupP, f* = lim P, f® =Pf* (11)
n—00 n—00 n—00
and
lim inf P, (A) > liminf P, f, = lim P, f. = P/, (12)
n—o0 n— o0 n—o0

for each 0 < ¢ < rg. Taking into account (10), from (11) and (12) we deduce (6). So,
it remains to construct the functions f?, fe.

We begin with a lemma on the Fréchet derivatives of the norm of a p-smooth space
which completes Remark 3. It quantifies the explosion of the successive derivatives
of the norm near 0.

Lemma5 When B is p-smooth, its norm ¥ (x) = ||x|| satisfies fori =1,..., | p],
y® (”i—”) = Ixl T D), x B\ {0}, (13)
Moreover, there exists constants c1, ..., C|p|, Cp such that
Q) < ellxl™, i=1,.... p] (14)
and
Iy D ) — D) < ep (=P + 1y I =P) lx = yl1t7, (15)

forallx,y e B,x,y #0.
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Proof of Lemma 5 To prove (13), we proceed by finite induction on 1 < i < |p].
The initialization step is (4) already checked. Define for x € B\ {0}, y € B and
l<i<|pl

. X . . X . . . .
Tipi(x,y) =y (— + y) =y (—) R B I A O A

[lx]] llxll
wherefory € B, y® = (y, ..., y) denotes the element of B’ withall components equal
to y and for ai-linear form L on B, L -w stands for L(w), w = (wy, ..., w;) € B'. To

complete the proof of (13), it suffices to prove that under the induction Assumption (13)
for some i, |Tj41(x, )| = o(|lyl'*!) for any fixed x € B\ {0} when y — 0 in B.
Indeed then both symmetric (i 4 1)-linear forms W(H‘l)(”’;—u) and ||x||” D (x) are
equal on the diagonal of B'*!, and this equality extends to the whole space B/ +! by
symmetry.

By the induction assumption, restricting to ||y|| < 1 to avoid a possible vanishing
of = +y,

(Y]

X
nr Y
X

m+y”

x+ x|y )
llx + llx|l vl

1—i
. X X .
yO(=+y)=|—=+y| v?
[lx ]l [lxl

=l e+ el y I @ (

=[xl O x + Jlx]l y)

and

@ (i) =l @ ().

llxll

By the multilinearity of the Fréchet derivatives, it follows that

el Tig1 (e, ) = - - |
O+ xlly) - Al =@ @) - (el ) — D (x) - (|lx )| ) @D,

Putting & := | x|| y, we deduce from the existence of ¥ 1 that || x| |Tj41(x, y)| =
o(I|h)"+1y as h — 0, whence recalling that x is fixed, |T;4+1(x, y)| = o(Ily'*1) when
y tends to 0, as expected.

Clearly, (14) follows from (13) with ¢; := sup{||) ()| : llyll = 1}, recalling that
the definition of p-smoothness includes the boundedness of each w(i), 1<i<|pl
on{y € B: |yl = 1}, see (3).

Now, we prove (15). Denoting = ||x||~!, s = ||y|~! forx # 0,y # 0, and
using (13), we start from
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417
”w(LPJ)(x) _ w(LPJ)(y)” — ”w(LPJ)(tx)tLPJ*l _ w(LPJ)(Sy)SLPJ*I I
< ||¢(LPJ)(M) _ I/,(UDJ)(Sy)||tLPJ—1
+ w(Lm)(sy)thJ_l _SLPJ—1|. (16)

The first term in (16) is bounded by

me)(,x) — D (sy) H (Pl < ¢! e — sy P P

where

;o Iy 2D (w) — y(lPD ()

c, = su

lwli=lzl=1 lw —z||tP}
w#z

is finite by the p-smoothness assumption (3). Now,

{r}

_ llx]] _
lex — syl = [y llx = lxlly 1P el iy D~ = ”x - [l ]|~ P

y
Iyl

and writing x — %—H y=x—-y+ W y, the triangle inequality gives

flx |l Iyl = lxll
Hx——y <lx=yl+||———y| =2lx =y,
Iyl Iyl

whence, noticing that 2P} < 2,

||1//(LPJ)(tx) _ 1p(LpJ)(Sy)”tLPJ—l < 2(3:,, lx — y”{P} ”x”—{P}—LPH-l

=2¢), [lx =y P Ix)' 7 (17)

To estimate the second term in (16), choose a = max{||x||, || y||} and consider first
the case where ||x — y|| > a. In this case,

|tLPJ*1 _ SLPJ*1| < [ILPJfl _’_SLPJfl]a*{P}”x _ y”{P}
< [P + Iyl =P 1x — )P

If |x — y|| < a, we claim that

eI — I < 2p ()P - Iy 1P e — Il (18)

Let us check (18). Put for simplification m := |p] — 1. Applying the elementary
bound
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um_vm| =|u_v||u}7l71+MM72U+...+,UW[71|

< |u — vjm(max(|ul, [v)™ "', u,v € R,

which is optimal when v tends to u, gives
-1
|th_1 —SLPJ_1| _ L™ — Ny I™ | ma"

< llx — ylltP.
1™ [y ]1™ HENE

Asm < pand ||x — y|' " < 2a)' 1P} < 24'=1P} | this leads to

aqlrl=1={p}

P11 glei=1) < 9,

< lx — It
=Ty ei=1 7Y

If a = ||x||, this provides

L=t _ glpl=1| a-1p

{p}
<2p —op iy (BT <oyt
e — yI P = Tyl a) =

Obviously the same estimate holds replacing || y|| by ||x|| when a = ||y||, and adding
both estimates to have a common bound gives (18).
Gathering the estimates, we obtain for the second term in (16),

Y PD (sy) eI — I < 2 pe A 7 4 1yl =P) flx — Il

Accounting (17), this completes the proof of (15) with ¢}, := 2 max(c;,, pelp)). O

Let us go back to the construction of f¢, f,. Lemma 5 quantifies in some way the
non-membership of the norm of B in the space CI(JP ) (B). To remedy this drawback, the
idea is to modify ¥ inside the ball B(0, ¢) by flatening to zero the peak of i in the
ball B(0, ¢/2) and use a connection through B(0, ¢) \ B(0, ¢/2) smooth enough to
obtain an approximation of i by a function g, in Czp ) (B). To this aim, let us choose a
function u € C,(Joo)([O, oo))suchthatO <u < 1,u =0on [0, 1/2],u = 1 on[1, c0).
Set

ge() = Y@y (x), x €B. 19)
More explicitly,
0 if0 < [lx|l < 5,
get) = {lallu (BL) ifg < xl <.
IxI if = e

The function g, is uniformly approximating the norm. Indeed

sup [¥(x) — g (x)| = sup ¥ ()1 — u(e ™'Y ()| < e, (20)

xeB
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since u(e ' (x)) = 1, if Y (x) > e.
The next lemma establishes the membership of g, in Cép ) (B) and provides some

control of its norm || g || o defined by (1), in terms of the parameter .

Lemma 6 There is a constant C > 0 such that

sup eV o) < Ce' T i=1,..., Ip] 1)
xeB
and
sup [|g{PV (x) — g{tPD(y)) < Ce'P|x — y|ItP), (22)
x,yeB

Proof of Lemma 6 Denoting
fe = " (x), v() = ru(r),
we rewrite
8s(x) = ev(ty).

An immediate induction provides the following formula for the successive derivatives
of v

v @) = tu"™ @)+ mu™ V@), >0,m>1.

We note also that «™ (1/2) = u™ (1) = 0 since u is C* and null at the right of 1
and at the left of 1/2. The values of v™ on [0, %] U [1, co) are then

0 ?ft§1/2, v(m)(t)z 0 %ft
1 ift > 1, 0 ift

1/2,

v(t) = 1

m > 1. (23)

IV 1A

Together with the infinite derivability of v, this implies that for any integer m > 1,

(1) = v (5)]

Cp :=sup V" ()| < 00, Dy, := sup (24)
>0 5,60 |t —s|tP)
tF£s

Using differentiation of composite functions on Banach spaces (see, e.g., Fraenkel
[11]), we find

m

d m v(j)(tx)
G V) =3 Y ZW po ()1, hy)  (25)
J=1ﬂﬁ3<|i;l+ o
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with
Iﬂ,o(x)(hls e hm) = t,\sﬁ])(hol’ ey hoﬂl) ' (ﬂj (ho'm ITESCRRRE hgm),

where B €< j >, means that 8 = (B1, ..., B;) withintegers §; > 1,i =1,..., ],
Bl = B1+---+ Bjand B! = By!---B;!. In ) _, the summation runs over the m!
permutations o of {1, ..., m}.
To prove (21), we need to bound || Ig.5(x) || only for ||x|| > 5 since form > 1,
v (ty) = 0 for t, € [0, 1/2], that is for ||x|| < 5. So assummg [x] > 5 and
accounting (14), we obtain

< 2mCﬂ] - ~Cﬁj€_m. (26)

(&L:nv(tx) < K,,e7™ and as g.(x) = ev(ty), (21) is checked.

To prove (22), we have to find a bound of the form ce™7||x — y |1} for each

Consequently

Apo(x,y) = 0D () g0 (x) — v (1)) 0 (v), Be<j>4, 1<j<l|pl,

27)
because of the decomposition
qtr! qalr] Lp)
V) — ST = > Z 31 A8 (5 9): (28)
j=1Be<j>4 ©

IBl=Lr]

In view of (23), the discussion is naturally ordered according to the various config-
urations of ||x||, ||y|l and the open interval (%, ).
Case 1: ||x|| and ||y|| are both outside (%, €). As ty, ty are both outside (%, 1), itis
clear from (23) that for j > 2, v\ (z,) = v(j)(ty) = 0 whence Ag,(x,y) = 0.
For the same reason, Ag ,(x,y) = 0 when j = 1 and x|, [yl < % If j =1and
Ixll, Iyl = e,

Ao (x, V)(hi, oo hp) = Ugo(x) = Ige(W)(h1, ..., hp))
= & =6 gy B,

whence recalling (15),
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[4p0 ] = |67 =122 = 7t Do) — D )|
< cpe X + Iy 1) e — )P
< 2cpe7P |lx — y|ItPh. (29)

Case 2: only one of |x||, ||yl is inside (%, ¢). By symmetry, it suffices to treat the

configurations where || x| is inside (%, ¢) and || y|| outside.

