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Abstract
A sum of a large-dimensional random matrix polynomial and a fixed low-rank matrix
polynomial is considered. The main assumption is that the resolvent of the random
polynomial converges to some deterministic limit. A formula for the limit of the
resolvent of the sum is derived, and the eigenvalues are localised. Four instances are
considered: a low-rank matrix perturbed by the Wigner matrix, a product HX of a
fixed diagonal matrix H and theWigner matrix X and two special matrix polynomials
of higher degree. The results are illustrated with various examples and numerical
simulations.

Keywords Matrix polynomial · Eigenvalue · Random matrix · Limit distribution of
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Introduction

Motivation

Since the seminal works of Wigner [58] and Marchenko and Pastur [38], spectral
theory of random matrices has gathered a huge interest. In particular, studying the
limit laws of eigenvalues was considered many times in the literature ([1,10,11,16,19–
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21,26,51,54,55]). One of the recent techniques in this field is to investigate the limit
(in probability) of the resolvent (XN − z IN )−1. This was done already for Hermitian
matrices, e.g. when XN ∈ C

N×N is a generalisedWignermatrix, see [13,25,29,32,33].
In particular, the local isotropic semicircle law, stated in [13], says that for a suitably
chosen family of compact set SN in the upper half-plane

sup
z∈SN

∥
∥
∥(XN − z IN )−1 − m�(z)IN

∥
∥
∥
max

converges in probability, with a rateO(N− ω
2 ), to zero, see Example 7 for details. Here

mW(z) denotes the Stieltjes transform of the Wigner semicircle law. As the sets SN

approach the real line, the local isotropic semicircle law becomes a tool to study the
distribution of the eigenvalues.

Our aim is to investigate the limit of the resolvent for some classes of nonsym-
metric matrices and matrix polynomials. Let us recall that already several studies
have addressed the canonical forms of nonrandom structured matrices and matrix
polynomials [28] and their change under a low-rank perturbation, see, for exam-
ple, [4,22,23,34,40–43,48]. However, the theory of random matrix polynomials is
yet uncharted.

The additional motivation for the current research lies in noncommutative proba-
bility. Recall that deforming a random matrix XN , one obtains a deformation of the
moment expansion of its limiting resolvent. This was already studied in [49] for XN =
HNWN , where WN is a symmetric Wigner matrix and HN = diag(c1, 1, . . . , 1),
c1 ∈ R. See also [17,18] for other works on moment deformations.

The Results

Let us recall first the basic notions. For a matrix polynomial X(z) = ∑k
j=0 X

( j)z j ,

with X ( j) ∈ C
N×N , j = 1, . . . n a point λ ∈ C is called an eigenvalue if X(λ)x = 0

for some nonzero x ∈ C
N . A polynomial is called regular if det X(z) is a nonzero

function. In such case, the matrix X(λ) (λ ∈ C) is invertible if and only if λ is not an
eigenvalue. This allows us to define the resolvent of a regular matrix polynomial as

X(z)−1 :=
⎛

⎝

k
∑

j=0

z j X ( j)

⎞

⎠

−1

,

which is a matrix-valued rational function with poles in the eigenvalues. We will
consider eigenvalues and resolvent only for regular polynomials with the leading coef-
ficient being invertible matrix. Hence, we will not investigate the eigenvalue infinity.
Let us turn now to the main results of the paper, a further review of necessary linear
algebra and probability notions is contained in Sect. 1.
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In Sect. 2, we will consider a general setting of random matrix polynomials

XN (z) =
k
∑

i=0

zi X (i)
N ∈ C

N×N [z],

where the degree k of the polynomial is fixed and does not depend on N and the
matrices X (i)

N are either deterministic or random. The leading assumption is that the
polynomials XN (z) are regular and XN (z) is invertible on a set SN ⊆ C, SN ⊆ SN+1
for N = 1, 2, . . . and the resolvent XN (z)−1 converges, pointwise in z, in probability
to M(z) on the union of SN (see Definition 5 for details). In such setting, we will
investigate how these objects behave under a low-rank perturbation XN (z) + AN (z).
Our first main result, as shown in Theorem 11, states precisely how the sets SN , the
limit MN (z) and the convergence rate are deformed in this general situation. Further,
in Theorem 14, we locate and count the eigenvalues of XN (z) + AN (z), appearing in
the union of SN , after such deformation.

Further sections are devoted to the study of concrete ensembles. And so, Sect. 3
contains a result on low-rank non-Hermitian perturbations of Wigner and random
sample covariance matrices. We obtain the limit of the resolvent (AN + XN − z IN )−1

and show the limit points and convergence rate of the nonreal points of the spectrum
in Theorem 16. Shortly, these can be formulated as follows.

Let XN be a generalised Wigner or sample covariance matrix, and let AN be
deterministic, fixed low-rank perturbation, e.g. AN := C ⊕ 0N−n,N−n ∈ C

N×N .

Then the resolvent of AN + XN converges in the maximum norm in probability to

M̃N (z) = [m�(z)IN − m2
�(z)((C

−1 + m�(z)In)
−1 ⊕ 0N−n,N−n)

]

.

Furthermore, if z0 ∈ C
+ is such that ξ = − 1

m(z0)
is an eigenvalue of C with the

algebraic multiplicity kξ and the size of the largest Jordan block equal to pξ , then the
kξ eigenvalues λN

1 , . . . , λN
kξ

of XN + AN closest to z0 are simple and converge to z0

in probability, with the rate O(N
− 1

2pξ ).
Matrices of type HX with H = H∗ invertible are well known in linear algebra, see,

for example, [28,40]. Section 4 discusses products HN XN , where HN is a deterministic
diagonalmatrixwith (HN−IN )beingoffixed low rank and XN is aWigner or a random
sample covariance matrix. In Theorem 22, we provide the limit of the resolvent and
limit and convergence rate of nonreal eigenvalues for HMXN . It is important to notice
that already in thismatrix problem, it is necessary to apply themain results to nontrivial
matrix polynomials of degree one (linear pencils). Namely,we set XN (z) = XN −z IN ,
AN (z) = −zH−1

N (I − HN )) so that HN (XN (z) + AN (z)) = HN XN − z IN .
Section 5 contains a study of matrix polynomials of the form

XN − p(z)IN + q(z)uNu
∗
N

and

z2(Cn ⊕ 0N−n + IN ) + zXN + Dn ⊕ 0N−n,
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where p, q are polynomials, XN is either a Wigner or a random sample covariance
matrix,uN is somedeterministic vector, andCn, Dn ∈ C

n×n are diagonal deterministic
matrices. This choice is motivated by the fact that matrix polynomials of this form
appear in numerical methods for partial differential equations, see [6]. Again, we
localise the spectrum of the given above polynomial by means of Theorems 11 and 14
and show difficulties appearing in a particular example.

Relation to Existing Results

The main novelty of the current paper lies in the formula for the limit of the resolvent
and in consideringnonlinear eigenvalueproblems. So far the limit laws for the resolvent
were considered only for matrices and were of isotropic type, i.e.m(z)IN with a scalar
analytic functionm(z). Our construction leads to limit laws of different types and also
for polynomials of degree greater than one. Note that although eigenvalue problems
for matrices are special cases of eigenvalue problems for polynomials, many of the
methods suitable for matrices, like, e.g. analysis of tr Xn , cannot be adapted in the
polynomial case. Our general theorems from Sect. 2 develop a method which works
like a ‘black box’: knowing a limit of the resolvent of a polynomial XN (z) one is able
to compute the limit of the resolvent of XN (z) + AN (z). Furthermore, by detecting
the sets on which XN (z) + AN (z) is invertible, we localise the eigenvalues.

As it was already said, our technique is applied also to matrices, i.e. to polynomials
XN −z IN . Although the low-rank perturbations ofWignermatriceswere considered in
many papers, see, for example, [7–11,13,16,20,54,55], the authors usually concentrate
onHermitianor symmetric perturbations.The exceptions are the papers [31,54], see the
former for the literature on physical motivations. In the latter paper, Rochet considered
the possibly non-Hermitian finite-rank perturbations A ofWignermatricesW , proving
results on the limit and convergence rate of nonreal eigenvalues. More precisely, the
‘Furthermore’ part of Theorem 16 (see also the simplified version above) is, generally
speaking, a repetition of Theorems 2.3 and 2.10 from [54]. Note that the paper [54]
was a continuation of [11], where the authors considered a low-rank perturbation of
a random matrix with a distribution invariant under the left and right actions of the
unitary group. Analogous convergence rates for outliersO(N−1/(2pξ )) were obtained
therein.

