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Abstract
In this paper, we prove the existence of strong solutions to an stochastic differential
equation with a generalized drift driven by a multidimensional fractional Brownian
motion for small Hurst parameters H < 1

2 . Here, the generalized drift is given as the
local time of the unknown solution process, which can be considered an extension of
the concept of a skew Brownian motion to the case of fractional Brownian motion.
Our approach for the construction of strong solutions is new and relies on techniques
from Malliavin calculus combined with a “local time variational calculus” argument.
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1 Introduction

Consider the d-dimensional stochastic differential equation (SDE)

X x
t = x + αLt (X x ) · 1d + B H

t , 0 ≤ t ≤ T , x ∈ R
d , (1.1)

where the driving noise B H· of this equation is a d-dimensional fractional Brown-
ian motion, whose components are given by one-dimensional independent fractional
Brownian motions with a Hurst parameter H ∈ (0, 1/2), and where α ∈ R is a
constant and 1d is the vector in R

d with entries given by 1. Further, Lt (X x ) is the
(existing) local time at zero of X x· , which can be formally written as

Lt (X x ) =
∫ t

0
δ0(X x

s )ds,

where δ0 denotes the Dirac delta function in 0.
We also assume that B H· is defined on a complete probability space (�,A, P).

We recall here for d = 1 and Hurst parameter H ∈ (0, 1) that B H
t , 0 ≤ t ≤ T is a

centered Gaussian process with covariance structure RH (t, s) given by

RH (t, s) = E[B H
t B H

s ] = 1

2
(s2H + t2H − |t − s|2H ).

For H = 1
2 , the fractional Brownian motion B H· coincides with the Brownian motion.

Moreover, B H· has a version with (H − ε)-Hölder continuous paths for all ε ∈ (0, H)

and is the only stationary Gaussian process having the self-similarity property, that is

{B H
γ t }t≥0 = {γ H B H

t }t≥0

in law for all γ > 0. Finally, we mention that for H �= 1
2 the fractional Brownian

motion is neither a Markov process nor a (weak) semimartingale. The latter proper-
ties, however, complicate the study of SDE’s driven by B H· and in fact call for the
development of new construction techniques of solutions of such equations beyond the
classicalMarkovian framework. For further information about the fractional Brownian
motion, the reader may consult, e.g., [35] and the references therein.

In this paper, we want to analyze for small Hurst parameters H ∈ (0, 1/2) strong
solutions X x· to the SDE (1.1), that is solutions to (1.1), which are adapted to a P-
augmented filtration F = {Ft }0≤t≤T generated by B H· . Let us mention here that
solutions to (1.1) can be considered a generalization of the concept of a skew Brownian
motion to the case of a fractional Brownian motion. The skew Brownian motion,
which was first studied in the 1970s in [23,43] and which has applications to, e.g.,
astrophysics, geophysics or more recently to the simulation of diffusion processes
with discontinuous coefficients (see, e.g., [18,26,48]) , is the a solution to the SDE

X x
t = x + (2p − 1)Lt (X x ) + Bt , 0 ≤ t ≤ T , x ∈ R, (1.2)
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where B· is a one-dimensional Brownian motion, Lt (X x ) the local time at zero of X x·
and p a parameter, which stands for the probability of positive excursions of X x· .

It was shown in [22] that the SDE (1.2) has a unique strong solution if and only if p ∈
[0, 1]. The approach used by the latter authors relies on a one-to-one transformation
of (1.2 ) into an SDE without drift and the symmetric Itô–Tanaka formula. Moreover,
based on Skorohod’s problem the authors show for 2p − 1 = 1 or −1 that the skew
Brownian motion coincides with the reflected Brownian motion—a result, which we
think, does not hold true in the case of solutions to (1.1). An extension of the latter
results to SDE’s of the type

dXt = σ(Xt )dBt +
∫

R

ν(dx)dLx
t (X) (1.3)

was given in the work [25] under fairly general conditions on the coefficient σ and
the measure ν, where the author also proves that strong solutions to (1.3) can be
obtained through a limit of sequences of solutions to classical Itô-SDE’s by using the
comparison theorem.

We remark here that the Walsh Brownian motion [43] also provides a natural
extension of the skew Brownian motion, which is a diffusion process on rays in R

2

originating in zero and which exhibits the behavior of a Brownian motion on each
of those rays. A further generalization of the latter process is the spider martingale,
which has been used in the literature for the study of Brownian filtrations [47].

Other important generalizations of the skew Brownian motion to the multidi-
mensional case in connection with weak solutions were studied in [10,40]: Using
PDE techniques, Portenko in [40] gives a construction of a unique solution process
associated with an infinitesimal generator with a singular drift coefficient, which is
concentrated on some smooth hypersurface.

On the other hand, Bass andChen [10] analyze (unique)weak solutions of equations
of the form

d Xt = d At + d Bt , (1.4)

where B· is a d-dimensional Brownian motion and At a process , which is obtained
from limits of the form

lim
n−→∞

∫ t

0
bn(Xs)ds

in the sense of probability uniformly over time t for functions bn : R
d −→ R

d . Here,
the i th components of At are bounded variation processes, which correspond to signed
measures in the Kato class Kd−1. The method of the authors for the construction of
unique weak solutions of such equations is based on the construction of a certain
resolvent family on the space Cb(R

d) in connection with the properties of the Kato
class Kd−1.

In this context, we also mention the paper [20] on SDE’s with distributional drift
coefficients. As for a general overview of various construction techniques with respect
to the skew Brownian motion and related processes based, e.g., on the theory of
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Dirichlet forms or martingale problems, the reader is referred to [27]. See also the
book [38].

The objective of this paper is the construction of strong solutions to themultidimen-
sional SDE (1.1) with fractional Brownian noise initial data for small Hurst parameters
H < 1

2 ,where the generalized drift is given by the local time of the unknown process.
Note that in contrast to [22] in the case of a skew Brownian motion, we obtain in this
article the existence of strong solutions to (1.1) for all parameters α ∈ R.

Since the fractional Brownianmotion is neither aMarkov process nor a semimartin-
gale, if H �= 1

2 , the methods of the above-mentioned authors cannot be (directly)
used for the construction of strong solutions in our setting. In fact, our construction
technique considerably differs from those in the literature in the Wiener case. More
specifically, we approximate the Dirac delta function in zero by means of functions
ϕε for ε ↘ 0 given by

ϕε(x) = ε− d
2 ϕ(ε− 1

2 x), x ∈ R
d

where ϕ is, e.g., the d-dimensional standard Gaussian density. Then, we prove that
the sequence of strong solutions Xn

t to the SDE’s

Xn
t = x +

∫ t

0
αϕ1/n(Xn

s ) · 1dds + B H
t

converges in L2(�), strongly to a solution to (1.1) for n −→ ∞. In showing this,
we employ a compactness criterion for sets in L2(�) based on Malliavin calculus
combined with a “local time variational calculus” argument. See [9] for the existence
of strong solutions of SDE’s driven by B H· , H < 1

2 , when, e.g., the drift coefficients
b belong to L1(Rd)∩ L∞(Rd) or see [33] in the Wiener case. We also refer to a series
of other papers in the Wiener and Lévy process case and in the Hilbert space setting
based on that approach: [7,8,19,32,34].

Although we can show strong uniqueness (see Proposition 5.2) with respect to
(1.1) under some restrictive conditions, we remark that in contrast to, e.g., [9], our
construction technique—as it is applied in this paper—does not allow for establishing
this property under more general conditions. Since the fractional Brownian motion
is not a semimartingale for H �= 1

2 , we cannot pursue the same or similar proof
strategy as, e.g., in [22] for the verification of strong uniqueness of solutions by using,
e.g., the Itô–Tanaka formula. However, it is conceivable that our arguments combined
with those in [4] which are based on results in [42] and a certain type of supremum
concentration inequality in [44] will enable the construction of unique strong solutions
to (1.1)—possibly even in the sense of Davie [15].

Here, we also want to point out a recent work of Catellier, Gubinelli [11], which
came to our attention, after having finalized our article. In their striking paper, which
extends the results of Davie [15] to the case of a fractional Brownian noise, the authors
study the problem, which fractional Brownian paths actually regularize solutions to
SDE’s of the form
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d X x
t = b(X x

t )dt + d B H
t , X x

0 = x ∈ R
d

for all H ∈ (0, 1). The (unique) solutions constructed in [11] are path by path with
respect to time-dependent vector fields b in theBesov–Hölder space Bα∞,∞, α ∈ R and
in the case of distributional vector fields solutions to the SDE’s, where the drift term is
given by a nonlinear Young type of integral based on an averaging operator. In proving
existence and uniqueness results, the authors use the Leray–Schauder–Tychonoff fixed
point theorem and a comparison principle in connection with an average translation
operator. Further, Lipschitz regularity of the flow (x 
−→ X x

t ) under certain conditions
is shown.

We remark that our techniques are very different from those developed by Catellier
and Gubinelli [11], which seem not to work in the case of vector fields b belonging
to, e.g., L1(Rd) ∩ L∞(Rd) (private communication with one of the authors in [11]).
Further, their methods do not yield Malliavin differentiability of strong solutions.

Another interesting paper in the direction of path-by-path analysis of differential
equations, we wish to comment on, is that of Aida [1] (see also [2]), where the author
studies the existence (not uniqueness) of solutions of reflected differential equations
(with a Young integral term) for certain domains by using an Euler approximation
scheme and Skorohod’s equation. As in the Wiener case (for d = 1 and α = 1 or −1),
we believe that our constructed solutions to (1.1) do not coincide with those in [1].

Finally, we mention that the construction technique in this article may be also used
for showing strong solutions of SDE’s with respect to generalized drifts in the sense
of (1.4) based on Kato classes. The existence of strong solutions of such equations in
the Wiener case is to the best of our knowledge still an open problem. See the work
of Bass, Chen [10].

Our paper is organized as follows: In Sect. 2, we introduce the framework of our
paper and recall in this context some basic facts from fractional calculus andMalliavin
calculus for (fractional) Brownian noise. Further, in Sect. 3 we discuss an integration
by parts formula based on a local time on a simplex, which we want to employ in
connection with a compactness criterion fromMalliavin calculus in Sect. 5. Section 4
is devoted to the study of the local time of the fractional Brownian motion and its
properties. Finally, in Sect. 5 we prove the existence of a strong solution to (1.1) by
using the results of the previous sections.

2 Framework

In this section, we pass in review some theory on fractional calculus, basic facts on
fractional Brownian noise, occupation measures and some other results which will be
progressively used throughout the article in combination withmethods fromMalliavin
calculus. The reader may consult [30,31] or [17] for a general theory on Malliavin
calculus for Brownian motion and [35, Chapter 5] for fractional Brownian motion. As
for the theory of occupation measures, we refer to [21] or [24].
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2.1 Fractional Calculus

We start up here with some basic definitions and properties of fractional derivatives
and integrals. For more information, see [29,41].

Let a, b ∈ R with a < b. Let f ∈ L p([a, b]) with p ≥ 1 and α > 0. Introduce the
left- and right-sided Riemann–Liouville fractional integrals by

I α
a+ f (x) = 1


(α)

∫ x

a
(x − y)α−1 f (y)dy

and

I α
b− f (x) = 1


(α)

∫ b

x
(y − x)α−1 f (y)dy

for almost all x ∈ [a, b] where 
 is the Gamma function.
Further, for a given integer p ≥ 1, let I α

a+(L p) (resp. I α
b−(L p)) be the image of

L p([a, b]) of the operator I α
a+ (resp. I α

b− ). If f ∈ I α
a+(L p) (resp. f ∈ I α

b−(L p))
and 0 < α < 1, then define the left- and right-sided Riemann–Liouville fractional
derivatives by

Dα
a+ f (x) = 1


(1 − α)

d

dx

∫ x

a

f (y)

(x − y)α
dy

and

Dα
b− f (x) = 1


(1 − α)

d

dx

∫ b

x

f (y)

(y − x)α
dy.

The left- and right-sided derivatives of f defined as above can be represented as
follows by

Dα
a+ f (x) = 1


(1 − α)

(
f (x)

(x − a)α
+ α

∫ x

a

f (x) − f (y)

(x − y)α+1 dy

)

and

Dα
b− f (x) = 1


(1 − α)

(
f (x)

(b − x)α
+ α

∫ b

x

f (x) − f (y)

(y − x)α+1 dy

)
.

Finally, we see by construction that the following relations are valid

I α
a+(Dα

a+ f ) = f

for all f ∈ I α
a+(L p) and

Dα
a+(I α

a+ f ) = f
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for all f ∈ L p([a, b]) and similarly for I α
b− and Dα

b− .

2.2 Shuffles

Let m and n be integers. We denote by S(m, n) the set of shuffle permutations, i.e., the
set of permutationsσ : {1, . . . , m+n} → {1, . . . , m+n} such thatσ(1) < · · · < σ(m)

and σ(m + 1) < · · · < σ(m + n).
The m-dimensional simplex is defined as

�m
θ,t := {(sm, . . . , s1) ∈ [0, T ]m : θ < sm < · · · < s1 < t}.

The product of two simplices then is given by the following union

�m
θ,t × �n

θ,t

=
⋃

σ∈S(m,n)

{(wm+n, . . . , w1) ∈ [0, T ]m+n : θ < wσ(m+n) < · · · < wσ(1) < t} ∪ N ,

where the setN has null Lebesguemeasure. Thus, if fi : [0, T ] → R, i = 1, . . . , m+n
are integrable functions, we obtain that

∫
�m

θ,t

m∏
j=1

f j (s j )dsm . . . ds1

∫
�n

θ,t

m+n∏
j=m+1

f j (s j )dsm+n . . . dsm+1

=
∑

σ∈S(m,n)

∫
�m+n

θ,t

m+n∏
j=1

fσ( j)(w j )dwm+n · · · dw1. (2.1)

We hereby give a slight generalization of the above lemma, whose proof can be
also found in [9]. This lemma will be used in Sect. 5. The reader may skip this lemma
at first reading.

Lemma 2.1 Let n, p and k be integers, k ≤ n. Assume we have integrable functions
f j : [0, T ] → R, j = 1, . . . , n and gi : [0, T ] → R, i = 1, . . . , p. We may then
write

∫
�n

θ,t

f1(s1) . . . fk(sk)

∫
�

p
θ,sk

g1(r1) . . . gp(rp)drp . . . dr1 fk+1(sk+1) . . . fn(sn)dsn . . . ds1

=
∑

σ∈An,p

∫
�

n+p
θ,t

hσ
1 (w1) . . . hσ

n+p(wn+p)dwn+p . . . dw1,

where hσ
l ∈ { f j , gi : 1 ≤ j ≤ n, 1 ≤ i ≤ p}. Here, An,p is a subset of permutations

of {1, . . . , n + p} such that #An,p ≤ Cn+p for a constant C ≥ 1, and we use the
definition s0 = θ .
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Proof The proof of the result is given by induction on n. For n = 1 and k = 0, the
result is trivial. For k = 1, we have

∫ t

θ

f1(s1)
∫

�
p
θ,s1

g1(r1) . . . gp(rp)drp . . . dr1ds1

=
∫

�
p+1
θ,t

f1(w1)g1(w2) . . . gp(wp+1)dwp+1 . . . dw1,

where we have put w1 = s1, w2 = r1, . . . , wp+1 = rp.
Assume the result holds for n and let us show that this implies that the result is true

for n + 1. Either k = 0, 1 or 2 ≤ k ≤ n + 1. For k = 0, the result is trivial. For k = 1,
we have

∫
�n+1

θ,t

f1(s1)
∫

�
p
θ,s1

g1(r1) . . . gp(rp)drp . . . dr1 f2(s2) . . . fn+1(sn+1)dsn+1 . . . ds1

=
∫ t

θ

f1(s1)

(∫
�n

θ,s1

∫
�

p
θ,s1

g1(r1) . . . gp(rp)drp . . . dr1 f2(s2) . . .

fn+1(sn+1)dsn+1 . . . ds2) ds1.

The result follows from (2.1) coupled with #S(n, p) = (n+p)!
n!p! ≤ Cn+p ≤ C (n+1)+p.

