
Journal of Theoretical Probability (2021) 34:1749–1774
https://doi.org/10.1007/s10959-021-01093-6

Higher-Order Derivative of Self-Intersection Local Time for
Fractional Brownian Motion

Qian Yu1,2

Received: 8 April 2019 / Revised: 15 March 2021 / Accepted: 17 March 2021 / Published online: 1 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
We consider the existence and Hölder continuity conditions for the k-th-order deriva-
tives of self-intersection local time for d-dimensional fractional Brownian motion,
where k = (k1, k2, . . . , kd). Moreover, we show a limit theorem for the critical case
with H = 2

3 and d = 1, which was conjectured by Jung and Markowsky [7].
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1 Introduction

Fractional Brownian motion (fBm) on R
d with Hurst parameter H ∈ (0, 1) is a d-

dimensional centeredGaussianprocess BH = {BH
t , t ≥ 0}with component processes

being independent copies of a 1-dimensional centered Gaussian process BH ,i , i =
1, 2, . . . , d and the covariance function given by

E[BH ,i
t BH ,i

s ] = 1

2

[
t2H + s2H − |t − s|2H

]
.

Note that B
1
2
t is a classical standard Brownian motion. Let D = {(r , s) : 0 < r < s <

t}. The self-intersection local time (SLT) of fBm was first investigated in Rosen [11]
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and formally defined as:

αt (y) =
∫

D
δ(BH

s − BH
r − y)drds,

where BH is a fBm and δ is the Dirac delta function. It was further investigated in
Hu [3], Hu and Nualart [4]. In particular, Hu and Nualart [4] showed its existence
whenever Hd < 1. Moreover, αt (y) is Hölder continuous in time of any order strictly
less than 1 − H with d = 1, which can be derived from Xiao [14].

The derivative of self-intersection local time (DSLT) for fBm was first considered
in the works by Yan et al. [15] [16], where the ideas were based on Rosen [12]. The
DSLT for fBm has two versions: One is extended by the Tanaka formula (see in Jung
and Markowsky [7]):

α̃′
t (y) = −H

∫

D
δ′(BH

s − BH
r − y)(s − r)2H−1drds.

The other is from the occupation-time formula (see Jung and Markowsky [8]):

α̂′
t (y) = −

∫

D
δ′(BH

s − BH
r − y)drds.

Motivated by the first-order DSLT for fBm in Jung and Markowsky [8] and the
k-th-order derivative of intersection local time (ILT) for fBm in Guo et al. [1], we will
consider the following k-th-order DSLT for fBm in this paper

α̂
(k)
t (y) = ∂k

∂ yk11 · · · ∂ ykdd

∫

D
δ(BH

s − BH
r − y)drds

= (−1)|k|
∫

D
δ(k)(BH

s − BH
r − y)drds,

where k = (k1, . . . , kd) is a multi-index with all ki being nonnegative integers and
|k| = k1 + k2 + · · · + kd , δ is the Dirac delta function of d variables and δ(k)(y) =

∂k

∂ y
k1
1 ···∂ ykdd

δ(y) is the k-th-order partial derivative of δ.

Set

fε(x) = 1

(2πε)
d
2

e− |x |2
2ε = 1

(2π)d

∫

Rd
ei〈p,x〉e−ε

|p|2
2 dp,

where 〈p, x〉 = ∑d
j=1 p j x j and |p|2 = ∑d

j=1 p
2
j .

Since the Dirac delta function δ can be approximated by fε(x), we approximate
δ(k) and α̂

(k)
t (y) by

f (k)
ε (x) = i |k|

(2π)d

∫

Rd
pk11 · · · pkdd ei〈p,x〉e−ε

|p|2
2 dp
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and

α̂
(k)
t,ε (y) = (−1)|k|

∫

D
f (k)
ε (BH

s − BH
r − y)drds, (1)

respectively.
If α̂

(k)
t,ε (y) converges to a random variable in L p as ε → 0, we denote the limit by

α̂
(k)
t (y) and call it the k-th DSLT of BH .

Theorem 1 For 0 < H < 1 and α̂
(k)
t,ε (y) defined in (1), let # := #{ki is odd, i =

1, 2, . . . d} denotes the odd number of ki , for i = 1, 2, . . . , d. If H < min{ 2
2|k|+d ,

1
|k|+d−# , 1

d } for |k| = ∑d
j=1 k j , then α̂

(k)
t (0) exists in L2.

Theorem 2 If H(|k| + d) < 1, then α̂
(k)
t (0) exists in L p, for all p ∈ (0,∞).

Note that if d = 1 and |k| = 1, the condition for the existence of α̂
(k)
t (y) in

Theorems 1 and 2 is consistent with that in Jung and Markowsky [8]. If d = 2 and
|k| = 1 in Theorems 1, we can see H < 1

2 is the best possible, since a limit theorem
for threshold H = 1

2 studied in Markowsky [9].

Theorem 3 Assume that H(|k|+d) < 1 and t, t̃ ∈ [0, T ]. Then, α̂(k)
t (y) is Hölder con-

tinuous in y of any order strictly less thanmin(1, 1−Hd−H |k|
H ) and Hölder continuous

in t of any order strictly less than 1 − H |k| − Hd,

∣∣∣E
[(

α̂
(k)
t (x) − α̂

(k)
t (y)

)n]∣∣∣ ≤ C |x − y|nλ, (2)

where λ < min(1, 1−Hd−H |k|
H ) and

∣∣∣E
[(

α̂
(k)
t (y) − α̂

(k)
t̃

(y)
)n]∣∣∣ ≤ C |t − t̃ |nβ, (3)

where β < 1 − H |k| − Hd.

Note that if d = 1 and k = 1. The results of (2) and (3) in Theorem 3 are consistent
with the results in Jung andMarkowsky [8].When d = 1 and k = 0, the corresponding
Hölder continuous in timeof any order less than 1−H , is the condition obtained inXiao
[14]. Moreover, we believe that our methodology also works well for k-th-order DSLT
of solution of stochastic differential equation (SDE) driven by fBm, if the solution of
SDE driven by fBm satisfies the property of local nondeterminism. For example, the
special linear SDE, the solution is fractional Ornstein–Uhlenbeck processes.

Jung and Markowsky [7] proved that α̂(k)
t (0) exists in L2 for d = 1 and k = 1 with

0 < H < 2/3, and conjectured that for the case H > 2/3, ε−γ (H)α̂
′
t,ε(0) converges in

law to a Gaussian distribution for some suitable constant γ (H) > 0, and at the critical
point H = 2

3 , the variable log(
1
ε
)−γ α̂

′
t,ε(0) converges in law to a Gaussian distribution

for some γ > 0. Later, Jaramillo and Nualart [5] proved the case of H > 2/3 as

ε
3
2− 1

H α̂
′
t,ε(0)

law→ N (0, σ 2
0 ), ε → 0.
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By the proof of Lemma 1 in Sect. 2, we can see themultinomial terms (pi1− μpi2
ρ

)ki

for i = 1, 2, ..., d, are taken into account. But we are not sure if ki is odd or even,

there are many difficulties in the integral of
∫
(pi1 − μpi2

ρ
)ki e− ρ p2i1

2 dpi1; thus, we only
consider the limit theorem in case d = 1 and k = 1 below.