Case2.a:0 < ||y|| < % < |lx|| < e.Inthis configuration, for j > land § €< j >4,

140G, )| = 0P | 1p.0 )| = 0D (t0) = 0P )] | Ip.0 ()] . (30)

From (24),

Pt =01 = Dyl = 1,17 = Dye Pl — 1y
< Dje” ) flx — y| )

which together with (26), leads to
|Apo . V)| < @Pcp - -cpDe P llx =y, Be<j>i, j=1

Case 2.b: % < |Ix]l < & < ||yll. For j > 2, (30) still holds and exactly the same
argument as above gives

|Apox, )| < @Pcp, ---cp;Dpe P llx — IV, Be<j>i, j=2.
In the special case where j = 1,as v'(ty) = 1,
Apo(x,y) =V (t) g0 (X) — Ig o ().
whence
| 260G, | < 1 (0) = V' @) | 1.6 ) | + [ 1p.0 ) = I (D] -

Bounding the first term in the right-hand side exactly as in case 2.a and referring to (29)
in case 1 for the second one, we obtain

| Ao, )| < @Pcp,---cp,Dj+2cp)e P lx =yl Be<l>.

Case 3: 5 < |lx||, llyll < e. We start from

[4p0 0 0| = WD) = 0PI 1.0 )]
HoD ()] .0 ) = 1o D] - S
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The first term in the right-hand side of (31) is bounded exactly as in case 2.a:

W1 = v @ | Ip.e )| < @Pep, - cpDpe™ lx =y W),
Be<j>4 j=1

For the second term, let us treat first the special case where j = 1. Arguing as in
case 1, we just have to replace & by 5 in (29), so accounting (24),

WD) - [ 1p.0(0) = Igo (M| < 2P Crepe™ lx — IV, Be<l>y.

Assume now that f e< j >4 with2 < j < [p]. As |B| = |p], for each component
Bi of B, Bi < Lp]. Using telescopic summation where at each step one factor t;ﬂ D i
replaced by tﬁﬂ ) oives

j
Iso@) —Igom=3"| T] t# (t)gﬂn_,ﬁﬂn) [T

i=1 \1<k<i i<k<j

with the usual convention that a product indexed by ¥ equals 1. Therefore,

j
50 = Tpo )] = 3" Api |1 # = ). (32)
i=1
where
mgi=| ] i I1 Hlﬁﬂk)
<k<i i<k<j

(Br)

It is easy to bound ITg; since by (14), Htx =7 |yBOw)| < e leg, Ixl'

and as B > land [x|| > £, |lx||' % < 28~1e1=A_ Obviously, the same holds for
Ht)gﬂk)

and all this gives

Mg, SzLPJ—ﬂiSﬁi—LPJ l_[ cpy.- (33)
I<k<j
ki

Recalling that 8; < | p], 1 <i < j, it remains to estimate forany 1 <m < |p],
S, y) o= [t — 18| =&y ) =y ().

In view of (14), it seems relevant to apply the mean-value theorem for derivatives to
the function 1/f(’”) : B\ {0} - %, (B). But then, care must be taken of the inclusion
of the segment [x, y] in the open set B \ {0}. If O belongs to [x, y], then there exists
s € [0, 1] such that (1 —s)x 4+sy = 0, thatis x = s(x —y) whence ||x|| = s [|x — y]l.

If [x — y| < 5, this equality is impossible since s € [0, 1]and ||x|| > §. Accordingly,
& £

we separate the cases [[x — y|| < 5 and |lx — y| > 5.
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Iflx =yl < %, by the mean-value theorem, (14) and the convexity of the function
t— ",

S, y) < et sup [y = 9w+ sy 1x = )
5€[0,1]

_ _m (EN\ITP)
< e leper sup 0 —9x 5317 () =yl
s€l0.1] 2

< Cm+1 SU — ) ||x +s & X —
2P,y sup (1= 8) ™™ 4 syl ™™ )P x — y) 7!

s5€[0,1]

< 2m+{p}—lcm g—m=(p} llx — y”{l’} ]

+1

If [x —y| > % it is enough to use (14) as follows.

[y @ v = |+ v o]
< cn( el + lyI") < 2"eme ™
Noticing that here ¢ < 2 ||x — y/||, this gives
S (x, y) < omHrle, g—m—ipr} lx — y”{p} )
So we can retain from both cases the common bound:
S (x, y) < 2" P max (e, emr)e ™" P x =y P

for % < x|, ll¥ll <&, 1 <m < |p]. This together with (33) enables us to bound
the i ™ term in (32) as

Iy, H,A(_ﬂ» _ ,§ﬂi>H < 2PI~Figh=lp) TT .26 max(cg,. cg 1)~ [x — y|| P!

I=<k=j
k#i
=27 l_[ cg, max(cg;, cg+1)e P llx — v,
1<k<j
ki
Finally, accounting (24),
WD) [ Ip.0 () = Ipo | < ce™ P lx =y Be<j>i 2<)<Lpl.
This completes the proof of (22) and Lemma 6 O

Next for each ¢ > 0, we construct a | p|-times Fréchet differentiable function
¢ : B— R such that

Lif flx)f <1

. (34)
0 if |x|| >14+¢

be(x) = {
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and
Lp] (LpD L (lpD
Zsupa’ sup ||¢§j)(x)|| + sup e” sup ¢ () ¢f ; Wl < (35)
=0 e>0  xeB e>0  x#y lx — yllt?

To this aim, let the function ¢ € Cy*° (R) be such that 0 < ¢ < 1, (1) = 1, if
t <1/8,q(t) =0,ift > 7/8. Set

¢ (x) = q(e "' (ge/s(x) — 1)), x €B.

If |x|| < 1, then (||x|| — De~! < 0and

8eg(¥) — 1 _ geys() —1 x| —1 n lxll =1 < ge/s(x) — x|l <1/8
) € £ ) )

therefore ¢, (x) = 1. If ||x|| > 1 + ¢, then

-1 -1 -1 -1 -1 —1
ge/8(x) _ &) — 1 x| n llxl 14 geg(x) — 1 lx]|
& & & & & &

-1 —1
Cjgs@ =t =ty e e
& 1

> 1

therefore ¢ (x) = 0 and (34) is confirmed. There remains to evaluate the derivatives of
the function ¢. This can be done in much the same way as we proved (21) and (22).
Finally, we use ¢, ¢ > 0 to define the required functions

P =Ty 107 @ =200 o) =[] bee1 (01 = &) r = xi)).
i=1

i=1

It is straightforward to check that || f*|, < oo and || f¢||, < oo. This completes the
proof of (ii) = (i) and Theorem 4. O

Theorem 7 If the Banach space B is co-smooth, then for (P, P,,n € N) C % (B), the
following statements are equivalent
@) Pp —— P;

n— o0

(ii) Puf —— Pf forany f € i (®).

Proof The proof of Theorem 4 is adapted for the case of co-smooth Banach space
as well. One needs to follow its lines having in mind that functions involved are co-
differentiable (or p-differentiable for any p > 1). So the finally constructed functions
f¢ and f. belong to C™(B). O

Remark 8 From the proof of Theorem 4, we see that the differentiability of the norm
could be substituted by its smooth approximation in the sense that for each ¢ > 0,
there exists a | p|-times Fréchet differentiable function v, : B — R such that
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(a) forany e > 0,

sup [Ye(x) — ¥ (x)| < &;

x€B

(b) with some constant C > 0,

sup |y P ()|l < Ce' ™, i=1,..., Lpl;

xeB
(c) with some constant C > 0,

e ) — v ool _

I-p
Ix — y (7] =ce

sup
x#y,x,yeB

Remark 9 Since C\”(B) c C)(B), if p > p/, it holds
¢p(P,Q) <¢py(P,Q), P,Qe F(B).
Remark 10 For B-valued random variables X, Y, we set
tp(X,Y) :=¢p(Px, Py),

where Py denotes the distribution of X. Hence, if B is p-smooth then in order to check

convergence in distribution of a sequence (X,,, n € N) of B-valued random variables

to a B-valued random variable X, it is enough to prove ¢, (X,, X) —— 0. The use
n—0oo

of ¢, in proving convergence in distribution of random variables is attractive due to
the following simple but powerful properties of ¢:

(a) foreachc € R,
g‘p(CX7 CY) S max{19 |c|p}§p(X9 Y)y
(b) if the B-valued random element Z is independent of (X, Y), then

(X +Z,Y+2Z) <6,(X,Y);

(c) for independent B-valued random elements X1, ..., Xp; Y1, ..., Yy,
n n n
(DX 3o M) = 306X Vo), (36)
k=1 k=1 k=1

These properties of ¢, were discovered by Zolotorev [26], but actually are easy to
prove. The statement (a) follows directly from the definition of ¢,. To prove (b), one

needs to use Fubini theorem and invariance by shifts of the function space Cép )(B)

that is under the transformations 7} : Cép)(B) — Cl(f’)(B), fTof == fx +),
x € B. Finally, (c) follows from (b) and the triangle inequality.
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3 Some Remarks on Smooth Banach Spaces

Various aspects of differentiability of Banach space norm are discussed in Sundaresan
[23].