For k ≥ 2, we have from the induction hypothesis

∫
�n+1

θ,t

f1(s1) . . . fk(sk)

∫
�

p
θ,sk

g1(r1) . . . gp(rp)drp . . . dr1 fk+1(sk+1) . . .

fn+1(sn+1)dsn+1 . . . ds1

=
∫ t

θ

f1(s1)
∫

�n
θ,s1

f2(s2) . . . fk(sk)

∫
�

p
θ,sk

g1(r1) . . . gp(rp)drp . . . dr1

× fk+1(sk+1) . . . fn+1(sn+1)dsn+1 . . . ds2ds1

=
∑

σ∈An,p

∫ t

θ

f1(s1)
∫

�
n+p
θ,s1

hσ
1 (w1) . . . hσ

n+p(wn+p)dwn+p . . . dw1ds1

=
∑

σ̃∈An+1,p

∫
�

n+1+p
θ,t

hσ̃
1 (w1) . . . h̃σ̃

wn+1+p
dw1 . . . dwn+1+p,

where An+1,p is the set of permutations σ̃ of {1, . . . , n + 1 + p} such that σ̃ (1) = 1
and σ̃ ( j + 1) = σ( j), j = 1, . . . , n + p for some σ ∈ An,p . �


Remark 2.2 We remark that the set An,p in the above lemma also depends on k but we
shall not make use of this fact.
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2.3 Fractional Brownianmotion

Denote by B H = {B H
t , t ∈ [0, T ]} a d-dimensional fractional Brownian motion with

Hurst parameter H ∈ (0, 1/2). So B H is a centered Gaussian process with covariance
structure

(RH (t, s))i, j := E[B H ,(i)
t B H ,( j)

s ] = δi j
1

2

(
t2H + s2H − |t − s|2H

)
, i, j = 1, . . . , d,

where δi j is one, if i = j , or zero else. Observe that E[|B H
t − B H

s |2] = d|t − s|2H

and hence B H has stationary increments and Hölder continuous trajectories of index
H − ε for all ε ∈ (0, H). Observe that the increments of B H , H ∈ (0, 1/2) are not
independent. As a matter of fact, this process does not satisfy the Markov property,
either. Another obstacle one is faced with is that B H is not a semimartingale, see, e.g.,
[35, Proposition 5.1.1].

We give an abridged survey on how to construct fractional Brownian motion via an
isometry.Wewill do it in onedimension inasmuchaswewill treat themultidimensional
case componentwise. See [35] for further details.

Let E be the set of step functions on [0, T ], and letH be the Hilbert space given by
the closure of E with respect to the inner product

〈1[0,t], 1[0,s]〉H = RH (t, s).

Themapping 1[0,t] 
→ Bt has an extension to an isometry betweenH and the Gaussian
subspace of L2(�) associated with B H . We denote the isometry by ϕ 
→ B H (ϕ). Let
us recall the following result (see [35, Proposition 5.1.3] ) which gives an integral
representation of RH (t, s) when H < 1/2:

Proposition 2.3 Let H < 1/2. The kernel

K H (t, s) = cH

[(
t

s

)H− 1
2

(t − s)H− 1
2 +

(
1

2
− H

)
s
1
2−H

∫ t

s
u H− 3

2 (u − s)H− 1
2 du

]
,

where cH =
√

2H
(1−2H)β(1−2H ,H+1/2) being β the Beta function satisfies

RH (t, s) =
∫ t∧s

0
K H (t, u)K H (s, u)du. (2.2)

The kernel K H also has the following representation by means of fractional deriva-
tives

K H (t, s) = cH 


(
H + 1

2

)
s
1
2−H

(
D

1
2−H
t− u H− 1

2

)
(s).
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Consider now the linear operator K ∗
H : E → L2([0, T ]) defined by

(K ∗
H ϕ)(s) = K H (T , s)ϕ(s) +

∫ T

s
(ϕ(t) − ϕ(s))

∂K H

∂t
(t, s)dt

for everyϕ ∈ E .We see that (K ∗
H1[0,t])(s) = K H (t, s)1[0,t](s), and then, from this fact

and (2.2) one can conclude that K ∗
H is an isometry between E and L2([0, T ]) which

extends to the Hilbert space H. See, e.g., [16] and [3] and the references therein.
For a given ϕ ∈ H, one proves that K ∗

H can be represented in terms of fractional
derivatives in the following ways

(K ∗
H ϕ)(s) = cH 


(
H + 1

2

)
s
1
2−H

(
D

1
2−H
T − u H− 1

2 ϕ(u)

)
(s)

and

(K ∗
H ϕ)(s) = cH 


(
H + 1

2

)(
D

1
2−H
T − ϕ(s)

)
(s)

+ cH

(
1

2
− H

)∫ T

s
ϕ(t)(t − s)H− 3

2

(
1 −

(
t

s

)H− 1
2
)
dt .

One finds that H = I
1
2−H

T − (L2) (see [16] and [3, Proposition 6]).
Using the fact that K ∗

H is an isometry from H into L2([0, T ]), the d-dimensional
process W = {Wt , t ∈ [0, T ]} defined by

Wt := B H ((K ∗
H )−1(1[0,t])) (2.3)

is a Wiener process and the process B H can be represented as follows

B H
t =

∫ t

0
K H (t, s)dWs, (2.4)

see [3].
We also need to introduce the concept of fractional Brownian motion associated

with a filtration.

Definition 2.4 Let G = {Gt }t∈[0,T ] be a right-continuous increasing family of σ -
algebras on (�,F , P) such that G0 contains the null sets. A fractional Brownian
motion B H is called a G-fractional Brownian motion if the process W defined by (2.3)
is a G-Brownian motion.

In what follows, we will denote by W a standard Wiener process on a given prob-
ability space (�,A, P) equipped with the natural filtration F = {Ft }t∈[0,T ] which
is generated by W and augmented by all P-null sets, we shall denote by B := B H
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the fractional Brownian motion with Hurst parameter H ∈ (0, 1/2) given by the
representation (2.4).

In this paper, we want to make use of a version of Girsanov’s theorem for fractional
Brownian motion which is due to [16, Theorem 4.9]. Here, we recall the version given
in [36, Theorem 2]. However, we first need the definition of an isomorphism K H

from L2([0, T ]) onto I
H+ 1

2
0+ (L2) associated with the kernel K H (t, s) in terms of the

fractional integrals as follows, see [16, Theorem 2.1]

(K H ϕ)(s) = I 2H
0+ s

1
2−H I

1
2−H
0+ s H− 1

2 ϕ, ϕ ∈ L2([0, T ]).

It follows from this and the properties of the Riemann–Liouville fractional integrals
and derivatives that the inverse of K H takes the form

(K −1
H ϕ)(s) = s

1
2−H D

1
2−H
0+ s H− 1

2 D2H
0+ ϕ(s), ϕ ∈ I

H+ 1
2

0+ (L2).

The latter implies that if ϕ is absolutely continuous, see [36], one has

(K −1
H ϕ)(s) = s H− 1

2 I
1
2−H
0+ s

1
2−H ϕ′(s). (2.5)

Theorem 2.5 (Girsanov’s theorem for fBm) Let u = {ut , t ∈ [0, T ]} be an F-adapted
process with integrable trajectories and set B̃ H

t = B H
t +∫ t

0 usds, t ∈ [0, T ]. Assume
that

(i)
∫ ·
0 usds ∈ I

H+ 1
2

0+ (L2([0, T ]), P-a.s.
(ii) E[ξT ] = 1 where

ξT := exp

{
−
∫ T

0
K −1

H

(∫ ·

0
urdr

)
(s)dWs − 1

2

∫ T

0
K −1

H

(∫ ·

0
urdr

)2

(s)ds

}
.

Then, the shifted process B̃ H is an F-fractional Brownian motion with Hurst param-
eter H under the new probability P̃ defined by d P̃

dP = ξT .

Remark 2.6 As for the multidimensional case, define

(K H ϕ)(s) := ((K H ϕ(1))(s), . . . , (K H ϕ(d))(s))∗, ϕ ∈ L2([0, T ]; R
d),

where ∗ denotes transposition and similarly for K −1
H and K ∗

H .

In this paper, we will also employ a crucial property of the fractional Brownian
motionwhichwas shown by [39] for general Gaussian vector fields. The latter property
will be a helpful substitute for the lack of independent increments of the underlying
noise.

123



Journal of Theoretical Probability (2022) 35:714–771 725

Let m ∈ N and 0 =: t0 < t1 < · · · < tm < T . Then, for all ξ1, . . . , ξm ∈ R
d there

exists a positive finite constant C > 0 (depending on m) such that

Var

⎡
⎣ m∑

j=1

〈ξ j , Bt j − Bt j−1〉Rd

⎤
⎦ ≥ C

m∑
j=1

|ξ j |2Var
[
Bt j − Bt j−1

]
. (2.6)

The above property is referred to the literature as local non-determinism property
of the fractional Brownian motion. The reader may consult [39] or [46] for more
information on this property. A stronger version of local non-determinism is also
satisfied by the fractional Brownianmotion. There exists a constant K > 0, depending
only on H and T , such that for any t ∈ [0, T ] , 0 < r < t and for i = 1, . . . , d,

Var
[

B H ,i
t |

{
B H ,i

s : |t − s| ≥ r
}]

≥ Kr2H . (2.7)

3 An Integration by Parts Formula

In this section, we recall an integration by parts formula, which is essentially based on
the local time of the Gaussian process B H . The whole content as well as the proofs
can be found in [9].

Let m be an integer, and let f : [0, T ]m × (Rd)m → R be a function of the form

f (s, z) =
m∏

j=1

f j (s j , z j ), s = (s1, . . . , sm) ∈ [0, T ]m, z = (z1, . . . , zm) ∈ (Rd)m,

(3.1)

where f j : [0, T ] × R
d → R, j = 1, . . . , m are smooth functions with compact

support. Further, let κ : [0, T ]m → R be a function of the form

κ(s) =
m∏

j=1

κ j (s j ), s ∈ [0, T ]m, (3.2)

where κ j : [0, T ] → R, j = 1, . . . , m are integrable functions.
Next, denote by α j a multiindex and Dα j its corresponding differential operator.

For α = (α1, . . . , αm) considered an element ofN
d×m
0 so that |α| := ∑m

j=1
∑d

l=1 α
(l)
j ,

we write

Dα f (s, z) =
m∏

j=1

Dα j f j (s j , z j ).
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In this section, we aim at deriving an integration by parts formula of the form

∫
�m

θ,t

Dα f (s, Bs)ds =
∫

(Rd )m
� f

α (θ, t, z)dz, (3.3)

for a suitable random field �
f
α , where �m

θ,t is the m-dimensional simplex as defined
in Sect. 2.2 and Bs = (Bs1, . . . , Bsm ) on that simplex. More specifically, we have that

�
f
α (θ, t, z) = (2π)−dm

∫
(Rd )m

∫
�m

θ,t

m∏
j=1

f j (s j , z j )(−iu j )
α j exp{−i〈u j , Bs j − z j 〉}dsdu.

(3.4)

Let us start by defining �
f
α (θ, t, z) as above and show that it is a well-defined

element of L2(�).
To this end,weneed the followingnotation:Given (s, z) = (s1, . . . , sm, z1 . . . , zm) ∈

[0, T ]m × (Rd)m and a shuffle σ ∈ S(m, m), we write

fσ (s, z) :=
2m∏
j=1

f[σ( j)](s j , z[σ( j)])

and

κσ (s) :=
2m∏
j=1

κ[σ( j)](s j ),

where [ j] is equal to j if 1 ≤ j ≤ m and j − m if m + 1 ≤ j ≤ 2m.
For integers k ≥ 0, let us define the expressions

�
f

k (θ, t, z)

:=
d∏

l=1

√
(2
∣∣α(l)

∣∣)! ∑
σ∈S(m,m)

∫
�2m

0,t

| fσ (s, z)|
2m∏
j=1

1
∣∣s j − s j−1

∣∣H(d+2
∑d

l=1 α
(l)
[σ( j)])

ds1 . . . ds2m

, respectively,

�κ

k (θ, t)

:=
d∏

l=1

√
(2
∣∣α(l)

∣∣)! ∑
σ∈S(m,m)

∫
�2m

0,t

|κσ (s)|
2m∏
j=1

1
∣∣s j − s j−1

∣∣H(d+2
∑d

l=1 α
(l)
[σ( j)])

ds1 . . . ds2m .
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Theorem 3.1 Suppose that �
f

k (θ, t, z),�κ

k (θ, t) < ∞. Then, defining �
f
α (θ, t, z)

as in (3.4) gives a random variable in L2(�) and there exists a universal constant
C = C(T , H , d) > 0 such that

E[|� f
α (θ, t, z)|2] ≤ Cm+|α|� f

k (θ, t, z). (3.5)

Moreover, we have

∣∣∣∣E
[∫

(Rd )m
� f

α (θ, t, z)dz

]∣∣∣∣ ≤ Cm/2+|α|/2
m∏

j=1

∥∥ f j
∥∥

L1(Rd ;L∞([0,T ])) (�κ

k (θ, t))1/2.

(3.6)

Proof For notational convenience, we consider θ = 0 and set � f
α (t, z) = �

f
α (0, t, z).

For an integrable function g : (Rd)m −→ C, we can write

∣∣∣∣
∫

(Rd )m
g(u1, . . . , um)du1 . . . dum

∣∣∣∣
2

=
∫

(Rd )m
g(u1, . . . , um)du1 . . . dum

∫
(Rd )m

g(um+1, . . . , u2m)dum+1 . . . du2m

=
∫

(Rd )m
g(u1, . . . , um)du1 . . . dum(−1)dm

∫
(Rd )m

g(−um+1, . . . ,−u2m)dum+1 . . . du2m,

where we used the change of variables (um+1, . . . , u2m) 
−→ (−um+1, . . . ,−u2m) in
the third equality.

This gives

∣∣∣� f
α (θ, t, z)

∣∣∣2

= (2π)−2dm(−1)dm
∫

(Rd )2m

∫
�m

0,t

m∏
j=1

f j (s j , z j )(−iu j )
α j e

−i
〈
u j ,Bs j −z j

〉
ds1 . . . dsm

×
∫

�m
0,t

2m∏
j=m+1

f[ j](s j , z[ j])(−iu j )
α[ j]e

−i
〈
u j ,Bs j −z[ j]

〉
dsm+1 . . . ds2mdu1 . . . du2m

= (2π)−2dm(−1)dm
∑

σ∈S(m,m)

∫
(Rd )2m

⎛
⎝ m∏

j=1

e−i〈z j ,u j +u j+m〉
⎞
⎠

×
∫

�2m
0,t

fσ (s, z)
2m∏
j=1

u
α[σ( j)]
σ( j) exp

⎧⎨
⎩−

2m∑
j=1

〈
uσ( j), Bs j

〉
⎫⎬
⎭ ds1 . . . ds2mdu1 . . . du2m,

where we used (2.1) in the last step.
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Taking the expectation on both sides yields

E[
∣∣∣� f

α (θ, t, z)
∣∣∣2] = (2π)−2dm(−1)dm

∑
σ∈S(m,m)

∫
(Rd )2m

⎛
⎝ m∏

j=1

e−i〈z j ,u j +u j+m〉
⎞
⎠

×
∫

�2m
0,t

fσ (s, z)
2m∏
j=1

u
α[σ( j)]
σ( j)

exp

⎧⎨
⎩−1

2
Var

⎡
⎣ 2m∑

j=1

〈
uσ( j), Bs j

〉
⎤
⎦
⎫⎬
⎭ ds1 . . . ds2mdu1 . . . du2m

= (2π)−2dm(−1)dm
∑

σ∈S(m,m)

∫
(Rd )2m

⎛
⎝ m∏

j=1

e−i〈z j ,u j +u j+m〉
⎞
⎠

×
∫

�2m
0,t

fσ (s, z)
2m∏
j=1

u
α[σ( j)]
σ( j) exp

⎧⎨
⎩−1

2

d∑
l=1

Var

⎡
⎣ 2m∑

j=1

u(l)
σ ( j) B(1)

s j

⎤
⎦
⎫⎬
⎭

× ds1 . . . ds2mdu(1)
1 . . . du(1)

2m . . . du(d)
1 . . . du(d)

2m

= (2π)−2dm(−1)dm
∑

σ∈S(m,m)

∫
(Rd )2m

⎛
⎝ m∏

j=1

e−i〈z j ,u j +u j+m〉
⎞
⎠

×
∫

�2m
0,t

fσ (s, z)
2m∏
j=1

u
α[σ( j)]
σ( j)

d∏
l=1

exp

{
−1

2
((u(l)

σ ( j))1≤ j≤2m)T Q((u(l)
σ ( j))1≤ j≤2m)

}

× ds1 . . . ds2mdu(1)
σ (1) . . . du(1)

σ (2m) . . . du(d)
σ (1) . . . du(d)

σ (2m), (3.7)

where

Q = Q(s) := (E[B(1)
si

B(1)
s j

])1≤i, j≤2m .

