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Abstract
We study the local convergence of critical Galton–Watson trees and Lévy trees under
various conditionings. Assuming a very general monotonicity property on the mea-
surable functions of critical random trees, we show that random trees conditioned to
have large function values always converge locally to immortal trees. We also derive
a very general ratio limit property for measurable functions of critical random trees
satisfying themonotonicity property. Finally we study the local convergence of critical
continuous-state branching processes, and prove a similar result.

Keywords Galton–Watson tree · Lévy tree · Conditioning · Local limit · Immortal
tree · Height · Width · Total mass · Maximal degree

Mathematics Subject Classifications 2010 60J80 · 60F17

1 Introduction

The local convergence of conditioned Galton–Watson trees (GW trees) has been stud-
ied for a long time, dating back to Kesten [14] at least, see Lemma 1.14 therein. Over
the years, several different conditionings have been studied, in particular, the condi-
tioning of large height, the conditioning of large total progeny, and the conditioning of
large number of leaves. Recently, Abraham and Delmas [1,2] provided a convenient
framework to study the local convergence of conditioned GW trees, and then they
used this framework to prove essentially all previous results on the local convergence
of conditioned GW trees and also some new ones. Later, in [11], we studied the local

Supported by the Fundamental Research Funds for the Central Universities (WK0010000063).

B Xin He
xinhe31@ustc.edu.cn

1 School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026,
Anhui, People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10959-021-01074-9&domain=pdf
http://orcid.org/0000-0003-2416-0300


686 Journal of Theoretical Probability (2022) 35:685–713

convergence of GW trees under a new conditioning, that is, the conditioning of large
maximal outdegree. An interesting phenomenon is that under any of the conditionings
considered in those papers, a conditioned critical GW tree always converges locally to
a certain size-biased tree with an infinite spine, which we call an immortal tree in this
paper. Naturally, one would want to ask: Is it true that conditioned critical GW trees
always converge locally to immortal trees, under any “reasonable” conditioning? Is it
possible to prove such a general result?

The answer turns out to be apartial yes.More specifically,weneed to distinguish two
different formulations of local convergence. We call one formulation the tail versions
of local convergence, and the other thedensity versions. For example, let us consider the
classical conditioning of large height: If we condition GW trees to have height greater
than a large value, then we are considering the tail versions; if we condition GW trees
to have height equal to a large value, then the density versions. For the tail versions, if
we assume a very general monotonicity property on the functions of GW trees, thenwe
can prove that critical GW trees conditioned on large function values always converge
locally to immortal trees. For the density versions, such a general result seems to be
unattainable. Nevertheless, we may impose a more restrictive additivity property on
the functions of GW trees and argue with several specific conditionings in mind, to
get the density versions under any of the classical conditionings. At this point, let us
mention that there are some more recent works on local convergence of random trees,
which cannot be readily fitted into the framework of the present paper, see [3] for the
local convergence of GW trees conditioned on the n-th generation to be of size an ,
and [20] for the local convergence of GW trees rerooted at a random vertex, under
the conditioning of large total progeny. See also [4,19] for the local convergence of
conditioned multi-type GW trees, which is closely related to the local convergence of
random planar maps, about which [6] is a seminal work.

Now we review our results on the local convergence of critical GW trees. In The-
orem 2.1, we prove our general result on the tail versions of local convergence of
conditioned critical GW trees. Although this result shows that critical GW trees always
converge locally to immortal trees under essentially “any” conditioning, we only apply
it to the conditioning of large width in Corollary 2.2, which is one of our main motiva-
tions of this paper. Next we study the corresponding density versions in Theorem 2.3,
where we require a more restrictive additivity property on the functions of GW trees.
Then we apply Theorem 2.3 to four specific conditionings, which are the conditioning
of large maximal outdegree, the conditioning of large height, the conditioning of large
width, and the conditioning of large number of nodes with outdegree in a given set.
Finally we take the argument in the proof of Theorem 2.1 further to derive in Theo-
rem 2.7 a very general ratio limit property for functions of GW trees satisfying the
monotonicity property. In particular, we give in Proposition 2.8 two ratio limit results
for the width of GW trees.

We have to admit that several results in this paper on the local convergence of condi-
tioned critical GW trees are already known from [1,11]. Note that a unified framework
for the local convergence of conditioned critical GW trees has been proposed and used
in [1] and also used in [11] later. The reason that we revisit all these results here is
that we have a different approach. Compared to the approach in [1], we feel that our
approach has some advantages: First it seems that our approach is somewhat more
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direct and intuitive; second it seems that our approach is more natural for the proofs
of our general results Theorems 2.1 and 2.7; finally our approach can also be used for
the local convergence of conditioned critical Lévy trees, which is also one of our main
motivations of this paper. Recall that Lévy trees are certain scaling limits of GW trees,
see Aldous [5] for his seminal work on Brownian trees, and Duquesne and Le Gall
[9] for their seminal work on Lévy trees. Although technically Lévy trees are more
involved than GW trees, we are able to get essentially all the corresponding results for
Lévy trees.

Now let us review our results on the local convergence of conditioned critical
Lévy trees. Here we only consider the tail versions of local convergence. Recall that
Duquesne [8] proved the tail versions of local convergence of critical or subcritical
Lévy trees to continuum immortal trees, under the conditioning of large height. We
prove in Theorem 4.1 that critical Lévy trees conditioned on large function values
always converge locally to continuum immortal trees, as long as the measurable func-
tion of Lévy trees satisfies a very general monotonicity property.We apply this general
result to three specific conditionings, which are the conditioning of large width, the
conditioning of large total mass, and the conditioning of large maximal degree. Next
by taking the argument in the proof of Theorem 4.1 further, we derive in Theorem 4.4
a very general ratio limit property for measurable functions of Lévy trees satisfy-
ing the monotonicity property. Finally by adapting the proofs of Theorems 4.1 and
4.4, we prove in Corollary 4.6 that conditioned critical continuous-state branching
processes (CB processes) always converge locally to certain continuous-state branch-
ing processes with immigration (CBI processes), again only assuming a very general
monotonicity property on the measurable functions of CB processes.

Our approach in this paper depends crucially on the criticality of random trees,
so consequently it cannot be directly used for the local convergence of subcritical
random trees (however, see Corollary 2.6). Recall that relying on the framework and
approach of [2], it has been proved in [11] that under the conditioning of largemaximal
outdegree, the local limit of a subcritical GW tree is a condensation tree, which is
different from an immortal tree but closely related to it. Naturally, we expect certain
continuum condensation trees to be the correct local limits of subcritical Lévy trees
under the conditioning of large maximal degree; however, it seems that the desired
proof is much more involved and currently, we do not have it yet.

This paper is organized as follows: In Sect. 2, we study both the tail versions and
the density versions of local convergence of conditioned critical GW trees. In Sect. 3,
we review several basic topics of Lévy trees. Finally Sect. 4 is devoted to the local
convergence of conditioned critical Lévy trees and CB processes.

2 Local Convergence of Critical GW Trees

In this section, first we review several basic topics of GW trees. Thenwe study the local
convergence of conditioned critical GW trees, assuming a very general monotonicity
property for the tail versions and a more restricted additivity property for the density
versions. Finally we derive a very general ratio limit property for functions of GW
trees satisfying the monotonicity property.
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2.1 Preliminaries of GWTrees

This section is extracted from [1]. For more details refer to Sect. 2 of [1]. Denote by
Z+ = {0, 1, 2, . . .} the set of nonnegative integers and by N = {1, 2, . . .} the set of
positive integers. Use

U =
⋃

n≥0

N
n

to denote the set of finite sequences of positive integers with the conventionN0 = {∅}.
For n ≥ 1 and u = (u1, . . . , un) ∈ N

n , let |u| = n be the height of u and |∅| = 0 the
height of ∅. If u and v are two sequences of U , denote by uv the concatenation of the
two sequences, with the convention that uv = u if v = ∅ and uv = v if u = ∅. The
set of ancestors of u is the set

Au = {v ∈ U : there exists w ∈ U , w �= ∅, such that u = vw}.