Inspired by the results conjectured in [7] and the functional limit theorem for SLT
of fBm given in Jaramillo and Nualart [6]. We will show a limit theorem of the critical
case H = 2

3 .

Theorem 4 For α̂
(k)
t,ε (y) defined in (1) with y = 0. Suppose that H = 2

3 , d = 1 and
k = 1, then as ε → 0, we have

(
log

(
1

ε

))−1

α̂
′
t,ε(0)

law→ N (0, σ 2),

where σ 2 = t
4
3

8π B(2, 1/3) and B(·, ·) is a Beta function.

The study of DSLT for fBm has a strong degree of heat, see in [5–8,17] and refer-
ences therein. However, the corresponding results for higher-order derivative have not
been studied, except for the higher-order derivative of ILT for two independent fBms
and some general Gaussian processes in [1] and [2]. As we all know, SLT and ILT
have different integral structures in form. In particular, the independence of two fBms
is required for ILT. So that the nondeterminism property which used for higher-order
derivative of ILT cannot be used directly here.

To obtain the main results, we would use the methods of sample configuration
given in Jung and Markowsky [8] and chaos decomposition provided in Jaramillo
and Nualart [5]. Chaos decomposition is more and more mature for the asymptotic
properties of SLT (see in Hu [4], Jaramillo and Nualart [5] and the references therein).
The sample configuration method gives a way to apply nondeterminism property,
and it is very powerful to prove the Hölder regularity. But the corresponding results
of higher-order DSLT for d-dimensional fBm still have certain difficulty. The main
difficulty lies in the computational complexity of multiple integrals. Moreover, the
related results can be extended to the general cases. By the Theorem 4.1 in Jaramillo
and Nualart [5] and Theorem 4 here, two limit theorems of the case H > 2

2|k|+d and

critical case H = 2
2|k|+d , with general k = (k1, . . . , kd) are left open. Extending these

limit theorems to general cases will be worked in the future.
The paper has the following structure. We present some preliminary properties of

d-dimensional fBm and some basic lemmas in Sect. 2. Section 3 is to prove the main
results. To be exact, we will split this section into four subsections to prove the four
theorems given in Sect. 1. Throughout this paper, if not mentioned otherwise, the
letter C , with or without a subscript, denotes a generic positive finite constant and
may change from line to line.
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2 Preliminaries

In this section, we first give some properties of d-dimensional fBm BH . It is well
known that d-dimensional fBm has self-similarity, stationary increments and Hölder
continuity. When Hurst parameter H > 1/2, BH exhibits long memory. When H <

1/2, it has short memory. But in this paper, we need the following nondeterminism
property.

By Nualart and Xu [10] (see also in Song, Xu and Yu [13]), we can see that for any
n ∈ N, there exists two constants κH and βH depending only on n and H , such that
for any 0 = s0 < s1 < · · · < sn , 1 ≤ i ≤ n, we have

κH

n∑
i=1

|xi |2(si − si−1)
2H ≤ Var

( n∑
i=1

xi · (BH
si − BH

si−1
)
)

≤ βH

n∑
i=1

|xi |2(si − si−1)
2H .

Next, we present two basic lemmas, which will be used in Sect. 3.

Lemma 1 For any λ, μ, ρ ∈ R with λ > 0, ρ > 0 and λρ − μ2 > 0. For k ∈ Z
+,

there exists a constant C only depending on k, such that

(i) if k is odd,

∣∣∣
∫

R2
xk yke− 1

2 (λx2+ρy2+2μxy)dxdy
∣∣∣

≤

⎧
⎪⎨
⎪⎩

C|μ|k
(λρ−μ2)

k+ 1
2
, if μ2

λρ−μ2 ≥ 1,

C|μ|
(λρ−μ2)

k
2+1

, if μ2

λρ−μ2 < 1,

(4)

(ii) if k is even,

∣∣∣
∫

R2
xk yke− 1

2 (λx2+ρy2+2μxy)dxdy
∣∣∣

≤

⎧
⎪⎨
⎪⎩

C|μ|k
(λρ−μ2)

k+ 1
2
, if μ2

λρ−μ2 ≥ 1,

C

(λρ−μ2)
k+1
2

, if μ2

λρ−μ2 < 1.

(5)

Proof First, we consider the integral with respect to y,

∫

R

yke− ρ
2 y

2−μxydy = e
μ2x2

2ρ

∫

R

yke− ρ
2 (y+ μx

ρ
)2dy

= e
μ2x2

2ρ

∫

R

(y − μx

ρ
)ke− ρ

2 y
2
dy.

123
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If k is odd, since

(y − μx

ρ
)k =

k∑
i=0

Ci
k y

i (−μx

ρ
)k−i ,

we have

∫

R

yke− ρ
2 y

2−μxydy = e
μ2x2

2ρ

∫

R

Aodde
− ρ

2 y
2
dy

= C1e
μ2x2

2ρ
(μx)k

ρk+ 1
2

+ C3e
μ2x2

2ρ
(μx)k−2

ρk− 1
2

+ · · · + Cke
μ2x2

2ρ
(μx)

ρk/2+1

=: Ãodd ,

where C1, C3, . . . , Ck are all positive constants and

Aodd = C0
k

(
−μx

ρ

)k

+ C2
k y

2
(

−μx

ρ

)k−2

+ · · · + Ck−1
k yk−1

(
−μx

ρ

)
.

For the dx integral,

∫

R

xke− 1
2λx2( Ãodd)dx

≤ C

[
μk

(λρ − μ2)k+ 1
2

+ μk−2

(λρ − μ2)k− 1
2

+ · · · + μ

(λρ − μ2)
k
2+1

]
,

where the right-hand side is the sum of equal ratio series with the common ratio
μ2

λρ−μ2 > 0. Then, we get (4).
If k is even,

∫

R

yke− ρ
2 y

2−μxydy = e
μ2x2

2ρ

∫

R

(y − μx

ρ
)ke− ρ

2 y
2
dy

≤ Ce
μ2x2

2ρ

[ ∫

R

yke− ρ
2 y

2
dy +

∫

R

(
μx

ρ
)ke− ρ

2 y
2
dy

]

=: B1 + B2.

It is easy to see that

B1 ≤ Ce
μ2x2

2ρ ρ− k+1
2

123
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and

B2 ≤ Ce
μ2x2

2ρ (μx)kρ− 2k+1
2 .

