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Abstract

In this work, we consider the stochastic generalized Burgers—Huxley equation per-
turbed by space—time white noise and discuss the global solvability results. We show
the existence of a unique global mild solution to such equation using a fixed point
method and stopping time arguments. The existence of a local mild solution (up to
a stopping time) is proved via contraction mapping principle. Then, establishing a
uniform bound for the solution, we show the existence and uniqueness of global mild
solution to the stochastic generalized Burgers—Huxley equation. Finally, we discuss
the inviscid limit of the stochastic Burgers—Huxley equation to the stochastic Burgers
as well as Huxley equations.

Keywords Generalized Burgers—Huxley equation - Space—time white noise - Mild
solution
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1 Introduction

We consider the generalized Burgers—Huxley equation perturbed by a random forcing,
which is a space—time white noise (or Brownian sheet) as (see [27,31] for deterministic
model)
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where «, B, v, § are parameters such that « > 0 is the advection coefficient, § > 0,
6 > 1and y € (0, 1) are parameters. In the above equation, W(z, x), t > 0,x € Ris
a zero mean Gaussian process, whose covariance function is given by

E[W (1, )W (t, )] = A& AY), 15 =0, x,y €R.
On the other hand, one can consider a cylindrical Wiener process by setting

oW >
Wi, x = 0 Z Wi (¥) B (D), (1.2)

where {wy(-)} is an orthonormal basis of LZ(©) and {B;(-)} is a sequence of mutu-
ally independent real-valued Brownian motions in a fixed complete probability space
(2, Z, P) adapted to the filtration {.#,;},;>¢. Note that the series given in (1.2) does not
converge in L>(O), but it is convergent in any Hilbert space U such that the embedding
L%(®) C U is Hilbert=Schmidt (see Chapter 4, [10]). We rewrite Eq. (1.1) as

2
du(r) = ( 38”(;) au‘sm% + Bu()(1 — u® ()’ (1) — y)) dt +dW (),
(1.3)

where x € [0, 1], > 0, and W(-) is defined by (1.2). We supplement (1.3) with
Dirichlet boundary conditions

u(0,t) =u(l,t) =0, (1.4)
and the initial condition
u(x,0) = up(x), x € O. (1.5)

Equation (1.3) describes a prototype model for describing the interaction between
reaction mechanisms, convection effects and diffusion transports. In the deterministic
setting, the existence and uniqueness of a global weak as well as strong solution for
the forced generalized Burgers—Huxley equation are established in [27]. Our goal in
this work is to show that problem (1.3) with boundary and initial conditions (1.4) and
(1.5) has a unique global mild solution in C([0, T]; L?(0)), for § < p < oo.

Ford =1,a # 0and B8 # 0, Eq. (1.3) becomes

2
du(r) = ( T ou(t )w + pu()(1 — u(®)) (u(r) — )/)) dr +dW@),

9x?
(1.6)

which is known as the stochastic Burgers—Huxley equation (cf. [25]). The global
solvability results as well as asymptotic behavior of solutions of stochastic Burgers—
Huxley equation perturbed by multiplicative Gaussian noise are examined in [25].
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The log-Harnack inequality for the Markov semigroup associated with the stochastic
Burgers—Huxley equation and its applications have been discussed in [26]. For o = 0
and § = 1, Eq. (1.3) takes the form

2
du(t) = <v88u(t)

+ Bu@)(1 —u()) @) — y)) dt +dW (), (1.7)

x2

which is known as the stochastic Huxley equation and it describes nerve pulse propa-
gation in nerve fibers and wall motion in liquid crystals (cf. [35]).
For $ =0,6 = 1and o = 1, Eq. (1.3) can be reduced to

3%u(r) du(t)
0x

du(t) = (v 5 —u(t) ) dt +dW (), (1.8)
0x

which is the well-known stochastic viscous Burgers equation. In [8], Burgers studied
the deterministic model for modeling the turbulence phenomena (see [3,9] also). The
authors in [11] proved the existence and uniqueness of a global mild solution as
well as the existence of an invariant measure for the stochastic Burgers equation
perturbed by cylindrical Gaussian noise. The existence and uniqueness of the global
mild solution for the stochastic Burgers equation perturbed by a multiplicative white
noise are established in [12]. Interested readers are referred to see [5,15,16,20,24,36],
etc., for more details on mathematical analysis of stochastic Burgers equation. The
stochastic generalized Burgers equation

0%u(r)
9x2

ou(r)
0x

du(r) = (v au’ (1) ) dr +dW(r) (1.9)

with white noise has been considered in [17,22], etc. The stochastic generalized
Burgers equation perturbed by different kinds of noises has been considered in the
works [18,21,23,34], etc. Various mathematical problems regarding stochastic Burg-
ers equation are available in the literature, and interested readers are referred to
see [4,6,7,14,32,33], etc., and the references therein.

The rest of the paper is organized as follows. In the next section, we provide the
abstract formulation of the problem and provide the necessary function spaces needed
to obtain the global solvability results of Eq. (1.3). The existence and uniqueness of
a mild solution to the stochastic generalized Burgers—Huxley equation is established
in Sect. 3. We first show the existence of a local mild solution up to a stopping
time using fixed point arguments (contraction mapping principle, Theorem 3.2). A
uniform bound for the solution (for arbitrary deterministic time) is then obtained
(Lemma 3.3), and the global existence is established by showing that the stopping time
(up to which the local existence has been shown) is same as an arbitrary deterministic
time almost surely (Theorem 3.5). In the final section, we discuss the inviscid limit
of the stochastic Burgers—Huxley equation to the stochastic Burgers (Proposition 4.1)
and Huxley equations (Proposition 4.2).

@ Springer



1514 Journal of Theoretical Probability (2022) 35:1511-1536

2 Mathematical Formulation

In this section, we present the necessary function spaces needed to obtain the global
solvability results of Eq. (1.3). We provide the properties of linear and nonlinear
operators, and the definition of mild solution also.