Further, we see that

∫
�2m

0,t

| fσ (s, z)|
∫

(Rd )2m

2m∏
j=1

d∏
l=1

∣∣∣u(l)
σ ( j)

∣∣∣α
(l)
[σ( j)]

d∏
l=1

exp

{
−1

2
((u(l)

σ ( j))1≤ j≤2m)T Q((u(l)
σ ( j))1≤ j≤2m)

}

du(1)
σ (1) . . . du(1)

σ (2m) . . . du(d)
σ (1) . . . du(d)

σ (2m)ds1 . . . ds2m

=
∫

�2m
0,t

| fσ (s, z)|
∫

(Rd )2m

2m∏
j=1

d∏
l=1

∣∣∣u(l)
j

∣∣∣α
(l)
[σ( j)]

d∏
l=1

exp

{
−1

2

〈
Qu(l), u(l)

〉}

du(1)
1 . . . du(1)

2m . . . du(d)
1 . . . du(d)

2mds1 . . . ds2m
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=
∫

�2m
0,t

| fσ (s, z)|
d∏

l=1

∫
R2m

⎛
⎝ 2m∏

j=1

∣∣∣u(l)
j

∣∣∣α
(l)
[σ( j)]

⎞
⎠ exp

{
−1

2

〈
Qu(l), u(l)

〉}
du(l)

1 . . . du(l)
2mds1 . . . ds2m, (3.8)

where

u(l) := (u(l)
j )1≤ j≤2m .

We have that

∫
R2m

⎛
⎝ 2m∏

j=1

∣∣∣u(l)
j

∣∣∣α
(l)
[σ( j)]

⎞
⎠ exp

{
−1

2

〈
Qu(l), u(l)

〉}
du(l)

1 . . . du(l)
2m

= 1

(det Q)1/2

∫
R2m

⎛
⎝ 2m∏

j=1

∣∣∣
〈
Q−1/2u(l), e j

〉∣∣∣α
(l)
[σ( j)]

⎞
⎠ exp

{
−1

2

〈
u(l), u(l)

〉}
du(l)

1 . . . du(l)
2m ,

where ei , i = 1, . . . , 2m is the standard ONB of R
2m .

We also get that

∫
R2m

⎛
⎝ 2m∏

j=1

∣∣∣
〈
Q−1/2u(l), e j

〉∣∣∣α
(l)
[σ( j)]

⎞
⎠ exp

{
−1

2

〈
u(l), u(l)

〉}
du(l)

1 . . . du(l)
2m

= (2π)m E

[ 2m∏
j=1

∣∣∣
〈
Q−1/2Z , e j

〉∣∣∣α
(l)
[σ( j)]

]
,

where

Z ∼ N (O, I2m×2m).

We know from Lemma [28], which is a type of Brascamp–Lieb inequality that

E

⎡
⎣ 2m∏

j=1

∣∣∣
〈
Q−1/2Z , e j

〉∣∣∣α
(l)
[σ( j)]

⎤
⎦

≤
√
perm

(∑)
=

√√√√√√
∑

π∈S2|α(l)|

2|α(l)|∏
i=1

aiπ(i),
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where perm(
∑

) is the permanent of the covariance matrix
∑ = (ai j ) of the Gaussian

random vector

( 〈
Q−1/2Z , e1

〉
, . . . ,

〈
Q−1/2Z , e1

〉
︸ ︷︷ ︸

α
(l)
[σ(1)] times

,
〈
Q−1/2Z , e2

〉
, . . . ,

〈
Q−1/2Z , e2

〉
︸ ︷︷ ︸

α
(l)
[σ(2)] times

, . . . ,

〈
Q−1/2Z , e2m

〉
, . . . ,

〈
Q−1/2Z , e2m

〉
︸ ︷︷ ︸

α
(l)
[σ(2m)] times

)
,

∣∣α(l)
∣∣ := ∑m

j=1 α
(l)
j and where Sn stands for the permutation group of size n.

In addition, using an upper bound for the permanent of positive semidefinite matri-
ces (see [5]) or direct computations we get that

perm
(∑)

=
∑

π∈S2|α(l)|

2
∣∣α(l)

∣∣∏
i=1

aiπ(i) ≤ (2
∣∣∣α(l)

∣∣∣)!
2
∣∣α(l)

∣∣∏
i=1

aii . (3.9)

Let now i ∈ [∑ j−1
r=1 α

(l)
[σ(r)] + 1,

∑ j
r=1 α

(l)
[σ(r)]] for some arbitrary fixed j ∈

{1, . . . , 2m}. Then,

aii = E[
〈
Q−1/2Z , e j

〉 〈
Q−1/2Z , e j

〉
].

Further using substitution, we also have that

E[
〈
Q−1/2Z , e j

〉 〈
Q−1/2Z , e j

〉
]

= (det Q)1/2
1

(2π)m

∫
R2m

〈
u, e j

〉2 exp
(

−1

2
〈Qu, u〉

)
du1 . . . du2m

= (det Q)1/2
1

(2π)m

∫
R2m

u2
j exp

(
−1

2
〈Qu, u〉

)
du1 . . . du2m

We now want to use Lemma A.7.
Then, we get that

∫
R2m

u2
j exp

(
−1

2
〈Qu, u〉

)
du1 . . . dum

= (2π)(2m−1)/2

(det Q)1/2

∫
R

v2 exp

(
−1

2
v2
)
dv

1

σ 2
j

= (2π)m

(det Q)1/2

1

σ 2
j

,
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where σ 2
j := Var[B H

s j

∣∣∣B H
s1 , . . . , B H

s2m
without B H

s j

]
.

We now want to use strong local non-determinism of the form (see (2.7)): For all
t ∈ [0, T ], 0 < r < t :

Var
[
B H

t |B H
s , |t − s| ≥ r

] ≥ Kr2H .

The latter implies that

(det Q(s))1/2 ≥ K (2m−1)/2 |s1|H |s2 − s1|H . . . |s2m − s2m−1|H

as well as

σ 2
j ≥ K min{∣∣s j − s j−1

∣∣2H
,
∣∣s j+1 − s j

∣∣2H }.

Thus,

2m∏
j=1

σ
−2α(1)

[σ( j)]
l ≤ K −2

∣∣α(l)
∣∣ 2m∏

j=1

1

min
{ ∣∣s j − s j−1

∣∣2Hα
(1)
[σ( j)] ,

∣∣s j+1 − s j
∣∣2Hα

(1)
[σ( j)] }

≤ C
∣∣α(l)

∣∣ 2m∏
j=1

1
∣∣s j − s j−1

∣∣4Hα
(1)
[σ( j)]

for a constant C only depending on H and T .
Hence, it follows from (3.9) that

perm
(∑)

≤ (2|α(l)|)!
2|α(l)|∏
i=1

aii

≤ (2|α(l)|)!
2m∏
j=1

((det Q)1/2
1

(2π)m

(2π)m

(det Q)1/2

1

σ 2
j

)
α

(1)
[σ( j)]

≤ (2|α(l)|)!C |α(l)|
2m∏
j=1

1

|s j − s j−1|4Hα
(1)
[σ( j)]

.

So

E

[ 2m∏
j=1

∣∣∣
〈
Q−1/2Z , e j

〉∣∣∣α
(l)
[σ( j)]

]
≤
√
perm

(∑)

≤
√

(2
∣∣α(l)

∣∣)!C ∣∣α(l)
∣∣ 2m∏

j=1

1
∣∣s j − s j−1

∣∣2Hα
(1)
[σ( j)]

.
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Therefore, we obtain from (3.7) and (3.8) that

E[
∣∣∣� f

α (θ, t, z)
∣∣∣2]

≤ Cm
∫

�2m
0,t

| fσ (s, z)|
d∏

l=1

∫
R2m

⎛
⎝ 2m∏

j=1

∣∣∣u(l)
j

∣∣∣α
(l)
[σ( j)]

⎞
⎠ exp

{
−1

2

〈
Qu(l), u(l)

〉}
du(l)

1 . . . du(l)
2mds1 . . . ds2m

≤ Mm
∫

�2m
0,t

| fσ (s, z)| 1

(det Q(s))d/2

d∏
l=1

√
(2
∣∣α(l)

∣∣)!C ∣∣α(l)
∣∣

2m∏
j=1

1
∣∣s j − s j−1

∣∣2Hα
(1)
[σ( j)]

ds1 . . . ds2m

= MmC |α|
d∏

l=1

√
(2
∣∣α(l)

∣∣)!
∫

�2m
0,t

| fσ (s, z)|

2m∏
j=1

1
∣∣s j − s j−1

∣∣H(d+2
∑d

l=1 α
(1)
[σ( j)])

ds1 . . . ds2m

for a constant M depending on d.
Finally, we show estimate (3.6). Using the inequality (3.5), we find that

∣∣∣∣E
[∫

(Rd )m
�κ f

α (θ, t, z)dz

]∣∣∣∣
≤
∫

(Rd )m
(E[|�κ f

α (θ, t, z)|2)1/2dz ≤ Cm/2+|α|/2
∫

(Rd )m
(�

κ f
k (θ, t, z))1/2dz.

Taking the supremum over [0, T ] for each function f j , i.e.,

∣∣ f[σ( j)](s j , z[σ( j)])
∣∣ ≤ sup

s j ∈[0,T ]
∣∣ f[σ( j)](s j , z[σ( j)])

∣∣ , j = 1, . . . , 2m

one obtains that
∣∣∣∣E

[∫
(Rd )m

�κ f
α (θ, t, z)dz

]∣∣∣∣

≤ Cm+|α| max
σ∈S(m,m)

∫
(Rd )m

(
2m∏
l=1

∥∥ f[σ(l)](·, z[σ(l)])
∥∥

L∞([0,T ])

)1/2

dz

×
( d∏

l=1

√
(2
∣∣α(l)

∣∣)! ∑
σ∈S(m,m)

∫
�2m

0,t

|κσ (s)|
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2m∏
j=1

1
∣∣s j − s j−1

∣∣H(d+2
∑d

l=1 α
(1)
[σ( j)])

ds1 . . . ds2m

)1/2

= Cm+|α| max
σ∈S(m,m)

∫
(Rd )m

(
2m∏
l=1

∥∥ f[σ(l)](·, z[σ(l)])
∥∥

L∞([0,T ])

)1/2

dz · (�κ

k (θ, t))1/2

= Cm+|α|
∫

(Rd )m

m∏
j=1

∥∥ f j (·, z j )
∥∥

L∞([0,T ]) dz · (�κ

k (θ, t))1/2

= Cm+|α|
m∏

j=1

∥∥ f j (·, z j )
∥∥

L1(Rd ;L∞([0,T ])) · (�κ

k (θ, t))1/2.

�

The next result is a key estimate which shows why fractional Brownian motion

regularizes (1.1). It rests in fact on the earlier integration byparts formula. This estimate
is given in more explicit terms when the function κ is chosen to be

κ j (s) = (K H (s, θ) − K H (s, θ ′))ε j , θ < s < t

and

κ j (s) = (K H (s, θ))ε j , θ < s < t

for every j = 1, . . . , m with (ε1, . . . , εm) ∈ {0, 1}m . It will be made clear why these
choices are important in the forthcoming section.

Proposition 3.2 Let B H , H ∈ (0, 1/2) be a standard d-dimensional fractional
Brownian motion and functions f and κ as in (3.1), respectively, as in (3.2). Let
θ, θ ′, t ∈ [0, T ], θ ′ < θ < t and

κ j (s) = (K H (s, θ) − K H (s, θ ′))ε j , θ < s < t

for every j = 1, . . . , m with (ε1, . . . , εm) ∈ {0, 1}m for θ, θ ′ ∈ [0, T ] with θ ′ < θ.

Let α ∈ (Nd
0)

m be a multi-index. If

H <

1
2 − γ(

d − 1 + 2
∑d

l=1 α
(l)
j

)

for all j , where γ ∈ (0, H) is sufficiently small, then there exists a universal constant
C (depending on H, T and d, but independent of m, { fi }i=1,...,m and α) such that for
any θ, t ∈ [0, T ] with θ < t we have

∣∣∣∣∣∣E
∫

�m
θ,t

⎛
⎝ m∏

j=1

Dα j f j (s j , B H
s j

)κ j (s j )

⎞
⎠ ds

∣∣∣∣∣∣
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≤ Cm+|α|
m∏

j=1

∥∥ f j (·, z j )
∥∥

L1(Rd ;L∞([0,T ]))

(
θ − θ ′
θθ ′

)γ
∑m

j=1 ε j

θ
(H− 1

2−γ )
∑m

j=1 ε j

×

(∏d
l=1(2

∣∣α(l)
∣∣)!
)1/4

(t − θ)
−H(md+2|α|)+(H− 1

2−γ )
∑m

j=1 ε j +m


(−H(2md + 4 |α|) + 2(H − 1
2 − γ )

∑m
j=1 ε j + 2m)1/2

.

Proof By definition of �
κ f
α (3.4), it immediately follows that the integral in our

proposition can be expressed as

∫
�m

θ,t

⎛
⎝ m∏

j=1

Dα j f j (s j , B H
s j

)κ j (s j )

⎞
⎠ ds =

∫
Rdm

�κ f
α (θ, t, z)dz.

Taking expectation and using Theorem 3.1, we obtain

∣∣∣∣∣∣E
∫

�m
θ,t

⎛
⎝ m∏

j=1

Dα j f j (s j , B H
s j

)κ j (s j )

⎞
⎠ ds

∣∣∣∣∣∣
≤ Cm+|α|

m∏
j=1

∥∥ f j (·, z j )
∥∥

L1(Rd ;L∞([0,T ])) · (�κ

k (θ, t))1/2,

where in this situation

�κ

k (θ, t)

:=
d∏

l=1

√
(2
∣∣α(l)

∣∣)! ∑
σ∈S(m,m)

∫
�2m

0,t

2m∏
j=1

(K H (s j , θ) − K H (s j , θ ′))ε[σ( j)]

1
∣∣s j − s j−1

∣∣H(d+2
∑d

l=1 α
(1)
[σ( j)])

ds1 . . . ds2m .

Wewant to apply Lemma A.8. For this, we need that−H(d +2
∑d

l=1 α
(1)
[σ( j)])+ (H −

1
2 − γ )ε[σ( j)] > −1 for all j = 1, . . . , 2m. The worst case is when ε[σ( j)] = 1 for all

j . So H <
1
2−γ

(d−1+2
∑d

l=1 α
(1)
[σ( j)])

for all j . Hence, we have

�κ

k (θ, t) ≤
∑

σ∈S(m,m)

(
θ − θ ′
θθ ′

)γ
∑2m

j=1 ε[σ( j)]
θ

(H− 1
2−γ )

∑2m
j=1 ε[σ( j)]

×
d∏

l=1

√
(2
∣∣α(l)

∣∣)!�γ (2m)(t − θ)
−H(2md+4|α|)+(H− 1

2−γ )
∑2m

j=1 ε[σ( j)]+2m
,
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where�γ (m) is defined as in LemmaA.8. The latter can be bounded above as follows

�γ (2m) ≤
∏2m

j=1 

(
1 − H

(
d + 2

∑d
l=1 α

(1)
[σ( j)]

))



(
−H(2md + 4 |α|) + (H − 1

2 − γ )
∑2m

j=1 ε[σ( j)] + 2m
) .