In the current paper, we show how the resolvent tools can be used to find the
convergence rate of the eigenvalues of matrices converging to the nonreal limits,
repeating the aforementioned result on eigenvalues from [54]. However, in addition
to [54], we provide a formula and convergence rate for the limit of the resolvent after
perturbation. We also estimate the rate of the convergence (to zero) of the imaginary
part nonreal eigenvalues which are not outliers, see Example 20. These two aspects
were not studied in [54].

The results on the products HNWN also refine the existing ones from [49,59] by
showing the limit of the resolvent and considering a much wider class of HN .

The last section on polynomials contains original, up to our knowledge, results on
nonlinear eigenvalue problems with random coefficients.
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The Outcome

There are two main outcomes of the present paper:

• extension of the knowledge of limit laws for the resolvents by providing new limit
laws for the resolvents of polynomials of type XN + AN − z IN , XN − z IN − zAN ,
p(z)IN + q(z)AN + XN , z2(AN + IN ) + zXN + BN ,where AN are BN are low
rank and nonsymmetric matrix and p(z) and q(z) are scalar polynomials, we stress
that these limit laws are no longer isotropic;

• analysis of limits in N of spectra of polynomials of the above type, with a special
emphasis on investigating the convergence rates.

In the future, employing results for nonsymmetric matrices or structured matrix
polynomials would be most desirable, see, for example, [53] for applications in neural
networks. However, the limit laws for the resolvent have not been discovered yet, see
[15] for a review. Nonetheless, the general scheme we propose in Sect. 2 is perfectly
suited for studying those as well.

1 Preliminaries

1.1 Linear Algebra

First, let us introduce various norms on spaces of matrices. If b is a vector, then by
‖b‖p, we denote the �p-norm of b. If A ∈ C

k×l , then

‖A‖p,q := sup
x �=0

‖Ax‖q
‖x‖p

, 1 ≤ p, q ≤ ∞.

We abbreviate ‖A‖p,p to ‖A‖p. Recall that

‖A‖1,∞ ≤ ‖A‖2 (1)

‖A‖2,∞ ≤ ‖A‖2 , (2)

‖A‖1,2 ≤ ‖A‖2 . (3)

Recall also the following formulas, valid for A = [ai j ] ∈ C
k×l ,

‖A‖1 = max
1≤ j≤l

k
∑

i=1

|ai j |, ‖A‖∞ = max
1≤i≤k

l
∑

j=1

|ai j |. (4)

Further, ‖A‖max denotes the maximum of the absolute values of all entries of A, and
clearly

‖A‖max ≤ ‖A‖p,q ≤ k ‖A‖max , 1 ≤ p, q ≤ ∞. (5)
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By IN , we denote the identity matrix of size N . For matrices P ∈ C
N×n and Q ∈

C
n×N , we define

κ1(Q) := sup
E∈CN×N , E �=0

‖QE‖1
‖E‖max

,

κ∞(P) := sup
E∈CN×N , E �=0

‖EP‖∞
‖E‖max

,

κ(P, Q) := sup
E∈CN×N , E �=0

‖QEP‖2
‖E‖max

(6)

Let us denote the maximal number of nonzero entries in each row of Q by r(Q) and
the maximal number of nonzero entries in each column of P by c(P).

Proposition 1 For Q ∈ C
n×N and P ∈ C

N×n, the following inequalities hold

κ1(Q) ≤ n · r(Q) ‖Q‖max , κ∞(P) ≤ n · c(P) ‖P‖max ,

κ(P, Q) ≤ n · r(Q) c(P) ‖Q‖max ‖P‖max ≤ n · r(Q) c(P) ‖Q‖2 ‖P‖2 .

Proof For Q = [qi j ], E = [di j ] we obtain, using formula (4), the following

‖QE‖1 =
∥
∥
∥
∥
∥
∥

⎡

⎣

N
∑

j=1

qi j d jk

⎤

⎦

ik

∥
∥
∥
∥
∥
∥
1

= max
1≤k≤N

n
∑

i=1

∣
∣
∣
∣
∣
∣

N
∑

j=1

qi j d jk

∣
∣
∣
∣
∣
∣

≤ max
1≤k≤N

n
∑

i=1

N
∑

j=1

|qi j ||d jk |

≤ nr(Q) ‖Q‖max ‖E‖max.

Similarly,

‖EP‖∞ =
∥
∥
∥
∥
∥
∥

⎡

⎣

N
∑

j=1

di j p jk

⎤

⎦

ik

∥
∥
∥
∥
∥
∥∞

= max
1≤i≤N

n
∑

k=1

∣
∣
∣
∣
∣
∣

N
∑

j=1

di j p jk

∣
∣
∣
∣
∣
∣

≤ max
1≤k≤N

n
∑

k=1

N
∑

j=1

|di j ||p jk |

≤ nc(P) ‖P‖max ‖E‖max.
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The last claim results from the inequalities

‖QEP‖2 ≤ n ‖QEP‖max = n max
i, j=1,...,n

∣
∣
∣
∣
∣
∣

∑

k,l

qikdkl pl j

∣
∣
∣
∣
∣
∣

≤ nr(Q)c(P) ‖E‖max ‖P‖max ‖Q‖max ,

and the relation (5). 
�
The following elementary result on matrices will be of frequent use. Let A, B ∈

C
n×n , and let A be nonsingular. Then, A+ B is nonsingular if and only if In + BA−1

is nonsingular, and in such case

(A + B)−1 = A−1(In + BA−1)−1. (7)

Let ‖·‖ denote any matrix norm. Then,

∥
∥
∥(A + B)−1 − A−1

∥
∥
∥ ≤

∥
∥
∥A−1

∥
∥
∥

2 ∥∥
∥(In + BA−1)−1

∥
∥
∥ ‖B‖ . (8)

Furthermore,
if
∥
∥
∥BA−1

∥
∥
∥ < 1 then A + B is invertible (9)

and
∥
∥
∥(A + B)−1 − A−1

∥
∥
∥ ≤

∥
∥A−1

∥
∥
2 ‖B‖

1 − ∥∥BA−1
∥
∥
. (10)

In many places of this article, we will use the well-known Woodbury matrix identity.
Let us recall that for invertible matrices X ∈ C

N×N , C ∈ C
k×k , and matrices P ∈

C
N×k ,Q ∈ C

k×N , thematrix X+PCQ is invertible if andonly if L := C−1+QX−1P
is invertible. In such case

(X + PCQ)−1 = X−1 − X−1PL−1QX−1. (11)

1.2 Probability Theory

In the whole paper, we will work with one probability space, which is hidden in the
background in theusualmanner.ByP andE,wedenote theprobability and expectation,
respectively.Wewill use the symbol ‘const’ to denote a universal constant, independent
from N .

Definition 2 Let

ξ = {ξ (N )(u) : N ∈ N, u ∈ U (N )}, ζ = {ζ (N )(u) : N ∈ N, u ∈ U (N )}

be two families of nonnegative random variables, where U (N ) is possibly an N -
dependent parameter set.We say that ξ is stochastically dominated by ζ simultaneously
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in u, if for all ε > 0 and γ > 0 we have

P

⎛

⎝
⋂

u∈U (N )

{

ξ (N )(u) ≤ N εζ (N )(u)
}

⎞

⎠ ≥ 1 − N−γ (12)

for large enough N ≥ N0(ε, γ ). We will denote the above definition in symbols as
ξ ≺ ζ , usually remarking that the convergence is simultaneous and naming the set of
parameters.

Furthermore, we say that N -dependent event � = {�(N )(u) ⊂ � : N ∈ N, u ∈
U (N )}holds (simultaneously in u) with highprobability if 1 is stochastically dominated
by 1� simultaneously in u, equivalently, if for all γ > 0, we have

P

⎛

⎝
⋂

u∈U (N )

�(N )(u)

⎞

⎠ > 1 − N−γ

for large enough N ≥ N0(γ ).