2.1 Functional Setting

Let C3°(O) denote the space of all infinitely differentiable functions with compact
support in O. For p € [2, 00), the Lebesgue spaces are denoted by L”(O) and the
Sobolev spaces are denoted by WkP(©) and H¥(©) := WK2(O). The norm in L? (O)
is denoted by || - ||L», and for p = 2, the inner product in L2(0O) is denoted by (-, -). Let
H(l) (O) denote closure of C3°(O) in H!(O)-norm. As O is a bounded domain, using

Poincaré’s inequality, one can easily obtain that the norm <|| . ||i2 + [|0y - ||iz> i and
the seminorm || dy - || 2 are equivalent and |0y - ||; > defines a norm on H(l)((’)). We also
have the continuous embedding H(l)((’)) c L2(0) c H Y0), where H~1(O) is the
dual space of Hé (O). Remember that the embedding of H(l)(O) C L?(0) is compact.
The duality paring between Hé(@) and H™'(©) is denoted by (-, ). In one dimension,
we have the following continuous embedding: H(])(O) C L*°(0) c LP(0O), for all
p € [1,00). Remember that the embedding of H° (O) C L49(0O) is compact for

1 1
0>§—§,f0rq22.

2.2 Linear Operator

Let A denote the self-adjoint and unbounded operator on L2(©) defined by!

9%u

Au = ———,
9x2

with domain D(A) = H>(O) NH(O) = {u € H*(O) : u(0) = u(l) = 0}. The
eigenvalues and the corresponding eigenfunctions of A are given by

2.2 _ 2% _
M = k" and wi(x) = sin(krx), k=1,2....
T

Since O is a bounded domain, A~ exists and is a compact operator on L2 (). More-
over, one can define the fractional powers of A and

o0 o0
/2112 2 2 2 2 2
IAYullg, = " ajla w)lP = a0 Y 1@, wp)? = allullf, = 7 |ull,,
j=1 j=1

! One has to write Au = —u”.
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which is the Poincaré inequality. An integration by parts yields

(Au, v) = (0yu, dyv) =: a(u,v), forall v e H(l)((’)),

so that A : H}(O) — H™!(0). Let us define the operator A, = —% with D(A ) =

W(l)”’(O) NW2P(©), for 1 < p < oo and D(A}) = {u € WH1(O) : u € L1(O)},
for p = 1. From Proposition 4.3, Chapter 1 [1], [29], we know that for 1 < p < oo,
A, generates an analytic semigroup of contractions in L” (O).

2.3 Nonlinear Operators
Let us now define b : H}(O) x H}(0) x H}(0) — Ras

b(u, v, w) = / (u(x ))SLw(X)dx

Using an integration by parts and boundary conditions, it can be easily seen that

1
b(u,u,u) = (u‘saxu, u) = /(; (u(x))a%u(x)dx
1 '3 542
8—|-_2 ax (M(.X)) dx = 0, (21)
and
50 ( ) 1 /1 3(u(x))’t!
b(u,u,v) = / (u(x)) v(x)dx = 51 ox v(x)dx
1
_ 5 _
= 8+1/ (u(x))® ——u(x)dx 8+1b(uyv,u), (2.2)

forall u,v € H(l)((’)). In general, forall p > 2 and u € H(l)((’)), we consider

1 Ly
b, u, lulP~2u) = @ deu, |ulP?u) = m —(u(x))”zlu(x)l”_zdx

_ Hz/ (u(x ))5+2 a0 2dx

( )iy
= Hzf (@ ())* P2 u () [P~ () ——
- 1;_'_2(14 Ay, |ulPu )——f;?b(u u, u|P"%u), (2.3)
which implies
bu, u, [ul?~*u) = u®dyu, lu|’u) =0, (2.4)
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forall p >2andu € H(l)(O).
For w € L*(0), we can define an operator B(-, -) : H{(O) x H}(0) — L*(0) by

5 5
(B(u,v), w) =b(u, v,w) < [lullf=lloxvi2llwl < lloelg 1l llwll 2.

so that |B(u, v)|lj2 < ||u||f_[1||v||H(|). We denote B(#) = B(u, u), so that one can
0

5+1
H) ©
Let us define ¢(u) = u(1 — u®) (b — y). It should be noted that

easily obtain || B(u) |2 < |lul|

(c),u) = w(d —u®)@® —y),u) = (1 + )™ —yu —u® u)
= L+ ) w) = ylul2s = el 250, 2.5)

for all u € L2G+D(©).

3 Mild Solution

In this section, we show the existence and uniqueness of global mild solution to
Eq. (1.3) with Dirichlet boundary conditions. First, we establish the existence of a local
mild solution (up to a stopping time) using the contraction mapping principle. Then, we
show a uniform bound for the mild solution and deduce the existence and uniqueness
of global mild solution to the stochastic generalized Burgers—Huxley equation.

3.1 Linear Problem

We know that the solution to the linear problem (cf. [10]):

du(t) = —vAu(@)dt +dW (), t € (0, T), 3.
u(0) =0, ’
is unique and is given by the stochastic convolution
t
Wal(t) = / R(t — s)dW(s), (3.2)
0

where R(t) = e ""4. Note that W, is a Gaussian process and it is mean square
continuous with values in LZ(O) and W4 has a modification, which has P-a.s., a-
Holder continuous paths with respect to (¢, x) € [0, T'] x [0, 1], for any « € [0, 1/4)
(see Theorem 5.22 and Example 5.24, [10] for more details).
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3.2 Local Existence and Uniqueness

With the notations given in Sect. 2, one can write down the abstract formulation of the
problem (1.3)—(1.5) as

{ du(t) = [-vAu(t) — aBu(t)) + Beu()ldr +dW (1), t € (0, T), .

u(0) = uop.

Let us now provide the definition of mild solution to Eq. (3.3). Let the initial data ug
be .Fy-measurable and belong to L?(0), for § < p < oo, P-a.s.

Definition 3.1 An L”(O)-valued and .%;-adapted stochastic process u : [0, 00) x
[0, 1] x 2 — R with P-a.s. continuous trajectories on ¢t € [0, T'], is a mild solution to
Eq. (3.3),if forany T > 0, u(¢) := u(t, -, -) satisfies the following integral equation:

t t
u(t) = R(Hup — oz/ R(t — s)B(u(s))ds + ,3/ R — s)c(u(s))ds
0 0
t
+/ R(t — 5)dW (s), 3.4)
0

P-a.s., foreach ¢t € [0, T].

