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Abstract

In this paper, we study the asymptotic properties of drift parameter estimations in
reflected Ornstein—Uhlenbeck process, and establish their moderate deviations in both
cases with one-sided barrier and two-sided barriers. The main methods consist of
regenerative process techniques and the strong Markov property, as well as moderate
deviations for martingales.
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1 Introduction and Main Results
1.1 Introduction

In many situations, the stochastic processes involved are not allowed to cross a certain
boundary, or are even supposed to remain within two boundaries. For instance, the
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reflected Ornstein—Uhlenbeck process behaves like the standard Ornstein—Uhlenbeck
process in the interior of its domain. However, when it reaches the boundary, the
sample path returns to the interior in a manner that the “pushing” force is minimal.
This kind of process has wide range of applications in the field of queueing system,
financial engineering, and mathematical biology.

Consider the following reflected Ornstein—Uhlenbeck process with one-sided bar-
rier by :

dX[ = (—9X, + )/)dt +dW[ + st,
X, > by, forallz > 0, (1.1)
Xo=x0 = b,

where 6 € (0, +o00) and y are unknown, W = {W;,r € [0, 00)} is a standard
Brownian motion. Here, the process L = {L;,t > 0} is the minimal continuous
increasing process with Ly = 0, which makes the process X; > by, for all ¢t > 0. The
process L increases only when X hits the boundary by, satisfying f0°° 1 {Xt> bL}dL, =

0. Denote by Py x, the probability distribution of the solution of (1.1) on C(R4, R),
the space of continuous functions from R™ to R. Without specific instruction, we will
suppress 6, y and denote by Py,.

For 6 € (0, +00), the reflected Ornstein—Uhlenbeck process (1.1) is an ergodic
Markov process [36], [37], and its properties have been extensively studied. To be
explicit, we can refer to [30], [32], [36] for the transition density analysis; and [8],
[10], [11] for the study of first passages time, [36], [37] for the formula of stationary
distribution, as well as [26], [31] for the limit theorems of the processes {X;, L;, t >
0}.

The reflected Ornstein—Uhlenbeck process (1.1), as an extended Vasicek model,
can successfully characterize mean reversion property of short interest rate. Actually,
0 indicates the mean reversion rate, whereas y, along with 6, determines the long run
average. Then, to estimate them is a crucial step for practical applications. By Girsanov
formula in Ward and Glynn [36], Bo et al. [9], the log-likelihood ratio process can be
written as

log 485y,
dPo,0,x,

T
) = —9/ Xid(X; —Lt)+)/(XT —Lr —XO)
0

92 T T )/2
—— | XxXr+0y | Xdr—I-T,
t
2 Jo 0 2

Fr

where F7 = o (Ws, s < T'). The maximum likelihood estimators of 6 and y are given
by

~T [ X;d(X; — L)) + (X7 — L1 — x0) [} X.dt

By =
T [ x2di — (] X,dr)

(1.2)

@ Springer



1264 Journal of Theoretical Probability (2022) 35:1262-1283

and

— J Xde [ X, d(X, — L) + (X7 — L1 — x0) f) X2dt

(1.3)
T[] X2dr — (f) X.di)’

vr=

In the case of & > 0,y = 0, Bo et al. [9] studied the strong consistency and
asymptotic normality for 7, while Zang and Zhang [38] analyzed the Cramér—Rao
lower bound. Moreover, Hu et al. [25] constructed another estimator via discrete
observations, and considered its asymptotic normality. For more details, one can refer
to Hu and Lee [24], Lee and Song [29], and the references therein. On the other
hand, Zang and Zhang [39] considered asymptotic behavior of the trajectory fitting
estimator for nonergodic reflected Ornstein—Uhlenbeck processes (6 < 0, y = 0).

Compared with huge literature in classical Ornstein—Uhlenbeck type process [3—
7,14-23,27], the large and moderate deviations for estimators in reflected Ornstein—
Uhlenbeck process have been in the ascendant. In this paper, our goal is to fill this gap,
refining the already known results in Bo et al. [9], Zang and Zhang [38]. Here, we
will analyze the reflected Ornstein—Uhlenbeck process (1.1) in view of regenerative
process, and this method is quite different from the techniques in the existed work.

Generally speaking, moderate deviation fulfills the gap between the limiting distri-
bution a)1\1d large deviation. More precisely, consider the estimation
P (g (,9)7; : i) € A |, where A is a given domain of deviations and A7 denotes
the scale of deviation. When A7 = 1, this is exactly the estimation of limiting distri-
bution result. When Ay = JT , this corresponds to the large deviation. And when Ar
between 1 and \/7, that is, Ay — oo and A, 0asT — 00, this is the so-called

JT

moderate deviation.