A tree t is a subset of U that satisfies:

• ∅ ∈ t.
• If u ∈ t, then Au ⊂ t.
• For every u ∈ t, there exists ku(t) ∈ Z+ such that, for every i ∈ N, ui ∈ t if and
only if 1 ≤ i ≤ ku(t).

The node ∅ is called the root of t. The integer ku(t) represents the number of offsprings
of the node u in the tree t, and we call it the outdegree of the node u in the tree t. The
maximal outdegree M(t) of a tree t is defined by

M(t) = sup{ku(t) : u ∈ t}.

The height H(t) of a tree t is defined by

H(t) = sup{|u| : u ∈ t}.

Denote by T the set of trees, by T0 the subset of finite trees, and by T(h) the subset of
trees with height at most h,

T
(h) = {t ∈ T : H(t) ≤ h}.

Finally a forest of k finite trees is just a sequence of k finite trees.
For any t ∈ T and h ∈ Z+, write Yh(t) for the total number of nodes of the tree t

at height h. Also write t(h) = (t(h),i , 1 ≤ i ≤ Yh(t)) for the collection of all subtrees
above height h. For h ∈ Z+, the restriction function rh from T to T is defined by

rh(t) = {u ∈ t : |u| ≤ h}.
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We endow the set T with the ultra-metric distance

d(t, t′) = 2− sup{h∈Z+: rh(t)=rh(t′)}.

Then a sequence (tn, n ∈ N) of trees converges to a tree t with respect to the distance
d if and only if for every h ∈ N,

rh(tn) = rh(t) for n large enough.

Let (Tn, n ∈ N) and T be T-valued random variables (with respect to the Borel σ -
algebra onT). Denote by dist(T ) the distribution of the random variable T , and denote
by

dist(Tn) → dist(T ) as n → ∞

for the convergence in distribution of the sequence (Tn, n ∈ N) to T . It can be proved
that the sequence (Tn, n ∈ N) converges in distribution to T if and only if for any
h ∈ N and t ∈ T

(h),

lim
n→∞P[rh(Tn) = t] = P[rh(T ) = t]. (1)

Let p = (p0, p1, p2, . . .) be a probability distribution on the set of nonnegative
integers. We exclude the trivial case of p = (0, 1, 0, . . .). Denote byμ the expectation
of p and assume that 0 < μ < ∞. AT-valued random variable τ = τ(p) is a Galton–
Watson tree (GW tree) with the offspring distribution p if the distribution of k∅(τ ) is p
and for n ∈ N, conditionally on {k∅(τ ) = n}, the subtrees (τ(1),1, τ(1),2, . . . , τ(1),n) are
independent and distributed as the original tree τ . From this definition, we can obtain
the branching property of GW trees, which says that under the conditional probability
P[·|Yh(τ ) = n] and conditionally on rh(τ ), the subtrees (τ(h),1, τ(h),2, . . . , τ(h),n) are
independent and distributed as the original tree τ . The GW tree is called critical (resp.
subcritical, supercritical) ifμ = 1 (resp.μ < 1,μ > 1). In the critical and subcritical
case, we have that a.s. τ belongs to T0.

Immortal trees can be defined for critical or subcritical offspring distributions. We
recall the following informal but intuitive description from Sect. 1 of [2], which is
adapted from Sect. 5 of [13]. Let p be a critical or subcritical offspring distribution.
Let τ ∗(p) denote the random tree which is specified by:

i) There are two types of nodes: normal and special.
ii) The root is special.
iii) Normal nodes have offspring distribution p.
iv) Special nodes have offspring distribution the size-biased distribution p̂ on Z+

defined by p̂k = kpk/μ for k ∈ Z+.
v) The offsprings of all the nodes are independent of each other.
vi) All the children of a normal node are normal.
vii) When a special node gets several children, one of them is selected uniformly at

random and is special while the others are normal.
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Notice that a.s. τ ∗(p) has one unique infinite spine. We call it an immortal tree. By
the definitions of GW trees and immortal trees, it can be shown that for any h ∈ Z+
and t ∈ T

(h),

μh E[1{rh(τ ∗(p)) = t}] = E[Yh(τ )1{rh(τ ) = t}]. (2)

2.2 The Tail Versions of Local Convergence

Let A be a nonnegative integer-valued function defined on T0. Recall that for any
t ∈ T0, we write (t(h),i , 1 ≤ i ≤ Yh(t)) for the collection of all subtrees above height
h. We introduce the following monotonicity property of A:

A(t) ≥ A(t(h),i ), for any t ∈ T0, h ∈ N, and 1 ≤ i ≤ Yh(t). (3)

The meaning of this monotonicity property (3) should be clear: For any h ∈ N, the
value of A on the whole tree is not less than that on any subtree above height h.

Define vn = P[A(τ ) > n] ∈ [0, 1] and Pn[·] = P[·|A(τ ) > n] when vn > 0. The
following theorem asserts that if the monotonicity property (3) holds for A, then under
the conditional probabilityPn , the GW tree τ(p) converges locally to the immortal tree
τ ∗(p). We write τ ∗ = τ ∗(p) if the offspring distribution p is clear from the context.

Theorem 2.1 Assume that p is critical and vn > 0 for all n. If A satisfies the mono-
tonicity property (3), then as n → ∞,

dist(τ
∣∣A(τ ) > n) → dist(τ ∗).

Proof By (1), we only need to prove that for any h ∈ N and t ∈ T
(h),

lim
n→∞Pn[rh(τ ) = t] = P[rh(τ ∗) = t].

Recall from (2) that when μ = 1, for any h ∈ N and t ∈ T
(h),

P[rh(τ ∗) = t] = E[1{rh(τ ∗) = t}] = E[Yh(τ )1{rh(τ ) = t}].

So it suffices to show that for any h ∈ N and t ∈ T
(h),

lim
n→∞En[1{rh(τ ) = t}] = E[Yh(τ )1{rh(τ ) = t}]. (4)

To prove (4), first recall that if the value of A on a subtree above height h is greater
than n, than the value of A on the whole tree is greater than n, by the monotonicity
property (3). Then recall from the branching property in Sect. 2.1 that under P and
conditional on rh(τ ) the probability that the value of A is greater than n on at least
one subtree above height h is

1 − (1 − vn)
Yh(τ ).
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So the monotonicity property and the branching property imply that

E [1{A(τ ) > n}1{rh(τ ) = t}] ≥ E
[(

1 − (1 − vn)
Yh(τ )

)
1{rh(τ ) = t}

]
.

Thus we get

lim inf
n→∞ En [1{rh(τ ) = t}]

≥ lim inf
n→∞

1

vn
E

[(
1 − (1 − vn)

Yh(τ )
)
1{rh(τ ) = t}

]

≥ E [Yh(τ )1{rh(τ ) = t}] ,

where the second inequality follows fromFatou’s lemma.Note that vn → 0 asn → ∞.
Finally note that

∑

t∈T(h)

En [1{rh(τ ) = t}] = 1 and
∑

t∈T(h)

E [Yh(τ )1{rh(τ ) = t}] = 1,

since E[Yh(τ )] = 1 by (2). This implies (4), since by Fatou’s lemma for sums we get

lim sup
n→∞

En [1{rh(τ ) = t}]

= lim sup
n→∞

En

⎡

⎣1 −
∑

t′∈T(h)\{t}
1{rh(τ ) = t′}

⎤

⎦

≤ 1 −
∑

t′∈T(h)\{t}
lim inf
n→∞ En

[
1{rh(τ ) = t′}]

≤ 1 −
∑

t′∈T(h)\{t}
E

[
Yh(τ )1{rh(τ ) = t′}]

= E [Yh(τ )1{rh(τ ) = t}] . �

Note that it is easy to think of a conditioning under which the local limits of
conditioned critical GW trees are not immortal trees, such as the conditioning of
large minimal outdegree, where the minimal outdegree of a tree is defined to be the
minimum of positive outdegrees of all nodes in the tree. It should be clear that the
minimal outdegree does not satisfy the monotonicity property (3).