For the integral with respect to x ,

1

ρ
k+1
2

∫

R

xke− x2
2ρ (λρ−μ2)dx ≤ C

ρ
k+1
2

∫

R

xke− x2
2

(λρ − μ2

ρ

)− 1+k
2
dx

≤ C

(λρ − μ2)
k+1
2

and

μk

ρk+ 1
2

∫

R

x2ke− x2
2ρ (λρ−μ2)dx ≤ C

μk

ρk+ 1
2

∫

R

x2ke− x2
2

(λρ − μ2

ρ

)− 1+2k
2

dx

≤ C
μk

(λρ − μ2)k+ 1
2

.

This gives (5). 
�
The next lemma gives the bounds on the quantity of λρ − μ2, which could be

obtained from the Appendix B in [7] or the Lemma 3.1 in [3].

Lemma 2 Let

λ = |s − r |2H , ρ = |s′ − r ′|2H ,

and

μ = 1

2

(
|s′ − r |2H + |s − r ′|2H − |s′ − s|2H − |r − r ′|2H

)
.

Case (i) Suppose that D1 = {(r , r ′, s, s′) ∈ [0, t]4 | r < r ′ < s < s′}, let r ′−r = a,
s − r ′ = b, s′ − s = c. Then, there exists a constant K1 such that

λρ − μ2 ≥ K1

(
(a + b)2Hc2H + a2H (b + c)2H

)

and

2μ = (a + b + c)2H + b2H − a2H − c2H .

Case (ii) Suppose that D2 = {(r , r ′, s, s′) ∈ [0, t]4 | r < r ′ < s′ < s}, let
r ′ − r = a, s′ − r ′ = b, s − s′ = c. Then, there exists a constant K2 such that

λρ − μ2 ≥ K2 b
2H

(
a2H + c2H

)

123
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and

2μ = (a + b)2H + (b + c)2H − a2H − c2H .

Case (iii) Suppose that D3 = {(r , r ′, s, s′) ∈ [0, t]4 | r < s < r ′ < s′}, let
s − r = a, r ′ − s = b, s′ − r ′ = c. Then, there exists a constant K3 such that

λρ − μ2 ≥ K3(ac)
2H

and

2μ = (a + b + c)2H + b2H − (a + b)2H − (c + b)2H .

3 Proof of theMain Results

In this section, the proof of Theorems 1, 2, 3 and 4 is taken into account. We will
divide this section into four parts and give the proof of the corresponding theorem in
each part.

3.1 Proof of Theorem 1

By (1) and the proof of Lemma 1,

E

[
α̂

(k)
t,ε (0)̂α(k)

t,η (0)
]

= 1

(2π)2d

∫

D2

∫

R2d
pk1 p

k
2e

−(ε|p1|2+η|p2 |2)

2 E

[ 2∏
j=1

e
i〈p j ,BH

s j
−BH

r j
〉]
dp1dp2dr1dr2ds1ds2

= C
∫

D2

∫

R2d

d∏
i=1

pkii1

d∏
i=1

pkii2e
− 1

2 (|p1|2(λ+ε)+|p2|2(ρ+η)+2〈p1,p2〉μ)dp1dp2dr
′drds′ds

= C
∫

D2

[ ∫

R2
pk111 p

k1
12e

− 1
2 (p211(λ+ε)+p212(ρ+η)+2p11 p12μ)dp11dp12

]

× · · · ×
[ ∫

R2
pkdd1 p

kd
d2e

− 1
2 (p2d1(λ+ε)+p2d2(ρ+η)+2pd1 pd2μ)dpd1dpd2

]
dr ′drds′ds

=: C
∫

D2

d∏
i=1

Ξki dr
′drds′ds,

where λ = |s − r |2H , ρ = |s′ − r ′|2H ,

μ = 1

2

(
|s′ − r |2H + |s − r ′|2H − |s′ − s|2H − |r − r ′|2H

)

123
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and

Ξki =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Cki
μki

((λ+ε)(ρ+η)−μ2)
ki+ 1

2
+ Cki−2μ

ki−2

((λ+ε)(ρ+η)−μ2)
ki− 1

2
+ · · · + C1μ

((λ+ε)(ρ+η)−μ2)
ki
2 +1

, if ki is odd,

Cki
μki

((λ+ε)(ρ+η)−μ2)
ki+ 1

2
+ Cki−2μ

ki−2

((λ+ε)(ρ+η)−μ2)
ki− 1

2
+ · · · + C0

((λ+ε)(ρ+η)−μ2)
ki
2 + 1

2

, if ki is even,

for i = 1, 2, . . . , d.
Note that for any ε1, ε2 > 0,

E

[(̂
α

(k)
t,ε1(0) − α̂

(k)
t,ε2(0)

)2]

≤ C
∫

D2

∣∣∣∣
∫

R2d

2∏
j=1

(
e− ε1

2 |p j |2 − e− ε2
2 |p j |2

)

× pk1 p
k
2E

[ 2∏
j=1

e
i〈p j ,BH

s j
−BH

r j
〉]
dp1dp2

∣∣∣∣dr1dr2ds1ds2

≤ C
∫

D2

2∏
j=1

max
p j

∣∣∣e− ε1
2 |p j |2 − e− ε2

2 |p j |2
∣∣∣

d∏
i=1

∣∣Ξ̃ki

∣∣ dr ′drds′ds,

where

Ξ̃ki =

⎧⎪⎪⎨
⎪⎪⎩

Cki μ
ki

(λρ−μ2)
ki+ 1

2
+ Cki−2μ

ki−2

(λρ−μ2)
ki− 1

2
+ · · · + C1μ

(λρ−μ2)
ki
2 +1

, if ki is odd,

Cki μ
ki

(λρ−μ2)
ki+ 1

2
+ Cki−2μ

ki−2

(λρ−μ2)
ki− 1

2
+ · · · + C0

(λρ−μ2)
ki
2 + 1

2

, if ki is even.

Consequently, if

∫

D2

d∏
i=1

∣∣Ξ̃ki

∣∣ dr ′drds′ds < ∞,

then α̂
(k)
t,ε (0) converges in L2 as ε → 0.

By Lemma 1, we can see that
∫
D2

∏d
i=1

∣∣Ξ̃ki

∣∣ dr ′drds′ds is less than

C
∫

D2

[
|μ||k|

(λρ − μ2)|k|+ d
2

+ |μ|#
(λρ − μ2)

|k|+d+#
2

]
dr ′drds′ds,

where # = #{ki is odd, i = 1, 2, . . . , d} denotes the odd number of ki , for i =
1, 2, . . . , d, and # ∈ {0, 1, 2, . . . , d}.