Remark 3 In the sequel, we will use without saying the following facts:

if ξ (N )(u) ≤ ζ (N )(u) for all u ∈ U (N ) and N sufficiently large then ξ ≺ ζ ,
if ξ ≺ η ≺ ζ then ξ ≺ ζ ,
if ξ1, . . . , ξl ≺ ζ , α1, . . . , αn ≥ 0 then α1ξ1 + · · · + αlξl ≺ ζ ,
if α > 0 and ξ ≺ N−β for all 0 < β < α then ξ ≺ N−α ,

where ξ, η, ζ, ξ1, . . . , ξl denote families of nonnegative random variables with a
parameter set U (N ), as in Definition 2.

Remark 4 Recall that in the literature (cf., e.g. [13] Definition 2.1), the symbol ≺
denotes the uniform stochastic domination; namely, for all ε > 0 and γ > 0, we have

sup
u∈U (N )

P

{

ξ (N )(u) > N εζ (N )(u)
}

≤ N−γ (13)

for large enough N ≥ N0(ε, γ ). It is clear that simultaneous stochastic domination
implies uniform stochastic domination and if the variables are Lipschitz continuous,
then the converse implication also holds, see, for example, Remark 2.6 of [13] or
Corollary 3.19 of [24]. See also Lemma 3.2 of [13] for other properties of stochastic
uniform domination. To avoid assuming Lipschitz continuity, wewill speak only about
simultaneous stochastic domination.

Let us now introduce one of the main objects of our study: a limit law for the
resolvent, defined here for random matrix polynomials.

Definition 5 Let

XN (z) =
k
∑

i=0

zi X (i)
N ∈ C

N×N [z]
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be a randommatrix polynomial, i.e. thematrices X (i)
N are either deterministic or random

matrices, and the degree k of the polynomial is fixed and does not depend on N . Let
SN ⊂ C be a family of deterministic open sets with SN ⊂ SN+1 for all N , and let

MN : SN → C
N×N , �N (z) : SN → [0,+∞]

be sequences of deterministic functions such that for any z ∈ ⋃N SN , the sequence
(�N (z))N converges to zero. We say that the resolvent XN (z)−1 has the limit law
MN (z) on sets SN with the rate �N (z) if the eigenvalues of XN (z) are with high
probability outside the set SN and

∥
∥
∥XN (z)−1 − MN (z)

∥
∥
∥
max

≺ �N (z)

simultaneously in z ∈ SN .

Remark 6 Note that the requirement that the eigenvalues are with high probability
outside SN should be read formally as: the (parameter-free) event {the eigenvalues are
outside SN } holds with probability ≥ 1 − N−γ for N large enough and all γ > 0.
This is equivalent to saying that the polynomial XN (z)+ AN (z) is invertible with high
probability simultaneously in z ∈ SN .

We present main examples, which are the motivation for the above definition.

Example 7 Let W = WN = W ∗
N be an N × N Hermitian matrix whose entries Wi j

are independent complex-valued random variables for i ≤ j , such that

EWi j = 0, const ≤ NE|Wi j |2,
∑

j

E|Wi j |2 = 1, (14)

and for any p ∈ N expectation of |√NWi j |p is bounded, i.e.

E|√NWi j |p ≤ const(p), (15)

where const(p) denotes a constant depending on p only.
The function

mW(z) = −z + √
z2 − 4

2

is the Stieltjes transform of Wigner semicircle distribution. It was shown in [13] (see
also [29]) that for each ω ∈ (0, 1), the resolvent (WN − z IN )−1 has a limit law
MN (z) = mW(z)IN on the set

SWN ,ω =
{

z = x + i y : |x | ≤ ω−1, N−1+ω ≤ y ≤ ω−1
}

,

123



Journal of Theoretical Probability (2022) 35:52–88 61

with the rate

�W
N (z) =

√

ImmW(z)

Ny
+ 1

Ny
.

Indeed, this can easily be deduced fromTheorem 2.12, remark after Theorem 2.15 (see
also Remark 2.6) and Lemma 3.2(i) of [13]. The authors call this the isotropic local
limit law because of the form MN (z) = mW(z)IN . In the next section, we will provide
polynomials with the resolvent having limit law of a different type. Furthermore, since
|m(z)| ≤ ω−1 for z ∈ SN , one has

sup
z∈SWN ,ω

|�W
N (z)| ≤

(

√

ω−1

NN−1+ω
+ 1

NN−1+ω

)

= O(N− ω
2 ). (16)

Another example of a resolvent having a limit law is given by the same polynomial
WN −z IN but nowwith SN = T, whereT is some compact set in the upper half-plane.
Observe that in this setting, we again have MN (z) = mW(z)IN with the same rate
�W

N (z), but the estimate (16) can be improved to

sup
z∈T

�W
N (z) = O(N− 1

2 ). (17)

In what follows, we will need both constructions presented in this example.

Our second example is the isotropic local Marchenko–Pastur limit law.

Example 8 Let Y = YN be an M × N matrix, with N , M satisfying

N 1/ const ≤ M ≤ N const (18)

whose entries Yi j are independent complex-valued random variables such that

EYi j = 0, E|Yi j |2 = 1√
NM

, (19)

and for all p ∈ N

E|(NM)1/4Yi j |p = const(p). (20)

Let also

φ = M/N , γ± = √φ + 1√
φ

± 2,

κ(Re z) = min(|γ− − Re z|, |γ+ − Re z|), K = min(N , M).
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Then, resolvent of the polynomial Y ∗
NYN − z IN has a limit law MN = mMP(z)IN ,

where

mMP(z) = mφ
MP(z) = φ1/2 − φ−1/2 − z + i

√

(z − γ−)(γ+ − z)

2φ−1/2z

on the set

SMP
N ,ω =

{

z = x + i y ∈ C : κ(x) ≤ ω−1, K−1+ω ≤ y ≤ ω−1, |z| ≥ ω
}

,

with the rate

�MP
N (z) =

√

Immφ(z)

Ny
+ 1

Ny
.

As in the previous example, this is an example of an isotropic limit law and can
be deduced from the results in [13]: Theorem 2.4, Remark 2.6 and Lemma 3.2(i).
Furthermore, one has that

sup
z∈SMP

N ,ω

|�MP
N (z)| ≤ O(N− ω

2 ). (21)

As in Example 7, we change the setting by putting SN = T, where T is some compact
set in the upper half-plane, which leads to the estimate

sup
z∈T

�MP
N (z) = O(N− 1

2 ). (22)

Further examples of local limit laws in the literature (which are, in particular, limit
laws for the resolvent) concern matrices of type (YN −w IN )∗(YN −w IN ), wherew is
a complex parameter, applied in the Hermitisation technique, see [14, Theorem 6.1].

Remark 9 It is worth mentioning, that having a limit law for the resolvent of the
family of polynomials XN (z) = ∑k

j=0 z
j X ( j)

N , it is relatively easy to derive a limit
law for the resolvent of the polynomials αXN (z) + β IN , α, β ∈ C, zXN (z) and
revXN (z) := ∑k

j=0 z
k− j X ( j)

N . In particular, XN (z) = zXN − IN , where XN is a
generalised Wigner matrix, is an example of a first-order polynomial having a limit
law for the resolvent, with a nontrivial leading coefficient.

We conclude this section with an example of a random matrix without a resol-
vent limit law, to show the difference between the resolvent limit law and stochastic
convergence of eigenvalues.

Example 10 Let XN ∈ C
N×N be a diagonal matrix, with elements on the diagonal

being i.i.d. standard normal variables. Although the empirical measures of the eigen-
values of XN converge weakly in probability to the normal distribution, the resolvent
(XN − z IN )−1 does not converge in any reasonable sense.
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2 Main Results

2.1 The Resolvent

In this subsection, we will show how a low-dimensional perturbation deforms a resol-
vent limit law. Recall that r(B), c(B) denote, respectively, the maximal number of
nonzero entries in each row and column of a matrix B.