Let us set
v(t) ;= u(t) — Wy(t), t > 0. 3.5)
Then, u(-) is a solution to (3.3) if and only if v(-) is a solution of

dv(t) _ 541
G = VAV = 5o A0 + Wa@)' y
+ B + Wa®))(1 = W(r) + Wa))®)((w(6) + Wa(0)? —y), 1 € (0, r),(3-6)

v(0) = uyg.

We rewrite (3.6) as

o t
v(t) = R(up — ~— / R(t = $)3: ((0(s) + Wa(s)*ds
s+1Jo
t
+ ﬁ/o R(t = $)(w(s) + Wa()(1 — ((s) + Was)*) () + Wa()* = y)ds;  (3.7)
then, if v(-) satisfies (3.7), we say that it is a mild solution of (3.6). By using fixed
point arguments, we show the existence of mild solution to Eq. (3.6) in the space

C([0, T*]; LP(0O)), for p > 8, P-a.s., and for some 7* > 0 (random time). Let us set

Z(m, T*) = {v € C(0, T*]; LP(O)) : lv®)|lLr0) < m, forall ¢ € [0, T*]}.
(3.8)
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Let us now show that (3.7) has a meaning as an equality in L”(O) and establish the
existence of a mild solution to the problem (3.6).

Theorem 3.2 (Local existence) For ||ug||Lr < m, there exists a stopping time T™* such
that (3.7) has a unique solution in ¥.(m, T*).

Proof Let us take any v € X (m, T*) and define z = Gv by

t
2(t) = R(t)up — 5(%/0 R(t — 53, (0(s) + Wa(s)>F)ds

t
+ B /0 R(t — $)(0(s) + Wa(s) (1 — (v(s) + Was)®)(v(s) + Wa(5))° — y)ds.

(3.9)
Stepl. G : X(m, T*) = X(m, T*). From (3.9), we have
20l < IROu I + 55 f | Rt =90, (0) + Wa)™D] | as
t
+8 /O | R = )W) + Wa)(A = (v(s) + Wa(s)")
x ((V(s) + Wa(s)’ =), ds. (3.10)

Remember that ¢4 is a contraction semigroup on L? (). In order to estimate the

terms on the right-hand side of the inequality (3.10), the following Sobolev embedding
is needed:

1
lullpar < Cllullyka,,» whenever k < —, (3.11)
q2

where qil = qiz — k (Theorem 6, page 284, [13]). We also need a smoothing property
of the heat semigroup, that is, for any r; < r; in R, and 8 > 1, R(¢) maps wr.? 0)
into W29 (0), for all ¢ > 0. Furthermore, the following estimate holds (see Lemma

3, Part I, [30], [11])
IR(@)ullyro < cu + D) [luellyri6, (3.12)
for all u € W1-9(©), where C = C(r1, r2, 6) is a positive constant. Applying (3.11)

with g1 = p, ¢ = 6+L1 and k = %, and then using the smoothing property (3.12)

withri=—-1,rn =2 and 6 = 8+1 , we evaluate

IR(t — )3 ((v(s) + Was)* Do

< CIIRG = )3 (((s) + Wa6)™ DI_s o
< C(L+ (1 =) )3 () + Wa)* ™I, »

w s
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= CO+ =) TIE) + Wa) DI )
= C(1+ (=) T)lu(s) + Wa)IFH (3.13)

Using g1 = p,¢» = § and k = gP7 in 3.11),and r1 =0, 1> = S and 0 = 5F7, we
obtain

IR(t — 5)(v(s) + Wa(s) Tl
< CIIR(t — 5)(v(s) + WA<s>)5+1||

p
TS+

< CU+ (=9I + WA<s>>"+‘ (s

\ﬂ%

< CU+ (=) u(s) + Wa) 55" (3.14)

Taking g1 = p, ¢» = 2 and k = 2 in 3.11),and r; = 0, r2 = 2 and 0 = 5,

we estimate the term || R(t — s)(u(s))z‘”l lLr as

IR(t — 5)(v(s) + Wa(s)® Lo
< CIIR(t — 5)(v(s) + WA<s>)25+1|| 2

P 28+1

< C+ =9 D + WA(s»z“‘ (S
< C(1+ (=) P)ues) + Wa) |2 (3.15)
Combining (3.13)—(3.15) and substituting it in (3.10), we find

lz(®) |l Lr

= ”““'”*m/ (14t — ) 5 )[u(s) + Wa) [P ds
t
By f 10(s) + Wa(s)llLrds
+Cﬁ(1+V)f (1+ (t — ) %) [[v(s) + Wa(s)]25ds

- Cﬂ/ (14— ) 7)) + Wals) P ds

s+l
Ca 2p  p=s
<lluollLr + —— sup lo)lir + sup |[Wa(s)|Le t+ t
d+1 0,11 s€[0,1] p—

s€[0,1] s€[0,t]

—{—ﬂyt( sup [[v(s)|lLr + sup ”WA(S)“LP>

541
2p 2w
+CB(+y) | sup [[v()llLr + sup [[Wa(s)liLr <t+ P tz")
sel0,1] sel0,1] 2p—34
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s€[0,1] s€[0,1] pP—

26+1
p=3
+CB ( sup [lv(s)liLr 4 sup ||WA(S)||LP> <t+ P i )

Ca 2p  pb 5+1
< lluollzr + ST 1 <t+ p_at 2 ) (m—+up)” + Bytim+ pup)

2 2p—§
+CB(+vy) (111—}—;41,)(erl <t+ Zpliét 2p )

n—§
+CB (m+ p) ! <z+ plistll’ ) (3.16)

provided p > §, where

mp = sup [[Wa()lLr.
1€[0,T]

Thus, ||z(t)||Lr < m, forallt € [0, T*], provided

Ca 2p 0 5+1
||M0||Lp+m<T*+mT* o )(m-f'ﬂp) +ByT*(m+ p)

2 2p-8
+CBU+y) (m+ 1) (T* + 2p—liaT* 5 )

=
+CB (m+ )T (T* + ﬁr*”») <m. 3.17)