123
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Thus, to prove the finiteness of
∫
D2

∏d
i=1

∣∣Ξ̃ki

∣∣ dr ′drds′ds, we only need to prove

∫

D2

|μ|Q
(λρ − μ2)

|k|+d+Q
2

dr ′drds′ds < ∞ (6)

with Q = |k| and Q = #.
By Lemma 2, we can see D2 is the union of the sets D1, D2, D3.
When (r , r ′, s, s′) ∈ D1, then the left-hand side of (6) is less than

C
∫

[0,t]3
a2HQ + b2HQ + c2HQ

(a + b)
H
2 (|k|+d+Q)(b + c)

H
2 (|k|+d+Q)(ac)

H
2 (|k|+d+Q)

dadbdc

≤ C
∫

[0,t]3
a2HQ

a
H
2 (|k|+d+Q)b

H
2 (|k|+d+Q)(ac)

H
2 (|k|+d+Q)

dadbdc

+ C
∫

[0,t]3
b2HQ

b
H
2 (|k|+d+Q)b

H
2 (|k|+d+Q)(ac)

H
2 (|k|+d+Q)

dadbdc

+ C
∫

[0,t]3
c2HQ

b
H
2 (|k|+d+Q)c

H
2 (|k|+d+Q)(ac)

H
2 (|k|+d+Q)

dadbdc

≤ C
∫

[0,t]3
1

xH(|k|+d−Q)y
H
2 (|k|+d+Q)z

H
2 (|k|+d+Q)

dxdydz < ∞.

When (r , r ′, s, s′) ∈ D2. Note that for the condition H < min{ 2
2|k|+d , 1

|k|+d−# , 1
d },

only in the case d = 1, H can get the value bigger than 1
2 , while these the case have

been studied in [4] and [7], respectively. So, we only need to consider the case H < 1
2 .

Thus, the left-hand side of (6) is less than

C
∫

[0,t]3
[(a + b)2H + (b + c)2H − a2H − c2H ]Q

bH(|k|+d+Q)(ac)
H
2 (|k|+d+Q)

dadbdc

≤ C
∫

[0,t]3
[(a + b)2H − a2H ]Q

bH(|k|+d+Q)(ac)
H
2 (|k|+d+Q)

dadbdc

+ C
∫

[0,t]3
[(b + c)2H − c2H ]Q

bH(|k|+d+Q)(ac)
H
2 (|k|+d+Q)

dadbdc

≤ 2C
∫

[0,t]2
[(a + b)2H − a2H ]Q

bH(|k|+d+Q)a
H
2 (|k|+d+Q)

dadb.

Since H < 1
2 , then

[(a + b)2H − a2H ]Q ≤ b2HQ .
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Thus,

∫

[0,t]2
[(a + b)2H − a2H ]Q

bH(|k|+d+Q)a
H
2 (|k|+d+Q)

dadb

≤ C
∫

[0,t]2
b2HQ

bH(|k|+d+Q)a
H
2 (|k|+d+Q)

dadb

≤ C
∫

[0,t]2
1

bH(|k|+d−Q)a
H
2 (|k|+d+Q)

dadb < ∞.

When (r , r ′, s, s′) ∈ D3. For α, β > 0 with α + β = 1, there exists a positive
constant K such that

|μ| = 1

2

∣∣∣(a + b + c)2H + b2H − (a + b)2H − (b + c)2H
∣∣∣

=
∣∣∣H(2H − 1)ac

∫ 1

0

∫ 1

0
(b + au + cv)2H−2dudv

∣∣∣

≤ ac
∫ 1

0

∫ 1

0

[
bα(au + cv)β

]2H−2
dudv

≤ ac
∫ 1

0

∫ 1

0

[
bα(au)

β
2 (cv)

β
2

]2H−2
dudv

≤ K (ac)β(H−1)+1b2α(H−1).

Thus, the left-hand side of (6) is less than

C
∫

[0,t]3
[(ac)β(H−1)+1b2α(H−1)]Q

(ac)H(|k|+d+Q)
dadbdc

≤ C
∫

[0,t]3
1

b2αQ(1−H)(ac)β(Q−HQ)+H |k|+Hd+HQ−Q
dadbdc.

Note that |k| ≥ 1 (where |k| = 0 with H < 1
d could deduced from [4]) and H < 1

2 .
When Q = 0 (all derivatives were of even order), the result of (6) is obvious by
H < 1

|k|+d . When Q ≥ 1, we have 2Q(1− H) > 1. So, we first choose ε0 > 0, such
that

H(|k| + d) − 1

2
+ ε0

2

( 2

|k| + d + Q
− H

)
< 1.

Then, we can choose

α ∈
(
1 − ε0(

2
|k|+d+Q − H)

2Q(1 − H)
,

1

2Q(1 − H)

)
.
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Thus,

β(Q − HQ) + H |k| + Hd + HQ − Q

= (1 − α)(Q − HQ) + H |k| + Hd + HQ − Q

< H(|k| + d) − 1

2
+ ε0

2

( 2

|k| + d + Q
− H

)
,

which is less than one. This gives (6).

3.2 Proof of Theorem 2

By (1), we have

∣∣∣E
[(̂

α
(k)
t,ε (0)

)n]∣∣∣ ≤ C
∫

Dn

∫

Rnd

n∏
j=1

|pkj |E
[ n∏
j=1

e
i〈p j ,BH

s j
−BH

r j
〉]
dpdrds,

where k = (k1, . . . , kd), |pkj | = ∏d
i=1 |pi j |ki for j = 1, ..., n, drds =

dr1 · · · drnds1 · · · dsn and

dp = dp1 · · · dpn = dp11dp12 · · · dp1n · · · dpd1dpd2 · · · dpdn .

We use the method of sample configuration as in Jung and Markowsky [8]. Fix
an ordering of the set {r1, s1, r2, s2, . . . , rn, sn}, and let l1 ≤ l2 ≤ · · · ≤ l2n be a
relabeling of the set {r1, s1, r2, s2, . . . , rn, sn}. Let u1 . . . u2n−1 be the proper linear
combinations of the p j ’s so that

E

[ n∏
j=1

e
i〈p j ,BH

s j
−BH

r j
〉] = E

[ 2n−1∏
j=1

e
i〈u j ,BH

l j+1
−BH

l j
〉]

.

A detailed description of how the u’s are chosen can be found in [8]. Then, by the
local nondeterminism of fBm,

∣∣∣E
[ n∏

j=1

e
i〈p j ,BH

s j
−BH

r j
〉]∣∣∣ ≤ e−c

∑2n−1
j=1 |u j |2(l j+1−l j )2H .