Theorem 11 Let (nN )N be a nondecreasing sequence, and let

CN (z) ∈ C
nN×nN [z], AN (z) := PNCN (z)QN ∈ C

N×N [z],

be deterministic matrix polynomials, where PN ∈ C
N×nN , QN ∈ C

nN×N . Let
XN (z) ∈ C

N×N [z] be a random matrix polynomial. We assume that

(a1) XN (z)−1 has a limit law MN (z) on a family of sets SN with rate �N (z), see
Definition 5,

(a2) CN (z) is invertible for z ∈ SN ,
(a3) we have that

nN sup
z∈SN

�N (z) ≤ O(N−α), (23)

for some α > 0,
(a4) ‖PN‖2 , ‖QN‖2 , c(PN ), r(QN ) ≤ const.

Then, for any β ∈ (0, α), the eigenvalues of the random polynomial XN (z)+AN (z)
are with high probability outside the set

S̃N :=
{

z ∈ SN : KN (z) is invertible,
∥
∥
∥KN (z)−1

∥
∥
∥
2

< Nβ

}

, (24)

where
KN (z) = CN (z)−1 + QNMN (z)PN . (25)

Furthermore, the resolvent of XN (z) + AN (z) has a limit law on S̃N

M̃N (z) = MN (z) − MN (z)PN KN (z)−1QNMN (z), (26)

with the rate

�̃N (z) := NαnN�N (z) ‖MN (z)‖22
under the additional assumption that �̃N (z) converges to zero for z ∈⋃N SN .

Proof We set β = α/2, and the proof for arbitrary β < α requires only few
technical adjustments. Fix arbitrary γ > 0. Due to (a1) and the definition of
stochastic simultaneous domination (Definition 2, ε = α/4), we have that with
EN (z) = XN (z)−1 − MN (z), the following event

� :=
{

∀z ∈ SN ‖EN (z)‖max ≤ Nα/4�N (z)
}

(27)
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holds with probability ≥ 1 − N−γ , for N ≥ N0(α, γ ) sufficiently large. Note that if
� occurs, one has that, for all z ∈ S̃N ,

∥
∥
∥QN EN (z)PN KN (z)−1

∥
∥
∥
2

≤ ‖QN EN (z)PN‖2 N
α
2 , by (24),

≤ κ(PN , QN ) ‖EN (z)‖max N
α
2 , by (6),

≤ κ(PN , QN )N
α
2 + α

4 �N (z), by (27),

≤ nNc(PN )r(QN ) ‖PN‖2 ‖QN‖2 N
3α
4 �N (z), by Prop. 1,

≤ const ·nN N 3α
4 sup

z∈SN
�N (z), by (a4).

Note that by the assumption (a3), if � occurs, then

∀z ∈ S̃N

∥
∥
∥QN EN (z)PN KN (z)−1

∥
∥
∥
2

< 1.

Consequently, the above inequality holds with probability ≥ 1 − N−γ , for suffi-
ciently large N ≥ N0(α, γ ). By the Woodbury matrix equality, the matrix XN (z) +
PNCN (z)QN is invertible if and only ifCN (z)−1+QN XN (z)−1PN is invertible. Note
that

CN (z)−1 + QN XN (z)−1PN = QN EN (z)PN + KN (z).

This together with (7) implies that on the event �, the matrix XN (z) + PNCN (z)QN

is invertible for sufficiently large N ≥ N0(α, γ ). As γ was arbitrary, we see that the
eigenvalues of XN (z) + AN (z) are outside S̃N with high probability.

Now, we prove the convergence of (XN (z) + AN (z))−1. Let

E (1)
N (z) := (CN (z)−1 + QN (MN (z) + EN (z))PN )−1 − KN (z)−1.

Consider

(XN (z) + AN (z))−1

= (XN (z) + PNCN (z)QN )−1

= XN (z)−1 − XN (z)−1PN (CN (z)−1 + QN XN (z)−1PN )−1QN XN (z)−1

= (MN (z) + EN (z)) − (MN (z) + EN (z))PN (KN (z)−1

+(E (1))N (z))QN (MN (z) + EN (z)).

Confronting with (26) and dropping the z-dependence (z ∈ S̃N ) and the N -
dependence, we obtain the difference to estimate

E (2) : = (X + A)−1 − M̃

= E + MPE (1)QM + EPK−1QM + EPE (1)QM

+MPK−1QE + MPE (1)QE + EPK−1QE + EPE (1)QE .

123



Journal of Theoretical Probability (2022) 35:52–88 65

We will estimate the maximum norm of each summand in the right-hand side of the
above equation. For this aim, we state some preliminary inequalities. Recall that by
Proposition 1, assumptions on PN and QN and (5), one has

κ1(QN ), κ∞(PN ), κ(PN , QN ) ≤ const nN .

The stochastic domination below in this proof is simultaneous in z ∈ S̃N . One has
‖EN (z)PN‖∞ ≤ κ∞(PN ) ‖EN (z)‖max ≺ n�N (z), (28)

‖QN EN (z)‖1 ≤ κ1(QN ) ‖EN (z)‖max ≺ nN�N (z), (29)
∥
∥
∥E

(1)
N (z)

∥
∥
∥
2

= ‖(CN (z)−1 + QN (MN (z) + EN (z))PN )−1

−(C−1
N (z) + QNMN (z)PN )−1‖2

≤
∥
∥(CN (z)−1 + QNMN (z)PN )−1

∥
∥
2
2 ‖QN EN (z)PN‖2

1 − ‖QN EN (z)PN‖2
∥
∥(CN (z)−1 + QNMN (z)PN )−1

∥
∥
2

, by (10)

≤ Nα ‖EN (z)‖max κ(PN , QN )

1 − ‖EN (z)‖max κ(PN , QN )N
α
2

≺ nN�N (z)Nα

1 − nN�N (z)N
α
2

≺ nN�N (z)Nα. (30)

We can now derive the announced estimation of summands of E (2)(z). In the following
estimations,we again drop the z-dependence and the N -dependence, and the stochastic
domination below in this proof is simultaneous in z ∈ S̃N . And so, we have

‖E‖max ≺ �(z),
∥
∥
∥MPE (1)QM

∥
∥
∥
max

≤
∥
∥
∥MPE (1)QM

∥
∥
∥
2

≤ ‖M‖22 ‖P‖2 ‖Q‖2
∥
∥
∥E (1)

∥
∥
∥
2

≺ n�(z)Nα ‖M‖22 , by (30),
∥
∥
∥EPK−1QM

∥
∥
∥
max

≤
∥
∥
∥EPK−1QM

∥
∥
∥
2,∞

≤ ‖EP‖∞
∥
∥
∥K−1

∥
∥
∥
2,∞ ‖QM‖2 by (28),

≤ κ∞(P) ‖E‖max

∥
∥
∥K−1

∥
∥
∥
2
‖Q‖2 ‖M‖2 by (2),

≺ n�(z)N
α
2 ‖M‖2 , by (28),

∥
∥
∥EPE (1)QM

∥
∥
∥
max

≤
∥
∥
∥EPE (1)QM

∥
∥
∥
2,∞

≤ ‖EP‖∞
∥
∥
∥E (1)

∥
∥
∥
2,∞ ‖QM‖2

≤ κ∞(P) ‖E‖∞
∥
∥
∥E (1)

∥
∥
∥
2
‖Q‖2 ‖M‖2 , by (2), (30),

≺ n2�2(z)Nα ‖M‖2
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≺ N−α ‖M‖2 , by (23),

∥
∥
∥MPK−1QE

∥
∥
∥
max

≤
∥
∥
∥MPK−1QE

∥
∥
∥
1,2

≤ ‖MP‖2
∥
∥
∥K−1

∥
∥
∥
1,2

‖QE‖1 , by (29),

≺ ‖M‖2 ‖P‖2 N
α
2 κ1(Q)�(z), by (3),

≺ n�(z)N
α
2 ‖M‖2 ,

∥
∥
∥MPE (1)QE

∥
∥
∥
max

≤
∥
∥
∥MPE (1)QE

∥
∥
∥
1,2

≤ ‖MP‖2
∥
∥
∥E (1)

∥
∥
∥
1,2

‖QE‖1 , by (29),

≺ ‖M‖2 n�(z)Nακ1(Q)�(z), by (3), (30),

≺ n2�2(z)Nα ‖M‖2
≺ N−α ‖M‖2 , by (23),

∥
∥
∥EPK−1QE

∥
∥
∥
max

≤
∥
∥
∥EPK−1QE

∥
∥
∥
1,∞

≤ ‖EP‖∞
∥
∥
∥K−1

∥
∥
∥
1,∞ ‖QE‖1 , by (29),

≺ �(z)κ∞(P)N
α
2 κ1(Q)�(z), by (1),

≺ n2�2(z)N
α
2

≺ N−3α/2, by (23),
∥
∥
∥EPE (1)QE

∥
∥
∥
max

≤
∥
∥
∥EPE (1)QE

∥
∥
∥
1,∞

≤ ‖EP‖∞
∥
∥
∥E (1)

∥
∥
∥
1,∞ ‖QE‖1 , by (29),

≺ �(z)κ∞(P)n�(z)Nακ1(Q)�(z), by (1), (30),

≺ n3�3(z)Nα

≺ N−2α, by (23).