3.1 Smoothness and Type 2

Recall a Banach space B is said to be of type 2 if there is a constant K > 0 such that
for any finite set of elements xi, ..., x, in B and Rademacher sequence €y, ..., €,
(the €; being independent and such that P(¢; = —1) = P(¢; = 1) = 1/2),

1/2 1/2
(Ellerxt + -+ enxal?) > < K (x> + - + lxal?) 2.

(37
By the Khintchine—Kahane inequality giving the equivalence of moments of Radema-
cher sums Zi €;ix; see,e.g.,[17, Th.4.7], the second moment the left-hand side of (37)
may be replaced by the first one, leading to the equivalent definition of type 2 by the
inequality

172 (38)

Ellerxt + -+ enxnll < K (3117 + - + lxall?)

Moreover, by, e.g., [17, Prop.9.11], if the separable Banach space B is of type 2,

there is a constant K > 0 depending only on B such that for any finite set of mean
zero independent B-valued random elements X1, ..., X,,

ElX1+-+ XulI> < K2ENX11> + - +E[Xal?). (39)

This obviously implies that

1/2

ElIXi + -+ X, < K(EIX1*+ - +EIX,1?) (40)

Conversely, if in a separable Banach space B, any finite set of mean zero independent
B-valued random elements X1, ..., X,, satisfies (40), then choosing X; = €;x; shows
that B satisfies (38); hence, B is of type 2.

Proposition 11 If the Banach space B is 2-smooth, then B is of type 2.

Proof We just have to prove that (40) is satisfied in B. We use the functions g., ¢ > 0,
defined in (19) which are in Céz) (B) by Lemma 6.

For any fixeda, b € B,themap f : [0, 1] - R, — f(t) := g-(a+1b) has clearly
a continuous first derivative f'(r) = gél)(a +1tb) -b,so f(1) — f(0) = fol f () de,
that is :

1
gg(a—f-b)—gs(a):/ ¢W(a+1b)-bdr, a,beB. (41)
0
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Denoting So =0, S; = X1 +---+ X;, j =1,..., n, we have by (20),
E|S,|| <&+ Eg:(S,). (42)

Recalling that g (0) = 0 and applying (41) gives

Ege(Sy) = E(gs(Sn) - gs(o)) = ZE(ge(Sj) - gs(ijl))
j=1

n 1

= E /E(gél)(sj‘,]—l-l‘xj')'xj')dt.
; 0
j=1

It is well known that if ¢ is a continuous linear form on B and X a random element in
B which is Bochner or Pettis integrable, E¢(X ;) = ¢ (EX ;). Combining this property
with the independence of S;_1 and X ; gives via an obvious Fubini argument that

E(g"(S;-1) - X;) = (EgV(S;-1)) - (EX;) = 0.

This enables us to rewrite the above decomposition of Eg.(S;) as
n 1
Eg:(Sy) = Z/ E((gé“(sjq +1X)) — g (Sj-) - X,-) dr.
; 0
j=1
As g, satisfies Lemma 6 with | p| = {p} = 1, we can use (22) to obtain

n 1
Ege(Sy) < Zfo E H (e (Sjm1 +1X)) — gV (S;_1) - X; H dr
j=1

n 1 C
=Y [E(S Il o
j=I
Going back to (42), this gives

n
ElIS| §s+%;EIIX,-||2. 43)

Minimizing in ¢ this upper bound, yields (40) with K = 2C!/2. O

3.2 The Case of Hilbert Spaces

Example 12 Let J# be a separable Hilbert space with the inner product (x, y)

and the norm |[lx|| = /{x,x), x,y € €. Then, ¥ (x) = |lx| satisfies ¢; :=
supy =1 IV (x)|| < oo for any j > 1. This can be seen from v/ (x) = ((x,x))"/?
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and the fact that the inner product is a bilinear function; hence, its first derivative is
a linear function, whereas its second one is a constant. So in Hilbert space the con-

vergence P, — 5 Pis equivalent to P, f — P f forany f € C;°(J). As well the
n—oo

weak convergence is metrizable by ¢4 (P,, P) for d > 1. The following result proved
by Giné and Ledn [12] is also a corollary of Theorems 4 and 7.

Theorem 13 Let 57 be a separable Hilbert space. Then, for (P, P,,n € N) C L ()
the following statements are equivalent:

(i) Py —— P
n—0oo
(ii) Puf —— Pf for every f € Ci>) ()
n—
(iii) for at least one d > 1, limy,_, o0 £4(Py, P) = 0.

3.3 Smoothness of L, Spaces

Example 14 Let (S, ., v) be a o-finite measure space, p > 1. By .Z, (S, v; R), we
denote the set of measurable functions x : S — R such that fS |x(s)[Pv(ds) < oo.
The corresponding Banach space is denoted by L, (S, ., v; R)) or shortly L, (S, v)
and is endowed with the norm

1/
el = ( [ 1xirocan) .

Throughout we assume that the spaces L, (S, v), p > 1, are separable. This is the case
if . is countably generated or if (S, .”, v) is v-countably generated: there exists a
sequence (S,, n > 1) C .7, consisting of sets of finite v-measure, which v-essentially
generates .7 in the sense that for all A € . we can find a set Ag in the o-algebra
generated by (S,, n > 1) such that v(AAAp) = 0, see Proposition 1.49 in Hyténen
etal. [16].

As proved in [19, Prop. 2.23], the norm ¥ (x) = [[x||L, is | p] times continuously
differentiable on L, (S, v) \ {0} and satisfies Y44 supy,—; I ® () < co. We
use here the following notations : ¥ (x) := (Y (x))?, g(t) = |t|P, f(t) := 1P,
The method used in the proof of [19, Prop. 2.23] is to establish the | p |-continuous
differentiability of ¥ by a Taylor formula technique and as ¥ = f o i and f is
infinitely differentiable on R \ {0}, the | p| times continuous differentiability of ¥r on
L, (S, v) \ {0} follows. In what follows, we adopt the Toscano notation for the falling
factorial, that is for any real number r and any integer k > 1,

k—1
k= l_[(r —1).
i=0

With this notation, the derivatives of f and g are conveniently expressed as

1\k
f(")(t)=<—) 1P sen@), g @) = pEilP sen)*, 1 £0,k = 1.
p
(44)

@ Springer



Journal of Theoretical Probability (2023) 36:409-455 429

In the proof of [19, Prop. 2.23], it is shown that wl(k)(x) =Ar(x), k=1,...,r,
where the k-linear form Ay (x) is defined by

Ar@) (R, ) = /g“‘)(x(s))hl(s) s hi(s)v(ds), hi, ... hi €Ly
S
(45)
For our aim, it is useful to explicit here the iterated use of Holder inequality mentioned

in [19] to check the continuity of the k-linear operator Ay (x). This way we obtain
a bound of the norm ||Ak(x)||$k(Lp) in terms of p, k and ||x||;, . In view of (44),

the problem is reduced to the successive “extractions” of ||/ ||Lp R ||hk||L,, via
Holder inequality applied iteratively along an ad hoc sequence (p1, q1), - - -, (Pk» Gk)
of conjugate exponents, starting from the integral J; := fs |x|P~*|hy| ...kt dv. To

this aim, we choose p; = p—i+1,q; = pi/(pi— 1) =(p—i+1D/(p—1i),
1 <i < k. Itis easily seen that

G = T q e dis 1P = Py i=1...k (46)

The stepi — i+ 1 of this procedure consists in applying Holder inequality as follows:

1
i — e q19i—1
Ji = (v/; |x|511-~~%—1([7 k)lhi .. .hk|ql qi—1 dl))

_1 1
(p— g q1-4i s . q1q;—1 P
< (/ |x|t11"~qz(l7 k)|hi+1 ~--hk|q1 qi dv) x </ |hi|q' qi—1Dpi dv)
S S

= Jit1 lhillL,, -
At the end of this procedure, we obtain J; < Jr4+1 ||h] IILP -l IILP, where

1 pk
- a1k —k
Jipt = ( /S | 12k dv) = ( fs |x|”dv) = IxlIf, " .

using (46). From this bound for J;, we deduce that for every x € B\ {0} the integral
in (45) is well defined, that the k-linear operator Ax(x) : (L p)k — R is continuous
and satisfies

—k
[P0 = 1acmlga, = P00 x£0 1k 1pl @)

To prove the p-smoothness of L, we have to check (3). Recalling that » = f o,
we can use differentiation of composite functions on Banach spaces as in the proof of
Lemma 6:
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dm
PO @) = W(M, o)

()
—Z > Zf (;/;(x» o)A, .. hm), 1 <m < |p],
j=lBe<j>4 ©

|Bl=m
(48)

with the same summation conventions as in (25) and

I ()i, ) = P @) (o By - w%(mm%ﬁﬁ“””h%)
(49)

Write U := {x € L,(S,v) : ||x||Lp = 1} for the unit sphere of L, (S, v). As ¢y (x) = 1
for x € U, it follows from (44) that

. 1\
| (g ()] = <—>
p

Moreover, f €< j >, have all its components 8; > 1, so by (47),

, xel. (50)

‘WVWMHSpﬁ,er. (51)

Gathering (48) to (51), we obtain

Z sup Hw(k)(x)H < 00.

er

It remains to check that ¥ (L7)) satisfies

(LpD — D
sup 1yt (x) 1#{ : M - . (52)
x,yeU lx — ylItr
xF#y

As a preliminary, we check the following inequality
|lal®sgn(a) — |b|* sgn(b)| < 2'"%|a —b|*, a,beR, @€ (0,1). (53)

To this aim, we put ¢ := max(|al, |b|), d := min(|a|, |b|) and use the elementary
inequalities

l<t*+Q-n*<2" 0<r<]l. (54)
If sgn(a) = sgn(b), the choice of t = d/cin (54)leads to ¢* —d® < (c—d)*, whence

|la|* sgn(a) — |b|* sgn(b)| = [lal* — b|*[ = ¢ —d* < (c = )" = |a — b|*.
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If sgn(a) # sgn(b), the choice of t = ¢/(c+d) in (54) gives ¢* +d* < 2= (e d)e,
whence

|lal” sgn(a) — |b* sgn()| = ¢ +d* < 2'7%(c + d)* =2""]a — b|*.