Although Theorem 2.1 holds for any A satisfying the monotonicity property (3),
one of our original motivations for this result is the local convergence under the
conditioning of large width. So right now we will only apply Theorem 2.1 to this
specific conditioning. Here the width W (t) of a tree t is defined to be suph∈Z+ Yh(t).
Note that P[W (τ ) > n] > 0 for any n if and only if p0 + p1 < 1. Recall that we
exclude the trivial case of p = (0, 1, 0, . . .). Then Theorem 2.1 immediately gives
the local convergence of critical GW trees to immortal trees, under the conditioning
of large width.
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Corollary 2.2 Assume that � is critical. Then as n → ∞,

dist(τ
∣∣W (τ ) > n) → dist(τ ∗).

2.3 The Density Versions of Local Convergence

The density versions automatically imply the corresponding tail versions, since the tail
versions can be written as sums of the corresponding density versions. More precisely,
we have

P[·|A(τ ) > n] =
∑

m>n

P[·|A(τ ) = m]P[A(τ ) = m]
P[A(τ ) > n] .

To get the density versions, we have to impose a more restrictive additivity property
on the function A, which is similar in spirit to the additivity property (3.1) of [1].

Let A be a nonnegative integer-valued function defined on the space of finite forests.
Recall that t(h) is the sub-forest of the tree t above height h and rh(t) is the subtree of
the tree t below height h. We introduce the following additivity property of A: There
exists a nonnegative integer-valued function B on T0, such that for any fixed h ∈ N

and s ∈ T
(h), there exists n′ ∈ N (n′ may depend on h and s) such that for any t ∈ T0

with rh(t) = s and A(t) > n′, we have

A(t) = A(t(h)) + B(s). (5)

Define v(n) = P[A(τ ) = n] ∈ [0, 1] and P(n)[·] = P[·|A(τ ) = n] when v(n) > 0.
Let τ (k) = (τ1, . . . , τk) be the forest of k i.i.d. GW trees with offspring distribution p.
Write v(n)(k) = P[A(τ (k)) = n]. The following theorem asserts that if the additivity
property (5) holds for A and some additional ratio limit properties hold for v(n) and
v(n)(k), then under the conditional probability P(n), the GW tree τ(p) also converges
locally to the immortal tree τ ∗(p).

Theorem 2.3 Assume that vn > 0 for all n, the additivity property (5) holds for A,

lim inf
n→∞ v(n)(k)/v(n) ≥ k, for any k ∈ N, (6)

and one of the following two conditions holds:

I. μ = 1, and lim infn→∞ v(n−B(t))/v(n) ≥ 1 for any t ∈ T0.
II. 0 < μ ≤ 1, B(t) = H(t) for t ∈ T0, and lim infn→∞ v(n−1)/v(n) ≥ 1/μ.

Then as n → ∞,

dist(τ
∣∣A(τ ) = n) → dist(τ ∗).

Note that all limits are understood along the infinite sub-sequence {n : v(n) > 0}.
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Proof For Case I, by the additivity property (5) and the branching property, we see
that for any h ∈ N and t ∈ T

(h), when n is large enough,

E(n) [1{rh(τ ) = t}]
= 1

v(n)

E
[
1{A(τ(h)) = n − B(rh(τ ))}1{rh(τ ) = t}]

= 1

v(n)

E
[
v(n−B(rh(τ )))(Yh(τ ))1{rh(τ ) = t}] .

Then by our assumptions and Fatou’s lemma, we get

lim inf
n→∞ E(n) [1{rh(τ ) = t}] ≥ E [Yh(τ )1{rh(τ ) = t}] .

From the first paragraph and the last paragraph of the proof of Theorem 2.1, we see
that the above inequality is enough to imply the local convergence for Case I.

The proof of Case II is similar. We first argue that

lim inf
n→∞ E(n) [1{rh(τ ) = t}]

= lim inf
n→∞

1

v(n)

E
[
1{A(τ(h)) = n − h}1{rh(τ ) = t}]

= lim inf
n→∞

1

v(n)

E
[
v(n−h)(Yh(τ ))1{rh(τ ) = t}]

≥ μ−hE [Yh(τ )1{rh(τ ) = t}] .

Sinceμ−hE[Yh(τ )] = 1, clearly the above inequality is also enough to imply the local
convergence for Case II. �

Next wewill apply Theorem 2.3 to four specific conditionings, which are the condi-
tioning of large height, the conditioning of large maximal outdegree, the conditioning
of large width, and the conditioning of large number of nodes with outdegree in a
given set. First we show in the following lemma that the condition (6) in Theorem 2.3
holds when a certain maximum property holds for the function A. This result will be
applied to the maximal outdegree and the height.

Lemma 2.4 Assume that A(t1, . . . , tk) = max1≤i≤k A(ti ) for any forest (t1, . . . , tk),
and vn > 0 for all n. Then for any k ∈ N,

lim
n→∞ v(n)(k)/v(n) = k,

where the limit is understood along the infinite sub-sequence {n : v(n) > 0}.
Proof Just notice that
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v(n)(k) = P[A(τ1, . . . , τk) = n]
= P[A(τ1, . . . , τk) ≤ n] − P[A(τ1, . . . , τk) ≤ n − 1]
= (1 − vn)

k − (1 − vn−1)
k

= v(n)

⎡

⎣
∑

0≤i≤k−1

(1 − vn)
k−1−i (1 − vn−1)

i

⎤

⎦ .

Then since vn → 0 as n → ∞,

lim
n→∞

∑

0≤i≤k−1

(1 − vn)
k−1−i (1 − vn−1)

i = k.

�
For the forest t(k) = (t1, t2, . . . , tk), again we write Yh(t(k)) for the total number

of nodes in the forest t(k) at height h, that is, Yh(t(k)) = ∑
1≤i≤k Yh(ti ). Then define

W (t(k)) = sup
h∈Z+

Yh(t(k)).

Lemma 2.5 Assume that A = W, and the critical or subcritical p has bounded support
with p0 + p1 < 1. Then for any k ∈ N,

lim inf
n→∞ v(n)(k)/v(n) ≥ k,

where the limit is understood along the infinite sub-sequence {n : v(n) > 0}.
Proof Assume that k ≥ 2. Let N = sup{n : pn > 0} < ∞ be the supremum of the
support of p. Use �r� to denote the largest integer less than or equal to r . We argue
that if W (τ1) = n and H(τi ) < �logN (n/k)� for 2 ≤ i ≤ k, then the width of τ (k)

strictly below generation �logN (n/k)� is less than kN �logN (n/k)� ≤ n, that is,

sup
h<�logN (n/k)�

Yh(τ
(k)) < kN �logN (n/k)� ≤ n,

which implies that W (τ1) = n is achieved after generation �logN (n/k)� and
W (τ (k)) = W (τ1) = n. Using this observation, we see that

lim inf
n→∞

v(n)(k)

v(n)

≥ lim inf
n→∞

kP[W (τ1) = n, H(τi ) < �logN (n/k)�, 2 ≤ i ≤ k]
P[W (τ ) = n]

= lim inf
n→∞ k

(
P

[
H(τ ) < �logN (n/k)�])k−1

= k.

�

123



Journal of Theoretical Probability (2022) 35:685–713 695

We turn to the conditioning of large number of nodes with outdegree in a given set,
which is the main topic of [1,2]. For anyA ⊂ Z+, denote by LA(t) the total number of
nodes in the tree t with outdegree in A. For example, LZ+(t) is just the total progeny
of the tree t, and L{0}(t) is just the total number of leaves of the tree t.

Now we show that when combined with several results from [1] (which are not
directly related to the local convergence), our Theorem 2.3 can also be used to prove
all the known density versions of local convergence of critical GW trees from [1,11].
ForA ⊂ Z+, define p(A) = ∑

k∈A pk . Also recall that for a finite tree t, we use M(t)
to denote the maximal outdegree, W (t) the width, and H(t) the height.

Corollary 2.6 If the offspring distribution p is critical with unbounded support, then
as n → ∞,

dist(τ
∣∣M(τ ) = n) → dist(τ ∗),

where the limit is understood along the infinite sub-sequence {n ∈ N : pn > 0}. If p
is critical with bounded support, then as n → ∞,

dist(τ
∣∣W (τ ) = n) → dist(τ ∗),

where the limit is understood along the infinite sub-sequence {n ∈ N : P(W (τ ) =
n) > 0}. If p is critical or subcritical, then as n → ∞,

dist(τ
∣∣H(τ ) = n) → dist(τ ∗).