1.2 Main Results

Denote the stationary distribution of (1.1) by ( [36])

2
—0(x—y/0) 00
n(dx)=eT1[bL,oo)dx, M= [ ety (1.4)
by

Now, we state our main results as follows:

Theorem 1.1 Let At be positive numbers, satisfying as T — o0

AT — 00, — 0. (1.5)

N
Sl13
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Then, the family { ‘){—TT (;T B ?/ ) , T > O} satisfies the large deviations with speed sz
r—

and rate function
1 Ty —1 2
1(x):§x2 x, x € R,

where 1 = f;LO xm(dx), ur = fhoLo xzn(dx) and

E=(M2—M%)_l<l Ml)-

n1 K2

Explicitly, for any A € B(R?)

1 JT _
— inf I(x) <liminf — log P <— <9T > € A)
xXeA° T—o00 A A Y

T yr —
1 _
< lim sup — log P vT (97 0 ) €Al < —inf I(x).
T—00 KT )\,T Yyr —Vv xeA

Then, we can obtain immediately that

Corollary 1.1 Under condition (1.5), the families

{}/T_(QT—G),T >o}, {:{—TT(?T—)/),T >o}

satisfy the large deviations with speed AZT and rate functions

1 1
Jox) = (12 = ui)a?, Ty (x) = 2 — (u2 — ui)x?,

respectively.
In particular, for any x > 0, we have
1 T ~
lim —-log Py, £|9T —0|>=x)=—-Jp(x)
T— o0 A%, AT
and

1 VT
Tli)moO E log Py, <F}yT — y| > x) = —J,(x).

The paper is organized as follows. In Sect. 2, by using the regenerative process tech-
niques, we first state some properties of reflected Ornstein—Uhlenbeck process (1.1),
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and then give exponential equivalence for the functionals fOT X.dt, fOT X ,2dt to their
asymptotic expectations, respectively. The proof of the main result Theorem 1.1 will
be postponed to Sect. 3. In Sect. 4, we extend our results to two-sided barriers case.
The main methods of this paper consist of regenerative process techniques and strong
Markov property, as well as the moderate deviations for martingales. Throughout this
paper, Co, C1, depending only on by, 8, y and the initial point x¢, denote positive
constants whose values can differ at different places.

2 Regenerative Process and Exponential Equivalence

To obtain the moderate deviations for (éT , ?T), the key point is to show the functionals

fOT X:dt and fOT thdt are exponential equivalent to their asymptotic expectations,
respectively. Notice that the existing methods (Girsanov formula technique [3-7], [14],
[15,19]; multiple Wiener-Ito integral [21,27]; log-Sobolev inequality method
[13,18,20]) maybe not work. Here, regenerative process techniques will be employed,
and we benefit a lot from Banerjee and Mukherjee [2].

2.1 Regenerative Process View of Functionals
We first briefly recall the definition of regenerative process [33], [34].

Definition 2.1 The process X = {X > 0} is a regenerative process, if there exist
random times 0 < ®9 < ®; < ---, such that fork > 1,

(1) (Xe,4s,t = 0} has the same distribution as (X(-)0+z,t > 0}.
(2) (Xeg4+.t = 0} is independent of (X;,0 <1 < O}.

In particular, if ®¢ = 0, the process X is called a non-delayed regenerative process.
Else, X is called a delayed regenerative process.

Loosely speaking, regenerative process starts anew at regeneration times {@k, k>1 },
independent of the past. Moreover, the regeneration times split the process into renewal

cycles that are independent and identically distributed, possibly except the first cycle.
For the reflected Ornstein—Uhlenbeck process X (1.1), let

rX(x)zinf{tzo:X,zx}. Q2.1
Now, we can define regenerative times in terms of hitting times as follows:
a1 =inf {t > oo : X, = by + 1}, a2
=inf{t > axy1 : Xy =bp +2}, ap =0, (2.2)

O = wass, Np= sup{k >_1:0; < T}. 2.3)
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The strong Markov property implies that X is a regenerative process with regeneration
times given by [@k, k>—1 } Then, under Py, with xo > by,

O Ok
{/ det,e)k—@k_l:kzl}, {/ xfdt,@)k—@k_l:kzl}
Op—1 Ok—1

are both independent and identically distributed sequences. Moreover, we also have
the following important results