Due to the fact that

N
α
2 ≤ const Nα, ‖MN‖2 ≤ const ‖MN‖22 , nN�N (z)N

α
2 → 0,

the proof is finished. 
�

2.2 The Spectrum

In the current subsection, the dimension nN will be constant and denoted by n. First,
let us prove a technical lemma.
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Lemma 12 Let the matrices A, B ∈ C
k×k . Then,

∣
∣ det A − det B

∣
∣ ≤ k! · k ‖A − B‖max (‖A − B‖max + ‖A‖max)

k−1 .

Proof Observe that with

M = max(‖A‖max , ‖B‖max) ≤ ‖A‖max + ‖A − B‖max

, one has

∣
∣ det A − det B

∣
∣ ≤

∑

σ∈Sk

∣
∣a1σ(1)a2σ(2) . . . akσ(k) − b1σ(1)b2σ(2) . . . bkσ(k)

∣
∣

≤
∑

σ∈Sk

(

|a1σ(1) − b1σ(1)||a2σ(2) . . . akσ(k)|

+|b1σ(1)||a2σ(2) − b2σ(2)||a3σ(3) . . . akσ(k)| + . . .

+|b1σ(1)b2σ(2) . . . b(k−1)σ (k−1)||akσ(k) − bkσ(k)|
)

≤ k! · k ‖A − B‖max M
k−1

≤ k! · k ‖A − B‖max (‖A − B‖max + ‖A‖max)
k−1 .


�
The next step in the analysis of the spectra of matrices XN + AN is the following

theorem; for its formulation, let us introduce a usual technical definition.

Definition 13 Suppose a point z0 ∈ C is given. We order the complex plane with
respect to the lexicographic order on [0,+∞)×[0, 2π) identifying a point λ with the
pair (|λ − z0|, arg(λ − z0)).

Theorem 14 Let n be fixed, and let

C(z) ∈ C
n×n[z], AN (z) := PNC(z)QN ∈ C

N×N [z],

be deterministic matrix polynomials, where PN ∈ C
N×n, QN ∈ C

n×N , N = 1, 2, . . .
Let XN (z) ∈ C

N×N [z] be a random matrix polynomial. We assume that

(a1) XN (z)−1 has a limit law MN (z) on a family of sets SN with the rate �N (z), see
Definition 5,

(a2.1) C(z) is invertible for z ∈⋃N SN ,
(a3.1) the following estimate holds

sup
z∈SN

|�N (z)| ≤ O(N−α)

with some α > 0,
(a4) ‖PN‖2 , ‖QN‖2 , c(PN ), r(QN ) ≤ const,
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(a5.1) the matrix-valued function z �→ QNMN (z)PN is analytic on the interior of
⋃

N SN and does not depend on N.

Let also

K (z) := C(z)−1 + QNMN (z)PN , LN (z) := C(z)−1 + QN XN (z)−1PN .

Assume that the function det K (z) has a zero of order k > 0 at a point z0 lying in the
interior of

⋃

N SN and let λN
1 , . . . , λN

k , . . . be the zeros of det LN (z) written down
with multiplicities in the order given by their distance to z0. Then, the first k of them
converge to z0 in the following sense

|λN
j − z0| ≺ N− α

k , j = 1, 2, . . . , k, (31)

while the k+1-st, and in consequence all following ones, do not converge to z0; more
precisely, for any β > 0, the set of random variables |λN

k+1− z0| is not simultaneously
stochastically dominated by N−β .

Proof Fix ε, γ > 0, with ε < α. We show that there are exactly k zeros λN
1 , . . . , λN

k of
det LN (z) in B(z0, N−β)with probability≥ 1−N−γ for N ≥ N0(ε, γ ) large enough
and any β ≤ −ε+α

k . This will prove both statements. Indeed, setting β = −ε+α
k shows

that condition (12) in the definition of stochastic simultaneous domination is satisfied
for any ε < α, and hence in an obvious way for any ε > 0. Setting β to be arbitrary
small shows that |λN

k+1 − z0| is not simultaneously stochastically dominated by N−β .
Let us fix an open bounded setT such that z0 ∈ T and the closure ofT is contained in

the interior of some SN (N ≥ 1).Wemay assumewithout loss of generality that XN (z)
is invertible on T. Note that due to (a2’) and (a5), the function K (z) is continuous on
the closure of T, hence,

sup
z∈T

‖K (z)‖max ≤ const .

Moreover, due to Proposition 1 one has

‖LN (z) − K (z)‖max ≤
∥
∥
∥QN (XN (z)−1 − MN (z))PN

∥
∥
∥
2

≤ n ‖PN‖2 ‖QN‖2 c(PN )r(QN )‖XN (z)−1 − MN (z)‖max.

Hence, by (a1) and (a4) the probability of the event

{

∀z∈SN ‖LN (z) − K (z)‖max ≤ N
ε
5 �N (z)

}

(32)

is higher than 1−N−γ , for N ≥ N1(ε, γ ) large enough. Note that N
ε
5 �N (z) ≤ N

ε
4−α

by (a3). By Lemma 12, one has

| det LN (z) − det K (z)| ≤ n · n! ‖LN (z) − K (z)‖max (‖K (z)‖max
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+‖LN (z) − K (z)‖max)
n−1 .

Hence, the probability of the event

{

∀z∈T | det LN (z) − det K (z)| ≤ n!nN ε
4−α

(

N
ε
4−α + ‖K (z)‖max

)n−1
}

(33)

is higher than 1−N−γ , for N ≥ N2(ε, γ ) large enough. As ε
3 −α < 0 and ‖K (z)‖max

is bounded on T, the probability of the event

{

∀z∈T | det LN (z) − det K (z)| ≤ N
ε
3−α
}

(34)

is higher than 1 − N−γ , for N ≥ N3(ε, γ ) large enough.
Observe that

det K (z) = (det K )(k)(z0)(z0 − z)k + o(|z0 − z|k).

Consequently,

| det K (z)| ≥ |(det K )(k)(z0)|N ε
2−α > N

ε
3−α, z ∈ ∂B(z0, N

−β), (35)

for sufficiently large N ≥ N4(ε, γ ) and any β ≤ −ε+α
k .

Combining (34) and (35), we get

| det LN (z) − det K (z)| < | det K (z)|, z ∈ ∂B(z0, N
−β) (36)

with probability higher than 1 − N−γ for N ≥ N5(ε, γ ) large enough.
However, (36) implies, via the Rouché theorem, that det K (z) and det LN (z) have

the same number of zeros in B(z0, N−β). Hence, there are exactly k zeros λ1, . . . , λk
of det LN (z) in B(z0, N−β) with probability higher than 1− N−γ for N ≥ N5(ε, γ )

large enough. 
�
Remark 15 Let us compare Theorems 11 and 14. First, note that the latter one has
slightly stronger assumptions, which are, however, necessary for defining the limit
point z0, also the sequence nN is required there to be constant. Comparing the claims,
let us note that both theorems statemore or less the same fact: the eigenvalues converge
to some limit points with a certain convergence rate. If n = 1, the claim of Theorem 14
is slightly than the one of Theorem 11. Namely, the function K (z) is a scalar function
in this situation, and the condition

|K (z)| ≥ N−α,

which constitutes the set S̃N , locates with high probability the eigenvalues in the
(approximate) discs around the points z0 and with radius equal to N−β , for β < α,
while Theorem 14 already states that β = α.