For the critical offspring distribution p, take any A ⊂ Z+ with p(A) > 0, then as
n → ∞,

dist(τ
∣∣LA(τ ) = n) → dist(τ ∗),

where the limit is understood along the infinite sub-sequence {n ∈ N : P(LA(τ ) =
n) > 0}.
Proof For the conditioning of large maximal outdegree, clearly we may let A(t) =
M(t), then let A(t(k)) = max1≤i≤k M(ti ) for any forest t(k) = (t1, . . . , tk) and B ≡ 0.
Now the local convergence follows from Case I in Theorem 2.3, Lemma 2.4, and the
simple fact that for any n > 0, P[M(τ ) = n] > 0 if and only if pn > 0.

For the conditioning of large width, we let A(t) = W (t) = suph Yh(t), A(t(k)) =
suph Yh(t

(k)) for any forest t(k) = (t1, . . . , tk), and B ≡ 0. Now the local convergence
follows from Case I in Theorem 2.3, Lemma 2.5, and the simple fact that P[W (τ ) >

n] > 0 for any n if and only if p0 + p1 < 1.
For the conditioningof large height,we let A(t) = H(t), A(t(k)) = max1≤i≤k H(ti )

for any forest t(k) = (t1, . . . , tk) and B(t) = H(t). Now the local convergence
follows from (4.5) of [1], Case II in Theorem 2.3, Lemma 2.4, and the trivial fact that
P[H(τ ) = n] > 0 for any n ∈ N.

For the conditioning of large number of nodeswith outdegree in a given setA ⊂ Z+,
we only give an outline of our proof and leave the details to the reader. It is easy to
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see that when p(A) > 0, the set {n ∈ N : P(LA(τ ) = n) > 0} is infinite. let
A(t) = LA(t), then let A(t(k)) = ∑

1≤i≤k LA(ti ) for any forest t(k) = (t1, . . . , tk)
and B(t) = LA(t) − YH(t)(t)1{0 ∈ A}. First consider the case of A = Z+. Then
the local convergence follows from Theorem 2.3, the Dwass formula, and a strong
ratio theorem for random walks. See, e.g., (4.6) in [1] for the Dwass formula and (4.8)
and (4.10) in [1] for the strong ratio theorem. These two results combined imply the
condition (6) and the condition I in our Theorem 2.3. Finally by Sect. 5.1 of [1], we
know that the case of any general A ⊂ Z+ can be reduced to the case of A = Z+ in
the sense that LA of any critical GW tree equals LZ+ of a corresponding critical GW
tree. So for any A ⊂ Z+, the condition (6) and the condition I in our Theorem 2.3
hold since they hold for Z+. �

2.4 A General Ratio Limit Property

Let A be a nonnegative integer-valued function defined on the space of finite forests.
For a finite forest f , we also write f(h) for the sub-forest of f above height h. We
introduce the following monotonicity property of A:

A(f) ≥ A(f ′) ≥ A(f ′(h)), for any finite forests f, f ′ such that f ′ ⊂ f, and h ∈ N.

(7)

Write P[A > n] for P[A(τ ) > n] and P(k)[A > n] for P[A(τ (k)) > n]. The
following theorem asserts that if the monotonicity property (7) holds for A, then
P(k)[A > n] and kP[A > n] are asymptotically equivalent as n → ∞.

Theorem 2.7 Assume that p is critical, P[A > n] > 0 for every n ∈ N, and A satisfies
the monotonicity property (7). Then for any k ∈ N,

lim
n→∞

P(k)[A > n]
P[A > n] = k.

Assume additionally that for some h ∈ N, s ∈ T
(h) with P[rh(τ ) = s] > 0, there

exists some n′ ∈ N such that for any t ∈ T0 with rh(t) = s and A(t) > n′, we get
A(t) − A(t(h)) = r ′ > 0. Then for any k ∈ N and r ∈ N,

lim
n→∞

P(k)[A > n − r ]
P(k)[A > n] = 1.

Proof First as in the proof of Theorem 2.1, for any k ∈ N,

lim inf
n→∞

P(k)[A > n]
P[A > n] ≥ lim inf

n→∞
1 − (1 − P[A > n])k

P[A > n] = k. (8)
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Nextwe argue that for any k ∈ N, if there exists someh ∈ NwithP[Yh(τ ) = k] > 0,
then

lim
n→∞

P(k)[A > n]
P[A > n] = k. (9)

To prove this, pick t such that P[rh(τ ) = t] > 0 and Yh(t) = k. As in the proof of
Theorem 2.1, by the monotonicity property (7) and the branching property we get

lim inf
n→∞ P[rh(τ ) = t|A > n] ≥ lim inf

n→∞
P(k)[A > n]
P[A > n] P[rh(τ ) = t] ≥ kP[rh(τ ) = t].

Then again as in the proof of Theorem 2.1, we can derive from the inequalities above
that

lim
n→∞P[rh(τ ) = t|A > n] = lim

n→∞
P(k)[A > n]
P[A > n] P[rh(τ ) = t] = kP[rh(τ ) = t].

which implies (9).
Finally assume that for some k ∈ N,

lim sup
n→∞

P(k)[A > n]
P[A > n] > k.

By the facts that E[Yh(τ )] = 1 and a.s. limh→∞ Yh(τ ) = 0, we can pick some k′ ∈ N

such that k′ > k and there exists some h ∈ N with P[Yh(τ ) = k′] > 0. So (9) holds
for k′. However as in (8), by considering the first k trees as a whole and the next k′ − k
ones separately we also have

P(k′)[A > n]
≥ 1 − (1 − P(k)[A > n])(1 − P[A > n])k′−k

= 1 − (1 − P[A > n])k′−k + P(k)[A > n](1 − P[A > n])k′−k,

which implies that

lim sup
n→∞

P(k′)[A > n]
P[A > n] ≥ (k′ − k) + lim sup

n→∞
P(k)[A > n]
P[A > n] > k′,

a contradiction to (9) for k′.
For the second statement, again by the argument in the proof of Theorem 2.1 and

the assumptions, we have for k = Yh(s) and r ′ in the assumptions,

lim
n→∞P[rh(τ ) = s|A > n] = lim

n→∞
P(k)[A > n − r ′]

P[A > n] P[rh(τ ) = s] = kP[rh(τ ) = s],
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noticing that in the middle term we use P(k)[A > n− r ′] instead of P(k)[A > n]. This
implies that for k = Yh(s) and r ′,

lim
n→∞

P(k)[A > n − r ′]
P[A > n] = k.

Then by the first statement we have for r ′,

lim
n→∞

P(k)[A > n − r ′]
P(k)[A > n] = 1,

which implies that for any r ∈ N,

lim
n→∞

P(k)[A > n − r ]
P(k)[A > n] = 1. �

For the probability P[A = n], it is not possible to obtain a result as general as The-
orem 2.7. However for some specific functions, it is possible to improve the inequality
(6) in Theorem 2.3 to an equality. Recall Theorem 1 of [18] and Theorem 1 of [7].
The following proposition might be regarded as a generalization of those two results.

Proposition 2.8 Assume that p is critical. Then for any k ∈ N,

lim
n→∞

P(k)[W > n]
P[W > n] = k.

Assume additionally that p has bounded support. Then for any k ∈ N,

lim
n→∞

P(k)[W = n]
P[W = n] = k,

where the limit is understood along the infinite sub-sequence {n : P[W = n] > 0}.
Proof The first statement is immediate from Theorem 2.7.

For the second statement, first recall Lemma 2.5 and the fact that W satisfies the
additivity property (5) with B ≡ 0. As in the proof of Theorem 2.7, we have for any
k ∈ N, if there exists some h ∈ N with P[Yh(τ ) = k] > 0, then

lim
n→∞

P(k)[W = n]
P[W = n] = k. (10)

Now assume that for some k ∈ N,

lim sup
n→∞

P(k)[W = n]
P[W = n] > k.
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As in the proof of Theorem 2.7, there exists some k′ ∈ N such that k′ > k and (10)
holds for k′. However as in the proofs of Lemma 2.5 and Theorem 2.7, by considering
the first k trees as a whole and the next k′ − k ones separately we also have

P(k′)[W = n] ≥ P(k)[W = n] (P [
H < �logN (n/k′)�])k′−k

+(k′ − k)P[W = n] (P [
H < �logN (n/k′)�])k′−1

,

which implies that

lim sup
n→∞

P(k′)[W = n]
P[W = n] > k + (k′ − k) = k′,

a contradiction to (10) for k′. This completes the proof. �
We mention that when the offspring distribution has unbounded support, it seems

to be much more difficult to study the quantity P(k)[W = n], compared to the quantity
P(k)[W > n].