T Nt Loy OoAT T
/ X,dt =) / X, dt| < / X, dt| + / X, dt (2.4)
0 k=1 Or—1 0 ®N—|~
and
T Nr Loy Ao Onp+1
/ Xpdr =y / X2dr| < / X2dr + / X2dt, (2.5)
0 k=1 Or—1 0 @NT

where the sum is 0 if the upper index is strictly less than the lower index.
The tail asymptotic of regenerative time ®, renewal rewards f0®° X, dt, f()@o X2de,
and [ X,dr, f@fN X,dt can be analyzed as follows:
T

Lemma 2.1 For all xo > by and ©q defined by (2.3), there exists some positive
constants Cy, C1 depending only on xo, by, 0 and y, such that for T large enough

Py, (@0 - T) < Coe O, (2.6)

Moreover; there exists some 1 > 0 such that E,e"® < oco.

Proof Firstly, if by < xo < by + 1, then ®y = tx(by + 2). Define the following
Ornstein—Uhlenbeck process

dY; = (=0Y; + y)dt +dW;, Yy = xo. 2.7)

Under Xo = Yy = x9, we have X; > Y, for ¢+ > 0, and then tx (by. +2) < 7y (b +2),
where

ty(x)zinf{tZO:Ytzx}. (2.8)
By Corollary 3.1 in Alili et al. ( [1]), we have for T large enough

Py, (@0 > T) = P, (tx(bL +2) > T) <Py, (‘ry(bL +2) > T) < Cpe OT,
2.9)
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where Co, C are positive constants depending only on xo, bz, 6 and y.

On the other hand, if xg > by + 1, we have tx(by + 1) = ty(by + 1) = «y,
and X; = Y; on the interval [0, T(by)], where Y is defined by (2.7). It holds by strong
Markov property

Py, (@0 > T) (oel > T/z) + Py, (az —a > T/2)

< Py,
<P, (ty(bL +1) > T/2) 4 P;,L+1<rx(bL +2) > T/z)
< Py,

(v + 1D = T72) + P (e (b +2) = T/2).
Using Corollary 3.1 in Alili et al. [1] again, we have for T large enough
Py, (@0 > T) < Cpe 1T, (2.10)

where Cy, C are positive constants depending only on xg, by, 6 and y.
Finally, by using Fubini theorem and (2.6), we can choose some 7 > 0 such that

o0
EXOe”G)O < + 77/ e Py (O > x)dx < o0,
T

which concludes the proof of this lemma. O

Lemma 2.2 For all xo > by, there exists some positive constants Cq, C| depending
only on xo, by, 0 and y, such that for T large enough

®o OonAT ®q
PXO(‘/O X,dt‘ v‘/o x,dz) > T) < Coe=C1T, PX0</O x2dt > T) < CoeCIT,

2.11)

In particular, there exists some n > 0 such that

CX) ©p
Exyexpn /0 X;dt <00, Ex,exp n/(; thdt < 00.

Proof Firstly, if by, < xo < by + 1, then ®g = tx(br + 2), and

OoAT
f Xpdt| v
0

(2.12)

[ON)
/ X3t < (b1 +2 v B} ) (b, +2),
0
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which implies by (2.9) that
©9
PXO</ X2dt > T) < PXO<<(bL +2)2v b%)rx(bL +2) > T)
0

= Py (b + 27V} ey (b +2) > T) = Cpe™'7

On the other hand, suppose xo > by + 1. Then, for t € [0, tx(bp)], X; = V;
and o1 = tx(by + 1) = 1y (by + 1), where Y is defined by (2.7). Then, it holds that

o Ty (bL+1) o
f XZdr = f YAdr + / XZdt
0 0 tx (bL+1)

Ty (bp+1)
< / Y2dr + ((bL +2)%2v bﬁ) (©0 — Tx (b + 1)).
0

By using the strong Markov property, we obtain

®q 5
PX0</0 X2dr > T)

Ty (br+1)
< PXO</O v2dt = 27/3) + oy (((br +2% v b ) (@0 — x (b + 1) = T/3)

027
02T 0+2y2 (35,2 2(6 4 2y2
< Py (‘[y(bL +1) > ; +2y2) + Px()( 92Ty /09+2V Yrdr > %)

+ PhL+1<((bL +2)2v b%)rx(bL +2) > T/3).