Fix j , and let j1 to be the smallest value such that u j1 contains p j as a term and
then choose j2 to be the smallest value strictly larger than j1 such that u j2 does not
contain p j as a term. Then, p j = u j1 − u j1−1 = u j2−1 − u j2 . Similar to Jung and
Markowsky [8], we can see that with the convention that u0 = u2n = 0,

|pkj | =|(u j1 − u j1−1)
k
2 ||(u j2−1 − u j2)

k
2 |
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=
d∏

i=1

|ui j1 − ui( j1−1)|
ki
2 |ui( j2−1) − ui j2 |

ki
2

≤ C
d∏

i=1

(|ui j1 |
ki
2 + |ui( j1−1)|

ki
2 )(|ui( j2−1)|

ki
2 + |ui j2 |

ki
2 )

Thus,

n∏
j=1

|pkj | =
2n∏
j=1

|(u j − u j−1)
k
2 | ≤ C

d∏
i=1

2n∏
j=1

(|ui j |
ki
2 + |ui( j−1)|

ki
2 ).

and

d∏
i=1

2n∏
j=1

(|ui j |
ki
2 + |ui( j−1)|

ki
2 ) =

∑
S1

d∏
i=1

2n∏
j=1

(|ui j |
ki
2 γi, j |ui( j−1)|

ki
2 γi, j )

≤
∑
S2

d∏
i=1

2n−1∏
j=1

(|ui j |
ki
2 αi, j ),

(7)

where

S1 = {
γi, j , γi, j : γi, j ∈ {0, 1}, γi, j + γi, j = 1, i = 1, . . . , d, j = 1, . . . , 2n

}

and

S2 = {
αi, j : αi, j ∈ {0, 1, 2}, i = 1, . . . , d, j = 1, . . . 2n − 1

}
.

Note that we have omitted the terms j = 0, 2n in the final expression in (7) since
u0 = u2n = 0. Then,

∣∣∣E
[
(̂α

(k)
t,ε (0))n

]∣∣∣

≤ C
∫

En

∫

Rnd
e−c

∑2n−1
j=1 |u j |2(l j+1−l j )2H

d∏
i=1

2n∏
j=1

(|ui j |
ki
2 + |ui( j−1)|

ki
2 )dpdl

≤ C
∑
S2

∫

En

∫

Rnd
e−c

∑2n−1
j=1 |u j |2(l j+1−l j )2H

d∏
i=1

2n−1∏
j=1

(|ui j |
ki
2 αi, j )dpdl

= C
∑
S2

∫

En

∫

Rnd
e−c

∑2n−1
j=1 |u j |2(l j+1−l j )2H

2n−1∏
j=1

(|u
k
2α j

j |)dpdl,

where En = {0 < l1 < · · · < l2n < t}, |u
k
2α j

j | = ∏d
i=1 |ui j |

ki
2 αi, j and dl =

dl1dl2 · · · dl2n .
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It is easy to observe that {u1, u2, . . . , u2n−1} is contained in the span of
{p1, p2, . . . , pn} and conversely, so we can let A be a subset of {1, . . . , 2n − 1}
such that the set {u j } j∈A spans {p1, p2, . . . , pn}. We let Ac denote the complement
of A in {1, . . . , 2n − 1}. Note that

e−c
∑

j∈Ac |u j |2(l j+1−l j )2H
∏
j∈Ac

(|u
k
2α j

j |)

= e−c
∑

j∈Ac |u j |2(l j+1−l j )2H
∏
j∈Ac

(
|u

k
2α j

j |(l j+1 − l j )
H |kα j |

2

) ∏
j∈Ac

(l j+1 − l j )
− H |kα j |

2

≤ C
∏
j∈Ac

(l j+1 − l j )
− H |kα j |

2 ,

where |kα j | = k1α1, j + · · · + kdαd, j . Then, we perform a linear transformation
changing (p1, p2, . . . , pn) into an integral with respect to variables {u j } j∈A,

∫

Rnd
e−c

∑2n−1
j=1 |u j |2(l j+1−l j )2H

2n−1∏
j=1

(|u
k
2α j

j |)dp

≤ C
∏
j∈Ac

(l j+1 − l j )
− H |kα j |

2

∫

Rnd
e−c

∑
j∈A |u j |2(l j+1−l j )2H

∏
j∈A

(|u
k
2α j

j |)dp

= C |J |
∏
j∈Ac

(l j+1 − l j )
− H |kα j |

2

∫

Rnd
e−c

∑
j∈A |u j |2(l j+1−l j )2H

∏
j∈A

(|u
k
2α j

j |)du,

where |J | is the Jacobian determinant of changing variables (p1, p2, . . . , pn) to
(u j , j ∈ A).

Therefore, wemay reduce the convergence of
∣∣∣E[(̂α(k)

t,ε (0))n]
∣∣∣ to show the finiteness

of
∫

En

∫

Rnd
e−c

∑
j∈A |u j |2(l j+1−l j )2H

∏
j∈A

(|u
k
2α j

j |)
∏
j∈Ac

(l j+1 − l j )
− H |kα j |

2 dudl =: Λ.

Since
∫

R

e−c u2i j (l j+1−l j )2H |ui j |
ki
2 αi, j dui j ≤ C(l j+1 − l j )

−H− H
2 kiαi, j ,

we have

Λ ≤ C
∫

En

∏
j∈A

(l j+1 − l j )
−Hd− H

2 |kα j | ∏
j∈Ac

(l j+1 − l j )
− H |kα j |

2 dl

≤ Cn,H ,t

∫

En

∏
j∈A

(l j+1 − l j )
−Hd−H |k| ∏

j∈Ac

(l j+1 − l j )
−H |k|dl
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≤ Cn,H ,t
Γ n(1 − Hd − H |k|)Γ n−1(1 − H |k|)

Γ
(
n(1 − Hd − H |k|) + (n − 1)(1 − H |k|) + 1

) ,

where Cn,H ,t is a constant dependent on n, H and t .

Thus, we can see that
∣∣∣E[(̂α(k)

t,ε (0))n]
∣∣∣ is finite for all ε > 0 under condition H(d +

|k|) < 1. Then, we need to prove {̂α(k)
t,ε (0)}ε>0 is a Cauchy sequence.

Notice that for any ε1, ε2 > 0,

∣∣∣E
[
(̂α

(k)
t,ε1(0) − α̂

(k)
t,ε2(0))

n
]∣∣∣ ≤ C

∫

Dn

∫

Rnd

n∏
j=1

|e− ε1
2 |p j |2 − e− ε2

2 |p j |2 |

×
n∏
j=1

|pkj |E
[ n∏
j=1

e
i〈p j ,BH

s j
−BH

r j
〉]
dpdrds.

By the dominated convergence theorem and

∫

Dn

∫

Rnd

n∏
j=1

|pkj |E
[ n∏
j=1

e
i〈p j ,BH

s j
−BH

r j
〉]
dpdrds < ∞,

we can obtain the desired result. This completes the proof.

3.3 Proof of Theorem 3

Let us first prove (2). For any λ ∈ [0, 1], we have the following inequalities:

|e−i〈p j ,x〉 − e−i〈p j ,y〉| ≤ C |p j |λ|x − y|λ

and

|p j |λ = (p21 j + · · · + p2d j )
λ
2 ≤ C

(
|p1 j |λ + · · · + |pd j |λ

)
.