Since |lug||Lr < m, then there exists a T* > 0 satisfying (3.17).
Step 2. G is a contraction on X.(m, T*). Let us now consider vy, v, € X(m, T*) and
set z; = Gu;, fori = 1,2 and z = 71 — z2. Then, z(¢) satisfies

t
= Saﬁ/ R(t — )5 ((v1(5) + Wa()* T = (va(s) + Wa(s))°T)ds
0

t
+ /3/0 R(t — S){ [@1(s) + Wa() (1 = (Wi (s) + Wa())*) (i (s) + Wa(s)’ — )]

— [@206) + WaG) (1 = @205) + Wa6))(02() + Wa(s)? = )] Jds. (3.18)

Using Taylor’s formula, for some 0 < 67 < 1, we have

W1+ W) — (2 + W) T = (8 4+ D) (v1 — v2) (@1 (v + Wa) + (1 — 1) (v2 + Wa))°.
(3.19)

A calculation similar to (3.13) yields

IR(t — $)dx ((v1(s) + Wa()* T — (v2(s) + Wa(s)>HIL
=@+ DRt — 5)0y
[((v1 = L) ())(O1 (W1 (5) + Wa(5)) + (1 — ) (W2(s) + Wa)ND] o

@ Springer



Journal of Theoretical Probability (2022) 35:1511-1536 1521

< CE+ DA+ —5) )1 — v 1611 (s)
+ Wa(s) + (1 = 61) (v2(s) + Was)I3,

< CE+ DA+ =) T — v (o)
Hlva) e + 21Wa(s) L)

—p=3
<C@+Dim+ Mp)8(1 + @ —s) 2 )1 —v2)(s)|lLe- (3.20)
Similar to (3.19), for some 0 < 6,03 < 1, we get

[(v1 + W) (I = (w1 + W) (01 + Wa)® — )]
— [2 4+ Wa) (1 = (v2 + Wa)) ((v2 + Wa)® — )]

=~y — ) + @+ DL+ )01 — v)[02(v + Wa) + (1 = 62)(v2 + Wa)I°
— 28+ D)(v1 — v)[63(v1 + Wa) + (1 — 03)(v2 + Wa) .

Estimates similar to (3.14) and (3.15) yield

[Rt =) {[@16) + Wat) = @16) + Wae))) (@16) + Wa))® = )]
— [@206) + Wa@) (1 = @206) + Wa6) ) (@20) + Wa(s)? = )] |
= 7l = )@l

5
+CE+ DA +y) (1 +(—s) 2") (w1 —v2)(s)llLr

..

x (1) lLr + 1v2)llLe + 21 Wa©)llLe)®
+CQ@5+1) (1 +( —s>‘%) Iy = v2) ()
< (1 Le + 12 lLe + 2Wa(s)lp)?
< 7l —v)®llze +CE+ D(1 +y) (1 + (- s)‘z%> I = v)®lLe (m+ pp)°
+CQ28+1) (1 +(t — s)_%)
1 = vl (m + 1p) > . (3.21)

Combining (3.20)—(3.21) and substituting it in (3.18), we obtain

G (v —v2)®)ILe
t —p—4 t
< Ca(m+ pp) A I+ - S)éip)ll(vl —v2)($)llLrds + ,3)//(; l(vi —v2)(s)llLrds

! =)
+Cﬂ(1+y)(1+5)(M+Mp)8fO (I+ (= 5)?)ll(vr —v2)(s)[ILrds

t -5
+CBQS + D(m + pp)? fo (14 (2 =) 7)lI(vy = v2)(s) I Lrds.
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Therefore, we deduce that

2p =
sup [|G(v1 — v2)()l|zr < {Ca (z + ”(Sr » ) (m + 12,)" + Byt(m + wp)
s€[0,1]

s 2p s
+CBA+y)A+8) (m+up) |+ zp_at 2

p—&
+CBQRS+ 1) (m+pmp)” (r+ b rlp)} sup (w1 — v2)(®)lr. (3.22)
p—29 s€[0.1]

provided p > §. We can choose a T* > 0 such that

* 2p Bt s *
CalT +mT 2 ) (m+wp) + By T (m + 1p)

S % 2p *21)—8
+CRA+ )L +8) (m+pu,) (T t T

-3
+CBQRE+1) (m+Mp)28 <T* +ﬁT*pﬂ> <1, (3.23)

and (3.17) holds true for all # € [0, T*]. Hence, G is a strict contraction on X (m, T™)
and it proves the existence of a mild solution to (3.6). Uniqueness follows from the
representation (3.7). O

3.3 Global Existence and Uniqueness

Let us now show the global existence of generalized Burgers—Huxley equation (3.3).
The result obtained in Theorem 3.2 is valid [P-a.s., and up to a random time as (., and
T* depend on w € 2. In this subsection, we show that 7* = T, P-a.s. (arbitrary time
T), and hence, one can remove the dependence on w for the time interval on which
the solution exists. In order to prove our main result, we need the following lemma.

Lemma3.3 Ifv € C([0, T]; LP(O)), p > 6, satisfies (3.7), then

i, + 2= )f|||v<s>| axv<s>||des+—/||v<s>||iijf;d

» 26T )( 8p )za (p— Da?272 2,2
< ||uo||”+(25+p TENSY, ; +B(1+7)%2

+ B +9)2° + By +ﬁ(25+1>25225(2‘s Du2 4 (26 + 1)220-!