6+2y2
262 °

Since lim7_ o % fOT det = by Lemma 2.3 in Gao and Jiang [20] and

(2.9), we have for T large enough

®p
PXO</ X2dr > T) < Cpe=C1T (2.13)
0

Finally, by Holder inequality, Lemma 2.1 and (2.13), we have

Pxo< fo% X,dt‘ > T) < Pxo<®o/0

SN
Py, (@0 > T) + PxO</ X2dt > T) < Cpe=C1T
0

CX)

X2dr > T2)

IA

and

OgAT C)
PXO< / Xtdt‘ > T) Pxo<®0 > T) + PXO< ‘/ X, dt
0 0

which complete the proof of this lemma. O

IA

> T) < Coe 1T,
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2.2 Exponential Equivalence

In this subsection, we will show that the following functionals fOT X, dt, fOT X tzdt
are exponentially equivalent to their asymptotic expectations, respectively.
Since the stationary distribution of (1.1) is given by [36]

2
e 0ler1o) > 6a—y/0)
n(dx):T][bL»OO)dx’ M = A e dx,
L

using ergodic theorem (Theorem 1.16 in [28]), we have immediately that

Lemma 2.3 As T — oo, under Py, with xo > by, forany p € R

1 T T 1 T
f/ Xedt — g, / X2dt — . f/ (B—X0)2dt — B2 —2Bu1 + 13, as.
T Jo 0 T Jo

where 1] = fbio xm(dx), py = beLo x27 (dx).

Remark 2.1 By using Proposition 7.3 in Ross [33], Lemma 2.2, (2.4), (2.5) and
strong Markov property, we have

® ®
iy Ep, +2 f(-)ol X,dr = Ep 12 ]@Ol X2dt .14
Ep 1200 Ep 1200

Now, we can state the exponential equivalence results as follows:

Proposition 2.1 For At defined by (1.5) and for all § > 0 and xo > by, we have

1 1 (7
Jim Elog PXO(?‘ /O X,dt — MT‘ > 5) = —o0 (2.15)
and
lim - log P (1) " X T‘>8) (2.16)
- — —_ = —OQ. .
oo 2 e\ f A TR

In particular, for any B € R

T—o00 A

: 1 1 T 2 2
tim - Tog Py (] [ (6= X0Pdr = (8 = 2y + ma)T| 2 8) = —o0.
T r'tJo

2.17)
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Proof To prove (2.16), applying (2.5), we have by strong Markov property

1 T
Py —)/ X%dt—uzT‘zzS)
< Py ‘Z

2 ® , Onp+1_,
X,dt—uzT‘ ZST/Z)-i—PXO(/ x,dz+/ X,dzz&T/Z)
0 N

Op—1 @T

<PbL+2 ‘ Z[

Ok—1

® (O]
+ PxO</0 x2dr > 8T/4) n P;,L+2</O x2dr > 8T/4>.

x2dr — ugT‘ > 5T/2)

From (2.11), it follows that

1 ® [CN)
2 2
lim — log( (/ X2dr > <ST/4) v P,,L+2</ X2dt > 8T/4)>
T— 00 )\T 0 0
1 (2.18)
< lim —<logC0 — C18T/4> —00.
T—o00 )‘T

Now, it is sufficient to show

Nt—1

Tli_r)n 10g Py 42 ‘ Z ,zdt - /LzT‘ > 8T/2) = —00.

O—1
Firstly, we give some estimations for Nt. In fact, we have for any §' > 0

Py 42 (Np = [T (1 +68")/Ep 4+200])
[T(148")/Ep +200]

= PbL+2 Z (®l - ®i71) = T
i=0
T(148')/Ep, 120
= Pp 12 ZLO o 0](®i —%i-1) < T
- [T(l + 8/)/EbL+2®0] +1 [T(l + 5’)/EbL+2@0] +1
T Ep +200
Take T large enough such that [T(155) By 1200] 71 < 15—6’/2 . Then, Under Py, 42,

by using Lemma 2.1, {®; — ®;_1 : i > 0} is a sequence of independent and identical
distributed variables with some finite exponential moment. Then, we have by the large
deviation results

1
lim A—1og Py 2 (Nt = [T (14 68")/Ep, 4200]) = —oo0. (2.19)