123



70 Journal of Theoretical Probability (2022) 35:52–88

However, already for n = 2 the estimates given by Theorem 14 are weaker, and
we will see this more clearly in Sect. 3. The main reason for stating Theorem 14,
although it is giving a weaker estimate, is that it allows us in some situations to count
the eigenvalues, while Theorem 11 does not even guarantee that inside each connected
component of the complement of S̃N , there is any eigenvalue of XN + AN . Therefore,
in what follows, we will use Theorem 11 to get the optimal convergence rate and
Theorem 14 to get the number of eigenvalues which converge to z0.

3 Random Perturbations of Matrices

In this section, we will consider the situation where AN (z) = AN is a matrix and
XN (z) = XN − z IN . In this subsection, like in Theorem 11, neither n nor C depends
on N .

Theorem 16 Let n be fixed, and let

C ∈ C
n×n, AN := PNCQN ∈ C

N×N ,

be deterministic matrices, where PN ∈ C
N×n, QN ∈ C

n×N , N = 1, 2, . . . Let
XN ∈ C

N×N be a random matrix. We assume that

(a1.2) XN is either a Wigner matrix from Example 7 or a random sample covariance
matrix from Example 8, so that the resolvent of XN − z IN has a limit law
m�(z)IN on the family of sets S�

N ,ω with the rate ��
N (z), where � ∈ {W,MP},

respectively, and let T be a compact set that does not intersect the real line.
(a2.2) C is invertible,
(a4) ‖PN‖2 , ‖QN‖2 , c(PN ), r(QN ) ≤ const,

(a5.2) the matrix D := CQN PN is independent from N.

Then, the eigenvalues of XN + AN are with high probability outside the set

S̃�
N ,ω :=

{

z ∈ S�
N ,ω : min

ξ∈σ(D)
|1 + ξm�(z)|pξ ≥ N−τω

}

(37)

and

T̃N :=
{

z ∈ T : min
ξ∈σ(D)

|1 + ξm�(z)|pξ ≥ N−ρ

}

, (38)

where ρ < τ < 1
2 , pξ denotes the size of the largest block corresponding to ξ and

σ(D) is the set of eigenvalues of D. The resolvent of the polynomial AN + XN − z IN
has on S̃�

N ,ω and T̃N the following limit law

M̃N (z) = [m�(z)IN − m2
�(z)PN (C−1 + m�(z)QN PN )−1QN

]

,

with the rates

N
ω
2 ��

N (z) and N τ��
N (z),
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respectively.
Furthermore, if z0 ∈ C \ R is such that ξ = − 1

m�(z0)
is an eigenvalue of D with

algebraic multiplicity kξ and the size of the largest Jordan block is equal to pξ , then
the kξ eigenvalues λN

1 , . . . , λN
kξ

of XN + AN closest to z0 are simple and converge to
z0 in the following sense

|λN
l − z0| ≺ N

− 1
2pξ , l = 1, . . . , kξ , (39)

provided that the independent random variables constituting the matrix XN , i.e. Wi j

in Example 7 or, respectively, Yi j in Example 8, have continuous distributions.

Proof I: Limit law for the resolvent
First, we prove that the resolvent of XN + AN contains with high probability the

set S�
N ,ω. We fix τ < 1

2 and let τ ′ ∈ (τ, 1/2). Let us note that the assumptions (a1)–
(a4) of Theorem 11 are satisfied with α = ω/2 and β = τ ′ω < α. With K (z) as in
Theorem 11 and D = SJDS−1, where S is invertible and JD is in Jordan normal form,
one has

∥
∥
∥K (z)−1

∥
∥
∥
2

=
∥
∥
∥(C−1 + m�(z)QN PN )−1

∥
∥
∥
2

≤ ‖C‖2
∥
∥
∥(In + m�(z)D)−1

∥
∥
∥
2

≤ ‖C‖2 ‖S‖2
∥
∥
∥S−1

∥
∥
∥
2

∥
∥
∥(In + m�(z)JD)−1

∥
∥
∥
2

≤ ‖C‖2 ‖S‖2
∥
∥
∥S−1

∥
∥
∥
2
n
∥
∥
∥(In + m�(z)JD)−1

∥
∥
∥
max

.

Note that (In +m�(z)JD)−1 is a block-diagonal matrix with blocks corresponding to
possibly different eigenvalues ξ of D, of possibly different sizes r , of the form

1

m�(z)

⎡

⎢
⎢
⎢
⎣

s 1
. . .

. . .

. . . 1
s

⎤

⎥
⎥
⎥
⎦

−1

= 1

m�(z)

⎡

⎢
⎢
⎣

s−1 −s−2 . . . (−1)r+1s−r

s−1 . . . (−1)r s−r+1

. . .
...

s−1

⎤

⎥
⎥
⎦

∈ C
r×r ,

where s = 1+ξm�(z)
m�(z)

and the nonindicated entries are zeros. Hence,

∥
∥
∥(In + m�(z)JD)−1

∥
∥
∥
max

≤ 1

|m�(z)| max
ξ∈σ(D)

max
j=1,...,pξ

∣
∣
∣
∣

m�(z)

1 + ξm�(z)

∣
∣
∣
∣

j

≤ max
{

1, |m�(z)|n−1
}

max
ξ∈σ(D)

max

{

1,

∣
∣
∣
∣

1

1 + ξm�(z)

∣
∣
∣
∣

pξ
}

.

As m�(z) is bounded on
⋃

N S�
N ,ω, we can apply estimates (16) and (21) and Theo-

rem 11 with α = ω
2 and get that the eigenvalues of XN + AN are with high probability
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outside the set
{

z ∈ S�
N ,ω :

∥
∥
∥KN (z)−1

∥
∥
∥
2

< N τ ′ω
}

,

which in turn contains the following sets

{

z ∈ S�
N ,ω : max

ξ∈σ(D)
max

{

1,

∣
∣
∣
∣

1

1 + ξm�(z)

∣
∣
∣
∣

pξ
}

<
N τ ′ω

δ

}

⊇
{

z ∈ S�
N ,ω : max

ξ∈σ(D)
max

{

1,

∣
∣
∣
∣

1

1 + ξm�(z)

∣
∣
∣
∣

pξ
}

< N τω

}

=
{

z ∈ S�
N ,ω : min

ξ∈σ(D)
|1 + ξm�(z)|pξ > N−τω

}

,

where δ is an appropriate constant and N > N0(τ, τ
′, δ, ω) is sufficiently large.

The formula for the limit law M̃N (z) follows straightforwardly, and let us discuss
now the convergence rate. First, consider the case SN = S�

N ,ω and apply Theorem 11.

For this aim, we need to check the additional assumption that �̃N (z) = N
ω
2 ��

N (z)
converges to zero for each z. This is, however, satisfied due to ��

N (z) = O(N−1/2)

and ω < 1.
Now, consider the case SN = T, we apply Theorem 11 with α = τ and β = ρ.

Repeating the arguments from the previous case (with (17), (22) used instead of (16)
and (21)),we see that the eigenvalues of XN+AN arewith high probability outside T̃N .
The formula for the limit law M̃N (z) follows straightforwardly, to see the convergence
rates observing that the additional assumption on convergence of �̃N (z) is satisfied
due to τ < 1/2.

II: Eigenvalues (‘Furthermore’ part). First note that due to the fact thatm′
�(z0) �= 0

the function

det K (z) = detC−1 det(In + m�(z)D)

has a zero of order kξ at z0. By Theorem 14, det LN (z) has exactly kξ zeros, counting
with multiplicities, λN

1 , . . . , λN
kξ
, that converge to z0 as

|λN
l − z0| ≺ N−α, l = 1, . . . , kξ (40)

with some α > 0. Each of these zeros is an eigenvalue of XN + AN converging to z0.
We show now that α = 1

2pξ
. Let us fix a compact set T, not intersecting the real line,

and such that z0 is in the interior of T. As
d(1+m�(z)ξ)

dz (z0) �= 0, one gets immediately

from (40) and the form of the set T̃N in (38) that α ≥ τ/pξ with arbitrary τ < 1
2 .