Proofof (52) Case 1 < p < 2. Here, |p] = 1 and for x,y € L, with |x|L, =
||y||Lp = 1 we have

V') — ' ()] = \%(wl )PP ) = )T P () ()

= %Ilﬂ{(x)(h) — Y1)

As | is the linear form Ay, (44), (45) and (53) witha = p — 1 give

@) = 0B = | [ [P sents6) =y sents(o) |y vas)|

< fS [lx()IP~ sgn(x(s)) — [y 1P~ sgn(y()) |17 (s)|v(ds)
< /822*P|x(s) — YOIP " h(s)|v(ds)

Applying Holder inequality with exponents p and ¢ = p/(p — 1), we obtain

W' () (h) — ¥ () ()] <2277 ||x — yllf;1 AL,
This inequality being valid for every 2 in L, (S, v) and as {p} = p — 1 here, it follows

that [/ () — /()] <2277 |lx — yII{”’, 50 (52) is satisfied when 1 < p < 2.
Case p > 2. By (48) and (50), we have for x, y € U,

& (/)]
HW“’“(X) _ w(LpJ)(y)H DY [Apox. 0. (55

18!
iZlpeaios @ P
BI=Lp]

where Ag 5 (x, y) := Ig 5 (x) — Ig 5 (y). Using telescopic summation as in the proof
of Lemma 6 and (51), we get

apateon] < i( I meu) o) - 50| ( I waﬂ“@)H)
i i<k<j

i=1 \1<k<i
J
=Y P @-wPw| TT »* (56)
i=1 1<k<j
k#i
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Now, it remains to find a suitable control of each increment H 1#1(’3 i)(x) — wl(ﬂ i )(y) ”
If2 < j < |p], the multi-index § has at least two components, so 1 < 8; < |p].

Then, ¥{" has a continuous derivative on B \ {0}. Soif 0 ¢ [x, y], recalling (47), we
get

[P =P o] = s [P @ -

z€[x,y]
< pPE sup (11— D)x + 1y P7F T lx — |
tel0,1]
< 2P Pl p Pl —y). (57)
To complete the case j > 2, notice that 0 € [x, y] if and only if y = —x. In this

special case, ||x — y|| = 2 and accounting (51), we can simply write
[0 =P 0| = [uiP | + |6 o = 208 = p& e - 1.
(58)

Now, [|lx — y|l < 211 1x — y|I!P} forx, y € U, so from (56)—(58), there is a constant
K dependent only on the space L, (S, v) such that

Lp] j
1 J
S Y ST A ] <Kl -y, xy el (59)

18!
iSpeag-, @ P
BI=1p]

It remains to treat the sum of terms for which j = 11in (55). Here, 8 is a mono-index
necessarily equal to | p] and by (56), one can bound this remaining sum R as

Ri=)

Recalling (45) and (44), we have for A1, ..., h|p) € L,(S, v),

L (T PR ()
prJ,HALPJ,a(x,y)Uspr, @ =y ;]

W ) — P )i, )

_ pm/S(lxI{p}sgnx — IyI"PVsgn )y - hypydv

Using iteratively Holder inequality exactly as in the proof of (47), we obtain

{p}

L N
{r} d\))

H%(LPJ)(X) _ 1/,I(LpJ)(y)H < plol (fs )|x|{p} sgnx — |y|P
r}

Szl—{P}pﬂ (/ |x_y|p dU) P 7
S
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thanks to (53). Finally, R < K’ |lx — y||!?} with a constant K’ depending only on p
and recalling (59), this completes the proof of (52). O

Recalling that by [19, Prop. 2.23], if p = 2¢ is an even integer number, then the
norm v (x) is infinitely many times Fréchet differentiable, we can summarize about
L, smoothness by the following proposition.

Proposition 15 (a) For any p > 1, the space L (S, v) is p-smooth.

(b) If p = 2L is an even integer, then the norm of L, (S, v) is infinitely many times
Fréchet differentiable on L, (S, v) \ {0} and has bounded derivatives on the unit
circle, so that L, (S, v) is d-smooth for any integer d > 1.

Theorem 4 and Proposition 15 yield the following results.

Theorem 16 Let p > 1. For (P, P,,n € N) C Z(L,(S, v)), the following statements
are equivalent:

Q) Py —— P;
n— o0
(i) Pof —> Pf forany f € C (L, (S, v));
n—0oQ
(iii) limy— o0 §p(Pn, P) = 0.
Theorem 17 If p > 2 is an even integer, then for (P, P,,n € N) C Z(L,(S, v)), the
following statements are equivalent:
Q) Py —— P;
n—oo
(i) P,f —— Pf forany f € Cl(fo) Ly (S, ),
n—>oo
(iii) for at least one d > 1, lim,_ o0 {4 (P, P) = O.

4 Lindeberg CLT in p-Smooth Banach Spaces

First, we implement in Theorem 21 below the main principle of Lindeberg method and
compare the sums er(,,: | Xnk with sums of independent Gaussian random variables.
Beforehand, it seems convenient to recall the notion of B-valued stochastic integral
with respect to a white noise which plays a key role in our proof of Theorem 21.

Definition 18 Let (S, ., 1) be a measure space and .%) := {A € .; u(A) < oo}
A white noise with variance w is a stochastic process W = (W(A); A € #) defined
on some rich enough probability space (£2’, %', P’) such that

(a) foreach A € ., W(A) is areal valued Gaussian random variable with mean zero
and variance ((A);

(b) if Ay € S, ..., Aj € S are disjoint, then W(A1), ..., W(A;) are independent
and

J J
wllJa) =X wan. j=z2
i=l1

i=1
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Next, following Proposition 3.3 in Hoffmann Jgrgensen and Pisier [15], one can
construct a B-valued stochastic integral with respect to W. Classically we define first
this integral for functions g in the space £y () of #-simple functions g, that is of
the form g = Y °/_, xila,, withx; € B, A; € 4, 1 <i < j, j > 1 and extend it to
the whole space L2(S, .7, 11, B). The next proposition is essentially stated and proved
in [15]. Our rewriting of its statement and proof is motivated by the need to explicit
Corollary 20 in view of its role in Theorem 21.

Proposition 19 If B is of type 2 and W is a white noise with variance |1 on some
probability space (2', F', P'), then there exists a unique linear map

IW :L2(S,y, MaB) — Lz(Q/vg\/’PlaB)’ g IW(g) :/S\gdW’

such that the following statements hold.

(a) Forevery g = Z{:l xila;, where xy,...,x; €B Ay,...,A; € S, j > 1,

J
Iw(g) = /Sgdw =Y xiW(A). (60)
i=1

(b) There exists a constant C such that for every g € L*(S, .7, 11, B),

/gdW
S

(c) Foreveryg € LX(S,.”, u, B), fS g dW is a Gaussian mean zero random element
in B.

(d) If D', D" € B are disjoint, [, g dW and [,,, g dW are independent for every g
inL2(S, .7, i, B).

2
E‘ < cfS lgl? due. 61)

Proof The coherence of the definition of Iy (g) by (60) when g is a .#-simple function
is checked in a standard way using the additivity property (b) in Definition 18. Checking
the linearity of Iy on the subspace % (1) of simple functions in L2(S, .7, i, B) is
then straightforward. Next, if g € Zy(w), it can be represented as g = Z,]: 1 Xila,
where the A; € ¥ are disjoint, which was not requested in (60). As B is of type 2
and the x; W(A;) are independent with mean zero and finite second moment, there is
a constant C depending only on B such that

. 2 . .
J J J
Elllw(@IP =E Y xiW(A)| <CY EIxWA)I>=C ) Ixnl*EW(A)*.

i=1 i=1 i=1
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As the random variables W (A;) are mean zero with respective variances ((A;), this
implies

J
Elllw(@l* < C Y Ixill* n(A) = C/s lgll® dpe.
i=1

Therefore, Iy is a continuous linear map %y () — L>(£2’, %', P, B) and by density
of L) inL2(S, .7, 1, B), I has a unique continuous linear extension to this space,
still denoted Iy, and satisfying (61) with the same constant C.

To prove (c), we check that for every u € B*, u(Iy(g)) is a Gaussian random
variable. This is clear for g simple since then u (I (g)) is a linear combination of inde-
pendent Gaussian random variables. In the general case, g is the limitin L2(S, .7, i, B)
of a sequence (g,) of simple functions. Combining the continuity of the linear func-
tional # with (61) gives

E [u(Iw(g)) — u(lw(g.))* < C lull? /S lg — gnll* dp,

which shows that u (1w (g)) is a Gaussian random variable as limit in quadratic mean
of a sequence of Gaussian random variables. Moreover, forevery u € B, Eu(Iw (g)) =
lim,,— oo Eu(Iw (gn)) = 0, whence Ely (g) = 0. .