3 Preliminaries of Lévy Trees

This section is mainly extracted from [8]. For more details refer to Sects. 1.2, 3.1, and
3.3 of [8].

3.1 BranchingMechanisms of Lévy Trees

We consider a Lévy tree with the branching mechanism

�(λ) = αλ + βλ2 +
∫

(0,∞)

π(dθ)(e−λθ − 1 + λθ), λ ≥ 0, (11)

whereα ≥ 0,β ≥ 0, and theLévymeasureπ is a σ -finitemeasure on (0,∞) satisfying∫
(0,∞)

π(dθ)(θ ∧ θ2) < ∞. When we talk about height processes of Lévy trees (see
Sect. 3.3), we always assume the condition

∫ ∞

1
1/�(λ)dλ < ∞, (12)

which implies that

β > 0 or
∫

(0,1)
θπ(dθ) = ∞. (13)

We then consider a spectrally positive Lévy process X = (Xt , t ≥ 0) with the
Laplace exponent −�, that is, for λ ≥ 0,
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E[exp(−λXt )] = exp(t�(λ)), t ≥ 0. (14)

We also consider a bivariate subordinator (U , V ) = ((Ut , Vt ), t ≥ 0), that is, a
[0,∞)×[0,∞)-valued Lévy process such that (U0, V0) = (0, 0) (see, e.g., page 162
of [15]). Define �(p, q) by

�(p, q) = �(p) − �(q)

p − q
− α for p �= q, and �(p, p) = �′(p) − α.

Then the distribution of (U , V ) is characterized by the Laplace exponent�(p, q): For
p, q ≥ 0,

E[exp(−pUt − qVt )] = exp(−t�(p, q)), t ≥ 0. (15)

3.2 The Excursion Representation of CB Processes

We also consider a continuous-state branching process (CB process) Y = (Yt , t ≥ 0)
with the branching mechanism � given by (11). The branching mechanism and the
corresponding CB process and Lévy tree are called subcritical if α > 0 and critical if
α = 0. Let Px [Y ∈ ·] be the distribution of Y started from x , andEx the corresponding
expectation. It is well known that the distribution of Y can be specified by� as follows:
For λ ≥ 0,

Ex [exp(−λYt )] = exp(−xvt (λ)), t ≥ 0,

where vt (λ) is the unique nonnegative solution of

vt (λ) = −
∫ t

0
�(vs(λ))ds + λ, t ≥ 0.

The excursion representation of CB processes is crucial in this paper. Take a CB
process Y with the branching mechanism �, we can define an excursion measure
N and reconstruct Y from excursions. Let D([0,∞),R+) be the standard Skorohod
space. Let D0([0,∞),R+) be the subspace of D([0,∞),R+), such that all paths in
D0([0,∞),R+) start from 0 and stop upon hitting 0. Under the condition (13), we
can define a σ -finite measure N on D0([0,∞),R+) such that:
1. N ({0}) = 0, where 0 denotes the trivial path in D([0,∞),R+), that is, 0t = 0 for
any t ≥ 0.
2. Let Z be a Poisson random measure on D0([0,∞),R+) with intensity xN . Define
the process e = (et , t ≥ 0) by e0 = x and

et =
∫

D0([0,∞),R+)

ωt Z(dω), t > 0.

Then e is a CB process with the branching mechanism �.
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3.3 Height Processes and the Branching Property of Lévy Trees

The height process H = (Ht , t ≥ 0) is introduced by Le Gall and Le Jan [16] and
further developed by Duquesne and Le Gall [10], to code the complete genealogy of
Lévy trees. It is obtained as a functional of the spectrally positive Lévy process X with
the Laplace exponent −�. Intuitively, for every t ≥ 0, Ht “measures” in a local time
sense the size of the set {s ≤ t : Xs = infr∈[s,t] Xr }. It is known that the condition
(12) holds if and only if the height process H has a continuous modification. From
now on, we only consider this modification, still denoted by H . For any h ≥ 0, the
local time Lh = (Lh

t , t ≥ 0) of H at height h can be defined, which is continuous
and increasing. Intuitively, the measure induced by Lh is distributed “uniformly” on
all “particles” of the Lévy trees at height h. Note that all processes introduced so far
are defined under the underlying probability P, so that all these processes correspond
to a Poisson collection of Lévy trees.

In order to talk about a single Lévy tree, a certain excursion measure N needs to
be introduced. Recall the spectrally positive Lévy process X = (Xt , t ≥ 0) with the
Laplace exponent −�, and its infimum process I = (It , t ≥ 0) defined by It =
infs≤t Xs . When the condition (13) holds, the point 0 is regular and instantaneous
for the strong Markov process X − I . We denote by N the corresponding excursion
measure, and by ζ the duration of the excursion. We also denote by X the canonical
process under N. Note that normally we need to specify the normalization of N, but
for our purposes in this paper this normalization always cancels out.

In general, H is notMarkovian underP, but Ht only depends on the values of X− I ,
on the excursion interval of X − I away from 0 that straddles t . Also it can be checked
that a.s. for all t , Ht > 0 if and only if Xt − It > 0. So under N we may define H as
a functional of X (recall that X is the canonical process under N). Consequently we
may also define the local time Lh = (Lh

t , 0 ≤ t ≤ ζ ) of H at any height h > 0, under
the excursion measure N. Note that it is then standard to define the Lévy tree with the
branching mechanism � as a random metric space T (�) from the height process H .

The branching property of Lévy trees is crucial for us in this paper. For any h > 0,
define the conditional probability N(h) as the distribution of the canonical process X
conditioned on having height greater than h, that is,

N(h)[·] = N[·| sup H > h].

Then intuitively the branching property says that under N(h) and conditional on all
information below height h, all the subtrees above height h are distributed as i.i.d.
copies of the complete Lévy tree under N, and the roots of all these subtrees distribute
as a Poisson random measure with intensity the measure induced by Lh = (Lh

t , 0 ≤
t ≤ ζ ). Define L0

ζ = 0, then the process Lζ = (Lh
ζ , h ≥ 0) has an rcll modification

(still denoted by Lζ ) and it is well known that

N[(Lh
ζ , h ≥ 0) ∈ ·] = N [·].

So consequently from the excursion representation of CB processes, we see that
under N(h) and conditional on all information below height h, the real-valued process
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(
Lh+h′

ζ , h′ ∈ [0,∞)
)
distributes as a CB process with initial value Lh

ζ . For a rigorous

presentation of this branching property, refer to Theorem 4.2 of [9] and Proposition
3.1 of [8]. Note that Theorem 4.2 of [9] is formulated in the real tree framework, while
Proposition 3.1 of [8] is formulated in the height process framework. Although the
former is more intuitive to understand, we will mainly rely on the latter, since in this
paper we use the height process framework.

3.4 Continuum Immortal Trees

Recall (14) and (15). Let H be the height process associated with the Lévy process
X with the Laplace exponent −�, and let (X ′, H ′) be a copy of (X , H). Let I =
(It , t ≥ 0) and I ′ = (I ′

t , t ≥ 0) be the infimum processes of X and X ′, respectively.
Let (U , V ) be a bivariate subordinator with the Laplace exponent�(p, q). LetU−1 =
(U−1

t , t ≥ 0) and V−1 = (V−1
t , t ≥ 0) be the right-continuous inverses of U and V ,

respectively. Assume that (X , H), (X ′, H ′), and (U , V ) are independent. We define←−
H and

−→
H by

←−
H t = Ht +U−1

−It
and

−→
H t = H ′

t + V−1
−I ′

t
, t ≥ 0.

The processes
←−
H and

−→
H are called, respectively, the left and right height processes of

the continuum immortal tree with the branching mechanism �. Then one can proceed
to define the continuum immortal tree as a randommetric space T ∗(�) from the height
processes

←−
H and

−→
H . For details refer to page 103 of [8].