Hence, (40) holds with α = 1
2pξ

as well.
Let us see that the zeros of L(z) are almost surely simple. Note that det L(z) =

detC−1 det(XN−z I+A)
det(XN−z I ) is a rational function and if it has a double zero, then det(XN −

z I + A) has a double zero. However, it is a well-known fact that the eigenvalues of
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the random matrix with the continuously distributed entries are almost surely simple,
see, for example, [56, Exercise 2.6.1]. Thus, the zeros λN

1 , . . . , λN
kξ

are almost surely
mutually different. 
�
Remark 17 The theorem above may be easily generalised to the situation where the
resolvent of XN − z IN has a limit law of the form μ(z)IN with μ(z) being a Stieltjes
transform of a probability measure. The only exception is the counting of the eigen-
values in (39); namely, it is not true that the eigenvalues converging to z0 need to be
simple and that their number has to be precisely kξ . The proof of this generalisation
follows exactly the same lines except the last two paragraphs.

Example 18 Let XN be theWignermatrix as in Example 7. For the simulations,Wigner
matrices with real Gaussian entries were used. We use the notation from Theorem 16.
We compare the convergence rates of eigenvalues for the following four instances of
the matrix C

C (1) = [8 i], C (2) = diag(8 i, 8 i, 8 i), C (3) =
⎡

⎣

8 i 1 0
0 8 i 1
0 0 8 i

⎤

⎦ , C (4) = [2 i],

with

Q(1)
N = [In, 0n,N−n], P(1)

N = Q(1)∗
N , A( j)

N = P(1)
N C ( j)Q(1)

N , j = 1, 2, 3, 4.

We have D( j) = C ( j), j = 1, 2, 3, 4 and ξ ( j) = 8 i, j = 1, 2, 3 and, ξ (4) = 2 i. It is
a matter of a straightforward calculation that the only solution of 1+ ξ ( j)mW(z) = 0
equals 63 i /8 for j = 1, 2, 3 and 3 i /2 for j = 4. A sample set S̃N and the spectrum
of XN + A(4)

N are plotted in Fig. 2. According to Theorem 16, the rate of convergence

is (simplifying the statement slightly) N− 1
2 in the C (1), C (2), and C (4) case, and N− 1

6

in the C (3) case. The graphs of

δ(N ) := max
j=1,...,kξ

|λN
j − z0|

are presented in Fig. 1. Note that the log–log plot supports the conjecture that the expo-
nents in estimates of the convergence rates cannot be in practice improved. Namely,
in all four cases the slope of the corresponding group of points is approximately −1/2
in cases (1), (2) and (4) and −1/6 case (3). Furthermore, it is visible that while the
exponent in the rate of convergence in the cases (1), (2) and (4) is the same, N− 1

2 ,
these rates may differ by a constant. This is visible as a vertical shift of the graphs in
corresponding to cases (1), (2) and (4).

Let us formulate now a direct corollary from Theorem 16.

Corollary 19 If, additionally to the assumptions of Theorem 16, QN PN = 0, then
the eigenvalues of XN + AN are with high probability outside the set S�

N ,ω and the
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Fig. 1 The log–log plots for C(1) (red circle), C(2) (blue cross), C(3) (green star) and C(4) (black plus),
see Example 18. The plots of N−1/2 and N−1/6 are marked with black lines for reference (Color figure
online)

Fig. 2 The set S̃W1000 (in blue) and the spectrum of W1000 + A(4)
1000 (red crosses) from Example 18 (Color

figure online)

resolvent of XN + AN has on S�
N ,ω the following limit law

M̃N (z) = [m�(z)In − m2
�(z)AN

]

,

with the rate

�̃�
N (z) := N

1
2 ��

N (z).
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Fig. 3 The set S̃W1000,ω (in blue) and the spectrum ofW1000 + A(5)
1000 (red crosses) from Example 20 (Color

figure online)

Example 20 In this example, we will compare the convergence of the eigenvalues of
XN + AN to the real axis in three different situations. Here, XN is again a Wigner
matrix. First, let us take the matrix A(1)

N = P(1)
N C (1)Q(1)

N from Example 18. In this

situation, there is one eigenvalue λN
1 of XN + A(1)

N converging to z0 = 63 i /8, cf.
Example 18, and the set S̃WN ,ω is for large N a rectangle with an (approximately) small

disc around z0 removed, similarly as forC (4) in Fig. 2. The other eigenvalues converge
to the real line with the rate N−1, i.e. �(N ) ≺ N−1 where

�(N ) = max
{

| Im λ| : λ ∈ σ(XN + AN ) \
{

λN
1

}}

. (41)

By definition of SWN ,ω, one can see that �(N ) ≺ N−1+ω with the arbitrary parameter
ω ∈ (0, 1). However, by the definition of stochastic domination, it means that�(N ) ≺
N−1, see Remark 3. The numbers �(N ) are plotted in Fig. 4. One can observe that
the plot bends in the direction of the line given by N−1, which is still in accordance
with the definition of stochastic domination.

The second situation to consider is A(5)
N = P(1)

N C (5)Q(1)
N with

C (5) = [i], Q(1)
N = [I1, 01,N−1], P(1)

N = Q∗
N

In this situation, the equation 1+ ξmW(x), with ξ = i, has no solutions inC\ [−2, 2].
However, z0 = 0 can be seen as a solution, ifwe definemW(0) as limy↓0 mW(y i) = 1i .
Hence, the set S̃WN is a rectangle with an (approximately) half-disc around z0 = 0

removed, see Fig. 3. The half-disc has radius of order N− 1
2 ; hence,

�(N ) = max {| Im λ| : λ ∈ σ(XN + AN )} (42)
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Fig. 4 The log–log plots of�(N ) for A(1)
N (red circle), A(5)

N (blue cross) and A(6)
N (green star), see Example

20. The plots of N−1 and N−1/2 are marked with black lines for reference (Color figure online)

converges to zero with the rate N− 1
2 , which can be seen in Fig. 4.

The last situation to consider is A(6)
N = P(2)

N C (5)Q(2)
N with

C (5) = [i], Q(2)
N = [0, 1, 01,N−2], P(2)

N = [1, 0, 01,N−2]�.

Here, according to Corollary 19 the sets SWN and S̃WN coincide. Hence, all the eigenval-
ues converge to the real axis with the rate N−1, and the same comments concerning
ω as in the C (4) case above apply. The plot of �(N ), defined as in (42), can be seen
in Fig. 4.

As in Example 18, the plot suggests that the exponent in the convergence rate cannot
be improved in the discussed examples.

The next corollary will concern the class of port Hamiltonian matrices, i.e. matrices
of the form A− Z , where A = −A∗ and Z is positive definite. This class has recently
gathered some interest [44,45] due to its role in mathematical modelling. Clearly, the
spectrum of A − Z lies in the closed left half-plane. We will consider below the case
where A = C ⊕ 0N−n,N−n is a nonrandom matrix with n fixed and Z = Y ∗Y is the
random sample covariance matrix. For the sake of simplicity, we will take a square
random sample covariance matrix (N = M).

Corollary 21 Let ZN = Y ∗
NYN ∈ C

N×N be a random sample covariance matrix from
Example 8 with M = N. Let n > 0 be fixed, and let AN = C ⊕ 0N−n,N−n, where
C ∈ C

n×n is a skew-symmetric matrix C = −C∗ with nonzero eigenvalues i t j with
algebraic multiplicities, respectively, k j ( j = 1, . . . r , k1 + · · · + kr = n). Let

z j := − t2j
1 + i t j

, j = 1, . . . r .
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Then, for any j = 1, 2, . . . , r , the k j eigenvalues λ j,1, λ j,2, . . . , λ j,k j of AN − ZN

converge in probability to z j as

|λN
j,l − z j | ≺ N− 1

2 ,

where l ∈ {1, 2, . . . , k j }.
Proof Consider the matrix ZN − AN . As iC is Hermitian, the matrix D = −C from
Theorem 16 does not have any Jordan chains longer than one. Note that −z j is the
solution of 1 + i t jm1(z) = 0. The claim follows now directly from Theorem 16. 
�

4 RandomMatrix Pencils and H-Selfadjoint RandomMatrices

In this section, we will employ the setting of random matrix pencils. The theory is
aimed on localisation of the spectrum of the products of matrices HN XN . Although
the linear pencil appears only in the proof of the main result (Theorem 22), its role
here is crucial. In what follows, HN is a nonrandom diagonal matrix

HN = diag(c1, . . . , cnN ) ⊕ IN−nN , c1, . . . , cnN < 0,

and XN is a generalisedWigner or random sample covariance matrix. To prove a limit
law for the resolvent, we need nN to be a slowly increasing sequence, while to count
the number of eigenvalues converging to their limits, we need nN to be constant. Note
that unlike in the case of perturbations XN + AN considered in Theorem 16, we do not
need to localise the spectrum near the real line, as the spectrum of XN is symmetric
with respect to the real line and contains at most nN points in the upper half-plane,
see, for example, [28]. The following theorem explains the behaviour of all nonreal
eigenvalues of HN XN . It covers the results on locating the nonreal eigenvalues of
HN XN of [49] and [59], where the case nN = 1 was considered. In addition, the
convergence rate and formula for the resolvent are obtained.