To prove (d), we first note that for g simple, g = Z{: 1 Xi1a; with the A; disjoint,
and D € B, [, gdW = [glpdW = Y"/_ x;W(A; N D). Since D" and D" are
disjoint, so are the sets Ay D', ..., A;ND", AyND", ..., A;N D", which provides
the independence of

J J
Y = / gdW = inW(Ai ND') and Y’ = f gdW = Zx,-W(Ai N D").
D’ P p” i=1
This independence is preserved when g is the limit in L(S, .7, i, B) of a sequence
(gn) of simple functions since then, ¥,, = || & dWand Y = / v 8n AW converge
in probability to Y' = [}, gdW and Y = [, g dW, respectively, which implies the
convergence in distribution of (Y, ¥,/) to (Y, Y”). Then, the distribution of (Y’, Y”)
is the product of the distributions of ¥’ and Y” which is equivalent to the independence
of Y and Y”. ]

Now, denote by X a B valued random element defined on a probability space
(£2,.Z, P) with distribution Py = P o X~! (which is a probability measure on %g)
and such that EX = 0, E | X||> < oo. Let us denote by Q = cov(X) € L(B*, B) the
covariance operator of X, that is the linear bounded operator from B* to B defined by

Qu =E((u, X)X), u € B*.

Since B is of type 2 and E || X ||2 < 00, the operator Q is pregaussian (see, Theorem
3.5. in Hoffmann Jgrgensen and Pisier [15]), so there exists a Gaussian mean zero
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random element Y in B with covariance operator Q. One way to construct such an Y
is to apply Proposition 19 with S = B, .¥ = %g, u = Px, which gives the following
corollary.

Corollary 20 Let B be a separable type 2 Banach space and X be a random element
in B defined on some probability space (2, .F,P). Denote by Px := P o X~ the
distribution of X. Assume that E IX)1> < coandEX = 0. Let W = (W(A), A € Bp)
be awhite noise withvariance . = Px defined on some probability space (2", F', P).
As E ||X||2 < 00, the identity map, Idg : B — B, x + x, is in L2(B, %g, Px, B), so
we can define a Gaussian mean zero random element Y in B by

Y :=/Id3 dW:/xdW(x). (62)
B B

Then, the following statements hold.
(a) With the constant C in (61),

E|lY]? < CE|X|. (63)

(b) For every g € LZ(B, PBg, Px, B), the Gaussian mean zero random element Z =
fB g dW has the same covariance operator as g(X). In particular, Y and X have
the same covariance operator.

(¢) For every symmetric T € £5(B) and every g € L2(B, %g, Px, B),

ET(g(X), (X)) =ET(Z,2) (64)

and in particular ET (X, X) = ET (Y, Y).

Proof (a) is a simple translation of (61) in the special case under consideration. For
(b), we have to check that Q7 = Qg(x) which is equivalent to E(u(Z)v(Z)) =

E(u(g(X))v(g(X))) for every u, v in B*. For g = >!_ | xi1,, with the A;’s disjoint,
u(Z) = 211:1 u(x;)W(A;), whence by independence of the A;’s,

J
E(u(Z)0(2)) =Y ulxi)v(xi)Px (A;) = Au(g(X))v(g(x))dPx(X)

i=1

= E(u(g(X)v(g(X))).

Valid for every g simple, this equality extends to the whole space L?(B, %g, Px, B)
by the continuity of Iy . In particular for g = Idg and ¥ = fB Idg dW, Qy = QOx.
The proof of (c) is similar and will be omitted. m]

Theorem 21 Assume that B is of type 2. Consider an array of B-valued random vari-
ables

an,--ank,~'-7an,,, lfkirnvnzla
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where the probability space ($2,, %,, P,) underlying the n™ line may vary with n and
foreachn > 1, the Xpk, 1 <k < ry,, are mean zero independent and

n
My =Y E[Xull* < oc. (65)

k=1
Then, for each n > 1, one can construct on some probability space (82}, F,, P,,)
independent mean zero Gaussian B-valued random variables Yy, . .., Yy, such that

forl <k <r,, Xnkand Yy have the same covariance operator and forany$ € (0, 1],
and any ¢ > 0,

n n n
O [ D Xuk: D Yak | < c(B.8) | Mue® + My + 1) Y EI Xy IP1{I Xpicll > &} | .
k=1 k=1 k=1
(66)

where the constant c(B, §) > 0 depends only of the type 2 constant of the space B and
of 6.

Proof We fix an arbitrary n > 1 and prove (66) for the n'" line of the array. In view of
the property (36) of {145, the problem reduces to proving that, given any mean zero
random element X in B such that E || X ||2 < 00, one can construct, possibly on another
probability space than the one supporting X, a mean zero Gaussian random element
Y in B with the same covariance operator as X, such that

£45(X, ¥) < cB,8) (SEIXIP + (1+ BIXI2)EIXIP 1{1X] > &) (67)
To this aim, choosing Y as in Corollary 20, we have to estimate |E f (X) — E f(Y)]|

for f € Cl(72+8)(B) such that || f|l,,s < 1. By Taylor formula at the order 1 with
integral remainder,

F(X) = f(0) + f/(O).X+/01(1 —0f"tX).(X, X)dt. (68)
To exploit fully the membership of f in C\" " (B), we rephrase this formula as
f(X)=fO)+ f(0).X + %f"(O)-(X, X)
+/01(1 =0 (f"tX) = £7(0)).(X, X)dt.

Applying the same treatment to f(Y) and using E(f/(0).X) = f'(0).(EX) = 0 and
similarly E(f/(0).Y) = 0, together with (c¢) in Corollary 20 applied with the bilinear
symmetric operator T = f”(0), we are left with

[Ef(X) —Ef(¥)] < R(X) + R(Y),
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where
1
R(Z) ;=/0 (I-nE|(f"t2) - f')(Z,2)| dr, Z=X.,Y.

By the §-Hdlder continuity of f” and || fll,4s < 1,
[ Z]|® whence

|f7az) — 'O < Iez)® <

I(f"@2) = ")z, )| < 1Z1° Iz, D) < 1ZI*° Z=X,Y. (69)

As Y is Gaussian, E | Y ||2+6 < 00, which gives a first estimate of R(Y), by inte-
gration with respect to ¢ in (69):

1
R(Y) < JE IY)>+e. (70)

Concerning R(X), only the finiteness of E || X ||2 is available, so we use (69) only
on the event {X < e} where [|(f”(tX) — £"(0)).(X, X)|| < ° | X|/*. This gives

1
/0 (1= DE( | (f7¢X) = £7©).(X, )| HIX]| < &}) dr

1
1
5/ (1 =B IX I {|IX]| < e}dr < Ee“E X117 (71)
0

On {[|X| > &}, we simply use the fact that | f”| < 1, so || f"X) — f"(O)| < 2.
This gives

1
/0 A =0E([(f"X) — £70).(X, X)|| 1{IX]| > &}) dt
1
5/0 200 = DEXIP1{IX] > e}dr =EIXIP HIX]| > e}.  (72)

Our next step is to control the bound (70) in terms of the distribution of X only.
Since Y is Gaussian, there is for every r > 0 a constant «, depending on r only, such
that (E |Y|")'/" < k,(E || Y||?)!/2. One possible value is obtained using the inequality
P(IY| > 1) < 4exp(—t%/(8¢c?)) where ¢? = E ||Y|?, see, e.g., (3.5) in [17], which
gives k, = 23/2*2/" ' (r /2 + 1)V/7 . In particular,

1+5/2
EIYIP <3t (BIvie)
Next, recalling (62), we note that Y = ¥/ + Y/, where
Y, ::/x1{||x|| <e}dW(x) and Y/ :=/x1{||x|| > e}dW(x)
B B
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are independent Gaussian random elements in B by Proposition 19 and Corollary 20.
Since B is of type 2, it follows by (39) that

148/2
! )

ENYIP <5 K> (B v/ + E v/

By Proposition 19 (b) and the convexity inequality (a4b)" < 2" ~'(a" +b"),a,b > 0,
r > 1, we obtain with a constant ys := 2%/ zlczzigK T CIH8/2 € being as in (61),

148/2
ENYIPY <y (E IXIZ 11X < e} + (ENXI2 10X > o)) )

8/2
<7 (85E 1X12+ (E1X12) " EIX P 101X) > e})
=y (PEIXIP+ (1+EIXI?) EIXPLIX] > e}).  (73)

Now gathering (70), (71), (72) and (73) gives (67) with ¢(B, §) = (1 + y5/2).

To conclude, choose a probability space (£2),, .%,, P,,) rich enough to support a
sequence of independent white noises (Wyx)1<k<,, Where the variance of W,y is
the distribution of X, ;. Define on this probability space the corresponding sequence
(Yuk)1<k<r, of Gaussian random elements in B by Y,;x := fB Idg AWy, 1 <k < ry.
Each pair X, Yy satisfies (67). Bounding (1 + E [| X« ||2) by 1 4+ M,, and summing
overk =1,...,r,, we obtain (66). O

Hence, in p-smooth Banach space B where p > 2, the proof of convergence
in distribution of the sequence ZZ:] Xuk,n € N, to a B-valued Gaussian random
variable Yy, is reduced by Theorem 21 to the proof of convergence in distribution
of the Gaussian sequence > ;_; Yui to Y. The later is controlled by convergence
of covariance operators. In any finite dimensional space, this is not a problem. In
any separable Hilbert space as well as in Banach space of type 2 with approximation
property, the convergence Y ;_; Yuk % Y is obtained from convergence of

covariances in nuclear norm (see Chevet [8]).
Recall an operator u € .Z(B) is said to be nuclear if it admits the representation

o0
u(x) =Y fiw,
k=1
where f; € B, yr € B, and

o0
S Al el < oo

k=1

The greatest lower bound of the sum Z,fil Il fell - lvk |l taken over all possible repre-
sentations of u is called the nuclear norm of u and is denoted by vy (u).
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Theorem 22 Let the Banach space B be p-smooth for some p > 2 and has approxi-
mation property. For each n > 1 suppose that X1, ..., Xy, is a sequence of mean
zero independent B-valued random elements such that sup, < ZZ”: 1 E Xk ||2 < 0.
Let Qyj := cov(Xy;), j = 1,...,rq,n > 1. If there is a linear bounded operator
Q € L(B*, B) such that

n

(30 0) <o
j=1
and for each ¢ > 0,
'n
lim " B Xk P11 Xk > ) = 0, (75)
n—>00k=1

then Q is pre-Gaussian and

I'n 7,
> Xp —— Yg. (76)
n— oo
k=1
where Y is a mean zero Gaussian random element in B with covariance Q.