Forω = (ωt , t ≥ 0) ∈ C([0,∞),R+), define ζ(ω) = inf{t > 0 : ωt = 0}with the
convention that inf ∅ = ∞. Denote byC0([0,∞),R+) the subspace of all excursions
in C([0,∞),R+), that is, ω ∈ C0([0,∞),R+) if and only if ω ∈ C([0,∞),R+),
ζ(ω) ∈ (0,∞), ωt > 0 when t ∈ (0, ζ ), and ωt = 0 otherwise. For ω = (ωt , t ≥
0) ∈ C([0,∞),R+) and h > 0, define rh(ω) = ((rh(ω))s, s ≥ 0) ∈ C([0,∞),R+)

by (rh(ω))s = ωsh , where

sh = inf

{
t ≥ 0 :

∫ t

0
da1{ωa ≤ h} > s

}

when
∫ ∞
0 da1{ωa ≤ h} > s, and ωsh = h when

∫ ∞
0 da1{ωa ≤ h} ≤ s.

Introduce the last time under level h for the left and the right height processes:

←−σ h = sup{t ≥ 0 : ←−
H t ≤ h} and −→σ h = sup{t ≥ 0 : −→

H t ≤ h}.

It is easy to see that ←−σ h < ∞ and −→σ h < ∞ a.s. Define
←→
H h = (

←→
H h

t , t ≥ 0) by←→
H h

t = ←−
H t when t ∈ [0,←−σ h], ←→H h

t = −→
H (←−σ h+−→σ h−t) when t ∈ [←−σ h,

←−σ h + −→σ h],
and

←→
H h

t = 0 when t > ←−σ h +−→σ h . Consider rh
(←→
H h

)
, we denote it by rh

(←→
H

)
for

clarity. Now let us recall Lemma 3.2 of [8], which relates the distribution of a Lévy
tree and that of the corresponding continuum immortal tree.
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Lemma 3.1 For any nonnegative measurable functions F and G on C([0,∞),R+),
and any h > 0,

N
[∫ ζ

0
dLh

s F (H·∧s)G
(
H(ζ−·)∧(ζ−s)

)] = e−αhE
[
F

(←−
H ·∧←−σ h

)
G

(−→
H ·∧−→σ h

)]
.

For any nonnegative measurable function F on C0([0,∞),R+) and any h > 0,

N
[
Lh

ζ F(rh(H))
]

= e−αhE
[
F

(
rh

(←→
H

))]
.

Proof The first statement is from Lemma 3.2 of [8]. Then we have

N
[∫ ζ

0
dLh

s F (rh(H·∧s))G
(
rh(H(ζ−·)∧(ζ−s))

)]

= e−αhE
[
F

(
rh

(←−
H ·∧←−σ h

))
G

(
rh

(−→
H ·∧−→σ h

))]
.

Recall that we have constructed rh
(←→
H

)
from rh

(←−
H ·∧←−σ h

)
and rh

(−→
H ·∧−→σ h

)
. By

Theorem 4.2.(i) of [9], N a.e., then for dLh· a.e. s, we can construct rh(H) from
rh(H·∧s) and rh

(
H(ζ−·)∧(ζ−s)

)
in exactly the same way. So the second statement

follows from the above formula. �

Note that taking F = G ≡ 1 in Lemma 3.1 gives

N[Lh
ζ ] = e−αh, h > 0. (16)

4 Local Convergence of Critical Lévy Trees and CB Processes

In this section, first we study the local convergence of conditioned critical Lévy trees.
Then we derive a very general ratio limit property for certain measurable functions of
critical Lévy trees. Finally we treat the local convergence of conditioned critical CB
processes. Recall that when we talk about height processes of Lévy trees, we always
assume the condition (12).

4.1 Local Convergence of Critical Lévy Trees

Let A be a nonnegative measurable function defined on the excursion space
C0([0,∞),R+). For an excursion ω ∈ C0([0,∞),R+), write ω(h) = (ω(h),i , i ∈
I(h)) for the collection of all sub-excursions above height h. We introduce the follow-
ing monotonicity property of A:

A(ω) ≥ A(ω(h),i ), for any ω ∈ C0([0,∞),R+), h > 0, and i ∈ I(h). (17)
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Suppose that ω ∈ C0([0,∞),R+) codes a real tree, then the monotonicity property
(17) says that for any h > 0 the value of A on the whole tree is not less than the value
of A on any subtree above height h.

Define vr = N[A(H) > r ] ∈ [0,∞] and Nr [·] = N[·|A(H) > r ] when vr ∈
(0,∞). The following theorem asserts that if the monotonicity property (17) holds for
A, then under the conditional probability Nr , the Lévy tree T (�) converges locally
to the continuum immortal tree T ∗(�), as r → ∞. More specifically, we see that
combined with Lemma 2.3 of [9], the following theorem says that for any h > 0,
under the conditional probability Nr , the subtree of the Lévy tree T (�) below height
h converges as r → ∞ to the subtree of the continuum immortal tree T ∗(�) below
height h, with respect to the (pointed) Gromov–Hausdorff distance on the space of all
equivalence classes of rooted compact real trees.

Theorem 4.1 Assume that � is critical and vr ∈ (0,∞) for large enough r. If the
function A satisfies the monotonicity property (17), then for any h > 0, as r → ∞,

rh(H) under Nr −→ rh
(←→
H

)

weakly in C0([0,∞),R). Also as r → ∞,

(Ht∧ζ , H(ζ−t)+; t ≥ 0) under Nr −→ (
←−
H t ,

−→
H t ; t ≥ 0)

weakly in C([0,∞),R2).

Proof For the first statement, it suffices to prove the following convergence for any
bounded measurable function F on C0([0,∞),R+),

lim
r→∞Nr [F(rh(H))] = E

[
F

(
rh

(←→
H

))]
. (18)

Clearly we may assume that 0 ≤ F ≤ 1. The by Lemma 3.1, it suffices to show that

lim
r→∞Nr [F(rh(H))] = N

[
Lh

ζ F(rh(H))
]
. (19)

To prove (19), first recall that if the value of A on a subtree above height h is greater
than r , then the value of A on the whole tree is greater than r , by the monotonicity
property (17). Then recall the branching property from Sect. 3.3 (more precisely, we
use Proposition 3.1 of [8]) and note that underN(h) and conditional on all information
below height h, the number of subtrees above height h having the value of A greater
than r is distributed as a Poisson random variable with parameter

Lh
ζN[A(H) > r ] = Lh

ζ vr .

So the probability that the value of A on at least one subtree above height h is greater
than r is

1 − exp
(
−Lh

ζ vr

)
.
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So the monotonicity property and the branching property imply that

N(h) [1{A(H) > r}F(rh(H))] ≥ N(h)

[(
1 − e−Lh

ζ vr
)
F(rh(H))

]
,

which further implies that

N [1{A(H) > r}F(rh(H))] ≥ N
[(

1 − e−Lh
ζ vr

)
F(rh(H))

]
.

Thus we get

lim inf
r→∞ Nr [F(rh(H))] ≥ lim inf

r→∞
1

vr
N

[(
1 − e−Lh

ζ vr
)
F(rh(H))

]

≥ N
[
Lh

ζ F(rh(H))
]
,

where the second inequality follows from Fatou’s lemma.
Now recall that 0 ≤ F ≤ 1. Then we apply the above inequality to 1 − F to get

lim inf
r→∞ Nr [1 − F(rh(H))] ≥ N

[
Lh

ζ − Lh
ζ F(rh(H))

]
,

which implies that

lim sup
r→∞

Nr [F(rh(H))] ≤ N
[
Lh

ζ F(rh(H))
]
,

since N[Lh
ζ ] = 1 by (16). Thus we have proved (19).

For the second statement we introduce τh(ω) = inf{s ≥ 0 : ω(s) = h} for
ω ∈ C([0,∞),R+). To simplify notations we set

Ĥ· = H(ζ−·)+ , τh = τh(H), τ̂h = τh(Ĥ), ←−τ h = τh(
←−
H ), and −→τ h = τh(

−→
H ).