(p — De?20-D\ 1 ras— 1)\ 01 L1 75
+ 2 5( B85 ) Heo

2 —
S KO <p—2>n—2+ﬂ(1+y)2‘S (p—l)p e
pv p p P
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)

BA+2IT (p—1\P7" Leyny |, B@S+12P7IT (p—1\P71 o5y
+ b+ » b

14 p p
(3.24)

forallt € [0, T], where jtoo = sup |[|Wa(t)]lLoe.
t€l0,T]

Proof Let ug be a sequence in C*°(0) such that
up — up, in LP(0),

and let W"(¢r) = Z?:l w;B;(t) be the finite-dimensional approximation of W ()
defined in (1.2). Then, using It0’s isometry, it can be easily seen that

E[IWa) - Wio)P]

el 3 f A0, (x)dB; 1)

Jj=n+1

I
=
—
vo\w
o
b
<
N
N
S
=
=
=~
o
©
1

Jj=n+1

2 x 1— ef2v)»jt
=7 (2—)

Sy VAj

1 & 1 1 1
< — — = — — — 0 as n — oo,
Ly iy
j=n+1 " Jj=n+1

for every (t,x) € [0, T] x [0, 1]. Thus, along a subsequence, we obtain Wﬁ (t) —>
W4 (1), P-as., for all for every (¢, x) € [0, T] x [0, 1]. Since W} (-) and W, (-) are
unique solutions, the whole sequence converges. Furthermore, for every ¢ > 0, there
existad =cand N € N, so thatn > N and E [|W4 (1) — W} (1)|*] < 8 implies

) = 1 = 1
E[IWat) - Wit 0P| = - ; —2571—22—25

forall (¢, x) € [0, T] x [0, 1] and n € N. The above estimate implies the uniform con-
vergence [P-a.s. along a further subsequence (cf. Theorem 1, [19]), and the continuity
of the processes W (-) and W4 () (uniqueness also) implies that

t
Wi(t) = / R(t — s)dW"(s) — Wa(2),
0
in C([0, T'] x [0, 1]), IP-a.s. Note that

tn,p = sup [[Wx®llLr < sup [Wa@®llLr =: p, (3.25)
T]

te[0,T] tel0,
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for all p € [2, o<].
Let v"(-) be a solution of

t
V(1) = R(t)uf) — 80‘?/0 R(t — )0 (0" (5) + WL (5))°)ds

t
+A8 fo R(t — )" (s) + W) (1 — " (s) + W) (" (s) + Wi(s)? — y)ds.
(3.26)

Making use of Theorem 3.2, we know that v" exists on an interval [0, T,] such that
T, — T*, P-a.s., and that v" converges to v in C([0, T*]; L?(0)), P-a.s., for § <
p < oo. This result can be obtained in the following way: Let us consider

0" (#) = v(@®liLr
< IR(®)(ugy — uo) L
@

+5+1

t
/(; IR(t = $)3x (0" () + W} (5))° = (v(s) + Wa(s))*) ILrds

+8 /Ot IR(t = )W (s) + W) (A = " () + WE D) (" () + W ()° — y)

— (0" () + W) (1 = " (5) + WEE)) (" (5) + WA ())® — p)]llLeds
< llufy — ugllLr + Ca(m + pp)° Otu =9 T 6) — v

+IWE(S) = Wa(®)llLr)ds

+CPy /0 ("5 — vl + IWh (s) = Wa()llr)ds

+CAG+ DL+ y)(m + pp)°
x /Ot(l (=) T s) — 0L + W) = Was)lLo)ds

+CBQE+ 1)(m + p)?
x fota (=) T s) — v@lLe + IWES) — WGl Lo)ds,

where we have used calculations similar to (3.20)—(3.21). Thus, from the above esti-
mate it is immediate that

0" (2) = v(®)llLr
< {Iluﬁ —ugllLr + Cat, B, v, 8,m, pup, T) sup [[Wy(s) — WA(S)”LP}
s€[0,T*]

+C(a, B,v,8,m, up)

t . _ _
X / A4+ @—=y) 21’8 +(t — s)Tftj +(t - S)Tf)”v”(s) —v(s)||Lrds, (3.27)
0
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forall ¢+ € [0, T"]. An application of Gronwall’s inequality in (3.27) yields

sup [[v" (1) —v(@®)|Lr
1€[0,7"]

<C(a,B,y.8,m, up, T*){Ilu’é —uolle + sup [[W3(s) — WA(S)IILP},
s€[0,T]

(3.28)

for p > §. On passing n — 00, and using the continuity of supremum and of the
processes v" (+) and v(-), we obtain the required result.

Note that the existence of a mild solution ensures the existence of a weak solution
(cf. [2]) also and hence the mapping ¢ > ||v"(¢)]| iZ is absolutely continuous (for each
fixed w € Q). Thus, we know v" (-) satisfies the following equation:

A L 50
wzvm—a(v"+wz) a(v”+WX)
+ A"+ WH — (" + WX)‘S)((U" + Wz)'S -v), (3.29)

P-a.s. in H~!(©). Multiplying (3.29) by [v"|P~2v", integrating over O and then using
Taylor’s formula, we find

1d
;*Ilv O}, +v(p = DI ©1T T o JOIR

= —a((V" (1) + W) (" (1) + WE(1)?, [v" ()P~ 20" (1))
+ B+ )" (1) + Wh )T, [ ()P0 (1))
— By (1) + Wi@), " ()P 720" (1)) — B" (1) + WE)P T, v (1) [P~ 20" (1))

= Hl(a V() + W) ()P0 (1))

+ BU 4+ )" (1) + WhO) T, [ (0)]P 0" (1))
— BY IV O, — By (WE (D), " (0P 720" (1) — BIv" ()1 717,
— BQ28 + D)W1) (B20" (1) + (1 — G)WE(1)®, [v" (1) [P~ 20" (1)), (3.30)

for 0 < 6, < 1. It can be easily deduced from (3.30) that

;—II V"0, +v(p = DI O] T T o "OIIE2 + By IV O, + BlIV" (t)lliijf;

- _m@x(v”(x) + WA " @012 (1)

+ B+ )" @) + Wi " ()P 720" (1) = By (WA (@), 0" ()P 0" (1))
4
— B8 + WL O™ (1) + (1 = ) WA (0)?, " ()72 (1) = Y Jj,
j=1

(3.31)

@ Springer



1526 Journal of Theoretical Probability (2022) 35:1511-1536

where J;’s, j =1, ..., 4 represents the terms appearing in the right-hand side of
the equality (3.31). An integration by parts, Taylor’s formula and (2.4) yield

Si(ax(v" WLy p=2ym)

- ‘a+_1(p = D"+ WD P2 a,0")