Proof Let the Gaussian triangular array (Y,x, k = 1, ..., r,; n > 1) be as constructed
in Theorem 21. Since

'n n n 'n
Cp(ZXnka YQ) =< Cp(zxnkv ZYnk) + gp(ZYnkv YQ>7
k=1 k=1 k=1

k=1

it is enough by Theorem 21 to prove

mp
lim_ gp(]; Yor, YQ) —0. 77

This is equivalent to the weak convergence of Gaussian distributions and as it is proved

in Chevet [8], the convergence Z;": 1 Yk i) Yo follows from (74). O
n—00

To check convergence in nuclear norm might be a quite complex task. In some
concrete Banach spaces, the direct proof of convergence in distribution of Gaussian
random variables is easier to achieve. As an illustration consider now the case of L,
spaces. In what follows, (S, ., ) is a measurable space where the measure u is o-
finite. We denote by p arealin (2, oo) andby g = p/(p—1) its conjugate exponent. We
assume moreover that the space L, (S, ., u; R) is separable. We denote, respectively,
by . ®.% and u® u the product o -field and product measure on the Cartesian product
S2. We will use the abbreviations:

Ly(S) :=L,(S, 7, i;R), L,(SH :=Ly(S?, .7 0.7, u®uR).
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For real valued functions u, v defined  almost everywhere on S, u ® v denotes the
function defined u ® p almost everywhere on S? by (u ® v)(s, t) := u(s)v(t). This
notation is extended in an obvious way to random elements in L, (S).

Theorem23 (CLT in L,, p > 2) Let (Xx,k = 1,...,rp;n € N) be a tri-
angular array of mean zero independent random elements in the separable space
L,(S, 7, u; R). Assume that the following conditions are satisfied.

() SUp,en D g E”Xnk”L < oo.
(b) Forany e > 0

lim ZEnxnkuL I Xkl > €} = 0.

(c) There is a mean zero Gaussian random element Y in L, (S, .7, u; R) such that

Y E(Xuk ® Xuk) —— I':=B¥ ®Y) in L,(S%.% ®.%, u® u; R).
k=1

(d) Denoting by o, and o the non-negative elements of L, (S, 7, u; R) defined by
anz(s) = r” EX,,k(s)2 and o%(s) := EY (s)?, pu-a.eon'S,

/af du —— | oPdpu.
S

n—o00 S

Then,

'n

9 .
Z Xk — Y inthe space Ly(S, ., u; R).
k=1 n—oo

The proof requires the preliminaries gathered from Lemmas 24 to 27.

Lemma 24 Assume that f, g € L (S?) satisfy for all A, B € . of finite j.-measure,

fdu® w) =/ gd(n ® w). (78)
AXB AXB

Then, f = g, (n ® w)-a.e. on S2.

Proof Let us remark first that the integrals in (78) are well defined because 14 and 13
are in L, (S) since u(A) and 1(B) are finite. We first prove the lemma in the special
case where u(S) < oo and then extend the result to the general case by using the
o-finiteness of w. To simplify the writing, we denote by C,, 1 C the fact that the
sequence of sets (Cp),>1 increases to the set C, thatis C, C C,1 forevery n > 1
and U,>1C, = C.
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Case where j1(S) < oo. Let us introduce the class .Z of sets C € . ® . such that f
and g are 1 ®  integrable on C and [ fd(u ® u) = [ f d(u ® ), together with
the class Z := {A x B, A € ., B € .}. As u(S) is finite, the same holds for p(A)
and u(B) and (78) gives the inclusion Z C Z. Clearly, # is a w-system, i.e., closed
under the formation of finite intersections. The class . satisfies the three following
properties.

(A1) S? belongs to .. Indeed 152 € L, (S?) because u(S) < oo.

(A2) C,C" € Land C C C'imply C'\ C € Z. This follows easily by writing for
h=f g Jehdu®p) = [ohd(u® 1) + fene hd(n ® p) and using the
membership of C, C’ in .Z.

A3) {Cpyn > 1} € Zand C, 1 Cimply C € Z. Indeed the equality an fdn®
W = [¢ gdu®p gives o (ff+g)duew) = [ (" +f)duew
and by B. Levi’s monotone convergence theorem, we obtain |, c(f T+g)du®
w = [T+ f)d(u®u) thatis [ fd(u®u) = [ gd(u®u),soC € Z.

Hence, .Z is a A-system. As it contains the w-system %, by Dynkin’s 7-A theorem,
see, e.g., [5], it contains also the o -field generated by %, that is the product . ® ..
As ¥ was defined as a subset of .¥ ® .77, it follows that .¥ = . ® .. In other
words,

VC e Y Q.7 /fd(u@u)=/gd(u®,u). (79)
c c

Now, with C = {f > g}, (79) gives fc(f —g)d(u®u) =0.As f — g ispositive on
C, this implies u @ u({f > g}) = 0. Similarly, one check that u @ u({f < g}) =0,
so finally u @ u({f # g}) =0, thatis f = g u ® u-a.e. on S2.

Case where 1(S) = oo. By o-finiteness of u, there is a sequence (S,),>1 in .7,
such that S;; 1 S and u(S,) < oo for each n > 1. Let us equip S, with the o-field
Iy ={A e S ACS, ={A'NS,; A € ¥} Then, we can apply the previous
case to each measured space (S,, %, 1), n > 1, which gives f = g, (1 ® w)-a.e. on
S,%. As S? = U,=1S, x Sy, this gives f = g, (u ® u)-a.e. on S2. O

Proposition 25 If X and X' are mean zero random elements in L, (S) with finite strong
second moment and the same covariance operator, then

E(X ()X (1)) = E(X'(s)X'(1)) for n ® w almost every (s, t) € S%.
Proof If X and X' have the same covariance operator, then for all u, v € L, (Sz),
E((X,u)(X,v)) = E(X', u)(X', v)).

Holder inequality and Fubini arguments legitimate the rephrasing of this equality as

/sz E(X($)X(@))us)v() du & u(s, 1) = /52 E(X' ()X (0)u(s)v(t) du @ uls, 1).
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As forany A, B € . such that u(A), u(B) < oo, the functions u = 14 and v = 13
are in L, (S), Lemma 24 gives the expected conclusion. O

In what follows, we use for notational convenience the indexation by infinite subsets
of N* = N\ {0} to denote subsequences. So any (infinite) subsequence of (u)n>1
can be denoted as (u,),e; with I infinite subset of N* and the convergence of this

subsequence will be denoted by ————— or lim;,— o0 ner-
n—oo,nel

Lemma26 Let & be a Gaussian random element in L, (S) = L, (S, ., u; R) having
a representation

g:/ Id dw,
Ly(S)

where W is a white noise. Then, for p-almost every s € S, £(s) is a mean zero Gaussian
random variable.

Proof By construction of the L,(S) valued stochastic integral with respect to W,

there is a sequence of L, (S) valued simple functions f, = le": | hnila,; where the
hyi are in L, (S), and for each n, the A,;, 1 < i < j, are disjoint, such that with
&, = pr(S) fndW,E ||&, — $||?) — 0. Let us fix a representant still denoted /,; in
each class of functions #,,;. Then,

Jn
En(s) =Y hni(s)W(Ani)
i=1
is a Gaussian mean zero random variable as a linear combination of the independent
Gaussian mean zero random variables W (A;;). Now, the conclusion of the Lemma

follows if we prove that for p-almost every s € S, E|&,(s) — &(s) 12— 0.
Our first step in this way is to prove that the convergence E ||§, — & ||f, — 0 implies

E|&, — & ||§ — (0 1in our Gaussian setting. To this aim, we use the following estimates.

Ellén — &1 < E( llgn — &1, (161, + 1611,)" ")
1/2 —
= (Ele — €03 ) " (E(El, + 160, ) %)

120 0p- 2p-2 - 2p-2
< (Ble —¢13) " (2 El&ly  +22E 15157

1/2

1/2

As the Gaussian random elements &, and & have strong moments of any order, we just
have to bound E [|£,]|3”~* uniformly in 2. Using (3.5) in [17], we get for r > 2,

oo 00 —t2
E||sn||;,=f rrf—lp’(||sn||,,>t>drs/ 4t Vexp | ——— | dr
0 0 8E (€1,
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Now, the convergence to zero of E ||§, — & ||§, implies the convergence of E ||&, ||f, to
E ||§||%, so there is some 7 such that E IISnII2 < 2E IIEIIfj for every n > ng. Hence,
SUP,i= o BllEn 1}, <[5 4re" " exp(—1%/(16E [|£][3)) di < oo.

Finally, since

Ell& —£1p = /SEm(s) — £ duls) —= 0,

we can extract a subsequence (E|&,(s) —&(s)|?),e; which converges to zero p-almost
everywhere on S. So there is some measurable subset S’ such that u(S\'S) = 0
and for every s € S limy— 00 ner El&n(s) — §(s)|P = 0. As p > 2, this implies
lim,, 00 ner El&n(s) — é(s)|2 = 0. So forevery s in §/, £(s) is limit in quadratic mean
of the sequence of mean zero Gaussian random variables (&, (s)),<s; hence, £(s) is a
mean zero Gaussian random variable. O

Lemma27 Let X be a random element in L, (S) such that E ||X||%]7 < 00. Let & be
a Gaussian random element of the form & = pr ) Id dW, where W is a white noise
with variance Px.