Using the similar methods as in the proof of Theorem 2, we find that

∣∣∣E
[(

α̂
(k)
t (x) − α̂

(k)
t (y)

)n]∣∣∣

≤ C |x − y|nλ

∫

Dn

∫

Rnd

n∏
j=1

|pkj |
(
|p1 j |λ + · · · + |pd j |λ

)

× E

[ n∏
j=1

e
i〈p j ,BH

s j
−BH

r j
〉]
dpdrds

≤ C |x − y|nλ
d∑

l=1

∫

Dn

∫

Rnd

n∏
j=1

|pk+λ̃l
j |E

[ n∏
j=1

e
i〈p j ,BH

s j
−BH

r j
〉]
dpdrds

123



1764 Journal of Theoretical Probability (2021) 34:1749–1774

=: C |x − y|nλΛ1,

where λ̃l = (λ1, . . . , λd) with λl = λ and all other λ j = 0. So |k + λ̃| = |k| + λ and
Λ1 is less than (with A defined as before)

C
∫

En

∏
j∈A

(l j+1 − l j )
−Hd− H

2 |α j (k+λ̃)| ∏
j∈Ac

(l j+1 − l j )
− H

2 |α j (k+λ̃)|dl

≤ Cn,H ,t
Γ n(1 − Hd − H |k + λ̃|)Γ n−1(1 − H |k + λ̃|)

Γ
(
n(1 − Hd − H |k + λ̃|) + (n − 1)(1 − H |k + λ̃|) + 1

) ,

which is finite if 1 − Hd − H |k + λ̃| > 0.
For the proof of (3), let D̃ = {(r , s) : 0 < r < s < t̃} andwithout loss of generality,

we assume that t < t̃ . Then,

∣∣∣E
[(

α̂
(k)
t (y) − α̂

(k)
t̃

(y)
)n]∣∣∣

≤ C
∫

(D̃\D)n

∫

Rnd

n∏
j=1

|pkj |E
[ n∏
j=1

e
i〈p j ,BH

s j
−BH

r j
〉]
dpdrds

≤ C
∫

[t,t̃]n

∫

[0,s1]×···×[0,sn ]

∫

Rnd

n∏
j=1

|pkj |E
[ n∏
j=1

e
i〈p j ,BH

s j
−BH

r j
〉]
dpdrds

≤ C
∫

D̃n

n∏
j=1

1[t,t̃](s j )
∫

Rnd

n∏
j=1

|pkj |E
[ n∏
j=1

e
i〈p j ,BH

s j
−BH

r j
〉]
dpdrds

≤ C |t − t̃ |nβ
( ∫

D̃n

( ∫

Rnd

n∏
j=1

|pkj |E
[ n∏

j=1

e
i〈p j ,BH

s j
−BH

r j
〉]
dp

) 1
1−β

drds
)1−β

=: C |t − t̃ |nβΛ2,

where we use the Hölder’s inequality in the last inequality with β < 1− H |k| − Hd.
Using the similar methods as in the proof of Theorem 2, Λ2 is bounded by

( ∫

En

∏
j∈A

(l j+1 − l j )
− Hd

1−β
− H

2(1−β)
|kα j | ∏

Ac

(l j+1 − l j )
− H

2(1−β)
|kα j |dl

)1−β

.

Since 1 − β > H(|k| + d), there exists a constant C > 0, such that

∣∣∣E
[(

α̂
(k)
t (y) − α̂

(k)
t̃

(y)
)n]∣∣∣ ≤ C |t − t̃ |nβ.
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3.4 Proof of Theorem 4

In this section, we mainly use the method given in Jaramillo and Nualart [5]. We first
give the chaos decomposition of the random variable α̂

(k)
t,ε (0) defined in (1) with d = 1

and k = 1. We write

α̂
′
t,ε(0) =

∫ t

0

∫ s

0
αε,s,r drds,

where

αε,s,r = f ′
ε(B

H
s − BH

r ) =
∞∑
q=1

I2q−1( f2q−1,ε,s,r )

with

f2q−1,ε,s,r (x1, . . . , x2q−1) = (−1)qβq

(
ε + (s − r)2H

)−q− 1
2
2q−1∏
j=1

1[r ,s](x j )

and

βq = 1

2q− 1
2 (q − 1)!√π

.

Then, α̂
′
t,ε(0) has the following chaos decomposition:

α̂
′
t,ε(0) =

∞∑
q=1

I2q−1( f2q−1,ε),

where

f2q−1,ε(x1, . . . , x2q−1) =
∫

D
f2q−1,ε,s,r (x1, . . . , x2q−1)drds

with D = {(r , s) : 0 < r < s < t}.
For q = 1,

E

[∣∣∣I1( f1,ε)
∣∣∣
2] =

∫

D2
〈 f1,ε,s1,r1 , f1,ε,s2,r2〉Hdr1dr2ds1ds2, (8)

where H is the Hilbert space obtained by taking the completion of the step functions
endowed with the inner product

〈1[a,b],1[c,d]〉H := E[(BH
b − BH

a )(BH
d − BH

c )].
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For q > 1, we have to describe the terms 〈 f2q−1,ε,s1,r1 , f2q−1,ε,s2,r2〉H⊗(2q−1) , where
H⊗(2q−1) is the (2q − 1)-th tensor product of H. For every x, u1, u2 > 0, we define

μ(x, u1, u2) = E[BH
u1(B

H
x+u2 − BH

x )].

Then, from Eq. (2.19) in Jaramillo and Nualart [5],

〈 f2q−1,ε,s1,r1 , f2q−1,ε,s2,r2〉H⊗(2q−1) = β2
qG

(q)
ε,r2−r1(s1 − r1, s2 − r2),

where

G(q)
ε,x (u1, u2) =

(
ε + u2H1

)− 1
2−q(

ε + u2H2

)− 1
2−q

μ(x, u1, u2)
2q−1.

Before we give the proof of the main result, we give some useful lemmas below. In
the sequel, we just consider the case H = 2

3 .

Lemma 3

lim
ε→0

E

[∣∣∣ 1

log 1
ε

α̂
′
t,ε(0)

∣∣∣
2] = σ 2.

Proof From Lemma 5.1 in Jaramillo and Nualart [5], we can see

E

[∣∣∣ 1

log 1
ε

α̂
′
t,ε(0)

∣∣∣
2] = 1

(log 1
ε
)2

(
V1(ε) + V2(ε) + V3(ε)

)

and

Vi (ε) = 1

π

∫

Di

|ε I + Σ |− 3
2 μdrdsdr ′ds′

where Di (i=1, 2, 3) defined in Lemma 2 and Σ is the covariance matrix of (BH
s −

BH
r , BH

s′ − BH
r ′ ) with Σ1,1 = λ, Σ2,2 = ρ, Σ1,2 = μ given in Lemma 2.

Next, we will split the proof into three parts to consider V1(ε), V2(ε) and V3(ε),
respectively.