Observe that
∑2m

j=1 ε[σ( j)] = 2
∑m

j=1 ε j . Therefore, we have that

(�κ

k (θ, t))1/2

≤ Cm
(

θ − θ ′
θθ ′

)γ
∑m

j=1 ε j

θ
(H− 1

2−γ )
∑m

j=1 ε j

×

(∏d
l=1(2

∣∣α(l)
∣∣)!
)1/4

(t − θ)
−H(md+2|α|)+(H− 1

2−γ )
∑m

j=1 ε j +m


(−H(2md + 4 |α|) + 2(H − 1
2 − γ )

∑m
j=1 ε j + 2m)1/2

,

where we used
∏2m

j=1 
(1− H(d +2
∑d

l=1 α
(1)
[σ( j)]) ≤ Cm for a large enough constant

C > 0 and
√

a1 + · · · + am ≤ √
a1 + · · · √am for arbitrary nonnegative numbers

a1, . . . , am . �


Proposition 3.3 Let B H , H ∈ (0, 1/2) be a standard d-dimensional fractional Brow-
nian motion and functions f and κ as in (3.1), respectively, as in (3.2). Let θ, t ∈ [0, T ]
with θ < t and

κ j (s) = (K H (s, θ))ε j , θ < s < t

for every j = 1, . . . , m with (ε1, . . . , εm) ∈ {0, 1}m. Let α ∈ (Nd
0)

m be a multi-index.
If

H <

1
2 − γ

(d − 1 + 2
∑d

l=1 α
(l)
j )

for all j , where γ ∈ (0, H) is sufficiently small, then there exists a universal constant
C (depending on H, T and d, but independent of m, { fi }i=1,...,m and α) such that for
any θ, t ∈ [0, T ] with θ < t we have

∣∣∣∣∣∣E
∫

�m
θ,t

⎛
⎝ m∏

j=1

Dα j f j (s j , B H
s j

)κ j (s j )

⎞
⎠ ds

∣∣∣∣∣∣
≤ Cm+|α|

m∏
j=1

∥∥ f j (·, z j )
∥∥

L1(Rd ;L∞([0,T ])) θ
(H− 1

2 )
∑m

j=1 ε j
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×
(∏d

l=1(2|α(l)|)!
)1/4

(t − θ)
−H(md+2|α|)+(H− 1

2−γ )
∑m

j=1 ε j +m



(
−H(2md + 4|α|) + 2

(
H − 1

2 − γ
)∑m

j=1 ε j + 2m
)1/2 .

Proof The proof is similar to the previous proposition. �

Remark 3.4 We mention that

d∏
l=1

(2
∣∣∣α(l)

∣∣∣)! ≤ (2 |α|)!C |α|

for a constantC depending on d. Later on in the paper, whenwe deal with the existence
of strong solutions, we will consider the case

α
(l)
j ∈ {0, 1} for all j, l

with

|α| = m.

4 Local Times of a Fractional BrownianMotion and Properties

One can define, heuristically, the local time Lx
t

(
B H

)
of B H at x ∈ R

d by

Lx
t

(
B H

)
=
∫ t

0
δx (B H

s )ds.

It is known that Lx
t

(
B H

)
exists and is jointly continuous in (t, x) as long as Hd < 1.

See, e.g., [39] and the references therein. Moreover, by the self-similarity property of

the fBm one has that Lx
t

(
B H

) law= t1−Hd Lx/t H

1 (B H ) and, in particular

L0
t

(
B H

)
law= t1−Hd L0

1(B H ).

The rigorous construction of Lx
t

(
B H

)
involves approximating theDirac delta function

by an approximate unity. It is convenient to consider the Gaussian approximation of
unity

ϕε(x) = ε− d
2 ϕ

(
ε− 1

2 x
)

, ε > 0,

for every x ∈ R
d where ϕ is the d-dimensional standard Gaussian density. Then, we

can define the smoothed local times

Lx
t (B H , ε) =

∫ t

0
ϕε(B H

s − x)ds
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and construct Lx
t (B H ) as the limit when ε tends to zero in L2(�). Note that, using the

Fourier transform, one can write ϕε(x) as follows

ϕε(x) = 1

(2π)d

∫
Rd

exp

(
i 〈ξ, x〉

Rd − ε
|ξ |2

Rd

2

)
dξ.

The previous expression allows us to write

Lx
t

(
B H , ε

)
= 1

(2π)d

∫ t

0

∫
Rd

exp

(
i
〈
ξ, B H

s − x
〉
Rd

− ε
|ξ |2

Rd

2

)
dξds,

and

E

[
Lx

t

(
B H , ε

)m] = m!
(2π)md

∫
Tm (0,t)

∫
Rmd

E

⎡
⎣exp

⎛
⎝i

m∑
j=1

〈
ξ j , B H

s j

〉
Rd

⎞
⎠
⎤
⎦

× exp

⎛
⎝−

m∑
j=1

(
i
〈
ξ j , x

〉
Rd + ε

∣∣ξ j
∣∣2
Rd

2

)⎞
⎠ dξ̄ds, (4.1)

where ξ̄ = (ξ1, . . . , ξm) = (ξ11 , . . . , ξd
1 , . . . , ξ1m . . . , ξd

m) ∈ R
md and s =

(s1, . . . , sm) ∈ Tm(0, t) = {0 ≤ s1 < s2 < · · · < s ≤ t}. Next, note that

E

⎡
⎣exp

⎛
⎝i

m∑
j=1

〈
ξ j , B H

s j

〉
Rd

⎞
⎠
⎤
⎦ = exp

⎛
⎝−1

2
Var

⎡
⎣ m∑

j=1

d∑
k=1

ξ k
j B H ,k

s j

⎤
⎦
⎞
⎠

= exp

⎛
⎝−1

2

d∑
k=1

Var

⎡
⎣ m∑

j=1

ξ k
j B H ,k

s j

⎤
⎦
⎞
⎠

= exp

(
−1

2

d∑
k=1

〈
ξ k, Q(s)ξ k

〉
Rm

)
,

where ξ k = (
ξ k
1 , . . . , ξ k

m

)
and Q(s) is the covariance matrix of the vector(

B H ,1
s1 , . . . , B H ,1

sm

)
. Rearranging the terms in the second exponential in Eq. (4.1),

we can write

E

[
Lx

t

(
B H , ε

)m]

= m!
(2π)md

∫
Tm (0,t)

∫
Rmd

exp

(
−1

2

d∑
k=1

(〈
ξ k, Q(s)ξ k

〉
Rm

+ ε
∣∣ξ k

∣∣2
Rm

2

))

× exp

⎛
⎝−i

m∑
j=1

〈
ξ j , x

〉
d

⎞
⎠ dξ̄ds,
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≤ m!
(2π)md

∫
Tm (0,t)

(∫
Rm

exp

(
−1

2

〈
ξ1, Q(s)ξ1

〉
Rm

− ε
∣∣ξ1∣∣2

Rm

2

)
dξ1

)d

ds

≤ m!
(2π)md

∫
Tm (0,t)

(∫
Rm

exp

(
−1

2

〈
ξ1, Q(s)ξ1

〉)
dξ1

)d

ds

= m!
(2π)

dm
2

∫
Tm (0,t)

(det Q(s))−
d
2 ds � αm .

Hence, by dominated convergence, we can conclude that E
[

Lx
t

(
B H , ε

)m
]
converges

when ε tends to zero as long as αm < ∞. If α2 < ∞, then one can similarly show
that

lim
ε1,ε2→0+ E

[
Lx

t

(
B H , ε1

)
Lx

t

(
B H , ε2

)]

exists, which yields the convergence in L2 (�) of Lx
t

(
B H , ε

)
. If αm < ∞ for all

m ≥ 1, one can deduce the convergence in L p (�) , p ≥ 2 of Lx
t

(
B H , ε

)
.

The following well-known result can be found in Anderson [6, p. 42].

Lemma 4.1 Let (X1, . . . , Xm) be a mean-zero Gaussian random vector. Then,

det (Cov [X1, . . . , Xm]) = Var [X1] Var [X2|X1] · · ·Var
[
Xm |Xm−1, . . . , X1

]
.

Another useful elementary result is:

Lemma 4.2 Let X be a square integrable random variable and G1 ⊂ G2 be two σ -
algebras. Then,

Var [X |G1] ≥ Var [X |G2] .

Combining Lemmas 4.1, 4.2 and (2.7), we get that

det Q(s) = Var
[

B H ,1
s1

]
Var

[
B H ,1

s2 |B H ,1
s1

]
· · ·Var

[
B H ,1

sm
|B H ,1

sm−1
, . . . , B H ,1

s1

]

≥ s2H
1 Var

[
B H ,1

s2 |Fs1

]
· · ·Var

[
B H ,1

sm
|Fsm−1

]

≥ K m−1s2H
1 (s2 − s1)

2H · · · (sm − sm−1)
2H

and, therefore,

∫
Tm (0,t)

(det Q(s))− d
2 ds ≤ K

d
2 (1−m)

∫
Tm (0,t)

s−Hd
1 (s2 − s1)

−Hd · · · (sm − sm−1
)−Hd ds

= K
d
2 (1−m)

⎛
⎝ m∏

j=1

B ( j (1 − Hd) , 1 − Hd)

⎞
⎠ tm(1−Hd) < ∞,
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if Hd < 1. Finally, we have proved the bound

E

[
Lx

t

(
B H

)m] ≤ m!
(2π)

dm
2

K
d
2 (1−m)

⎛
⎝ m∏

j=1

B ( j (1 − Hd) , 1 − Hd)

⎞
⎠ tm(1−Hd)

(4.2)

Remark 4.3 We just have checked that if Hd < 1, then Lx
t

(
B H

)
exists and has

moments of all orders. By checking that
∑

m≥1
αm
m! < ∞, one can deduce that Lx

t

(
B H

)
has exponentialmoments or all orders. Furthermore, one can also show the existence of

exponential moments of Lx
t

(
B H

)2
by doing similar computations as before. However,

one may also use Theorem 4.4 to show that the exponential moments are finite.

Chen et al. [12] proved the following result on large deviations for local times
of fractional Brownian motion, which we will not use in our paper but which is of
independent interest:

Theorem 4.4 Let B H be a standard fractional Brownian motion with Hurst index H
such that Hd < 1. Then, the limit

lim
a→∞ a− 1

Hd log P
(

L0
1(B H ) ≥ a

)
= −θ(H , d),

exists and θ(H , d) satisfies the following bounds

(
πc2H

H

) 1
2H

θ0(Hd) ≤ θ(H , d) ≤ (2π)
1
2H θ0(Hd),

where cH is given by and

θ0(λ) = λ

(
(1 − λ)1−λ


(1 − λ)

)1/λ

.

5 Existence of Strong Solutions

As outlined in the introduction, the object of study is a generalized SDE with additive
d-dimensional fractional Brownian noise B H with Hurst parameter H ∈ (0, 1/2), i.e.,

X x
t = x + αLt (X x ) · 1d + B H

t , 0 ≤ t ≤ T , x ∈ R
d , (5.1)

where Lt (X x ), t ∈ [0, T ] is a stochastic process of bounded variation which arises
from taking the limit

Lt (X x ) := lim
ε↘0

∫ t

0
ϕε(X x

s )ds,
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in probability, where ϕε are probability densities approximating δ0, denoting δ0 the
Dirac delta generalized function with total mass at 0. We will consider

ϕε(x) = ε− d
2 ϕ

(
ε− 1

2 x
)

, ε > 0, (5.2)

where ϕ is the d-dimensional standard Gaussian density function.
Hereunder, we establish the main result of this section for H < 1

2(2+d)
(see [11]).

Theorem 5.1 If H < 1/(2(2 + d)), d ≥ 1, there exists a continuous strong solution
X x = {X x

t , t ∈ [0, T ], x ∈ R
d} of Eq. (5.1) for all α. Moreover, for every t ∈ [0, T ],

Xt is Malliavin differentiable in the direction of the Brownian motion W in (2.3).

Proposition 5.2 Retain the conditions of Theorem 5.1. Let Y x· be another solution to
the SDE (5.1). Suppose that the Doleans–Dade exponentials

E
(∫ T

0
−K −1

H

(∫ ·

0
ϕε(Y

x
u )1ddu

)∗
(s)dWs

)
, ε > 0

converge in L p(�) for ε −→ 0 for all p ≥ 1, where ϕε is the approximation of the
Dirac delta δ0 in (5.2) and ∗ denotes transposition. Then, strong uniqueness holds for
such solutions.

In particular, this is the case, if, e.g., uniqueness in law is satisfied.

The proof of Theorem 5.1 essentially consists of four steps:

(1) In the first step, we construct a weak solution X to (5.1) by using the version
of Girsanov’s theorem for the fractional Brownian motion, that is we consider a
probability space (�,A, P) on which a fractional Brownian motion B H and a
process X x are defined such that (5.1) holds. However, a priori the solution is not a
measurable functional of the driving noise, that is X x is not adapted to the filtration
F = {Ft }t∈[0,T ] generated by B H .

(2) In the next step, we approximate the generalized drift coefficient δ0 by the Gaus-
sian kernels ϕε. Using classical Picard iteration, we know that for each smooth
coefficient ϕε, ε > 0, there exists unique strong solution Xε· to the SDE

d Xε
t = αϕε(Xε

t ) · 1ddt + d B H
t , 0 ≤ t ≤ T , Xε

0 = x ∈ R
d . (5.3)

Then, we prove that for each t ∈ [0, T ], the family {Xε
t }ε>0 converges weakly as

ε ↘ 0 to the conditional expectation E[Xt |Ft ] in the space L2(�;Ft ) of square
integrable, Ft -measurable random variables.

(3) Further, it is well known, see, e.g., [35], that for each t ∈ [0, T ] the strong solution
Xε

t , ε > 0, is Malliavin differentiable, and that the Malliavin derivative Ds Xε
t ,

0 ≤ s ≤ t , with respect to W in (2.3) solves the equation

Ds Xε
t = K H (t, s)Id +

∫ t

s
αϕ′

ε(Xε
u) · 1d Ds Xε

udu, (5.4)
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where ϕ′
ε denotes the Jacobian of ϕε. Using a compactness criterion based on

Malliavin calculus (see “Appendix A”), we then show that for every t ∈ [0, T ] the
set of random variables {Xε

t }ε>0 is relatively compact in L2(�), which enables
us to conclude that Xε

t converges strongly as ε ↘ 0 in L2(�;Ft ) to E [Xt |Ft ].
As a consequence of the compactness criterion, we also observe that E[Xt |Ft ] is
Malliavin differentiable.

(4) Finally, we prove that E [Xt |Ft ] = Xt , which entails that Xt is Ft -measurable
and thus a strong solution on our specific probability space, on which we assumed
our weak solution.

We assume without loss of generality that α = 1. Let us first have a look at
step 1 of our program, that is we want to construct weak solutions of (5.1) by using
Girsanov’s theorem. Let (�,A, P̃) be some given probability space which carries a
d-dimensional fractional Brownian motion B̃ H with Hurst parameter H ∈ (0, 1/2)

and set X x
t := x + B̃ H

t , t ∈ [0, T ], x ∈ R
d . Set θt :=

(
K −1

H

(∫ ·
0 δ0(X x

r )dr1d
))

(t)

and consider the Doléans–Dade exponential

ξt := exp

{∫ t

0
θT

s dWs − 1

2

∫ t

0
θT

s θsds

}
, t ∈ [0, T ].

formally.
If we were allowed to implement Girsanov’s theorem in this setting, we would

arrive at the conclusion that the process

B H
t := X x

t − x −
∫ t

0
δx (X x

s )ds1d

= B̃ H
t −

∫ t

0
δ0(B̃ H

s )ds1d (5.5)

is a fractional Brownian motion on (�,A, P) with Hurst parameter H ∈ (0, 1/2),
where d P

d P̃
= ξT . Hence, because of (5.5), the couple (X x , B H )will be a weak solution

of 5.1 on (�,A, P).
Therefore, in what follows we show that the requirements of Theorem 2.5 are

accomplished.

Lemma 5.3 Let x ∈ R
d . If H < 1

2(1+d)
, then

sup
ε>0

E

[
exp

(
μ

∫ T

0
(K −1

H

(∫ ·

0
ϕx,ε(B H

u )du)(t)

)2

dt

)]
< ∞

for all μ ∈ R, where

ϕx,ε(B H
u ) = 1

(2πε)
d
2

exp

(
−
∣∣B H

u − x
∣∣2
Rd

2ε

)
.
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Proof In order to prove Lemma 5.3, we can write

K −1
H

(∫ ·

0
ϕx,ε(B H

r )dr

)
(t) = t H− 1

2 I
1
2−H
0+ t

1
2−H

(∫ ·

0
ϕx,ε(B H

r )dr

)′
(t)

= t H− 1
2

∫ t

0
γ− 1

2−H , 12−H (t, u)ϕx,ε(B H
u )du,

where

γα,β(t, u) = (t − u)α uβ.

Using the self-similarity of the fBm, we can write

K −1
H

(∫ .