(1) For p almost every s € S, o2(s) := EX(s)? = Eé(s)z.
(ii) Moreover, o € L, (S?).

Proof To prove (i), we recall that the proof of Lemma 26 provides a measurable subset
S’ such that u(S\ ') = 0 and an infinite subset / of N* such that for every s € &'
(El&,(s) — &(s)|P)ner converges to zero and (E&, (s)z)ng converges to Eé(s)z. So it
suffices to prove that one can extract a subsequence (E&, (8)®)pes for some infinite
subset J of I, converging to EX (s)? for u almost every s € S'. Moreover, it is enough
to prove i) in the case where ©(S) < oco. Indeed when ©(S) = oo, by o-finiteness
of u, there is a sequence (S,),>1 in .#, such that S,, + S and u(S,) < oo for each
n > 1 and the same holds with (S),),>1 and ', where S, := S N'S),. Then, clearly if
EX(s)? = E£(s)? pu-ae. in S}, the same equality holds j-a.e on S'. So let us assume
from now on, that ©(S) is finite.
Now, we note that &, was defined as &, := pr ©) fndW, with

fn — Id,s). in the space Lz(Lp(S), B, ) Px:Ly(S)).

This convergence means that

Jo

) ” Jn(xX) = IdLP(S)(x)”Lp(S) dPx n—00 0,

which can be reformulated as

2/p
Ell/u(X) = XI} @ = E ( /S [fa(X(5) = X(s)I7 dM(S)) —— 0. (80)
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Since w(S) is finite, 1/ (S) is a probability, whence as p > 2, forany g € L, (S),

1/p 1 1/2 2 12
(/SIgI”du> > u(S)r=l (fslgl du) :

This enables us to deduce from (80) that

E/s | fu(X () = X ()* duu(s) = /S/Elfn(X(S)) — X(®)Pdp(s) ——— 0

n—oo,nel

Then, there is a measurable subset S” of S’ such that u (S’ \ S”) = 0 together with
a subsequence (E|f,(X(s)) — X (s)Iz)ne J, with J C I, converging to zero for every
s € S”. Now, we have for every s € S”, lim, ooncs Efu(X(s))> = EX(s)>.
As fr(X) = 'l.’”:l xnila,; (X), with the A,; pairwise disjoint, Ef,l(X(s))2 =

{ll xni(s)ZPX(Ani)' On the other hand, &, (s) = Iw (f)(s) = ,jll Xpi ()W (Api)
where the W (A,;) are independent centered Gaussian random variables with respec-
tive variances Px (Ani), B&, (s)% = Yo/, %0 (9)> Px (Ani). SOE £ (X (5))* = E&n(s)*
u-a.e. on S”. Finally,

EX(s)>= lim Ef,(X(s))>= lim E&,(s)> =E&(s)?, wp-ae.onS’,
n—oo,neJ n—oo,net

which completes the proof of i).

To check ii), by combining i) and Lemma 26, one see that for ¢ almost every s € S,
o2(s) = E&(s)? and £(s) is a mean zero Gaussian random variable. For every such
s, 0(s) = (EE()D)? < (E|&(s)|P)V/P since p > 2, whence o (s)? < E|&(s)|P.
Therefore,

[o7an= [ By au=elerf, <.
S S

since the Gaussian random element & in L, (S) has finite moments of any order. O

Proof of Theorem 23 Puting 2 + § = min(p, 3) and applying Theorem 21, we deduce

from (a) and (b) that lim, oo {245 (D7) Xnk, >y Yak) = 0, where the Y

are choosen as in the proof of Theorem 21, that is Y,y = pr(S) Ide(g) AWy,

where the W, are independent white noises with respective variances Py, . So it

remains to prove that §2+5( ka;] Yo, Y ) converges to zero, which is equivalent to
Z”z 1 Yok L Y in the space L, (S). This last convergence will be established by

n— oo

proving that

(i) Foreveryu € Ly (S, ., u; R), ( ,r(”:l Yk, u) converges in distribution to (Y, u).

(ii) The sequence (>}, Ynk)nZl is tight in L, (S).

To prove (i), we remark that ;": | Yuk, u) and (Y, u) are mean zero Gaussian
random variables, so the announced convergence in distribution will follow from
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convergence of their variances. To prove this last one, we note that

var (Yo, u) = E(Yyr, u)? = /sz u($)u()EYr () Yni (1) die @ (s, 1),

so using the independence of the Gaussian random variables (Y, u), | <k <r,, we
just have to prove that

./Sz u(s)u(r) Z EYuk () Ynk (1) At ® pu(s, 1) —— /SZ u($u®EBY (s)Y (1) dp @ p(s, 1).
k=1

By Proposition 25, we can replace the X,x’s by the Y,;’s in the above convergence
which then appears as an obvious consequence of Assumption (c) since # ® u belongs
to Ly (S?).

To prove (ii), according to Cremers and Kadelka [9, Th. 2], it suffices to prove that
with Y, := 3"/, Yok,

limsup/E|Yn|1’ du < /EIYI” du.
S S

n—oo

In fact, we will prove that

n—oo

lim [ E|Y,|? du = /E|Y|” du. (81)
S S

By Lemmas 26 and 27 i), for 1 almost every s € S, Y, (s) and Y (s) are centered
Gaussian random variables with respective variances anz (s) = ;”: 1 EX e (s)2 and
o2(s). This implies that

E[Y, ()P = 0n(s)P'mp, EY ()P =0(s)Pm
where m, = Qm)~1/? ffooo |z|? exp(—z2/2) dz. This way, (81) is reduced to
Assumption (d) and the proof is complete. O
5 Asymptotic Normality of Weighted Sums

Let (X, j € Z) be a set of B-valued random elements. Assume that E(X ;) = 0 and
E||X|I> < oo forany j € Z. Consider the weighted sums

o0
Zy =) aniXr, n €N, (82)
k=0

whenever they are correctly defined, where {(a, «, k > 0), n € N} C R. We assume
that foreachn e N, ), aﬁk < 00.
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Theorem 28 Assume that the Banach space B is p-smooth with some p > 2. Let
(Xk, k € Z) be i.i.d. B-valued random elements and Q := cov(X;). Assume that

(i) cn :=supysg lank| = 0 asn — oo;
(i) b7 ==Y y=pap — lasn — oo.

Then, for each n, the series Zk ank X converges a.s., and

)
Zanka i) Yo. (83)
= n—00

Proof Since the space B is of type 2, we get by (40) for any 1 <1 < m,

N\ 1/2
EllanXc %)

NE

m
Bl L] = &(
k_

~
1
LS

12
a%) " EIXP,

M=

= k(

»
1

1

Due to Condition (ii), this implies that the series Zk ank X satisfies Cauchy’s
criterion in the space L' (£2,.%, P; B), hence converges in L! and in probability. By
independence of its terms, it converges also a.s., according to Ito-Nisio theorem.

Without loss of generality we assume that p = 2 4+ § with some § € (0, 1). Let
m > 1. We apply Theorem 22 for X, = anx Xk, k =0, ..., m. In this case, the sum
31 Yux has the same distribution as A, Y¢, where A2, = >, aﬁk, Apm > 0.
Hence, by (66) in Theorem 21, with ¢ := ¢(B, §),

m
& (Z ank Xi, Anm YQ) < c[gsAng 1X111?
k=0

m
+(1+ALEIX?) D anE X117 Wlan! X1 > e}]
k=0

This gives the following bound uniform in m > 0:

m
& (Z ank X, Aum YQ> < chy [’ 1 X112

k=0
+ (1 +BZE X IPDE X117 ey 1X1 ]| > e}]- (84)

Now, we estimate
& (Amn Yo, Yo) = sup | [Ef (AunYo) —Ef(Yo)| : [ € CP'®), 11, < 1}.
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As the random elements A, Yo and Y are defined on the same probability space,
the writing E(f(Anm Yo) — f(YQ)) makes sense and we obtain

[Ef(AumY0) —Ef(Yo)| = |E(f(AmY0) — f(Y0))| < E|f(AmYo) — f(Y0)|
<Esuwp | /0] | 4mYo ~ Yol = 11 = AumlE| Yo
xe

)

because ||f||(p) < I implies sup, g H f’(x)H < 1. Therefore,

Ep(AumYo, Yg) < |1 — Ay |E HYQ|

, m=>0. (85)
Next, by the regularity property of ¢, see (b) p.15 and the independence of the X;’s,
m o o
&p (Z ank Xk, Zanka) <& (0, Z anka) .
k=0 k=0 k=m+1
By Taylor formula at the order 1 with integral remainder, see (68), it is easily seen that

if Z is a random element in Band EZ = 0, E | Z||* < oo, then £, (0, Z) < 3E || Z|*.
Therefore,

m ) K2 o)
2 2
§p<E ank Xk E anka> = E X1 E Ay (36)
k=0 k=0 k=m+1

Finally, by triangular inequality for the distance ¢, gathering the estimates (84),
(85) and (86) gives

3

o] 2 ]

K

¢p (§ ank X YQ> <—E IX112 > am +une) + 11— Apml| | Yo
k=0 k=m+1

where u, (¢) denotes the right-hand side of (84). Using Assumption (ii), letting m tend
to infinity in the above inequality gives ¢, (Y po a@nk Xk, Yo) < un(e), whence by (i)
and (ii),

o0
limsup ¢, (Zanka, YQ> < cE[IXy]?&’.

n—0o0 k=0

By arbitraryness of &, we conclude that lim, o £ (X peg @nk Xk, Yo) = 0. ]

Next, consider a B-valued linear process (X, k € Z) defined by
o0
Xe =) Vi€, (87)
o
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where innovations (¢, k € Z) are i.i.d. B-valued random variables such that Eeg = 0,
Qc = cov(ep), 0 < 02 := E||e||*> < oo and the linear filter (1}, j > 0) C L(B) isa
sequence of linear bounded operators such that ¥ = Idg and

Z v < oo (88)
=0

This condition ensures the a.s. convergence of the series in (87). In this case, we set
o0
=3 =0 Vi

Theorem 29 Let B be a p-smooth Banach space, p > 2. Let (X}) be a linear process
defined by (87), where (\ri) satisfies (88). Let (an,j, j € Z,n € N) C R satisfy
conditions (i)—(ii) of Theorem 28 and

(i) 1imy— o0 Y ez (@n i1 — ani)® = 0.