= ——(p — DM P2 8,0

S+
- a+_1(” — 1)+ D(B1v" + (1 — ) WHP W2, [u" P29, 0™)
= —a(p — D(O" + (1 —0)WHIWI, [v"[P~25,0"), (3.32)

for 0 < 81 < 1. The term on the right-hand side of the equality (3.32) can be estimated
using Holder’s, interpolation and Young’s inequalities as

alp — 1)|(W;§<61v”+<1 — W P29 0|

<a(p—DIW"'T WA(91v + (1= 0DWDH 21" "2 g0t Il 2

<V 3 (_)2a2 np%wng n 1 QW"‘SZ
= I 15 0xw ”LZ*T”'” | RO + (1= 0DW° 7,
v (p — 22251 ) p28-2 2642
< 5l 2 lle+?(HWXHWHWHL,,% A LA Tl A 2)
v 17 (P_ 1)2 225 1 5— I)(p+25) P
< 5|||v”| 1T, + ?HWAHLM [ (M N [ [
(1!7—1)2&22‘s ! 2842y P2
+ S IWRIE I I
) _
|||v | 3 v ” +é”v ”[J+25 " (p— 1)20(22(5*1) 1 46— 1) 5—1
e Lp+20 2v s\ Bs
W13 0™ 1,
(p — 2?2872 (p— D222t (p—2 511
+ i, + o . ||WA IPeTy. (3.33)

We estimate J,> using Holder’s, interpolation and Young’s inequalities as

2] < BA+ )22 (" PH + (W PH, et
]
< BA+ )2 1T, + BA+ 2 IWRITE " 1]

Lr— 1
8 2ep 8 5+1 -1
< BU+ 20" 2 IV + B+ 2 IWEIEE "I
B 28
< JIVIES + B+ PP 2RI, + BA+ )2 "I
14+9)20 (p—1\"""
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Similarly, we estimate J3 and J4 as

|31 < By W3l V" IIL,, 1= ,3V||WA||L°°||U Ifs

1
< gylen1n, + 2 (2= e 3.35
< Byllv ||Lp+ D D IWill{oes (3.35)

|Jal < B28 4+ D22 7L (W [v™)? 4 |Wh 2P HL P
_ 28 —1
< BQS+ 12| WhllLe 10" 115

+ B8+ D22 WA 7

25—1 (26— l)(25+p) P
< B8+ D2P WLl | s V"I
+ B8 + 122 w2
B n28 _ )
< JIVIES + B8+ P22 WA " 1 (3.36)
B 28 + 1)228-1 -1
+ B(28 4 1)2% 1||v”||£p+’3 ( p) (p . ||WA||L(2“+”.

Combining (3.33)—(3.36) and substituting it in (3.31) yield

V( 1)

1d n 14 n
;Ellv Oy + ——=—lllv ol 3 V' Oll72 + By IV OIY,)

B 284p
+ - ” vn (t) ||L25+p

D222
{—(p 1?}“ + B+ )22 + B+ )2’ + By

+ (28 4 1)2022020 1>||WA(r>|| + (28 4 1)2%7!

(p— D220 DN (46— DN s 1y e
+< 2v E( BS ) ”WA(f)”LOO}”U ®»

1\ 298—1 o\ 2 s _ 1\ p-!
+{(p a2 <p 2) * By (ppl) }||WA(t)||p(8+l)

pv P P

B(l+1)2% (p—1\P~ 51

= . ||WA<r>||L(+)
B8+ 1221 (p—1\P7! 2541
+ . P W (1) | 2D

< Broroy?r 25 8p 5 [(p—Da?2?
gIIU O 254y + <23+p) <(28+P).3> { v

+ B+ )22 + B(1 + )28
+ By + B(28 + P22 =D w3 + B(28 + 1)2%7!
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254p

S
(p— 120D\ 1 746 -1\t 72
+( - 5( % ) ||WA<t>||Loo}

2281 N B 1\ /!
+<(p a2 <p 2) T, By (pp1> }”WA(t)”p(Ml)

pv p P
B +1)28 (p—1\""
= g Wi @ IPeD
25+ 12271 (p—1\7!
n B( +p) <p - ) ”Wz(t)||p(25+l)' (337)

Integrating the above inequality from O to ¢, we find

vp(p—1) (' p=2 !
IIU"(I)Ilfp-FT/ [v" (s)] 2 3xU"(S)||izdS+PﬁV A " ()] pds
pB [ 254
+ ?A ||Un(s)||L25+l;ds

P
268t 8p % ((p— D202
< lluoll?, + ( ) ( ) { - + (1 +y)?2%

264+p)\Q25+p)p
+ B(1 + )28
+ By + B8 + D222 =D qup Wi (s)IIFA + (28 + 122!

s€[0,t]
28+p

s 26
(p— D20~V 1 746 — 1)\
L (P D270 1 sup || W2 ()17
2v ) Bé s€l0.1]

N e <p 2)22 Bl +7)2) (p—l)”‘
pv p p p

X sup [|[Wi(s) P8

s€[0,7]

Bl +9)2% (p—1\""! S+1
+ sup [[W2(s)IPSTD

P P s€[0,7]

B28+ 122t (p— 1\ 2541

+ sup W) P, (3.38)
)4 )4 s€[0,1]

for all r € [0, T'], and hence, the estimate (3.24) follows by taking n — o0 in (3.38)
and applying the dominated convergence theorem. O

Remark 3.4 For § = 1 case, the term containing § — 1 will not appear in the estimate
(3.24).

The following theorem can be immediately deduced from Theorem 3.2 and
Lemma 3.3.
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Theorem 3.5 Let the Fy-measurable initial data uy be given and ug € LP(O),
P-a.s. Then, there exists a unique mild solution of Eq. (3.6), which belongs to
C([0, T]; LP(O)), P-a.s., for p > §.