T—o0
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Similarly, it holds

. 1
lim — log Py, 42 (NT < [T(l — 8/)/EbL+2®O]) = —00. (2.20)
T— 00 )‘T
Secondly, take 7' large enough such that I > Lo (:)0. By (2.14)
’ [T(1+8")/Epy 1200] 1425 ’
we have
Nt—1 O
Py D / X2dt — puoT > 8T /4
k=0 Op_1
Nr—l g,
<Pyl Y /O X7dt — poT > 6T /4, Np < [T(1 +6')/Ep, +200]
k=0 v Pk-1
+ Py 12 (N1 > [T(1 4 8")/Ep 12©9))
T(1+8")/Ep 4200 -1 g
1[:0 ] f@kk,l X7di 1 SEp 4200 o,
=< PhL+2 [T(1+8/)/E o > 1 25 4 +EbL+2 Xtd[
by +200] + Y

+ Py 42 (N > [T(1 4 8")/Ep 4200])

SEp +200
Ne)
8Ep 42 j(_)ol XZdr

1 SEp 4200 /@)1 ) /@1 5
E Xrdt E X:dr. 2.21
1+28/( 2 + Ep 12 RS > Ep 42 oy (2.21)

Now, choose §’ < , and then

Notice that, under Py, 42, by using Lemma 2.2, { /. (g)k "_l X tzdt k> 0} is a sequence of

independent and identical distributed variables with some finite exponential moment.
Together with (2.19), (2.21) and the large deviation results,

1 Nt—1 O
Tllm E log Py, 42 ( Z
k=0

— 00 @k71

X2dt — o T > 8T/4) = —o0.
Finally, using (2.20) and following above procedures, we also have

1 Nr—1 @ )
Thm E log Py, 42 ,;) / X;dt — uoT < —6T /4] = —o0.

— 00 ®k*1
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Therefore,

Nt—1

1 Ok
lim —-log Py, +2 / X}t — T | = 5T /4) = —oc,
T— 00 )‘T Op_1

Now, we turn to proving (2.15). Indeed, by (2.4), we can write

T Nt .o,
f X,dt — Z/ X,dt
0 k=1

Ok—1

®0 2 ®NT+1 2
/ X;dt / X;dt
0 Ony

1 ®o 5 ONp+1 )
Sz ®0+/ X[dt-i-(@NT_,_l—@NT)-I—/ X;dr ).
0

ONng

172 172

) + (Onp+1 — ®NT)1/2

Applying Lemma 2.1, we have

1 1
lim —- logPy, (© > T8) < lim —2<log Co — C18T) = —c0. (2.22)
T— o0 T T—00 )‘T

Together with (2.18) and strong Markov property, we obtain

1 1
lim —-log Py, (®NT+1 — OpN; > TS) = lim Z log Py, 42 (®g > T§) = —o0,
oo

T—o00 T T— T
(2.23)

and

1 ONp+1 5

lim —-log Py, / X;dt > T
T (2.24)
1 % ,
= Tll)moo E log Py, 42 (/0 X;dr > TS) = —00.

Together with (2.18, 2.22, 2.23) 2.24, following the similar line in the proof of (2.16),
we have for any § > 0,

1 1| Mo
lim — logPy, | == / X,dt — / X,dt| > 6 ) = —o0,
T—o00 k% o T \Jo ! ]; Or_1 !

1 Nropox
lim — logPy, | = Z/ X,dt — i T| >8] = —o00
T—o )\,% 0 T =l Ok_1 ’
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and thus
li ! log P ! ! X,dt T|>$§
m — — — = —
B )‘2T 08 F'xp 7/ t M1 > oo,
which completes the proof of this proposition. O

3 Moderate Deviations for @T, ’];T)
Set
~ Lt PONI Y L ~2
wr = — X dt, o7 == X;dt — ur. 3.1
T Jo T Jo

For 07 and pr defined by (1.2) and (1.3), we have the following key martingale
decomposition by straightforward calculations

Or —0 Mt
\/T(AT >=—+R, 3.2
or—y JT T (3.2)

with the martingale

T
Mo — (10— -1 [ Jo (1 = X0) dW, \5
T (f()T (2 — 1 Xy)dW; 3-3)

and the remainder term

Rt

_ U wr@r - )+ (- 2 = 1) 7I8R) Ji = X dw, .
VTG \ BrWr(ir — m1) + (Ar — n1(ua — wH1E2) [y — X0 dw,
3.4

As a martingale, {MT, T > O} is the main term in our moderate deviation analysis,
while R7 will be negligible.