To get the second statement, we only have to prove the following convergence for any
bounded measurable function F on C([0,∞),R2),

lim
r→∞Nr

[
F(H·∧τh , Ĥ·∧τ̂h )

] = E
[
F(

←−
H ·∧←−τ h

,
−→
H ·∧−→τ h

)
]
, b > 0, (20)

since it implies that for any t > 0,

lim
h→∞ lim

r→∞Nr [τh ∧ τ̂h ≤ t] = lim
h→∞P

[←−τ h ∧ −→τ h ≤ t
] = 0.

Finally notice that (18) implies (20). �
Next we will apply Theorem 4.1 to three specific conditionings, which are the

conditioning of large width, the conditioning of large total mass, and the conditioning
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of large maximal degree. We first introduce the conditioning of large width. Under N,
define thewidth of the Lévy tree H byW (H) = suph≥0 L

h
ζ . ConsiderN[·|W (H) > r ]

when N[W (H) > r ] ∈ (0,∞), this is the conditioning of large width. Then let us
consider the conditioning of large totalmass.UnderN, define the totalmass of theLévy
tree H byσ(H) = ∫ ∞

0 Lh
ζdh. ConsiderN[·|σ(H) > r ]whenN[σ(H) > r ] ∈ (0,∞),

this is the conditioning of large total mass.
Finallywe introduce the conditioningof largemaximal degree.Recall fromSect. 3.3

thatN is the excursionmeasure of the strongMarkov process X− I at zero. Also recall
that we write X for the canonical process under N, which is rcll. Finally recall from
Theorem 4.6 of [9] that Lévy trees have two types of nodes (i.e., branching points),
binary nodes (i.e., vertices of degree 3) and infinite nodes (i.e., vertices of infinite
degree). Infinite nodes correspond to the jumps of the canonical process X under N,
and the sizes of these jumps correspond to the masses of those infinite nodes. We
call the mass of a node its degree. Then define the maximal degree of the Lévy tree
H by M(H) = sup0≤s≤ζ �Xs . Note that under N we can write max0≤s≤ζ �Xs as
a measurable function of H , since jumps of X correspond to jumps of the process
(Lh

ζ , h ≥ 0), which is a measurable functional of H . Consider N[·|M(H) > r ] when
N[M(H) > r ] ∈ (0,∞), this is the conditioning of large maximal degree.

Since the monotonicity property (17) is trivial to check, we then only have to check
that vr ∈ (0,∞) for large enough r . In the following lemma, we only assume (13).
Note that to define W , σ , and M , we only need the real-valued process (Lh

ζ , h ≥ 0),
whichwhen (13) holds can be defined by the excursion representation of CBprocesses,
so the introduction of the height process H and its local times is not needed. Also note
that the measurable functions W , σ , or M can be similarly defined for CB processes.
We write Px for probabilities of CB processes with initial value x .

Lemma 4.2 Assume (13). Then for any x > 0, if α ≥ 0, then Px [W > r ] > 0 and
N [W > r ] ∈ (0,∞) for any r ∈ (0,∞), and Px [σ > r ] > 0 and N [σ > r ] ∈
(0,∞) for any r ∈ (0,∞). Again for any x > 0, if α ≥ 0 and the Lévy measure
π has unbounded support, then Px [M > r ] > 0 and N [M > r ] ∈ (0,∞) for any
r ∈ (0,∞).

Proof For the width, first we argue that for any x ∈ (0,∞) and r ∈ (0,∞),

Px [W > r ] ≤ x

r
.

When α ≥ 0, for the CB process Y we may define Y∞ = 0 and regard Y as a
supermartingale over the time interval [0,∞]. Then by optional sampling, it is easy
to get the above inequality. Now by the excursion representation of CB processes and
the above inequality, we get

1 − exp (−(r/2)N [W > r ]) ≤ Pr/2[W > r ] ≤ 1/2,

which implies that N [W > r ] < ∞ for any r > 0. Next by Corollary 12.9 of [15]
and the fact that scale functions are strictly increasing, we see that Px [W > r ] > 0
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for any x > 0 and r > 0. Finally by the Markov property of the excursions under N ,
for any r > 0 and h > 0 we have

N [W > r ] ≥ N
[
Pωh [W > r ]] > 0,

since N [ωh > 0] > 0 for any h > 0.
For the total mass, first denote by �−1 the inverse function of �, then recall that

for λ > 0, N [1 − exp(−λσ)] = �−1(λ) (see, e.g., the beginning of Sect. 3.2.2 in
[10]), which implies that N [σ > r ] < ∞ for any r > 0. Also clearly N [σ > r ] > 0
for some r > 0, then by the excursion representation of CB processes, we see that
Px [σ > r ] > 0 for any r > 0. Finally by the Markov property of the excursions under
N , for any r > 0 and h > 0, we have

N [σ > r ] ≥ N
[
Pωh [σ > r ]] > 0.

Finally the statement on the maximal degree follows from Corollary 4.2 of [12], the
excursion representation of CB processes, and the simple observation that different
excursions do not jump at the same time, Px a.s. �

Now Theorem 4.1 and Lemma 4.2 immediately imply the local convergence of
critical Lévy trees, under any of the three conditionings we introduced above.

Corollary 4.3 Assume that � is critical and h > 0. Then for A = W and A = σ ,
respectively, as r → ∞,

rh(H) under Nr −→ rh
(←→
H

)

weakly in C0([0,∞),R). The above convergence also holds for A = M under the
additional assumption that the Lévy measure π has unbounded support.

4.2 A General Ratio Limit Property

Denote by C
∞
0 ([0,∞),R+) the product space of countably infinitely many copies

of C0([0,∞),R+). Let A be a nonnegative measurable function defined on
C

∞
0 ([0,∞),R+), which is invariant under permutation. For any ω,ω′ ∈ C

∞
0 ([0,∞),

R+), we write ω′ ≤ ω if ω = (ω1, ω2, . . .), ω′ = (ω′
1, ω

′
2, . . .), and ω′

n ≤ ωn for
any n ≥ 1. For any ω ∈ C

∞
0 ([0,∞),R+), we also write ω(h) ∈ C

∞
0 ([0,∞),R+)

for the collection of sub-excursions of ω above height h. We introduce the following
monotonicity property of A:

A(ω) ≥ A(ω′) ≥ A(ω′
(h)), for ω,ω′ ∈ C

∞
0 ([0,∞),R+) with ω′ ≤ ω, and h > 0.

(21)

Let N (x) be a Poisson random measure on C0([0,∞),R+) with intensity xN[H ∈
·]. Write ω(x) = (ω(x),i , i ∈ I(x)) for the collection of all excursions in N (x). Also
write N[A > r ] for N[A(H) > r ], and P(x)[A > r ] for P[A(ω(x)) > r ].

123



708 Journal of Theoretical Probability (2022) 35:685–713

Theorem 4.4 Assume that � is critical, N[A > r ] ∈ (0,∞) for large enough r, and
A satisfies the monotonicity property (21). Then for any x > 0,

lim
r→∞

P(x)[A > r ]
N[A > r ] = x .

Proof First as in the proof of Theorem 4.1, for any x > 0,

lim inf
r→∞

P(x)[A > r ]
N[A > r ] ≥ lim inf

r→∞
1 − exp(−xN[A > r ])

N[A > r ] = x .

Also note that as in the proof of Theorem 4.1, for any Borel subset B of R+,

lim
r→∞

N
[
P(Lh

ζ )[A > r ]; Lh
ζ ∈ B

]

N[A > r ] = N
[
Lh

ζ ; Lh
ζ ∈ B

]
. (22)

Now recall a basic property of Poisson random measures, which asserts that for
0 < x < y, if we add a Poisson random measures with intensity xN to another
independent Poisson random measures with intensity (y − x)N, we get a Poisson
random measures with intensity yN. So

P(y)[A > r ] ≥ 1 − (1 − P(x)[A > r ]) exp(−(y − x)N[A > r ])
= 1 − exp(−(y − x)N[A > r ]) + P(x)[A > r ] exp(−(y − x)N[A > r ]),

which implies that

lim sup
r→∞

P(y)[A > r ]
N[A > r ] ≥ (y − x) + lim sup

r→∞
P(x)[A > r ]
N[A > r ] . (23)

Suppose that we can pick some x ′ > 0, such that for some δ > 0,

lim sup
r→∞

P(x ′)[A > r ]
N[A > r ] − x ′ ≥ δ.