For the V1(ε) term, changing the coordinates (r , r ′, s, s′) by (r , a = r ′ − r , b =
s − r ′, c = s′ − s) and integrating the r variable, we get

V1(ε) ≤ 1

π

∫

[0,t]4
|ε I + Σ |− 3

2 μdrdadbdc

= t

π

∫

[0,t]3
|ε I + Σ |− 3

2 μdadbdc

=: Ṽ1(ε).
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Since

μ = 1

2
((a + b + c)

4
3 + b

4
3 − a

4
3 − c

4
3 ) ≤ √

λρ = (a + b)
2
3 (b + c)

2
3

and

|ε I + Σ | = (ε + Σ1,1)(ε + Σ2,2) − Σ2
1,2

≥ C
[
ε2 + ε((a + b)

4
3 + (b + c)

4
3 ) + a

4
3 (c + b)

4
3 + c

4
3 (a + b)

4
3

]

≥ C
[
ε2 + (a + b)

2
3 (b + c)

2
3 (ε + (ac)

2
3 )

]

≥ C(a + b)
2
3 (b + c)

2
3 (ε + (ac)

2
3 ),

where we use the Young’s inequality in the second to last inequality.
Then, we have

Ṽ1(ε) ≤ C
∫

[0,t]3
(a + b)−

1
3 (b + c)−

1
3

(
ε + (ac)

2
3

)− 3
2
dadbdc.

We will estimate this integral over the regions {b ≤ (a ∨ c)} and {b > (a ∨ c)}
separately, and we will denote these two integrals by Ṽ1,1 and Ṽ1,2, respectively. If
b ≤ (a ∨ c), without loss of generality, we can assume a ≥ c and thus b ≤ a. For a
given small enough constant ε1 > 0,

Ṽ1,1(ε) ≤ C
∫

[0,t]3
(a + b)−

1
3−ε1(b + c)−

1
3
(a + b)ε1

aε1
aε1

(
ε + (ac)

2
3

)− 3
2
dadbdc

≤ C
∫

[0,t]3
b− 2

3−ε1aε1
(
ε + (ac)

2
3

)− 3
2
dadbdc

≤ C
∫ t

0

∫ tε− 3
2

0
aε1

(
1 + (ac)

2
3

)− 3
2
dcda,

where we make the change of variable c = c ε− 3
2 in the last inequality.

By L’Hôspital’s rule, we have

lim sup
ε→0

Ṽ1,1(ε)

log 1
ε

≤ C < ∞.

If b > (a ∨ c), we can see that

μ = 1

2
((a + b + c)

4
3 + b

4
3 − a

4
3 − c

4
3 ) ≤ C b

4
3

123



1768 Journal of Theoretical Probability (2021) 34:1749–1774

and

|ε I + Σ | ≥ C
[
ε2 + ε((a + b)

4
3 + (b + c)

4
3 ) + a

4
3 (c + b)

4
3 + c

4
3 (a + b)

4
3

]

≥ C b
4
3 (ε + (a ∨ c)

4
3 ).

Then,

lim sup
ε→0

Ṽ1,2(ε)

log 1
ε

≤ lim sup
ε→0

C

log 1
ε

∫

[0,t]3
b− 2

3

(
ε + (a ∨ c)

4
3

)− 3
2
dadbdc

≤ lim sup
ε→0

C

log 1
ε

∫ t

0

∫ a

0
(ε + a

4
3 )−

3
2 dcda

= lim sup
ε→0

C

log 1
ε

∫ t

0
a(ε + a

4
3 )−

3
2 da < ∞.

So, by the above result, we can obtain

lim
ε→0

V1(ε)

(log 1
ε
)2

= 0. (9)

For the V2(ε) term, changing the coordinates (r , r ′, s, s′) by (r , a = r ′ − r , b =
s′ − r ′, c = s − s′) and integrating the r variable, we get

V2(ε) ≤ t

π

∫

[0,t]3
|ε I + Σ |− 3

2 μdadbdc =: Ṽ2(ε).

By

μ = 1

2

(
(a + b)

4
3 + (b + c)

4
3 − a

4
3 − c

4
3

)

= 2b

3

∫ 1

0

(
(a + bv)

1
3 + (c + bv)

1
3

)
dv

≤ 4

3
b(a + b + c)

1
3

and

|ε I + Σ | = (ε + Σ1,1)(ε + Σ2,2) − Σ2
1,2

≥ ε2 + ε((a + b + c)
4
3 + b

4
3 ) + C b

4
3 (a

4
3 + c

4
3 ),

we have

Ṽ2(ε) ≤ C
∫

[0,t]3
b(a + b + c)

1
3

(
ε((a + b + c)

4
3 + b

4
3 ) + b

4
3 (a

4
3 + c

4
3 )

)− 3
2
dadbdc.
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We again estimate this integral over the regions {b ≤ (a ∨ c)} and {b > (a ∨ c)}
separately, and denote these two integrals by Ṽ2,1 and Ṽ2,2, respectively. If b ≤ (a∨c),

Ṽ2,1(ε) ≤ C
∫

[0,t]3
b(a ∨ c)

1
3

(
ε(a ∨ c)

4
3 + b

4
3 (a ∨ c)

4
3

)− 3
2
dadbdc

≤ C
∫

[0,t]3
b(a ∨ c)−

5
2

(
ε + b

4
3

)− 3
2
dadbdc

≤ C
∫ t

0
b
(
ε + b

4
3

)− 3
2
db

≤ C
∫ tε− 3

4

0
b(1 + b

4
3 )−

3
2 db.

Thus,

lim sup
ε→0

Ṽ2,1(ε)

log 1
ε

≤ C lim sup
ε→0

ε− 3
2 (1 + t

4
3 ε−1)−

3
2 < ∞. (10)

If b > (a ∨ c), similarly, we have

lim sup
ε→0

Ṽ2,2(ε)

log 1
ε

≤ lim sup
ε→0

C

log 1
ε

∫ t

0
b− 2

3 db
∫

[0,t]2

(
ε + (a ∨ c)

4
3

)− 3
2
dadc

≤ lim sup
ε→0

C

log 1
ε

∫ t

0

∫ a

0
(ε + a

4
3 )−

3
2 dcda

= lim sup
ε→0

C

log 1
ε

∫ t

0
a(ε + a

4
3 )−

3
2 da < ∞.

(11)

So, by the above result, we can obtain

lim
ε→0

V2(ε)

(log 1
ε
)2

= 0.