Lemma 3.1 For At defined by (1.5) and Mt defined by (3.3), the families

(=7 =], {J_T#M/OTW ~ X)dW,. 7 >0

satisfy the large deviations with speed AZT and rate function

1
Ix)==x"27'x, Jo))=————, xeR*yeR,
2 22 — 1)
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respectively, where | = fboLo xm(dx), ur = boLo x2r(dx) and

2=(Mz—lﬁ)l<1 ‘“)~

H“1 pn2

Proof Note that { Mr, T > 0} and { fOT (w1 — X)) dw,, T > 0} are martingales with
predictable quadratic variations

<M >7p=(u2 — M%)_2 (fOT (1 = X0)? dr foT (1 — Xp) (n2 — M1X;)dt)

Jo Ger = X0 (ua — X0 dr [l (na — w1 X2 di

and (fo (n1 — Xp) dW,>T = fOT (w1 — X;)? dt. By Proposition 2.1, we can get for
any § > 0,

. 1 1
Tlimwglongo<7“ <M>r-%- TH > 8) = —00,

o Ly [ )
Tli)mooglog Py, (?K/o (1 — X,)th>T —(n2 — ul)T‘ > 8) = —o0.

Therefore, Proposition 1 in Dembo ( [12]) yields the conclusion of this lemma. O

Lemma 3.2 For the remainder term Rt defined by (3.4), we have the following results.

(1) Forany§ > 0,
. 1 ~2 2
Th_)moo Elog PXO(‘UT — (,u,z — Ml)‘ > 8) = —00. 3.5
(2) Forany§ > 0,

1 1
Jim o log PXO<E‘RT) > 5) = —o0. 3.6)

2
Proof (1) Since 62 = % [ X?dt — - (fOT det) , we have

Py, (

1 T
< Pxo(?‘/ X7dr — MzT) > 8/2)
0

’U\%—(Mz—ﬂ%)’ 25)

1 (T 1, (T
+Pxo(_‘/ X,dr+u1T(-—‘/ det—mT) 35/2)
T 0 T 0
1 T 2 1 T
SP"‘)(_‘ Xtdt_MZT)ZW)JFPxo(—‘ det—mT‘zlmlﬂ)
T 0 T 0
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1y (7 1 (7
+Pxo(—(f X,dt+u1T‘-—‘/ X,dt — i 7|
A A
1 T
za/z,—\f Xt — | < Jual +1)
TlJo
1 T 5 1 T
< 2o (| [ %= sat| = 02) (3| [ Xt = put] = it 41)
s A

T
+Pxo(%‘/0 X,dt—mT( > m)

Now, we can complete the proof of (3.5) by using Proposition 2.1.
(2) For any L > 0,

1 R o T
Py, <M—ﬁ‘WT(MT — 1) + (1= (2 = ud) 10%)/0 (1 — Xo) dW;

e

1 ~
< Py (M—ﬁ‘WT(/«LT _Ml)‘ > 5/2>

1 T
+P —\1—(m—u2>—182/ (11 — X;)dW, 262>
o (o D) [ - xpaw| =
1 )
< P —‘W‘>L P ‘A _ ‘>_
=< xo()\'Tﬁ T| = )+ xo(MT M1_2L

1 T
+ P, | —— / — X)) dW;| > L)
X0 (XT\/T‘ ) (p1 1) t

ISR
+ Py, (‘l—(uz—uf) 10%‘ > i)

Applying Proposition 2.1, Lemma 3.1, (3.5) and classical moderate deviations for
the Brownian motion, we can obtain that

1 1
lim — log P —‘W iy —
T1—>mooA2T og xo()»T T T(MT Ml)

T
+(1 = (2 — uhH~'57) /0 (1 — X;) dW,

e

L? -
< —7<1 V(=) ),
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which implies immediately by letting L — oo that
lim —log P ( ! Wr(@r — )
im —-lo — AT —
T o0 )\,% g [ )\,T T T T

T
(1= G =) '5) [ u = xoaw,

. 8) 3.7

= —0OQ.

Similarly, we can also have that

1 1
lim —-log P <—‘ﬁTWT T — [
% X0 )»T\/T ( )

T—o00 A

r 3.8
+(ﬁr—m(m—u%>‘13%)/o (m—xodwf\za) G

= —0OQ.

Then, together with (3.5), (3.7) and (3.8), we can complete the proof of (3.6). O

Proof of Theorem 1.1 By (3.2) and Lemma 3.2, VT ?\T —0 , T > 0¢ is expo-
Mo\Yr—vy
nential equivalent to { #TMT, T > 0} with speed AzT. Theorem 1.1 follows from
T
Lemma 3.1. o

4 The Case of Two-Sided Barriers

In this section, we focus on the drift parameter estimations for the reflected Ornstein—
Uhlenbeck process with two-sided barriers by and by (by > br):

dX[ = (_GX[ + )/)dt +dW[ +st — dU[,
X, €[br,by], forallt >0, 4.1
Xo = xo € [bL, bul,

where 8 € (0, +00) and y are unknown, the processes L = {L;,t > 0} and U =

{U;,t = 0} are the minimal continuous increasing processes with Lo = Uy = 0,
which make the process X; € [by, by] for all ¢+ > 0 and satisfy

o0 o0
/0 I{X,>bL}st =0, /0 I{Xt<by}dUt =0.