0
ϕx,ε(B H

r )dr

)
(t)

law= t
1
2−H(1+d)

∫ 1

0
γ− 1

2−H , 12−H (1, u)ϕxt−H ,ε(t)(B H
u )du,

where ε(t) := εt−2H , and hence

K −1
H

(∫ .

0
ϕx,ε(B H

r )dr

)2m

(t)
law= t

2m
(
1
2−H(1+d)

)

(∫ 1

0
γ− 1

2−H , 12−H (1, u)ϕxt−H ,ε(t)(B H
u )du

)2m

= t
2m

(
1
2−H(1+d)

)
(2m)!

∫
T2m (0,1)

2m∏
j=1

γ− 1
2−H , 12−H (1, u j )ϕxt−H ,ε(t)(B H

u j
)du,

where Tn(0, s) = {0 ≤ u1 < u2 < · · · < un ≤ s} and

ϕxt−H ,ε(t)(B H
u j

) = 1

(2π)d

∫
Rd

exp

(
i
〈
ξ, B H

u j
− xt−H

〉
Rd

− ε(t)
|ξ |2

Rd

2

)
dξ.

Then,

E

[(∫ T

0

(
K −1

H

(∫ .

0
ϕx,ε(B H

u )du

)
(t)

)2

dt

)m]

≤ T m−1
∫ T

0
E

[
K −1

H

(∫ .

0
ϕx,ε(B H

r )dr

)2m

(t)

]
dt

= T m−1
∫ T

0
t2m( 12−H(1+d))(2m)!

∫
T2m (0,1)

⎛
⎝ 2m∏

j=1

γ− 1
2−H , 12−H (1, u j )

⎞
⎠ E

⎡
⎣ 2m∏

j=1

ϕxt−H ,ε(t)(B H
u j

)

⎤
⎦ dudt .
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Moreover,

E

⎡
⎣ 2m∏

j=1

ϕxt−H ,ε(t)(B H
u j

)

⎤
⎦

= 1

(2π)2dm
E

⎡
⎣ 2m∏

j=1

∫
Rd

exp

(
i
〈
ξ j , B H

u j
− xt−H

〉
Rd

− ε(t)

∣∣ξ j
∣∣2
Rd

2

)
dξ j

⎤
⎦

= 1

(2π)2dm

∫
R2dm

E

⎡
⎣exp

⎛
⎝i

2m∑
j=1

〈
ξ j , B H

u j

〉
Rd

⎞
⎠
⎤
⎦

× exp

⎛
⎝−i

2m∑
j=1

〈
ξ j , xt−H

〉
Rd

⎞
⎠

× exp

⎛
⎝−ε(t)

2

2m∑
j=1

∣∣ξ j
∣∣2
Rd

⎞
⎠ dξ1 . . . dξ2m .

Next, note that

E

⎡
⎣exp

⎛
⎝i

2m∑
j=1

〈
ξ j , B H

u j

〉
Rd

⎞
⎠
⎤
⎦ = exp

⎛
⎝−1

2
Var

⎡
⎣ 2m∑

j=1

d∑
k=1

ξ k
j B H ,k

u j

⎤
⎦
⎞
⎠

= exp

⎛
⎝−1

2

d∑
k=1

Var

⎡
⎣ 2m∑

j=1

ξ k
j B H ,k

u j

⎤
⎦
⎞
⎠ = exp

(
−1

2

d∑
k=1

〈
ξ k, Q(u)ξ k

〉
R2m

)
,

where

Q(u) = Cov(B H ,1
u1 , . . . , B H ,1

u2m
).

Hence,

E

⎡
⎣ 2m∏

j=1

ϕxt−H ,ε(t)(B H
u j

)

⎤
⎦

≤ 1

(2π)2dm

∫
R2dm

exp

⎛
⎝−1

2
Var

⎡
⎣ 2m∑

j=1

d∑
k=1

ξ k
j B H ,k

u j

⎤
⎦
⎞
⎠ dξ1 . . . dξ2m

= 1

(2π)2dm

∫
R2dm

exp

(
−1

2

d∑
k=1

〈
ξ k, Q(u)ξ k

〉
R2m

)
dξ1 . . . dξ2m
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= 1

(2π)2dm

(∫
R2m

exp

(
−1

2

d∑
k=1

〈
ξ1, Q(u)ξ1

〉
R2m

)
dξ1

)d

≤ 1

(2π)dm
(det Q(u))−

d
2 .

Using the last estimate, we get that

E

[(∫ T

0
(K −1

H

(∫ ·

0
ϕx,ε(B H

u )du)(t)

)2

dt

)m]

≤ T m−1

(2π)dm
T
2m

(
1
2−H(1+d)

)

× (2m)!
∫
T2m (0,1)

⎛
⎝ 2m∏

j=1

γ− 1
2−H , 12−H (1, u j )

⎞
⎠ (det Q(u))−

d
2 du

≤ T m−1

(2π)dm
T
2m

(
1
2−H(1+d)

)

× Cm
H ,d(m!)2H(1+d),

where the last bound is due to Lemma A.5 for a constant CH ,d only depending on H
and d. So the result follows. �

Proposition 5.4 Let x ∈ R

d and H < 1
2(1+d)

. Then, there exists a ζT ∈ L p(�) such
that

E
(∫ T

0
K −1

H

(∫ ·

0
ϕx,1/n(B H

u )1ddu

)∗
(s)dWs

)
−→

n−→∞ ζT in L p(�)

for all p ≥ 1. Furthermore,

B H
t − Lx

t (B H )1d , 0 ≤ t ≤ T

is a fractional Brownian motion with Hurst parameter H under the change of measure
with respect to the Radon–Nikodym derivative ζT .

Proof Without loss of generality, let p = 1. Then, using |ex − ey | ≤ |x − y| ex+y ,
Hölder’s inequality, the supermartingale property of Doleans–Dade exponentials we
get in connection with the previous lemma that

E

[∣∣∣∣E
(∫ T

0
K −1

H

(∫ ·

0
ϕx,1/n(B H

u )1ddu

)∗
(s)dWs

)

−E
(∫ T

0
K −1

H

(∫ ·

0
ϕx,1/r (B H

u

)
1ddu

)∗
(s)dWs

)∣∣∣∣∣
]

≤ C(I1 + I2)E,
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where

I1 := E

[ ∫ T

0

∣∣∣∣K −1
H

(∫ ·

0
ϕ1/n(B H

u )1ddu

)∗
(s)

−K −1
H

(∫ ·

0
ϕ1/r (B H

u )1ddu

)∗
(s)

∣∣∣∣
2

ds

]1/2
,

I2 := E

[(∫ T

0

∣∣∣∣K −1
H

(∫ ·

0
ϕ1/n(B H

u )1ddu

)∗
(s)

∣∣∣∣
2

ds

−
∫ T

0

∣∣∣∣K −1
H

(∫ ·

0
ϕ1/r (B H

u )1ddu

)∗
(s)

∣∣∣∣
2

ds

)2]1/2

E := E[exp{μ1

∫ t

0

∣∣∣∣K −1
H

(∫ ·

0
ϕ1/n(B H

u )1ddu

)∗
(s)

∣∣∣∣
2

ds}]1/4

· E

[
exp

{
μ2

∫ t

0

∣∣∣∣K −1
H

(∫ ·

0
ϕ1/r (B H

u )1ddu

)∗
(s)

∣∣∣∣
2

ds

}]1/4

for constants C, μ1, μ2 > 0.
Now, let us have a look at the proof of the previous lemma and adopt the notation

therein. In the sequel, we omit 1d . Then, we obtain for m = 1 by using the self-
similarity of the fBm in a similar way (but under expectation) that

E

[∣∣∣∣K −1
H

(∫ ·
0

ϕε1(B H
u )du

)∗
(t)

∣∣∣∣
2 ∣∣∣∣K −1

H

(∫ ·
0

ϕε2 (B H
u )du

)∗
(t)

∣∣∣∣
2
]

= E

⎡
⎣
(

t
2m

(
1
2−H(1+d)

)
(2m)!

)2 ∫
T2m (0,1)

2m∏
j=1

γ− 1
2−H , 12−H (1, u j )ϕxt−H ,ε1(t)(B H

u j
)du

×
∫
T2m (0,1)

2m∏
j=1

γ− 1
2−H , 12−H (1, u j )ϕxt−H ,ε2(t)(B H

u j
)du

⎤
⎦ ,

where εi (t) = εi t−2H , i = 1, 2. Using shuffling (see Sect. 2.2), we get that

E

[∣∣∣∣K −1
H

(∫ ·

0
ϕε1(B H

u )du

)∗
(t)

∣∣∣∣
2 ∣∣∣∣K −1

H

(∫ ·

0
ϕε2(B H

u )du

)∗
(t)

∣∣∣∣
2
]

= E

[(
t
2m

(
1
2−H(1+d)

)
(2m)!

)2

×
∑

σ∈S(2m,2m)

∫
T4m (0,1)

4m∏
j=1

fσ( j)(u j )du

⎤
⎦ ,
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where f j (s) := γ− 1
2−H , 12−H (1, s)ϕxt−H ,ε1(t)(B H

s ), if j = 1, . . . , 2m and

γ− 1
2−H , 12−H (1, s)ϕxt−H ,ε2(t)(B H

s ), if j = 2m+1, . . . , 4m.Without loss of generality,
consider the case

4m∏
j=1

fσ( j)(u j ) =
2m∏
j=1

γ− 1
2−H , 12−H (1, u j )ϕxt−H ,ε1(t)(B H

u j
)

×
4m∏

j=2m+1

γ− 1
2−H , 12−H (1, u j )ϕxt−H ,ε2(t)(B H

u j
).

Then,

E

⎡
⎣
(

t
2m

(
1
2−H(1+d)

)
(2m)!

)2 ∫
T4m (0,1)

4m∏
j=1

fσ( j)(u j )du

⎤
⎦ =

(
t
2m

(
1
2−H(1+d)

)
(2m)!

)2

×
∫
T4m (0,1)

2m∏
j=1

γ− 1
2−H , 12−H (1, u j )

4m∏
j=2m+1

γ− 1
2−H , 12−H (1, u j )

× E

⎡
⎣ 2m∏

j=1

ϕxt−H ,ε1(t)(B H
u j

)

4m∏
j=2m+1

ϕxt−H ,ε2(t)(B H
u j

)

⎤
⎦ du

=
(

t
2m

(
1
2−H(1+d)

)
(2m)!

)2 ∫
T4m (0,1)

4m∏
j=1

γ− 1
2−H , 12−H (1, u j )

× E

[ 2m∏
j=1

∫
Rd

exp

(
i
〈
ξ j , B H

u j
− xt−H

〉
Rd

− ε1(t)

∣∣ξ j
∣∣2
Rd

2

)
dξ j

×
4m∏

j=2m+1

∫
Rd

exp

(
i
〈
ξ j , B H

u j
− xt−H

〉
Rd

− ε2(t)

∣∣ξ j
∣∣2
Rd

2

)
dξ j

]
du

=
(

t
2m

(
1
2−H(1+d)

)
(2m)!

)2

×
∫
T4m (0,1)

4m∏
j=1

γ− 1
2−H , 12−H (1, u j )

× 1

(2π)4dm

∫
R4dm

E

⎡
⎣exp

⎛
⎝i

4m∑
j=1

〈
ξ j , B H

u j

〉
Rd

⎞
⎠
⎤
⎦

× exp

⎛
⎝−i

4m∑
j=1

〈
ξ j , xt−H

〉
Rd

⎞
⎠ exp

⎛
⎝−ε1(t)

2

2m∑
j=1

∣∣ξ j
∣∣2
Rd − ε2(t)

2

2m∑
j=1

∣∣ξ j
∣∣2
Rd

⎞
⎠

dξ1 . . . dξ4mdu.
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So

E

⎡
⎣
(

t
2m

(
1
2−H(1+d)

)
(2m)!

)2 ∫
T4m (0,1)

4m∏
j=1

fσ( j)(u j )du

⎤
⎦

=
(

t
2m

(
1
2−H(1+d)

)
(2m)!

)2 ∫
T4m (0,1)

4m∏
j=1

γ− 1
2−H , 12−H (1, u j )

× 1

(2π)4dm

∫
R4dm

exp

(
−1

2

d∑
k=1

〈
ξ k, Q(u)ξ k

〉
R4m

)

× exp

⎛
⎝−i

4m∑
j=1

〈
ξ j , xt−H

〉
Rd

⎞
⎠ exp

⎛
⎝−ε1(t)

2

2m∑
j=1

∣∣ξ j
∣∣2
Rd − ε2(t)

2

2m∑
j=1

∣∣ξ j
∣∣2
Rd

⎞
⎠

dξ1 . . . dξ4mdu.

Hence, using dominated convergence in connection with Lemma A.5, we see that

∫ T

0
E

⎡
⎣
(

t
2m

(
1
2−H(1+d)

)
(2m)!

)2 ∫
T4m (0,1)

4m∏
j=1

fσ( j)(u j )du

⎤
⎦ dt

−→
∫ T

0

(
t
2m

(
1
2−H(1+d)

)
(2m)!

)2 ∫
T4m (0,1)

4m∏
j=1

γ− 1
2−H , 12−H (1, u j )

× 1

(2π)4dm

∫
R4dm

exp

(
−1

2

d∑
k=1

〈
ξ k, Q(u)ξ k

〉
R4m

)

exp

⎛
⎝−i

4m∑
j=1

〈
ξ j , xt−H

〉
Rd

⎞
⎠ dξ1 . . . dξ4mdudt

for ε1, ε2 ↘ 0. For other σ ∈ S(2m, 2m), we obtain similar limit values. In summary,
we find (by also considering the case ε1 = ε2) that

E

⎡
⎣
(∫ T

0

∣∣∣∣K −1
H

(∫ ·

0
ϕε1(B H

u )du

)
(s) − K −1

H

(∫ ·

0
ϕε2(B H

u )du

)
(s)

∣∣∣∣
2

ds

)2
⎤
⎦ −→ 0

for ε1, ε2 ↘ 0. Thus,

I2 = I2(n, r) −→ 0 for n, r −→ ∞.

Similarly, we have that

I1 = I1(n, r) −→ 0 for n, r −→ ∞.
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Since E = E(n, r) is uniformly bounded with respect to n, r because of Lemma 5.3,
we obtain the convergence of the Radon–Nikodym derivatives to a ζT in L p(�) for
p = 1. The second statement of the lemma follows by using characteristic functions
combined with dominated convergence. �


Henceforth, we confine ourselves to the probability space (�,A, P), which carries
a weak solution (X x , B H ) of (5.1) constructed from a fractional Brownian motion
B

H
t , 0 ≤ t ≤ T with respect to a probability measure P by Girsanov’s theorem.
We now turn to the second step of our procedure.

Lemma 5.5 Suppose that H < 1
2(1+d)

and let {ϕε}ε>0 be defined as

ϕε(y) = ϕε,x (y) = ε− d
2 ϕ

(
ε− 1

2 (y − x)
)

, ε > 0,

where ϕ is the d-dimensional standard normal density. Denote by X x,ε = {X x,ε
t , t ∈

[0, T ]} the corresponding solutions of (5.1), if we replace δx by ϕε,x (y), ε > 0. Then,
for every t ∈ [0, T ] and bounded continuous function η : R

d −→ R we have that

η(X x,ε
t )

ε−→0+−→ E[η(X x
t ) |Ft ]

weakly in L2(�,Ft , P).

Proof Without loss of generality, let x = 0. We mention that

�t :=
⎧⎨
⎩exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1

〉⎫⎬
⎭ : {α j }k

j=1 ⊂ R
d , 0 = t0 < · · · < tk = t, k ≥ 1

⎫⎬
⎭

is a total subset of L2(�,Ft , P). Denote X x,ε
t by Xn

t for ε = 1/n and define

un
s = K −1

H

(∫ ·

0
ϕ1/n(Xn

u )1ddu

)∗
(s).

By the classical Girsanov theorem, the process

W̃ n
t := Wt +

∫ t

0
un

s ds, 0 ≤ s ≤ T

is a Wiener process under P̃n with Radon–Nikodym density

E
(∫ T

0
(−un

s )∗dWs

)
.