For the V3(ε) term. We first change the coordinates (r , r ′, s, s′) by (r , a = s −
r , b = r ′ − s, c = s′ − r ′) and then by

μ = 1

2

(
(a + b + c)

4
3 + b

4
3 − (b + c)

4
3 − (a + b)

4
3

)

= 2

9
ac

∫ 1

0

∫ 1

0
(b + ax + cy)−

2
3 dxdy

=: μ(a + b, a, c),
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and |ε I + Σ | = ε2 + ε(a
4
3 + c

4
3 ) + (ac)

4
3 − μ(a + b, a, c)2, we can find

V3(ε) = 1

π

∫

[0,t]3
1(0,t)(a + b + c)(t − a − b − c)μ|ε I + Σ |− 3

2 dadbdc

= 1

π

∫

[0,tε− 3
4 ]2×[0,t]

1(0,t)(b + ε
3
4 (a + c))

× (t − b − ε
3
4 (a + c))ε− 3

2 μ(ε
3
4 a + b, ε

3
4 a, ε

3
4 c)

[
(1 + a

4
3 )(1 + c

4
3 ) − ε−2μ(ε

3
4 a + b, ε

3
4 a, ε

3
4 c)2

] 3
2

dbdadc,

where we change the coordinates (a, b, c) by (ε− 3
4 a, b, ε− 3

4 c) in the last equality.
By the definition of μ(a + b, a, c), it is easy to find

μ(ε
3
4 a + b, ε

3
4 a, ε

3
4 c) = 2

9
ε

3
2 ac

∫

[0,1]2
(b + ε

3
4 av1 + ε

3
4 cv2)

− 2
3 dv1dv2

and

ε− 3
2 μ(ε

3
4 a + b, ε

3
4 a, ε

3
4 c) = 2

9
acb− 2

3 + O(ε
3
4 ac(a + c)).

The other part of the integrand in V3(ε) is

[
(1 + a

4
3 )(1 + c

4
3 ) − ε−2μ(ε

3
4 a + b, ε

3
4 a, ε

3
4 c)2

]− 3
2

=
[
(1 + a

4
3 )(1 + c

4
3 )

]− 3
2 + O

(
εa2c2[(1 + a

4
3 )(1 + c

4
3 )]− 5

2

)
.

Since

1

(log 1
ε
)2

∫

[0,tε− 3
4 ]2

ε
3
4 ac(a + c)

[
(1 + a

4
3 )(1 + c

4
3 )

]− 3
2
dadc

+ 1

(log 1
ε
)2

∫

[0,tε− 3
4 ]2

εa3c3
[
(1 + a

4
3 )(1 + c

4
3 )

]− 5
2
dadc

→ 0,

(12)

as ε → 0. Then, by L’Hôspital’s rule, we have

lim
ε→0

V3(ε)

(log 1
ε
)2

= 2

9π

∫ t

0
(t − b)b− 2

3 db

× lim
ε→0

1

(log 1
ε
)2

∫

[0,tε− 3
4 ]2

ac
[
(1 + a

4
3 )(1 + c

4
3 )

]− 3
2
dadc

= t
4
3

8π
B

(
2,

1

3

)
.

(13)
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Together (9)–(13), we can see

lim
ε→0

E

[∣∣∣ 1

log 1
ε

α̂
′
t,ε(0)

∣∣∣
2] = t

4
3

8π
B

(
2,

1

3

)
=: σ 2.


�

Lemma 4 For I1( f1,ε) given in (8), then

lim
ε→0

E

[∣∣∣ 1

log 1
ε

I1( f1,ε)
∣∣∣
2] = σ 2.

Proof Form (8), we can find

E

[∣∣∣ 1

log 1
ε

I1( f1,ε)
∣∣∣
2] = 1

(log 1
ε
)2

(
V (1)
1 (ε) + V (1)

2 (ε) + V (1)
3 (ε)

)
,

where V (1)
i (ε) = 2

∫
Di

〈 f1,ε,s1,r1 , f1,ε,s2,r2〉Hdr1dr2ds1ds2 for i = 1, 2, 3. Then, we
have

0 ≤ V (1)
i (ε) ≤ Vi (ε), (14)

since H > 1
2 and μ can only take positive values.

Combining (14) with (9)–(11), we can see

lim
ε→0

1

(log 1
ε
)2

(
V (1)
1 (ε) + V (1)

2 (ε)
)

= 0.

Thus, we only need to consider 1
(log 1

ε
)2
V (1)
3 (ε) as ε → 0.

By the proof of Lemma 5.7 in Jaramillo and Nualart [5], we have

V (1)
3 (ε) = 1

π

∫

S3
G(1)

ε,r ′−r (s − r , s′ − r ′)

= 1

π

∫

[0,t]3

∫ t−(a+b+c)

0
1(0,t)(a + b + c)(ε + a

4
3 )−

3
2

(ε + c
4
3 )−

3
2 μ(a + b, a, c)ds1dadbdc

= 2

9π

∫ t

0

∫

[0,tε− 3
4 ]2

∫

[0,1]2
1(0,t)

(
(b + ε

3
4 (a + c)

)(
t − b − ε

3
4 (a + c)

)

×
[
(1 + a

4
3 )(1 + c

4
3 )

]− 3
2
ac

(
b + ε

3
4 (av1 + cv2)

)− 2
3
dv1dv2dadcdb.
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Note that

∫

[0,1]2

(
b + ε

3
4 (av1 + cv2)

)− 2
3
dv1dv2 = b− 2

3 + O(ε
3
4 (a + c))

and

∫

[0,1]2

(
t − b − ε

3
4 (a + c)

)[
(1 + a

4
3 )(1 + c

4
3 )

]− 3
2
ac

(
b + ε

3
4 (av1 + cv2)

)− 2
3
dv1dv2

= (t − b)b− 2
3 ac

[
(1 + a

4
3 )(1 + c

4
3 )

]− 3
2

+ O

(
ε

3
4 (a + c)ac

[
(1 + a

4
3 )(1 + c

4
3 )

]− 3
2
)

.

Similar to (12) and (13), we can find that

lim
ε→0

1

(log 1
ε
)2

∫

[0,tε− 3
4 ]2

ε
3
4 (a + c)ac

[
(1 + a

4
3 )(1 + c

4
3 )

]− 3
2
dadc = 0

and

lim
ε→0

1

(log 1
ε
)2

∫

[0,tε− 3
4 ]2

ac
[
(1 + a

4
3 )(1 + c

4
3 )

]− 3
2
dadc = 9

16
.

Thus,

lim
ε→0

V (1)
3 (ε)

(log 1
ε
)2

= 2

9π

∫ t

0

9

16
(t − b)b− 2

3 db

= lim
ε→0

V3(ε)

(log 1
ε
)2

= σ 2.


�
Proof of Theorem 4 By Lemmas 3–4 and

α̂
′
t,ε(0) = I1( f1,ε) +

∞∑
q=2

I2q−1( f2q−1,ε),

we can see

lim
ε→0

E

[∣∣∣ 1

log 1
ε

∞∑
q=2

I2q−1( f2q−1,ε)

∣∣∣
2] = 0.
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Since I1( f1,ε) is Gaussian, then we have, as ε → 0,

(
log

1

ε

)−1
I1( f1,ε)

law→ N (0, σ 2).

Thus,

(
log

1

ε

)−1
α̂

′
t,ε(0)

law→ N (0, σ 2)

as ε → 0. This completes the proof.
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