The stationary distribution of (4.1) is given by

2
—0(x—y/0) by
- e ~
7(dx) = Tl[vabU]dxv M = /b e—@(x—y/&)zdx'
L
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4.1 Maximum Likelihood Estimators of @ and y

By Girsanov formula in Ward and Glynn [36], Bo et al. [9], the log-likelihood ratio
process can be written as
Fr )

log <—dP0’V’x°
T
= —9/ X d(Xy — Ly + Up) + )/(XT —Lr+Ur —xO)
0

dPo,0,x,

62 T T 2
——/ X?dt+9yf X,dr — 2T,

2 Jo 0

2

where F7 = o (W, s < T). Therefore, the maximum likelihood estimators of 6 and y
are given by

5 _ T J X, d(X, — Ly + Up) + (X7 — L1 + Ur — x0) fiy X,dr
T =
T [ x2de — (] X,dr)

and

~

_—Jy Xedt [y X, d(X, — L, + Up) + (X7 — Ly + Ur — xo) [y X2dt
T 7 x2dt — (J)] X,dr)’ '

Similar to the one-sided barrier case in Sect. 3, we have the following key martingale
decomposition

s~ i N
ﬁ(ef 9>Z_T+RT, (4.2)
yr—v VT
where
- o S G - xoaw,
My = Gia — 72! Jo (li] i(t) ' ’ 4.3
reeA (foT(Mz—MIXt)sz @)
Ry = 1 Wr(r — 1) + (1 - G2 — BD7'82) J iy — X dw,
VTR \ ArWr(ir — i) + (B — f(fia = 5D 7167) Jy (i1 — X0 dW,
4.4)
and
N by - N by . - 1 T 2 1 T 2 2
ny :/bL x7 (dx), Mz:/bL x“m(dx), pur = ?‘/0 Xidt, o7 = ?/0 Xydr — g
4.5)
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4.2 Regenerative Process View of [, X,dt and fOTdet

To analyze the deviation properties of fOT X;dt and fOT X tzdt, we will also employ

regenerative process techniques. Let 7y (x) = inf j# > 0 : X; = x}. We can define

regenerative times in terms of hitting times, which are slightly different from the
one-sided barrier case.

or X; = by +

~ ~ . ~ by —>b 3(by — b
oy = 0, a2k+1=lnf{lZazk1Xt=bL+ U4 L %}

by —bL
2

Gop42 = inf {t > Wopq1 : Xr =bp + } O = @12,

ZVT :sup{kz—l:@ka}.

From the strong Markov property of reflected Ornstein—Uhlenbeck process, X is a
regenerative process with regeneration times given by {@k k> O}. Then, under Py,
with xg € [bL, by],

g)k - - g)k ~ ~
/~ X,dt, O — Oy k> 1¢, /~ X2dt, O — Oy 1k > 1
Or—1 Ok—1

are both independent and identically distributed sequences. Moreover, we also have
the following crucial formulas

T Nr .0 OAT T
f Xodt =) /N X,de| < / X dt| + /N X, dt (4.6)
0 i1 YOk 0 O,
and
T Nr O O (:)ﬁ 1
/ X2 =Y /N X2di| < / X2dr + /~ " X2, @7
0 k=1 Op_1 0 ®ﬁ7~

Parallel to Lemmas 2.1 and 2.2, we have the following decay of tail probabilities.

Lemma 4.1 Forall xg € [bL, bu], there exists some positive constants Cy, C| depend-
ing only on xo, by, by, 0 and y, such that for T large enough

Py, ((?)0 > T) < Cpe=C1T (4.8)
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and

S0 SonT -\ S0 2 -\ T
PXO(‘/O X;dt‘v‘/o X,dz) > T) < CoeC1T, PX0</0 x2dt > T) < Cpe €T,

4.9)