Therefore, it follows from the definition of K −1
H that

Xn
t = x +

∫ t

0
K H (t, s)dW̃ n

s , 0 ≤ s ≤ T (5.6)
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is a fractional Brownian motion with Hurst parameter H under P̃n . Then, using Gir-
sanov’s theorem, we find that

E

⎡
⎣η(Xn

t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1

〉⎫⎬
⎭
⎤
⎦

= E

⎡
⎣η(Xn

t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , Xn

t j
− Xn

t j−1
−
∫ t j

t j−1

ϕ1/n(Xn
s )1dds

〉⎫⎬
⎭
⎤
⎦

= EP̃n

⎡
⎣η(Xn

t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , Xn

t j
− Xn

t j−1
−
∫ t j

t j−1

ϕ1/n(Xn
s )1dds

〉⎫⎬
⎭

exp

(∫ T

0
K −1

H

(∫ ·

0
ϕ1/n(Xn

u

)
1ddu

)∗
(s)dWs

+1

2

∫ T

0

∣∣∣∣K −1
H

(∫ ·

0
ϕ1/r (Xn

u )1ddu

)∗
(s)

∣∣∣∣
2

ds

]

= EP̃n

⎡
⎣η(Xn

t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , Xn

t j
− Xn

t j−1
−
∫ t j

t j−1

ϕ1/n(Xn
s )1dds

〉⎫⎬
⎭

·E
(∫ T

0
K −1

H

(∫ ·

0
ϕ1/n(Xn

u )1ddu

)∗
(s)dW̃ n

s

)]

= EP

⎡
⎣η(B H

t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1
−
∫ t j

t j−1

ϕ1/n(B H
s )1dds

〉⎫⎬
⎭

·E
(∫ t

0
K −1

H (

∫ ·

0
ϕ1/n(B H

u )1ddu)∗(s)dWs

)]
,

where we used in the last equality relation (5.6), conditioning and the fact that Xn
t , 0 ≤

t ≤ T under P̃n has the same law as B H
t , 0 ≤ t ≤ T under P in connection with

measurable functionals (Eμ expectation with respect to μ).
On the other hand, denoting by ζT the Radon–Nikodym density associated with

B H
t , 0 ≤ t ≤ T in Proposition 5.4, we obtain by |ex − ey | ≤ |x − y| ex+y , Hölder’s

inequality, the supermartingale property of Doleans–Dade exponentials and the proof
of Proposition 5.4 that

∣∣∣∣∣∣E
⎡
⎣η(B H

t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1
−
∫ t j

t j−1

ϕ1/n(B H
s )1dds

〉⎫⎬
⎭

·E
(∫ t

0
K −1

H

(∫ ·

0
ϕ1/n(B H

u )1ddu

)∗
(s)dWs

)
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−η(B H
t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1
−
∫ t j

t j−1

δ0(B H
s )ds1d

〉⎫⎬
⎭ · ζT

⎤
⎦
∣∣∣∣∣∣

≤ C(I1 + I2 + I3)E,

where

I1 := E

⎡
⎢⎣
⎛
⎝ k∑

j=1

〈
α j ,

∫ t j

t j−1

δ0(B H
s )ds1d −

∫ t j

t j−1

ϕ1/n(B H
s )1dds

〉⎞
⎠

2
⎤
⎥⎦
1/2

,

I2 := lim
r−→∞ E

[ ∫ t

0

∣∣∣∣K −1
H

(∫ ·

0
ϕ1/n(B H

u )1ddu

)∗
(s)

−K −1
H

(∫ ·

0
ϕ1/r (B H

u )1ddu

)∗
(s)

∣∣∣∣
2

ds

]1/2
,

I3 := lim
r−→∞ E

[(∫ t

0

∣∣∣∣K −1
H

(∫ ·

0
ϕ1/n(B H

u )1ddu

)∗
(s)

∣∣∣∣
2

ds

−
∫ t

0

∣∣∣∣K −1
H

(∫ ·

0
ϕ1/r (B H

u )1ddu

)∗
(s)

∣∣∣∣
2

ds

)2
⎤
⎦
1/2

and

E := sup
r≥1

E

⎡
⎣exp

⎧⎨
⎩8

k∑
j=1

〈
α j , B H

t j
− B H

t j−1
−
∫ t j

t j−1

ϕ1/n(B H
s )1dds

〉⎫⎬
⎭
⎤
⎦
1/8

· E

⎡
⎣exp

⎧⎨
⎩8

k∑
j=1

〈
α j , B H

t j
− B H

t j−1
−
∫ t j

t j−1

δ0(B H
s )ds1d

〉⎫⎬
⎭
⎤
⎦
1/8

· E

[
exp{μ1

∫ t

0

∣∣∣∣K −1
H

(∫ ·

0
ϕ1/n(B H

u )1ddu

)∗
(s)

∣∣∣∣
2

ds}
]1/8

· E

[
exp{μ2

∫ t

0

∣∣∣∣K −1
H

(∫ ·

0
ϕ1/r (B H

u )ds1ddu

)∗
(s)

∣∣∣∣
2

ds}
]1/16

for constants C, μ1, μ2 > 0.
By inspecting the proof of Proposition 5.4 once again, we know that

I3 = I3(n) −→ 0 for n −→ ∞.

and

I2 = I2(n) −→ 0 for n −→ ∞.
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Since Lx
t (B H , ε) converges to Lx

t (B H ) in L p(�) for all p ≥ 1, we also conclude that

I1 = I1(n) −→ 0 for n −→ ∞.

On the other hand, we obtain from (4.2), Theorem 4.4 and Lemma 5.3 that

E = E(n) ≤ K

for all n, where K is a constant.
Denote by ζ T the Radon–Nikodym density associated with the P-fractional Brow-

nian motion B
H
t , 0 ≤ t ≤ T . By assumption, Xt = x + B

H
t is our weak solution to

(5.1) under P with d P
d P

= ζ T . Let W t , 0 ≤ t ≤ T be the P-Wiener process in the

stochastic integral representation of B
H
t , 0 ≤ t ≤ T . Since measurable functionals of

W t , 0 ≤ t ≤ T under P coincide in law with those of Wt , 0 ≤ t ≤ T under P , we
see that

E

⎡
⎣η(B H

t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1
−
∫ t j

t j−1

δ0(B H
s )1dds

〉⎫⎬
⎭ ζT

⎤
⎦

= EP

⎡
⎣η(B

H
t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , B

H
t j

− B
H
t j−1

−
∫ t j

t j−1

δ0(B
H
s )1dds

〉⎫⎬
⎭ ζ T

⎤
⎦

= EP

⎡
⎣η(B

H
t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , B

H
t j

− B
H
t j−1

−
∫ t j

t j−1

δ0(B
H
s )1dds

〉⎫⎬
⎭
⎤
⎦

= EP

⎡
⎣η(Xt ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1

〉⎫⎬
⎭
⎤
⎦

= EP

⎡
⎣EP [η(Xt )|Ft ] exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1

〉⎫⎬
⎭
⎤
⎦ .

So we see that

E

⎡
⎣η(Xn

t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1

〉⎫⎬
⎭
⎤
⎦

−→ E

⎡
⎣η(B H

t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1
−
∫ t j

t j−1

δ0(B H
s )1dds

〉⎫⎬
⎭ · ζT

⎤
⎦

= E

⎡
⎣E[η(Xt ) |Ft ] exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1

〉⎫⎬
⎭
⎤
⎦
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for n −→ ∞, which completes the proof. �

Remark 5.6 In fact, we can also show that Lemma 5.5 holds true for η = I d. To see
this, let us adopt the notation of the proof of Lemma 5.5 and let ηm : R

d −→ R, m ≥ 1
be a sequence of bounded continuous functions such that

E[(ηm(B H
t ) − B H

t )2] −→
m−→∞ 0.

Then, using Girsanov’s theorem we find (without loss of generality for x = 0) that

E

⎡
⎣(ηm(Xn

t ) − Xn
t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1

〉⎫⎬
⎭
⎤
⎦

= E

⎡
⎣(ηm(Xn

t ) − Xn
t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , Xn

t j
− Xn

t j−1
−
∫ t j

t j−1

ϕ1/n(Xn
s )1dds

〉⎫⎬
⎭
⎤
⎦

= E

⎡
⎣(ηm(B H

t ) − B H
t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1
−
∫ t j

t j−1

ϕ1/n(B H
s )1dds

〉⎫⎬
⎭

·E
(∫ t

0
K −1

H (

∫ ·

0
ϕ1/n(B H

u )1ddu)∗(s)dWs

)]
.

Hence, Hölder’s inequality and the supermartingale property of Doleans–Dade expo-
nentials yield

∣∣∣∣∣∣E
⎡
⎣(ηm(Xn

t ) − Xn
t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1

〉⎫⎬
⎭
⎤
⎦
∣∣∣∣∣∣

≤ E[(ηm(B H
t ) − B H

t )2]1/2A1A2,

where

A1 = A1(n)

:= E

⎡
⎣exp

⎧⎨
⎩4

k∑
j=1

〈
α j , B H

t j
− B H

t j−1
−
∫ t j

t j−1

ϕ1/n(B H
s )1dds

〉⎫⎬
⎭
⎤
⎦
1/4

and

A2 = A2(n)

:= E

[
exp

(
μ

∫ t

0

∣∣∣∣K −1
H

(∫ ·

0
ϕ1/n(B H

u )1ddu

)∗
(s)

∣∣∣∣
2

ds

)]1/4
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for a constant μ > 0. Then, as in the proof of Lemma 5.5 (i.e., with respect to the
upper bound for E = E(n)) we can apply (4.2), Theorem 4.4 and Lemma 5.3 and
observe that

sup
n≥1

Ai (n) < ∞, i = 1, 2.

sup
n≥1

∣∣∣∣∣∣E
⎡
⎣(ηm(Xn

t ) − Xn
t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1

〉⎫⎬
⎭
⎤
⎦
∣∣∣∣∣∣ −→

m−→∞ 0.

Using Proposition 5.4, we can similarly show for a weak solution (X x , B H ) of (5.1)
that

∣∣∣∣∣∣E
⎡
⎣(ηm(X x

t ) − X x
t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1

〉⎫⎬
⎭
⎤
⎦
∣∣∣∣∣∣ −→

m−→∞ 0.

So it follows from Lemma 5.5 that

X x,ε
t

ε−→0+−→ E[X x
t |Ft ]

weakly in L2(�,Ft , P).

We continue with the third step of our scheme. This is the most challenging part.
For notational convenience, let us from now on assume that α = 1 in (5.1) and that
ϕ�

ε stands for the Jacobian of ϕε1d . The following result is based on a compactness
criterion for subsets of L2(�) which is summarized in Appendix.

Lemma 5.7 Assume H < 1
2(2+d)

and let {ϕε}ε>0 the family of Gaussian kernels
approximating Dirac’s delta function δ0 in the sense of (5.6). Fix t ∈ [0, T ] and denote
by Xε

t the corresponding solutions of (5.1) if we replace Lt (X x ) by
∫ t
0 ϕε(Xε

s )ds,
ε > 0. Then, there exists a β ∈ (0, 1/2) such that

sup
ε>0

∫ t

0

∫ t

0

E[‖Dθ Xε
t − Dθ ′ Xε

t ‖2]
|θ ′ − θ |1+2β dθ ′dθ < ∞

and

sup
ε>0

‖D· Xε
t ‖L2(�×[0,T ],Rd×d ) < ∞. (5.7)

Proof Fix t ∈ [0, T ] and take θ, θ ′ > 0 such that 0 < θ ′ < θ < t . Using the chain
rule for the Malliavin derivative, see [35, Proposition 1.2.3], we have

Dθ Xε
t = K H (t, θ)Id +

∫ t

θ

ϕ′
ε(Xε

s )Dθ Xε
s ds
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P-a.s. for all 0 ≤ θ ≤ t where ϕ′
ε(z) =

(
∂

∂z j
ϕ

(i)
ε (z)

)
i, j=1,...,d

denotes the Jacobian

matrix of ϕε and Id the identity matrix in R
d×d . Thus, we have

Dθ ′ Xε
t − Dθ Xε

t = K H (t, θ ′)Id − K H (t, θ)Id

+
∫ t

θ ′
ϕ′

ε(Xε
s )Dθ ′ Xε

s ds −
∫ t

θ

ϕ′
ε(Xε

s )Dθ Xε
s ds

= K H (t, θ ′)Id − K H (t, θ)Id

+
∫ θ

θ ′
ϕ′

ε(Xε
s )Dθ ′ Xε

s ds +
∫ t

θ

ϕ′
ε(Xn

s )(Dθ ′ Xε
s − Dθ Xε

s )ds

= K H (t, θ ′)Id − K H (t, θ)Id + Dθ ′ Xε
θ − K H (θ, θ ′)Id

+
∫ t

θ

ϕ′
ε(Xε

s )(Dθ ′ Xε
s − Dθ Xε

s )ds.

Using Picard iteration applied to the above equation, we may write

Dθ ′ Xε
t − Dθ Xε

t = K H (t, θ ′)Id − K H (t, θ)Id

+
∞∑

m=1

∫
�m

θ,t

m∏
j=1

ϕ′
ε(Xε

s j
)
(
K H (sm, θ ′)Id − K H (sm, θ)Id

)
dsm · · · ds1

+
⎛
⎝Id +

∞∑
m=1

∫
�m

θ,t

m∏
j=1

ϕ′
ε(Xε

s j
)dsm · · · ds1

⎞
⎠(

Dθ ′ Xε
θ − K H (θ, θ ′)Id

)
.

On the other hand, observe that one may again write

Dθ ′ Xε
θ − K H (θ, θ ′)Id =

∞∑
m=1

∫
�m

θ ′,θ

m∏
j=1

ϕ′
ε(Xε

s j
)(K H (sm, θ ′)Id) dsm · · · ds1.

Altogether, we can write

Dθ ′ Xε
t − Dθ Xε

t = I1(θ
′, θ) + I ε

2 (θ ′, θ) + I ε
3 (θ ′, θ),

where

I1(θ
′, θ) := K H (t, θ ′)Id − K H (t, θ)Id

I ε
2 (θ ′, θ) :=

∞∑
m=1

∫
�m

θ,t

m∏
j=1

ϕ′
ε(Xε

s j
)
(
K H (sm, θ ′)Id − K H (sm, θ)Id

)
dsm · · · ds1

I ε
3 (θ ′, θ) :=

⎛
⎝Id +

∞∑
m=1

∫
�m

θ,t

m∏
j=1

ϕ′
ε(Xε

s j
)dsm · · · ds1

⎞
⎠
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×
⎛
⎝ ∞∑

m=1

∫
�m

θ ′,θ

m∏
j=1

ϕ′
ε(Xε

s j
)(K H (sm, θ ′)Id)dsm · · · ds1.

⎞
⎠ .

It follows from Lemma A.4 that

∫ t

0

∫ t

0

‖I1(θ ′, θ)‖2
L2(�)

|θ ′ − θ |1+2β dθdθ ′ =
∫ t

0

∫ t

0

|K H (t, θ ′) − K H (t, θ)|2
|θ ′ − θ |1+2β dθdθ ′ < ∞

(5.8)

for a suitably small β ∈ (0, 1/2).
Let us continue with the term I n

2 (θ ′, θ). Then, Girsanov’s theorem, Cauchy–
Schwarz inequality and Lemma 5.3 imply

E[‖I ε
2 (θ ′, θ)‖2]

≤ C E

⎡
⎢⎣
∥∥∥∥∥∥

∞∑
m=1

∫
�m

θ,t

m∏
j=1

ϕ′
ε(x + B H

s j
)
(
K H (sm , θ ′)Id − K H (sm , θ)Id

)
dsm . . . ds1

∥∥∥∥∥∥
4
⎤
⎥⎦
1/2

,

where C > 0 is an upper bound from Lemma 5.3.
Let ‖ · ‖ denote the matrix norm in R

d×d such that ‖A‖ = ∑d
i, j=1 |ai j | for a matrix

A = {ai j }i, j=1,...,d , then taking this matrix norm and expectation, we have

E[‖I ε
2 (θ ′, θ)‖2]

≤ C

⎛
⎝ ∞∑

m=1

d∑
i, j=1

d∑
l1,...,lm−1=1

∥∥∥∥
∫

�m
θ,t

∂

∂xl1
ϕ(i)

ε (x + B H
s1 )

∂

∂xl2
ϕ(l1)

ε (x + B H
s2 ) · · ·

· · · ∂

∂x j
ϕ

(lm−1)
ε (x + B H

sm
)
(
K H (sm, θ ′) − K H (sm, θ)

)
dsm · · · ds1

∥∥∥∥
L4(�,R)

)2

.