Proof The existence of a local mild solution up to a stopping time has been established
in Theorem 3.2, and uniform bounds for the L”-norm in [0, 7'] have been obtained in
Lemma 3.3. From Lemma 3.3, we have

E[ sup ||v<r>||{p}
tel0,7T]

25 ST 8 %
P
<E|luoll?, | + < )
[” O”L"] (26+p) 28+ p)B

{((p — D202
(= Dem2
v

+ B+ )% 4+ B0+ )28
25+p

25
+ By + B8+ 1)225—1> + B8+ P22 DR [, 2]

)
(p — Da22@=D\" 1 7405 — 1)\ »
* ( 2v 5 ( B3 ) E [”“00] }

y298—1 A\ o 5 a1l
+T{(” Da22 (p 2>pz+ﬂ(1+y>2 <p 1) }E[ué’é“l)]

pv p p p
1+)2°T (p—1\"~! 25+ 122717 (p—1\P7!
L A0ty (p ) LPOHD 4 B( ) <p ) E[Mgé25+l)]
p p p p

=: Mr. (3.39)

Let us now define a sequence of stopping times by
Ty = Anf {¢ : |Jv(®)||Lr > m}, (3.40)

t>0

for m € N. Note that 7,, < 1}, whenever m < k. Thus, t,, is an increasing sequence

and let us define 75, := lim 7,,. We need to show that 1o = T, P-a.s. Or in other
m—00

words, one has to show that P{w € Q : t1o(w) < T} = 0.

From Theorem 3.2, we know that a mild solution to Eq. (3.6) exists up to the
stopping time T A 1. Let us consider the sets A = {w € Q : 1(w) < T} and
B={weQ:1,(w) <T}. Then, w € A implies 7, < Tooc < T, and hence, w € B,
so that A € B. From the stopping time definition given in (3.40), we have
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PlweQ:tow) <T} <PlweQ:1,(w) <T} =< IP’{ sup |[lv@®)|lLr < m}

t€l0,7T]
1 M
<—E| sup v, | = T 50 as m— oo,
mP 1 eo,1) mPp
(3.41)
and hence, P{w € Q : 1oo(w) < T} = 0. Thus, we have 7o = T, P-a.s. O

4 The Inviscid Limit

In this section, we take § = 1 and discuss the inviscid limit of Eq. (3.3) as 8 — 0. Let
ug(-) be the unique mild solution of Eq. (3.3). Equivalently, vg = ug — W4 is a mild
solution of Eq. (3.6) with § = 1. One can easily show that vg(-) satisfies:

T T
sup [lug(®)lIf2 +v fo ||axvﬁ(r)||izdr+§ /O log (DIl dt

0<t<T

< C(a, B, y. v, T){l + lluoll?, + Mio} =: Ly, P-as. 4.1)

We consider the following stochastic Burgers equation:

{ du(t) = [-vAu(t) — aBu®)]dt +dW(r), t € (0, T), )

u(0) = ug € L>(0).
The existence and uniqueness of mild solution
13

t
u(t) = ugy — oz/ R(t — s)B(u(s))ds —i—/ Rt — s)dW(s),
0 0

of the above equation can be established in a similar way as in Sect. 3 (see [11] also).
Equivalently, v = u — W, is the unique mild solution of the equation

QWO L Av) — aB@) + Wa)]. € 0. T
7 =[—vAv(t) —aB(v(t) + Wa(t))], t € (0,T), @3)

u(0) = uy € L*(0).

The existence of amild solution to Eq. (4.3) ensures the existence of weak solution also.
For uy € L2(0), P-a.s., the unique mild solution of Eq. (4.3) satisfies the following
energy inequality:

4

T 2 27,2
a“Tu 20T pu5o
sup ||v<t>||§z+v/ laxv@F2dr < (lluglf> + == ) e~ v = K7, P-as.,
0<t<T 0 2v
4.4)
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where o is defined in (3.25). Also, u(-) has the regularity u € C([0, T']; L2(0)),
P-a.s. Making use of Gagliardo—Nirenberg’s inequality (Theorem 1, [28]), we also
have

T T P 3p
/ lo@))Fydr < c/ oo @I, ()] 5 dr
0 0
8 p 371; T 5 %
=CT3 sup vl (/ ||3xv(t)|Idet>
t€[0,T] 0
8—p
<CT % K7 < o0,

forl < p <8.

Proposition 4.1 Letug(-) be the unique mild solution of the stochastic Burgers—Huxley
equation (see (3.3) with § = 1), for ug € L%2(0), P-a.s. As B — 0, the mild solution
ug () of Eq. (3.3) tends to the mild solution of the stochastic Burgers equation (4.2),
that is,

ug — u in C([0, T]; L*(0)) NL*(0, T; C(0)), P-a.s., as f— 0.

Proof Let us define wg = ug —u = (ug — W) — (u — Wy) = vg — v, then wg
satisfies:

d t
w(ft( ) = [—vAwg (1) + a[Bvg(t) + Wa (1)) — B(v(t) + WA (@) + Be(vg(t) + Wa(0))], (4.5)
wg(0) =0,

inH™'(O) fora.e. r € [0, T]. Taking the inner product with wg (+) to the first equation
in (4.5) and then applying integration by parts, we find

1d
2dt
= —a[b(vg(t) + Wa (D), vg (1) + Wa (), wg(®)) — b(u(t) + WA (1), () + WA (), wg(1))]
+ Bc(ug(t) + Wa (1)), wg (1))
= —af[b(wpg (1), v(®), wg()) + b(v(t), we (1), wgt)) + b(wg(t), Wa (1), wg(1))
+b(wp (1), Wa (1), wg (1)) +b(Wa (1), wp(1), wg(1))]
+ Bc(ug(t) + Wa () — c(u(®) + Wa(1)), wg (1)) + Bcu(t) + Wa (1)), wg (1))
= a[b(w®), wg (1), wg (1)) +b(Wa (1), wg (1), wg(r))]
+ Blc(ug () + Wa () — c(v(t) + Wa (1)), wg(1)) + Blc(v(®) + Wa (1)), wp (1), (4.6)

lwp (I, + vldcws )17

for a.e. t € [0, T'], where we have used the fact that b(u, v, u) = —2b(v, u, u). It
can be easily seen that ||+ < v/2[lull;; [8cull}. for all u € H)(O). The first two

terms from the right-hand side of the equality (4.6) can be estimated using Holder’s
and Young’s inequalities as
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3/2| 1/2

A

alb(, wg, wp)| < [vllpslldcwglizlwgls < V2alvlialdwg 7% Twg

I /\

o
4 2
*Ilaxw,sIILz + Tllvllg lwglli 2,

1/2

A

3/2
alb(Wa, wp, wp)| < | Wallp+110x W,sIIL2IIW,s||L4 < V2o Wallpalldcwgll; s ! lwgll 2

I /\

2
|I3 wplifs + ——5— || Wallfslwgliz-
It can be easily seen that (cf. Theorem 2.2., [25])

Bl(c(p(®) + Wa () — c(v(t) + Wa(@)), ws)| < BA +y + ¥y lwpllf,.