Then,
0
X z Y,
a m— %) W
l; nk 2k n—oo Q¥

Proof We have
o o) o oo oo o
Zy=) auXe =) an y Vi =Y Yy awek—j= Y V;Znj,
k=0 k=0 i=0 j=0 k=0 j=0
where Z,,j 1= Y ;2 anké€k— ;. Writing Z, = Z, + Z//, where
oo o0
Z), =Y Yi(Znj — Zn0). Zy =Y _ViZno
i=0 j=0
we consider each Z/, and Z;, separately. By Theorem 28,

o0
9
Zy =W (Zno) =W (];ankek) —= U (Yo,) ~ Yyrp.w.

P L
To complete the proof, we show that Z, —— 0. To this aim, let us assume for a
n—oo

moment that the following two properties hold true:

supE || Zy;|* < o0 (89)
n,Jj

and

lim || Zyj — Zno || = 0 in probability, for each j € N. 90)
n—oo
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Lete > 0 and J € N. Splitting Z/, in two sums indexed by j < J and j > J, leads
to

J
Pz, > e <P (Z i1 1Znj = Zuoll > ;) +P (Z 11 1Znj = Zuoll > ;) :

j=0 j>J

oD

Applying Markov inequality at order one gives

4
P il 120y = Zuoll > 5 | < = swpE[[Zy | Y i) -
n,j

j>J j>J

By (89) and (88), taking J € N large enough, one can make the right side of the
preceding bound as small as one wish. Then, the first probability on the right side
of (91) is small as one wish by (90) and taking n € N,y large enough. Therefore,

zZ, #) 0 holds true subject to the forthcoming proof of (89) and (90).

For (89), as the sequence (¢;);¢z is i.i.d., it is clear that for each n > 1, all the Z,;
have the same distribution, so it suffices to check that sup,,~; E | Zwoll> < co. As B
is of type 2, it easily follows from (39) and the equidistribution of the independent €
that

o
2 2 2 2
EllZwol” = K°E &l E Ay
k=0

Hence, (89) results from Assumption (ii).
To check (90), we show that in the decomposition

-1

oo
Znj = Zno = Z n,ivj€i + Z(an,i-i-j — an,i)é€i,
i=—j i=0

both sums converge to zero in quadratic mean. For the first one,

2

—1 —1 —1
2 2 2 2 2
E Z anitjei|| =<K Z E|anitjei| =K Z ay i ;Ele€oll
i=—j i=—j i=—j
2. 22
< K7jElleoll” ¢y,

which tends to zero as n goes to infinity by Assumption (i). For the second sum,

00 2 00
E L avel < K2E el o
(an,l+./ an,l)el = lleoll (an,l+./ an,t) .

i=0 i=0
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Let us denote by d the Euclidean distance in the sequence space £>(N). Then,

oo
jzz(anj+j —ani)* < ti((anj44+4)i20,(anJ44)izo>
i=0 1

~.

Il
=

2
<j? 0512 d<(a”’i+l+1)i20’ (a””'”)fio)

00
.2 2
=J E (an,k—i-l _an,k) ,
k=0

which tends to zero as n tends to infinity by Assumption (iii). Hence, (90) is established
and the proof complete. O

Examples of summation methods (a,, k € N,n € N) that satisfy conditions
(1)—(iii) include the following (see [10] for more examples):
Cesaro summation corresponding to

1, if0 <k <n,
ang=(n+1)7"2 .
0, otherwise.

Here, ¢, = (n + )71/, b2 = Land 322 o (an k41 — an i) = 1/(n + 1).
Abel summation corresponding to

an gk = /20 (1 — e Vrnye /2o >0,

where A,, — o0 as n — o0. In this case,

2\ 172
e = T (1 — e~V ~ <_) o,

)\n n—o0

2hn(1 — e~ 1/4n)2

oo
bgl — 2)\"1(1 _ e—l/)»n)z Ze—Zk/)nn — 1 — 6_2/)\"
k=0

2k (1 —e

1+e 1/ n— 00 L

o0 o0 2
Z(an,k-i-l — ap)? = 20 (1 — e /An)2 (e‘“‘*”“" - e"‘“")
k=0 k=0
2ha(1 —e VAnyd
= —— 0.

o 1 —e=2/M E n—00
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Borel summation corresponding to

etk
an = N2, T k>0, A, —> 00.

n—o0
To check (i), recalling that maxy>o P(N = k) where the random variable N has

the Poisson distribution with parameter A, is P(N = m) withm < A, <m + 1, we
get

—Apym
e A

cn = 2@ 4 —|"
m!

By Stirling formula, m! = /27 m™+1/2¢=" (1 + 8,,,) with lim,,_, o0 8,, = 0, whence

1174
il D ey (1 )Y e

~ 0
mm 2= (14 8y)  (wm)VAL+8,)  (em)A n—oo

Cp =T

To check (ii), we refer to [10] where it is proved by using the Bessel function of
the first kind, see (2.8) and (2.9) therein.
To check (iii), we note first that

Z(an K+l — dn i)’ = 22\/77)» (k')2 <k T ) f Sow At

where f (k) :== (A(k + 1)~! — 1)? and p, is the discrete measure

2k
b=y (2«/_“:—” ( k‘)z) b

k=0

In what follows, we simplify the notations by replacing A, (n — 00) by A (A — 00).
It is easily seen that the peak of the point masses of ) is at k = [A]. We will use
the following estimates for the left and right tails of i, obtained by comparison with
geometric sums.

2.2k 220 A2

. 0<j<h, 92

Z(k!)2<(j!)2)»2—j2 =J < ( )
A (4 1)?

. > 93

D e ey &9

k>j

Let 1/2 < v < 1. We split [ in [; + [+ [, with left, center and right intervals
L:=NN[0,L—A"],C:=NNQA—-A", A+A"), R:=NN[A+ AT, 00).
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Estimation of | 1 Jadu,. Let j be the unique integer such that j <A — A" < j + 1.
As fi(k) < 22 on L and accounting (92),

e—ZA)\'Zj )\.2
GhE -

/ frdus < 27052
L

We note that

Mo 22 B 1
)»2—]'2_)»2—()»—)»1’)2_1—(1—)\T71)2 2

By Stirling formula, ((j + DN? = 27(j + D2UTDHe20+D(1 4+ §,,1)2, so0 as
JA1> A=A, ((G+ DD? = 2w (h — AT)P2A e =2A4207=2(1 4 5. 1)%, whence
e—2h)2j 3 e—24)2j G+ 1)2 e2 —ZATAZA—ZAT (L — AT + 1)2 e2

GO (G DD S 2w G (1 4 802 2 11

where T (1) 1= Ae ™22 (1 — AT~ 122" =24 Next, using In(1 — 1) = —1 — 12 /2 + 0(t?)
ast — 0,

AZT—Z
Ti(A) = hexp ( — 2T+ @ -2 (- AT - Tt 0(A2’_2)))

— )\.Cxp ( _ )\’21’—1 +0()\’2‘L’—1))

since A3772 = o(A%""1). As 2t — 1 > 0,forany a > O and ¢ € (0, 1), A“T1(A) =
O (exp(—cA?*~1)), whence

f fi.dis. = 0 (exp(=er?™ ™)) = o(1).
L

. \2
Estimation of [ f3. du,.. Oneeasily check thatfork € C, f;.(k) < (#) ~ 22
As 1) (C) < pp(N) ~ 1, this gives

/ka dpy, = O (x2f*2) = o(1).

Estimation of [, f.dus. Fork = A4+ 17,0 < A(k+1)~! < 1 whence f; (k) < 1so

[ pdm <avm 3 are

In2:
k>A+AT (k‘)

Denoting by j the unique integer such that j < A 4+ A" < j + 1, (93) gives

Z 2 1/26-2 22k <)L1/2e—2xk2j (+1?
(kD2 =

in2 ; 2 _
Ry G G+D
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By increasingness of the function s — s/(s —a) on (a, 00), the last factor is estimated
as
(G +1)? Ot ADE 22 +ATHT ol
(G+D2=22 7 (A+A7)2 =22 247 42 2

By Stirling formula, ((j + 1)!)? > 27 (A 4 A7)PH2A He=2=22"=2( 5.1 1)2, 50

672)\)\‘2j )\.ZJ(J—I- 1)2 e2 eZ}»’)\Z}wI»ZAI()‘(_i_)\“E + ])2 62
N2 (i 7 =5 2t 7~ 5 2,
D) ((j+ DY T A+ AP QHADA+6841)? 2w

where T (1) := Ae?* (1 + A7 1H)"22=22" Since In(1 + 1) > 1 — t2/2 fort > 0,

>> — )\'exp (_)\21’—1 + }"31—2) .

As2t —1 > 0,foranya > Oand ¢ € (0, 1), 22T>() = O(exp(—cA?>*~1)), whence

272

Th(A) < Lexp <2xr — (21 4217 (Af—l —

/ fudpux =0 (exp(—c,\zf—l)) = o(1).
R

Gathering all estimates gives fN frduy =0 ()»2”2) = o(1), concluding the check
of (iii).
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