In particular; there exists some 1 > 0 such that E,e"®" < oo, and

(:joAT G)() 60
Ey, expin / X, dt / X, dt <00, Ey exp 77/ thdt < 0.
0 0 0

Proof Firstly,ifb; < xo < bi+25% then ®g = vy (b +25%). Under Xo = Yo =
x0, we have X; > Y, for t < tx(by), and then tx (b1, + hUgbL) < ty(bL + hU;bL),
where Y and 7ty are defined by (2.7) and (2.8). By Corollary 3.1 in Alili et al. [1],
we have for T large enough

\%

u—bL

~ b by—>b
Pxo<®0 > T) = Pxo(rx(bL T ) > T) < PXO<ry(bL 4+ Y . Ly T)
< Coe 1T, (4.10)
where Cp, C are positive constants depending only on xq, by, bU 6 and y.
Secondly, if by, + 3(bU b < xo < by, then ©y = x (by, + bu— bL) Under X¢ =

Yo = xp, we have X; < Y, for ¢+ < tx(bL), and then tx (br + bUsz) < 1y (bL +
%). By Corollary 3.1 in Alili et al. [1], we have for T large enough

Pxo(éo > T) - Pxo(rx(bL puzhy T) < Pxo(ry(bL LS S bLy T)

< Coe 1T, 4.11)

Thirdly, if b, + 27% < xo < by + 2B we have X, = ¥, on the inter-
val [0, Tx (bL) A tx(by)]. Under Xg = Yy = x(, we have

by —b 3(by — b
X(bL+ U4 L)/\tx(bL+—( U4 L)>

by —>b 3(by — b
='L’y(bL+ U4 L)/\‘L’y(bL+¥)=a1.

Consequently, it holds by strong Markov property

Peo (80 > 7)
< Py, (a1 > T/2) + Py (&2 & > T/2)

by —b 3(by — by)
< PX0<rX(bL n %) Aty (b + %) > T/z)
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by —b
+P by (rx(bL-i- U2 L
byh,

by —b 3(by — b
U4 L) < oy (bp + (U4 L))>

by — by,
. )>T/2)

Py (zx (L +

P ) (ex 0
+ bL+3(bU4bL) x (bL +

by —b 3(by —b
P (oo + T 2 gy + XU

by —b 3y — b
U4 L) A 1y (br, + 22U~ L) U4 L))>T/2>

< Py (er o +

by —bL
b 2

by —bL
2

+P L+ Ui (ry(bL + ) > T/2) +P L+ Ut (TY(bL +

: ) > T/z).

Using Corollary 3.1 in Alili et al. [1] again, we have for T large enough
Py, ((?)0 > T) < Cpe C1T, (4.12)

Therefore, together with (4.10,4.11, 4.12), we can complete the proof of (4.8).
Finally, since sup;¢jg o0y |X¢| < |bL] V |by|, then (4.9) can be achieved by (4.8).
O

4.3 Exponential Equivalence and Moderate Deviations

By (4.6, 4.7) and Lemma 4.1, and using the same procedure as in the proof of Propo-
sition 2.1, we can state the following exponential equivalence results, while the proofs
are omitted.

Proposition 4.1 Let A7 be defined by (1.5). Forall § > 0 and by, < xo < by, we have

1 1 (7 -
lim —210ng0(—‘/ X,dt—/L]T’z(S):—oo
T o

T—o00 A

and

. 1 LT, ~
Tli)mooglog Py, (T‘/o X;dr — MzT‘ > 8) = —00.

In particular, for any B € R

lim i1ogP (l’/T(,B—X)zdt—(ﬁz—Zﬂﬁl+ﬁ2)T’ >8)=—oo
T%oo)\%, o\ 0 ! - '

Now, following the similar line as in the proof of Lemma 3.2, we have

Lemma4.2 Let Ay, Mr, Ry, i, &7, [i1, [ia be defined by (1.5,4.3, 4.4, 4.5).
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(1) The family { \/A%i , T > O} satisfy the large deviations with speed AZT and rate
T

function
T 1 T -1 2
I(x)=§x2 x, x € R*,

where

(2) Forany§ > 0,

lim Llog Py (‘8% — (P2 — ,17%)‘ > 8) = —00,
T—00 )‘2T 0 -
lim — log P (1‘§’>3)
— — = —o0.

Tgnoo k% 08 o AT T =

By (4.2), Lemma 4.2, and using the same way as in the proof of Theorem 1.1, we
can establish the moderate deviations for (GT -0,y — y).
?,T —0 ) T > O} satisfies
Yr—v

the large deviations with speed k2T and rate function T (x).

Theorem 4.1 For At defined by (1.5), the family {*A/—T7 <

Acknowledgements The authors would like to express great gratitude to the anonymous referee and the
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