Using Holder’s, Poincaré’s and Young’s inequalities, we estimate 8|(c(v+ Wa), wg)]
as

Bl(c(v+ Wya), wg)|
<Bylv+Walz +A+y)llv+ Wy ||f4)||w5 L2 + Bllv+ Wy ||i4 lwglly
252 y

v 282
< JIoewlifs + =5 v+ Walf, + —- 2204+ )2+ Walls + 22 o+ WallS,
Y%

Combining the above estimates and then substituting it in (4.6), we deduce that

t
lwp®IIF, + v f 8 wp(s)[I7,ds
0

512a
=5 f (W@ + IWAI) g1 ds

+2(1 4y + yz)/o g (5)]12.ds

2.,2
+ izv /(||v(s)||Lz+||WA(s)||Lz)ds

2
+ 20y /O (W@ + 1WA, ) ds

642
n’i / (D@8 + 1WA ) ds, @.7)

forall ¢ € [0, T']. An application of Gronwall’s inequality in (4.7) yields

T
sup ||wﬁ(f)||Lz+ / 195 ws (1)1 dt

telo,

8 2
< ﬂ{yz/() (I + 1WA 12, ) ar

72y
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T
+4(1+7)? /0 (IO + 1WAl ) de

T
2
+ 87Tf (||U(t)||g4 + ”WA(I)”Iﬁ/‘) d[}€2ﬁ(1+y+y )T
0

4

51204 [T
xexp{ = /0 (||v<r)||i4+||WA<r>||i4)dr}, (48)

and the required result follows by taking 8 — 0 in (4.8) and using the fact that
H(0) Cc C(O). o

For 6 = 1, let us now discuss the inviscid limit of Eq. (3.3) as ¢ — 0. We consider
the following Huxley equation for (x, 1) € O x (0, T):

i dz(t) = —vAz(t) + Bc(z(1)) +dW (1), 49

2(0) = up € L*(0).

The existence and uniqueness of a mild solution z € C([0, T]; L2(0)), P-as. to Eq.
(4.9) can be proved in a similar way as in Theorem 3.5. Equivalently, y = z — Wy is
the unique mild solution of the equation:

dy(t) = —vAy(t) + Bc(y(t) + Wa(1)),
{ y(0) = ug € L*(0). @10
It can be easily seen that y(-) satisfies:
2 ! 2 B (" 4
Sup IOl +2v fo 13y ) P2 + 5 /O ly@)l1} 4
<C@B.y.v. T>{1+||uo||iz+u‘;o} = Hr. (4.11)

Then, we have the following result:

Proposition 4.2 Let uy(-) be the unique mild solution of the Burgers—Huxley equa-
tion (see (3.3) with § = 1), for ug € L*(0), P-a.s.. As a — 0, the mild solution uy (-)
of Eq. (3.3) tends to the mild solution of the Huxley equation (4.9), that is,

uy, — z in C([0,T]; Lz((’))) ﬂLz(O, T; C(@)), P-a.s., as a — 0.

Proof Let us define wy = uy — 7z = (ug — Wy) — (z — Wyq) = vy — y, where vy is
the unique mild solution of Eq. (3.6) with § = 1. Then, w,, (-) satisfies:

dwe (1)
dr
w(0) =0,

= —vAWu (1) + Ble(a (1) + Wa (1)) — c(y(1) + Wa(1))] + aB(va (1) + Wa (1)), (4.12)
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inH™1(O) fora.e.t € [0, T]. Taking the inner product with wy (+) to the first equation
in (4.5) and then applying integration by parts, we find

1d
5 77 1We I + vidcwa O

= —ab(y + Wa(1), va + Wa(1), we (1))
+ Bc(va (1) + Wa(0)) — c(y () + Wa()), wa (1)), (4.13)

for a.e. t € [0, T]. It is an immediate consequence of the property of c(-) that (cf.
Theorem 2.2, [25])

Blc(vg Wa) C(y Wa), we) < B(1 Y V2)||wa||22~
L
Using the property of b(-, -, -), we find

b(vy + Wa, vy + Wa, we) = b(Wy, Wa, W) + bWy, y + Wa, wy)
+D(y + Wa, we, we) +b(y + Wa,y + Wa, wy)

1
- _b(y+ WAa Wy, w()l) - Eb(y + WAv wOl’y + WA)

Using Holder’s, Poincaré’s and Young’s inequalities, we estimate the final two terms
from the right-hand side of the above equality as

alb(y + Wa, we, wo)| < ally + Wallpslloxwe llp 2 [lwa I+

3/2 1/2
< V2ally + Wallpa 9w 75 [ wa 5
v ,  27a* 4 )

< Z1ewallfs + =511y + Wallallwa
o o
S 100+ Wa, wa, 3+ Wa)l < S lly + Wall?y llwe |2

- v 3 2 o? Wall4

= Z“ xwa”Lz + m”)’ + A||L4'

Thus, from (4.13), it is immediate that

t
lwa ()72 + v f 1 we (5) 1 2ds
0
t 4 t
2 2 S4a 4 2
<280 +y +7) | lwe®Ids + =5 [ 1y6) + Wa@ligsllwa(s)If2ds
0 0

+

2
o
47121)/0 1y(s) + Wa(s) |l ads, (4.14)
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forall ¢ € [0, T']. An application of Gronwall’s inequality in (4.14) gives

T
sup [wa (DI, + / 10 we (1)17 > dt
t€[0,T] 0

2% (T
= {%/0 (o + IIWA(r>||i4)dt}

4

x BUHHIT gy { 5120

t
[0 (IOl + 1WA 0l1) dt} L 415)

On passing ¢ — 0 in the above inequality (see (4.1) also) provides the required result.
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