Now, we concentrate on the expression

J ε
2 (θ ′, θ) :=

∫
�m

θ,t

∂

∂xl1
ϕ(i)

ε (x + B H
s1 ) · · · ∂

∂x j
ϕ

(lm−1)
ε (x + B H

sm
)

(
K H (sm, θ ′) − K H (sm, θ)

)
ds. (5.9)

Then, shuffling J ε
2 (θ ′, θ) as shown in (2.1), one can write (J ε

2 (θ ′, θ))2 as a sum of at
most 22m summands of length 2m of the form

∫
�2m

θ,t

gε
1(B H

s1 ) · · · gε
2m(B H

s2m
)ds2m · · · ds1, (5.10)

where for each l = 1, . . . , 2m,
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gε
l (B H· ) ∈

{
∂

∂x j
ϕ

(i)
ε (x + B H· ),

∂

∂x j
ϕ

(i)
ε (x + B H· )

(
K H (·, θ ′) − K H (·, θ)

)
, i, j = 1, . . . , d

}
.

Repeating this argument once again, we find that J ε
2 (θ ′, θ)4 can be expressed as a

sum of, at most, 28m summands of length 4m of the form

∫
�4m

θ,t

gε
1(B H

s1 ) · · · gε
4m(B H

s4m
)ds4m · · · ds1, (5.11)

where for each l = 1, . . . , 4m,

gε
l (B H· ) ∈

{
∂

∂x j
ϕ(i)

ε (x + B H· ),
∂

∂x j
ϕ(i)

ε (x + B H· )(K H (·, θ ′)

−K H (·, θ)), i, j = 1, . . . , d} .

It is important to note that the function
(
K H (·, θ ′) − K H (·, θ)

)
appears only once

in term (5.9) and hence only four times in term (5.11). So there are indices j1, . . . , j4 ∈
{1, . . . , 4m} such that we can write (5.11) as

∫
�4m

θ,t

⎛
⎝ 4m∏

j=1

gε
j (B H

s j
)

⎞
⎠ 4∏

i=1

(
K H (s ji , θ

′) − K H (s ji , θ)
)
ds4m · · · ds1,

where

gε
l (B H· ) ∈

{
∂

∂x j
ϕ(i)

ε (x + B H· ), i, j = 1, . . . , d

}
, l = 1, . . . , 4m.

The latter enables us to use the estimate from Proposition 3.2 with
∑4m

j=1 ε j =
4,

∑d
l=1 α

(l)
[σ( j)] = 1 for all j, |α| = 4m and Remark 3.4. Thus, we obtain that

E(J ε
2 (θ ′, θ))4 ≤

(
θ − θ ′

θθ ′

)4γ

θ
4
(

H− 1
2−γ

)
C4m‖ϕε‖4m

L1(Rd )
Aγ

m(H , d, |t − θ |)

whenever H < 1
2(2+d)

and γ ∈ (0, H), where

Aγ
m(H , d, |t − θ |) := ((8m)!)1/4(t − θ)−H(4m(d+2))−4(H− 1

2−γ )+4m


(−H(d + 2)8m + 8(H − 1
2 − γ ) + 8m)1/2

.

Note that ‖ϕε‖L1(Rd ) = 1.
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Altogether, we see that

E
[
‖I ε

2 (θ ′, θ)‖2
]

≤
(

θ − θ ′

θθ ′

)2γ

θ
2
(

H− 1
2−γ

) ( ∞∑
m=1

dm+1Cm‖ϕε‖m
L1(Rd )

Aγ
m(H , d, |T |)1/4

)2

.

So we can find a constant C > 0 such that

sup
ε>0

E
[
‖I ε

2 (θ ′, θ)‖2
]

≤ C

(
θ − θ ′

θθ ′

)2γ

θ
2
(

H− 1
2−γ

)

for γ ∈ (0, H) provided that H < 1
2(2+d)

. It is easy to see that we can choose
γ ∈ (0, H) such that there is a suitably small β ∈ (0, 1/2), 0 < β < γ < H < 1/2
so that it follows from the proof of Lemma A.4 that

∫ t

0

∫ t

0

∣∣∣∣θ − θ ′

θθ ′

∣∣∣∣
2γ

|θ |2
(

H− 1
2−γ

)
|θ − θ ′|−1−2βdθ ′dθ < ∞, (5.12)

for every t ∈ (0, T ].
We now turn to the term I ε

3 (θ ′, θ). Observe that term I ε
3 (θ ′, θ) is the product of two

terms, where the first one will simply be bounded uniformly in θ, t ∈ [0, T ] under
expectation. This can be shown by following meticulously the same steps as we did
for I ε

2 (θ ′, θ) and observing that in virtue of Proposition 3.3 with ε j = 0 for all j the
singularity in θ vanishes.

Again Girsanov’s theorem, Cauchy–Schwarz inequality several times and Lemma
5.3 lead to

E[‖I ε
3 (θ ′, θ)‖2] ≤ C

∥∥∥∥∥∥Id +
∞∑

m=1

∫
�m

θ,t

m∏
j=1

ϕ′
ε(x + B H

s j
)dsm · · · ds1

∥∥∥∥∥∥
2

L8(�,Rd×d )

×
∥∥∥∥∥∥

∞∑
m=1

∫
�m

θ ′,θ

m∏
j=1

ϕ′
ε(x + B H

s j
)K H (sm, θ ′)dsm · · · ds1

∥∥∥∥∥∥
2

L4(�,Rd×d )

,

where C > 0 denotes an upper bound obtained from Lemma 5.3.
Again, we have

E[‖I ε
3 (θ ′, θ)‖2] ≤ C

(
1 +

∞∑
m=1

d∑
i, j=1

d∑
l1,...,lm−1=1

∥∥∥∥
∫

�m
θ,t

∂

∂xl1
ϕ(i)

ε (x + B H
s1 ) · · ·

· · · ∂

∂x j
ϕ

(lm−1)
ε (x + B H

sm
)dsm · · · ds1

∥∥∥∥
L8(�,R)

)2
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×
( ∞∑

m=1

d∑
i, j=1

d∑
l1,...,lm−1=1

∥∥∥∥
∫

�m
θ ′,θ

∂

∂xl1
ϕ(i)

ε (x + B H
s1 ) · · ·

· · · ∂

∂x j
ϕ

(lm−1)
ε (x + B H

sm
)K H (sm, θ ′)dsm · · · ds1

∥∥∥∥
L4(�,R)

)2

.

Using exactly the same reasoning as for I ε
2 (θ ′, θ), we see that the first factor can

be bounded by some finite constant C depending on H , d, T , i.e.,

E[‖I ε
3 (θ ′, θ)‖2] ≤ C

( ∞∑
m=1

d∑
i, j=1

d∑
l1,...,lm−1=1

∥∥∥∥
∫

�m
θ ′,θ

∂

∂xl1
ϕ(i)

ε (x + B H
s1 ) · · ·

· · · ∂

∂x j
ϕ

(lm−1)
ε (x + B H

sm
)K H (sm, θ ′)dsm · · · ds1

∥∥∥∥
L4(�,R)

)2

.

As before, we pay attention to

J ε
3 (θ ′, θ) :=

∫
�m

θ ′,θ

∂

∂xl1
ϕ(i)

ε (x + B H
s1 ) · · · ∂

∂x j
ϕ

(lm−1)
ε (x + B H

sm
)K H (sm, θ ′)dsm · · · ds1.

(5.13)

We can express (J ε
3 (θ ′, θ))4 as a sum of, at most, 28m summands of length 4m of

the form
∫

�4m
θ ′,θ

gε
1(B H

s1 ) · · · gε
4m(B H

s4m
)ds4m · · · ds1, (5.14)

where for each l = 1, . . . , 4m,

gε
l (B H· ) ∈

{
∂

∂x j
ϕ(i)

ε (x + B H· ),
∂

∂x j
ϕ(i)

ε (x + B H· )K H (·, θ ′), i, j = 1, . . . , d

}
,

where the factor K H (·, θ ′) is repeated four times in the integrand of (5.14). Now,
we can simply apply Proposition 3.3 with

∑4m
j=1 ε j = 4,

∑d
l=1 α

(l)
[σ( j)] = 1 for all

j, |α| = 4m and Remark 3.4 in order to get

E[(J ε
3 (θ ′, θ))4] ≤ θ

4
(

H− 1
2

)
C4m‖ϕε‖4m

L1(Rd )
A0

m(H , d, |θ − θ ′|),

whenever H < 1
2(2+d)

where A0
m(H , d, |θ − θ ′|) is defined as in (5) by inserting

γ = 0.
As a result,

E[‖I ε
3 (θ ′, θ)‖2] ≤ θ

2
(

H− 1
2

) ( ∞∑
m=1

dm+1Cm‖ϕε‖m
L1(Rd )

A0
m(H , d, |θ − θ ′|)1/4

)2

.
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Since the exponent of |θ − θ ′| appearing in A0
m(H , d, |θ − θ |) is strictly positive

by assumption, we can find a small enough δ > 0 and a constant C := CH ,d,T > 0
such that

sup
ε>0

E[‖I ε
3 (θ ′, θ)‖2] ≤ C |θ |2

(
H− 1

2

)
|θ − θ ′|δ

provided H < 1
2(2+d)

. Then again, it is easy to see that we can choose β ∈ (0, 1/2)
small enough so that it follows from the proof of Lemma A.4 that

∫ t

0

∫ t

0
|θ |2

(
H− 1

2

)
|θ − θ ′|ε−1−2βdθ ′dθ < ∞, (5.15)

for every t ∈ [0, T ].
Altogether, taking a suitable β so that (5.8), (5.12) and (5.15) are finite, we have

sup
ε>0

∫ t

0

∫ t

0

E[‖Dθ ′ Xε
t − Dθ Xε

t ‖2]
|θ ′ − θ |1+2β dθ ′dθ < ∞.

Similar computations show that

sup
ε>0

‖D· Xε
t ‖L2(�×[0,T ],Rd×d ) < ∞.

�

Corollary 5.8 Let {Xε

t }ε>0 the family of approximating solutions of (5.1) in the sense
of (5.6). Then, for every t ∈ [0, T ] and bounded continuous function h : R

d → R we
have

h(Xn
t )

n→∞−−−→ h(E [Xt |Ft ])

strongly in L2(�;Ft ). In addition, E [Xt |Ft ] is Malliavin differentiable for every
t ∈ [0, T ].
Proof This is an immediate consequence of the relative compactness from Lemma 5.7
and by Lemma 5.5 in connection with Remark 5.6, we can identify the limit of Xn

t as
being E[Xt |Ft ] and then the convergence holds for any bounded continuous functions
as well. The Malliavin differentiability of E[Xt |Ft ] is shown by taking h = I d and
estimate (5.7) together with [35, Proposition 1.2.3]. �


Finally, in the fourth step we can prove main result of this section.

Proof of Theorem 5.1 It remains to prove that Xt isFt -measurable for every t ∈ [0, T ].
It follows that there exists a strong solution in the usual sense that is Malliavin differ-
entiable. Indeed, let h be a globally Lipschitz continuous function, then by Corollary
5.8 we have that

h(Xn
t ) → h(E[Xt |Ft ]), P − a.s.
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as n → ∞.
On the other hand, by Lemma 5.5 we also have

h(Xn
t ) → E [h(Xt )|Ft ]

weakly in L2(�;Ft ) as n → ∞. By the uniqueness of the limit, we immediately have

h (E[Xt |Ft ]) = E [h(Xt )|Ft ] , P − a.s.

which implies that Xt is Ft -measurable for every t ∈ [0, T ].
Let us finally show that our strong solution has a continuous modification. We

observe that

E[∣∣X x
t − X x

s

∣∣m]
≤ Cd,m

(
E

[(∫ t

s
δ0(X x

u )du

)m]
+ E

[∣∣∣B H
t − B H

s

∣∣∣m
])

≤ Cd,m

(
E

[(∫ t

s
δ0(X x

u )du

)m]
+ |t − s|m H

)
.

On the other hand, we have that

E

[(∫ t

s
δ0(X x

u )du

)m]
≤ E

[(∫ t

s
δ0(B H

u + x)du

)2m
]1/2

E[X2]1/2,

where X is the Radon–Nikodym derivative as constructed in Proposition 5.4. Further,
we know from (4.2) for a similar estimate that

E

[(∫ t

s
δ0(B H

u + x)du

)2m
]1/2

≤ Cd,m,H |t − s|m
2 (1−Hd)

So

E[∣∣X x
t − X x

s

∣∣m] ≤ C(|t − s|m
2 (1−Hd) + |t − s|m H ), s ≤ t, m ≥ 1,

which entails by Kolmogorov’s lemma the existence of a continuous modification of
X x· . �

Remark 5.9 In Theorem 5.1, we have constructed strong solutions with respect to
probability measures P with d P

d P
= ζ T , where ζ T is the Radon–Nikodym derivative

associated with a P-fractional Brownian motion B
H
t , 0 ≤ t ≤ T in Proposition 5.4

(see also Lemma 5.5). In order to obtain strong solutions with respect to arbitrary
measures P̃ , we can proceed as follows (without loss of generality for α = 1): Since
Xn· , n ≥ 1 (approximating sequence) and X · are strong solutions with respect to P ,
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there exist progressively measurable functionals �n(t, ·), n ≥ 1 and �(t, ·) (on the
space of continuous functions) such that

Xn
t = �n(t, B H· ), n ≥ 1, Xt = �(t, B H· ).

For a P̃-fractional Brownian motion B̃t , 0 ≤ t ≤ T , define the processes

X̃n
t = �n(t, B̃ H· ), n ≥ 1, X̃t = �(t, B̃ H· ), 0 ≤ t ≤ T .

Then, we see that

EP̃

[∣∣∣∣X̃n
t − x −

∫ t

0
ϕ1/n(X̃n

s )1dds − B̃ H
t

∣∣∣∣
2
]

= EP̃

[∣∣∣∣�n(t, B̃ H· ) − x −
∫ t

0
ϕ1/n(�n(s, B̃ H· ))1dds − B̃ H

t

∣∣∣∣
2
]

= E

[∣∣∣∣�n(t, B H· ) − x −
∫ t

0
ϕ1/n(�n(s, B H· ))1dds − B H

t

∣∣∣∣
2
]

= E

[∣∣∣∣Xn
t − x −

∫ t

0
ϕ1/n(Xn

s )1dds − B H
t

∣∣∣∣
2
]

= 0

for all t . So

X̃n
t = x +

∫ t

0
ϕ1/n(X̃n

s )1dds + B̃ H
t , n ≥ 1.

We also know from our construction of X · under P that

∫ t

0
ϕ1/n(Xs)1dds −→

n−→∞ Lt (X)1d = Xt − x − B H
t

in probability. Since

EP̃

[
min

(
1,

∣∣∣∣
∫ t

0
ϕ1/n(X̃s)1dds − (X̃t − x − B̃ H

t )

∣∣∣∣
)]

= E

[
min

(
1,

∣∣∣∣
∫ t

0
ϕ1/n(Xs)1dds − (Xt − x − B H

t )

∣∣∣∣
)]

−→
n−→∞ 0.

So

∫ t

0
ϕ1/n(X̃s)1dds −→

n−→∞ Lt (X̃)1d = X̃t − x − B̃ H
t
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in probability with respect to P̃ . Therefore, one finds that X̃ · is a strong solution to

X̃t = x + Lt (X̃)1d + B̃ H
t

under P̃ .

Proof of Proposition 5.2 Denote by Y the L p-limit of the Doleans–Dade exponentials.
Using characteristic functions combined with Novikov’s condition, we see that

Y x
t − x = B H

t + Lt (Y
x )1d

is a fractional Brownian motion under a change of measure with respect to the density
Y . The latter enables us to proceed similarly to arguments in the proof of Lemma 5.5
and to verify that

E

⎡
⎣Y x

t exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1

〉⎫⎬
⎭
⎤
⎦ = E

⎡
⎣X x

t exp

⎧⎨
⎩

k∑
j=1

〈
α j , B H

t j
− B H

t j−1

〉⎫⎬
⎭
⎤
⎦

for all {α j }k
j=1 ⊂ R

d , 0 = t0 < · · · < tk = t, k ≥ 1, where X x· denotes the
constructed strong solution of our main theorem. This allows us conclude that both
solutions must coincide a.e. �
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Appendix A: Technical results

The following result which is due to [14, Theorem 1] provides a compactness criterion
for subsets of L2(�) using Malliavin calculus.