Recall from Lemma 4.2 that W = suph>0 L
h
ζ has unbounded support, so we can pick

some h > 0 and x ′′ > x ′, such that for any ε > 0,

N
[
Lh

ζ ∈ (x ′′ − ε, x ′′ + ε)
]

> 0. (24)

Fix a strictly decreasing sequence (εn)n≥1 such that ε1 < x ′′−x ′ and limn→∞ εn = 0.
For any n ≥ 1, we know from (23) that

lim sup
r→∞

P(x ′′−εn)[A > r ]
N[A > r ] − (x ′′ − εn) ≥ δ.
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Then pick an increasing sequence (rk)k≥1 (may depend on n) such that limk→∞ rk =
∞ and

P(x ′′−εn)[A > rk]
N[A > rk] − (x ′′ − εn) ≥ δ/2.

Clearly for any y > x ′′ − εn ,

P(y)[A > rk]
N[A > rk] − (x ′′ − εn) ≥ δ/2.

So we get

lim sup
k→∞

N
[
P(Lh

ζ )[A > rk]; |Lh
ζ − x ′′| < εn

]

N[A > rk] ≥ (x ′′ − εn + δ/2)N
[
|Lh

ζ − x ′′| < εn

]
.

Since trivially

N
[
Lh

ζ ; |Lh
ζ − x ′′| < εn

]
≤ (x ′′ + εn)N

[
|Lh

ζ − x ′′| < εn

]
,

by (22) we can derive that

(x ′′ − εn + δ/2)N
[
|Lh

ζ − x ′′| < εn

]
≤ (x ′′ + εn)N

[
|Lh

ζ − x ′′| < εn

]
;

thus we get x ′′ − εn + δ/2 ≤ x ′′ + εn by (24), that is, δ ≤ 4εn for any n ≥ 1, a
contradiction to δ > 0. This completes the proof. �

In the next subsection, more specifically, in the following Proposition 4.5, we will
apply Theorem 4.4 to both width and total mass of Lévy forests. Here we only mention
that we do not need to apply Theorem 4.4 to the maximal degree of Lévy forests since
it is the trivial case. Assume that for any ω∞ = (ω1, ω2, . . .) ∈ C

∞
0 ([0,∞),R+), the

measurable function A has the property that

A(ω∞) = sup
i∈N

A(ωi ). (25)

Then clearly

P(x)[A > r ] = 1 − exp(−xN[A > r ]),

which implies that

lim
r→∞

P(x)[A > r ]
N[A > r ] = x .
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The maximal degree and the height of Lévy forests are two examples of measurable
functions satisfying (25). Clearly for themaximal jump and the height ofCBprocesses,
we have a similar situation, just notice that in the excursion representation of CB
processes, different excursions of any CB process do not jump at the same time.

4.3 Local Convergence of Critical CB Processes

In this subsection, we first discuss the corresponding result of Theorem 4.4 in the
setting of CB processes and then use it to treat the local convergence of critical CB
processes.

Let A be a nonnegativemeasurable function defined onD([0,∞),R+), the standard
Skorohod space. For any ω ∈ D([0,∞),R+), we write ω(h) ∈ D([0,∞),R+) for the
sub-path of ω after time h. We introduce the following monotonicity property of A:

A(ω) ≥ A(ω′) ≥ A(ω′
(h)), for ω,ω′ ∈ D([0,∞),R+) with ω′ ≤ ω, and h > 0.

(26)

Let Y = (Yt , t ≥ 0) be a CB process with the branching mechanism � and write
(Ft , t ≥ 0) for the filtration induced by Y . Recall from Sect. 3.2 that we use Px [Y ∈ ·]
to denote the distribution of Y with Y0 = x and N the excursion measure.

The following result is just the corresponding version of Theorem 4.4 in the setting
of CB processes, plus two applications. The first application is about the width of CB
processes and the scale functions of Lévy processes. For the definition of the scale
function W (0) = (W (0)(r), r ≥ 0), see, e.g., Sect. 8.2 of [15]. Note that we use W
to denote the width and W (0) to denote the scale function. The second application is
about the total mass of CB processes. In the first application, it might be interesting
to note that the convergence of the scale function W (0) below also has an intuitive
meaning for the first passage times of Lévy processes, see (8.11) in [15].

Proposition 4.5 Assume that � is critical and satisfies (13), N [A > r ] ∈ (0,∞) for
large enough r, and A satisfies the monotonicity property (26). Then for any x > 0,

lim
r→∞

Px [A > r ]
N [A > r ] = x,

where we write Px [A > r ] for Px [A(Y ) > r ]. In particular, for any x > 0,

lim
r→∞

Px [W > r ]
N [W > r ] = x .

Expressed in terms of the scale function W (0) = (W (0)(r), r ≥ 0), the above conver-
gence means that for any x > 0,

lim
r→∞

W (0)(r) − W (0)(r − x)

W (0)(r) − W (0)(r − 1)
= x .
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Also for any x > 0,

lim
r→∞

Px [σ > r ]
N [σ > r ] = x .

Proof For the first statement, note that Theorem 4.4 is about height processes of Lévy
trees, so we have to assume the condition (12) to get continuous height processes.
However the proof there does not rely on any specific property of height processes.
In fact, if we are interested only in the real-valued process (Lh

ζ , h ≥ 0), not in the
height process and its local times, then as long as the branching mechanism satisfies
the weaker condition (13), we can make the same proof work by using the excursion
representation of CB processes. The first statement now follows from the fact that

N[(Lh
ζ , h ≥ 0) ∈ ·] = N [·].

The other statements follow immediately from the first statement, Lemma 4.2 in
the present paper, and Corollary 12.9 of [15]. �

The following result asserts that if the monotonicity property (26) holds for A, then
under the conditional probability Px [·|A(Y ) > r ], the CB process Y converges locally
to a certain CB process with immigration (CBI process), such that the branching
mechanism of this CBI process is still � and the immigration mechanism is �′, the
derivative of �, see Remark 4.7.

Corollary 4.6 Assume that � is critical and satisfies (13), Px [A(Y ) > r ] > 0 for any
x, r > 0, and A satisfies the monotonicity property (26). Then for any h ≥ 0 and any
bounded Fh-measurable random variable F,

lim
r→∞Ex [F |A(Y ) > r ] → 1

x
Ex [Yh F].

Proof We consider only F ≥ 0. The monotonicity property (26) of A and the Markov
property of the CB process Y imply that

Ex [F |A(Y ) > r ] ≥ Ex [F; A(Y(h)) > r ]
Px [A(Y ) > r ] = Ex [PYh [A(Y ) > r ]F]

Px [A(Y ) > r ] .

The first statement of Proposition 4.5 and Fatou’s lemma imply that

lim inf
r→∞

Ex [PYh [A(Y ) > r ]F]
Px [A(Y ) > r ] ≥ 1

x
Ex [YhF].

Recall that Ex [Yh] = x . As in the proof of Theorem 4.1, the above two inequalities
are enough to imply that

lim
r→∞Ex [F |A(Y ) > r ] = 1

x
Ex [YhF]. �
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Remark 4.7 Define a new probability P∗
x by

E∗
x [F] = 1

x
Ex [YhF],

for any h ≥ 0 and any bounded Fh-measurable random variable F . It is well known
that P∗

x [Y ∈ ·] is the distribution of a CBI process Y ∗ with the branching mechanism
� and the immigration mechanism�′, where�′ is the derivative of�. See, e.g., Sect.
3.3 of [17] for some details on CBI processes. Then Theorem 4.6 implies that for
any h ≥ 0, (Yt , t ∈ [0, h]) under the conditioning of {A(Y ) > r} converges weakly
to (Y ∗

t , t ∈ [0, h]) as r → ∞. In this case, we say that under the conditioning of
{A(Y ) > r} the critical CB process Y converges locally to the CBI process Y ∗.

Now Theorem 4.6 and Lemma 4.2 imply immediately that the critical CB process
Y converges locally to Y ∗, under any of the three conditionings introduced in Sect. 4.1.
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