Theorem A.1 Let {(�,A, P) ; H} be a Gaussian probability space, that is (�,A, P)

is a probability space and H a separable closed subspace of Gaussian random vari-
ables of L2(�), which generate the σ -field A. Denote by D the derivative operator
acting on elementary smooth random variables in the sense that

D( f (h1, . . . , hn)) =
n∑

i=1

∂i f (h1, . . . , hn)hi , hi ∈ H , f ∈ C∞
b (Rn).
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Further let D
1,2 be the closure of the family of elementary smooth random variables

with respect to the norm

‖F‖1,2 := ‖F‖L2(�) + ‖DF‖L2(�;H) .

Assume that C is a self-adjoint compact operator on H with dense image. Then, for
any c > 0 the set

G =
{

G ∈ D
1,2 : ‖G‖L2(�) +

∥∥∥C−1DG
∥∥∥

L2(�;H)
≤ c

}

is relatively compact in L2(�).

In order to formulate compactness criteria useful for our purposes, we need the
following technical result which also can be found in [14].

Lemma A.2 Let vs, s ≥ 0 be the Haar basis of L2([0, T ]). For any 0 < α < 1/2,
define the operator Aα on L2([0, T ]) by

Aαvs = 2kαvs, if s = 2k + j

for k ≥ 0, 0 ≤ j ≤ 2k and

Aα1 = 1.

Then, for all β with α < β < (1/2), there exists a constant c1 such that

‖Aα f ‖ ≤ c1

⎧⎨
⎩‖ f ‖L2([0,T ]) +

(∫ T

0

∫ T

0

∣∣ f (t) − f (t ′)
∣∣2

|t − t ′|1+2β dt dt ′
)1/2

⎫⎬
⎭ .

A direct consequence of Theorem A.1 and Lemma A.2 is now the following com-
pactness criteria.

Corollary A.3 Let a sequence of FT -measurable random variables Xn ∈ D
1,2, n =

1, 2 . . ., be such that there exists a constant C > 0 with

sup
n

E[|Xn|2] ≤ C,

sup
n

E
[
‖Dt Xn‖2L2([0,T ])

]
≤ C

and there exists a β ∈ (0, 1/2) such that

sup
n

∫ T

0

∫ T

0

E
[‖Dt Xn − Dt ′ Xn‖2]

|t − t ′|1+2β dtdt ′ < ∞

where ‖ · ‖ denotes any matrix norm.
Then, the sequence Xn, n = 1, 2 . . ., is relatively compact in L2(�).
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For the use of the above result, we will need to exploit the following technical
results which are extracted from [9].

Lemma A.4 Let H ∈ (0, 1/2) and t ∈ [0, T ] be fixed. Then, there exists a β ∈ (0, 1/2)
such that

∫ t

0

∫ t

0

|K H (t, θ ′) − K H (t, θ)|2
|θ ′ − θ |1+2β dθdθ ′ < ∞. (A.1)

Proof Let θ, θ ′ ∈ [0, t], θ ′ < θ be fixed. Write

K H (t, θ) − K H (t, θ ′) = cH

[
ft (θ) − ft (θ

′) +
(
1

2
− H

) (
gt (θ) − gt (θ

′)
)]

,

where ft (θ) := ( t
θ

)H− 1
2 (t − θ)H− 1

2 and gt (θ) := ∫ t
θ

fu(θ)
u du, θ ∈ [0, t].

We will proceed to estimating K H (t, θ) − K H (t, θ ′). First, observe the following
fact,

y−α − x−α

(x − y)γ
≤ Cy−α−γ

for every 0 < y < x < ∞ and α := ( 12 − H) ∈ (0, 1/2) and γ < 1
2 −α. This implies

ft (θ) − ft (θ
′) =

(
t

θ
(t − θ)

)H− 1
2 −

(
t

θ ′ (t − θ ′)
)H− 1

2

≤ C

(
t

θ
(t − θ)

)H− 1
2−γ

t2γ
(θ − θ ′)γ

(θθ ′)γ

≤ C
(θ − θ ′)γ

(θθ ′)γ
(t − θ)H− 1

2−γ

≤ C
(θ − θ ′)γ

(θθ ′)γ
θ H− 1

2−γ (t − θ)H− 1
2−γ .

Further,

gt (θ) − gt (θ
′) =

∫ t

θ

fu(θ) − fu(θ ′)
u

du −
∫ θ

θ ′
fu(θ ′)

u
du

≤
∫ t

θ

fu(θ) − fu(θ ′)
u

du

≤ C
(θ − θ ′)γ

(θθ ′)γ

∫ t

θ

(u − θ)H− 1
2−γ

u
du

≤ C
(θ − θ ′)γ

(θθ ′)γ
θ H− 1

2−γ

∫ ∞

1

(u − 1)H− 1
2−γ

u
du

123



Journal of Theoretical Probability (2022) 35:714–771 765

≤ C
(θ − θ ′)γ

(θθ ′)γ
θ H− 1

2−γ

≤ C
(θ − θ ′)γ

(θθ ′)γ
θ H− 1

2−γ (t − θ)H− 1
2−γ .

As a result, we have for every γ ∈ (0, H), 0 < θ ′ < θ < t < T ,

(K H (t, θ) − K H (t, θ ′))2 ≤ CH ,T
(θ − θ ′)2γ

(θθ ′)2γ
θ2H−1−2γ (t − θ)2H−1−2γ ,

for some constant CH ,T > 0 depending only on H and T .
Thus,

∫ t

0

∫ θ

0

(K H (t, θ) − K H (t, θ ′))2

|θ − θ |1+2β dθ ′dθ

≤ C
∫ t

0

∫ θ

0

|θ − θ ′|−1−2β+2γ

(θθ ′)2γ
θ2H−1−2γ (t − θ)2H−1−2γ dθ ′dθ

= C
∫ t

0
θ2H−1−4γ (t − θ)2H−1−2γ

∫ θ

0
|θ − θ ′|−1−2β+2γ (θ ′)−2γ dθ ′dθ

= C
∫ t

0
θ2H−1−4γ (t − θ)2H−1−2γ 
(−2β + 2γ )
(−2γ + 1)


(−2β + 1)
θ−2βdθ

≤ C
∫ t

0
θ2H−1−4γ−2β(t − θ)2H−1−2γ dθ

= C

(2H − 2γ )
(2H − 4γ − 2β)


(4H − 6γ − 2β)
t4H−6γ−2β−1 < ∞,

for appropriately chosen small γ and β.
On the other hand, we have that

∫ t

0

∫ t

θ

(K H (t, θ) − K H (t, θ ′))2

|θ − θ ′|1+2β dθ ′dθ

≤ C
∫ t

0
θ2H−1−4γ (t − θ)2H−1−2γ

∫ t

θ

|θ − θ ′|−1−2β+2γ

(θ ′)2γ
dθ ′dθ

≤ C
∫ t

0
θ2H−1−6γ (t − θ)2H−1−2γ

∫ t

θ

|θ − θ ′|−1−2β+2γ dθ ′dθ

= C
∫ t

0
θ2H−1−6γ (t − θ)2H−1−2βdθ

≤ Ct4H−6γ−2β−1.

Hence,

∫ t

0

∫ t

0

(K H (t, θ) − K H (t, θ ′))2

|θ − θ ′|1+2β dθ ′dθ < ∞.
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�

Lemma A.5 If H < 1

2(1+d)
, we have that

I := (2m)!
∫
T2m (0,1)

2m∏
j=1

γ− 1
2−H , 12−H

(
1, u j

) (
det Cov

(
B H ,1

u1 , . . . , B H ,1
u2m

))− d
2
du

≤ Cm
H ,d (m!)2H(1+d) ,

for some constant CH ,d depending only on H and d.

Proof We have that

I = (2m)!
∫
T2m (0,1)

2m∏
j=1

γ− 1
2−H , 12−H

(
1, u j

) (
det Cov

(
B H ,1

u1 , . . . , B H ,1
u2m

))− d
2 du

≤ (2m)!
∫
T2m (0,1)

γ− 1
2−H , 12−H (1, u1) u−Hd

1

2m∏
j=2

γ− 1
2−H , 12−H

(
1, u j

) (
u j − u j−1

)−Hd du

≤ (2m)!
∫ 1

0

∫ u2m

0
· · ·

∫ u3

0

⎛
⎝γH (1, u2)

2m∏
j=3

γ− 1
2−H , 12−H

(
1, u j

) (
u j − u j−1

)−Hd

⎞
⎠

×
(∫ u2

0
γ− 1

2−H , 12−H (1, u1) u−Hd
1 (u2 − u1)

−Hd du1

)
du2 · · · du2m .

The inner integral can be bounded by

∫ u2

0
γ− 1

2−H , 12−H (1, u1) u−Hd
1 (u2 − u1)

−Hd du1

= u
3
2−2Hd−H
2

∫ 1

0
γ−Hd, 12−H(1+d) (1, u1) (1 − u2u1)

− 1
2−H du1

≤ u
3
2−2Hd−H
2

∫ 1

0
γ− 1

2−H(1+d), 12−H(1+d) (1, u1) du1

= u
3
2−2Hd−H
2 B

(
1

2
− H (1 + d) ,

3

2
− H (1 + d)

)
,

where we have used that (1 − u2u1)
− 1

2−H ≤ (1 − u1)
− 1

2−H . Hence,

I ≤ (2m)!
∫ 1

0

∫ u2m

0
· · ·

∫ u4

0⎛
⎝γ− 1

2−H , 12−H (1, u3)

2m∏
j=4

γ− 1
2−H , 12−H

(
1, u j

) (
u j − u j−1

)−Hd

⎞
⎠
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×
(∫ u3

0
γ− 1

2−H ,2−2Hd−2H (1, u2) (u3 − u2)
−Hd du2

)
du3 · · · du2m

× B
(
1

2
− H (1 + d) ,

3

2
− H (1 + d)

)
.

The inner integral can be bounded by

∫ u3

0
γ− 1

2−H ,2−2Hd−2H (1, u2) (u3 − u2)
−Hd du2

= u3−3Hd−2H
3

∫ 1

0
γ−Hd,2−2Hd−2H (1, u2) (1 − u3u2)

− 1
2−H du2

≤ u3−3Hd−2H
3

∫ 1

0
γ− 1

2−H(1+d),2−2Hd−2H (1, u2) du2

= u3−3Hd−2H
3 B

(
1

2
− H (1 + d) , 3 − 2H (1 + d)

)
,

and we get

I ≤ (2m)!
∫ 1

0

∫ u2m

0
· · ·

∫ u5

0⎛
⎝γ− 1

2−H , 12−H (1, u4)

2m∏
j=5

γ− 1
2−H , 12−H

(
1, u j

) (
u j − u j−1

)−Hd

⎞
⎠

×
(∫ u4

0
γ− 1

2−H , 72−3H(1+d) (1, u3) (u4 − u3)
−Hd du3

)
du4 · · · du2m

× B
(
1

2
− H (1 + d) ,

3

2
− H (1 + d)

)
B
(
1

2
− H (1 + d) , 3 − 2H (1 + d)

)
.

Iterating the previous reasoning, we have that

I ≤ (2m)!
2m∏
j=1

B
(
1

2
− H (1 + d) , j

(
3

2
− H (1 + d)

))

= (2m)!
2m∏
j=1



( 1
2 − H (1 + d)

)


(

j
( 3
2 − H (1 + d)

))


( 1
2 − H (1 + d) + j

( 3
2 − H (1 + d)

))

=
(




(
1

2
− H (1 + d)

))2m 

( 3
2 − H (1 + d)

)
(2m)!



( 1
2 − H (1 + d) + 2m

( 3
2 − H (1 + d)

))

×
2m−1∏

j=1



(
1 + 1

2 − H (1 + d) + j
( 3
2 − H (1 + d)

))


( 1
2 − H (1 + d) + j

( 3
2 − H (1 + d)

))

=
(




(
1

2
− H (1 + d)

))2m 

( 3
2 − H (1 + d)

)
(2m)!



( 1
2 − H (1 + d) + 2m

( 3
2 − H (1 + d)

))
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×
2m−1∏

j=1

(
1

2
− H (1 + d) + j

(
3

2
− H (1 + d)

))

=
(




(
1

2
− H (1 + d)

))2m 

( 3
2 − H (1 + d)

)

 (2m + 1)



(− ( 1

2 + H (1 + d)
) + m (3 − 2H (1 + d)) + 1

)

×
(
3

2
− H (1 + d)

)2m−1 

(
− 2

3−2H(1+d)
+ 2m + 1

)



(
4(1−H(1+d))
3−2H(1+d)

) .

Next, taking into account the following asymptotics, see Wendel [45],


 (m + λ) ∼ mλ
 (m) ,


 (λm + 1) ∼ λ
1
2 (2π)

1−λ
2 λλmm

1−λ
2 (m!)λ ;

we get that


 (2m + 1) ∼ 2
1
2 (2π)−

1
2 4mm− 1

2 (m!)2 ,




(
−
(
1

2
+ H (1 + d)

)
+ m (3 − 2H (1 + d)) + 1

)

∼ (m (3 − 2H (1 + d)) + 1)
−
(
1
2+H(1+d)

)

× 
 (m (3 − 2H (1 + d)) + 1)

∼ CH ,d K m
H ,d (m)−

3
2 (m!)3−2H(1+d) ,




(
− 2

3 − 2H (1 + d)
+ 2m + 1

)

∼ (2m + 1)−
2

3−2H(1+d) 
 (2m + 1)

∼ C ′
H ,d

(
K ′

H ,d

)m
(m)

− 2
3−2H(1+d)

− 1
2 (m!)2

which yields


 (2m + 1) 

(
− 2

3−2H(1+d)
+ 2m + 1

)



(− ( 1

2 + H (1 + d)
) + m (3 − 2H (1 + d)) + 1

)

∼ C ′′
H ,d

(
K ′′

H ,d

)m
(m)

− 1+2H(1+d)
6−4H(1+d) (m!)2H(1+d) ,

and the result follows. �

The next auxiliary result can be found in [28].

Lemma A.6 Assume that X1, . . . , Xn are real centered jointly Gaussian random vari-
ables, and � = (E[X j Xk])1≤ j,k≤n is the covariance matrix, then

E[|X1| . . . |Xn|] ≤ √
perm(�),
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where perm(A) is the permanent of a matrix A = (ai j )1≤i, j≤n defined by

perm(A) =
∑
π∈Sn

n∏
j=1

a j,π( j)

for the symmetric group Sn.

The next result corresponds to Lemma 3.19 in [13]:

Lemma A.7 Let Z1, . . . , Zn be mean-zero Gaussian variables which are linearly inde-
pendent. Then, for any measurable function g : R −→ R+ we have that

∫
Rn

g(v1) exp

⎛
⎝−1

2
Var

⎡
⎣ n∑

j=1

v j Z j

⎤
⎦
⎞
⎠ dv1 . . . dvn

= (2π)(n−1)/2

(det Cov(Z1, . . . , Zn))1/2

∫
R

g

(
v

σ1

)
exp

(
−1

2
v2
)
dv,

where σ 2
1 := Var[Z1 |Z2, . . . , Zn].

The following lemma is Lemma A.5 in [9]:

Lemma A.8 Let H ∈ (0, 1/2), θ, t ∈ [0, T ], θ < t and (ε1, . . . , εm) ∈ {0, 1}m be
fixed. Assume w j + (

H − 1
2 − γ

)
ε j > −1 for all j = 1, . . . , m. Then, there exists a

finite constant C = C(H , T ) > 0 such that

∫
�m

θ,t

m∏
j=1

(K H (s j , θ) − K H (s j , θ
′))ε j |s j − s j−1|w j ds

≤ Cm
(

θ − θ ′
θθ ′

)γ
∑m

j=1 ε j

θ

(
H− 1

2−γ
)∑m

j=1 ε j
�γ (m) (t − θ)

∑m
j=1 w j +

(
H− 1

2−γ
)∑m

j=1 ε j +m

for γ ∈ (0, H), where

�γ (m) :=
m−1∏
j=1



(∑ j

l=1 wl + (
H − 1

2 − γ
)∑ j

l=1 εl + j
)



(
w j+1 + 1

)



(∑ j+1

l=1 wl + (
H − 1

2 − γ
)∑ j

l=1 εl + j + 1
) . (A.2)

Observe that if ε j = 0 for all j = 1, . . . , m, we obtain the classical formula.
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