Theorem 22 Let nN ≤ log N be a sequence of nonrandom natural numbers, and let

HN = diag(c1, . . . , cnN ) ⊕ IN−nN ,

where (c j ) j is a negative sequence such that the sequence (c−1
j ) j is bounded. We also

assume that

(a1.3) XN is either a Wigner matrix from Example 7 or a random sample covariance
matrix from Example 8, so that the resolvent of XN − z IN has a limit law
m�(z)IN on the compact set T with the rate ��

N (z), where � ∈ {W,MP},
respectively.

Then, with high probability, the eigenvalues of the matrix HN XN are outside the
set

T̃N :=
{

z ∈ T :
∣
∣
∣
∣

c j
(c j − 1)z

+ m�(z)

∣
∣
∣
∣

−1

< Nβ, for j = 1, 2, . . . , nN

}

,
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where β < α < 1
2 . Furthermore, the resolvent of HN XN − z IN has a limit law on T̃N

M̃N (z) = diag(g1(z), . . . , gnN (z)) ⊕ m�(z)IN−nN , z ∈ T̃N , (43)

with

g j (z) = m�(z)
1

(c j − 1)zm�(z) + c j

and the rate nN Nα��
N (z).

If, additionally, nN = n is constant and if k j denotes the number of repetitions of
c j in the sequence c1, . . . , cn and if, using the notation of Example 8,

z j :=

⎧

⎪⎨

⎪⎩

−c j√
1−c j

i : � = W

−(c j−1)2γ−γ++(2c jφ
− 1
2 +(c j−1)(φ

1
2 −φ

− 1
2 ))2

2(2c jφ
− 1
2 +(c j−1)(φ

1
2 −φ

− 1
2 ))(c j−1)−(c j−1)2(γ++γ−)

: � = MP
, j = 1, . . . , n

then, for any j = 1, 2, . . . , n, there are exactly k j eigenvalues λN
1 , . . . , λN

k j
of HN XN

converging to z j in probability as

|λN
l − z j | ≺ N− 1

2 , l = 1, . . . k j .

Proof First, note that for z ∈ T, we have

HN XN − z IN = HN (XN − z IN + zPNCN QN ), (44)

where

CN = diag(1 − c−1
1 , . . . , 1 − c−1

nN ), PN =
[

InN
0N−nN ,nN

]

, QN = P∗
N .

Note that, by (17) and (22), the polynomials XN (z) = XN − z IN , AN (z) =
zPNCN QN satisfy the assumptions of Theorem 11 with any α < 1

2 .
Hence, the resolvent of HN (XN − z IN + zPNCN QN ) has a limit law

M̃(z) =
(

m�(z)IN − m�(z)PN
(

(zCN )−1 + QNm�(z)IN PN
)−1

QNm�(z)
)

H−1
N

= m�(z) diag(c
−1
1 , . . . , c−1

nN ) ⊕ IN−nN

−m�(z)
2 ·

(
(

diag
( 1

z(1 − c−1
1 )

, . . . ,
1

z(1 − c−1
nN )

)

+m�(z)InN

)−1 ⊕ 0N−nN

)

H−1
N

= diag(g1(z), . . . , gnN (z)) ⊕ m�(z)IN−nN
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on the set T̃N with β < α < 1
2 . The rate of this convergence is nN N

α��
N (z), due to the

fact that H−1
N is a diagonalmatrixwith bounded entries. Finally, note that nN Nα�x

N (z)
converges to zero pointwise in z.

Now, let us prove the statement concerning the eigenvalues. By (44), the eigenvalues
of HN XN are the eigenvalues of the linear pencil XN − z IN + zPNCN QN . Define
K (z) as in Theorems 11 and 14:

K (z) := (Cz)−1 + m�(z)In .

As the matrix C is diagonal, we have that det K (z) = 0 is equivalent to

c j
c j − 1

1

z
+ m�(z) = 0, (45)

for some j ∈ {1, . . . n}. Consequently, the points z j , j = 1, . . . , n are precisely the
zeros of det K (z).

If XN is a Wigner matrix, then using the well-known equality

mW(z) + 1

mW(z)
+ z = 0, (46)

it is easy to show that equation (45) has for each j = 1, . . . n two complex solutions

z±j = ± c j
√

1 − c j
i;

let z j = z−j . If XN is a random sample covariance matrix, then direct computations
give the formula for z j . By Theorem 14, for each z j , there are k j eigenvalues of XN

converging to z j as
|λN

l − z j | ≺ N−α, l = 1, . . . k j , (47)

with someα > 0.By the first part of the theorem,with high probability, the eigenvalues
of HN XN are outside the set

T̃N =
{

z ∈ T :
∣
∣
∣
∣

c j
(c j − 1)z

+ m�(z)

∣
∣
∣
∣

−1

< Nβ, for j = 1, 2, . . . , n

}

⊇
{

z ∈ T : |z − z j | > N−β ′
, for j = 1, 2, . . . , n

}

where β ′ < β < 1
2 . Hence, α in (47) can be chosen as arbitrary β ′ < 1

2 . Hence, by the
definition of stochastic domination (see Definition 2), equation (47) holds with α = 1

2
as well. 
�
Remark 23 Let us note two facts about the formula for z j in Theorem 22.

In the Wigner matrix case, the point z j is in the upper half-plane and its complex
conjugate is also a limit point of k j eigenvalues of HN XN due to the symmetry of
spectrum of HN XN with respect to the real line.
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Further, in the random sample covariance matrix case it holds that z j < 0. Further,
if the underlying matrix is a square matrix, then the formula simplifies to

z j = c2j
c j − 1

.

Example 24 Let us consider H = diag(−1,−2,−2, 1, 1, . . . , 1) ∈ C
N×N . The spec-

trum of the matrix XN = HNWN is symmetric to the real line, and there are three
pairs of eigenvalues which do not lie on the real line. The rest of the spectrum is real.
By Theorem 22, the resolvent of XN converges in probability to

M̃(z) = diag
( −mW(z)

2zmW(z) + 1
,

−mW(z)

3zmW(z) + 2
,

−mW(z)

3zmW(z) + 2
, 1, . . . , 1

)

.

Moreover, one eigenvalue of XN converges in probability to z1 =
√
2
2 i and two

eigenvalues converge in probability to z2 = 2
√
3

3 i.

We conclude the section with a different type of a random pencil.

Remark 25 We recall the method of detecting damped oscillations in a noisy signal
via Padé approximations of the Z-transform of the signal, proposed in [5]. The method
has found several practical applications [12,30,47,52], and its numerical analysis can
be found in [5]. Here, finding the limit law (if it exists) for the resolvent of the pencil
zU0 −U1, where

U0 =

⎡

⎢
⎢
⎢
⎣

s0 s1 . . . sn−1

s1 . .
. sn

... . .
.
. .

. ...

sn−1 sn . . . s2n−2

⎤

⎥
⎥
⎥
⎦

, U1 =

⎡

⎢
⎢
⎢
⎣

s1 s2 . . . sn

s1 . .
. sn

... . .
.

. .
. ...

sn sn+1 . . . s2n−1

⎤

⎥
⎥
⎥
⎦

,

and s = s0, . . . s2n−1 is a white noise, would substantially contribute to the signal
analysis, via Theorem 11, see [2,3] for details. The spectral properties of Hankel
matrices were studied, e.g. in [19]. The investigation of the pencil zU0 −U1 is left for
subsequent papers.

5 Analysis of Some RandomQuadratic Matrix Polynomials

In the present section, we will consider the spectra of matrix polynomials of the form

XN − p(z)IN + q(z)uNu
∗
N , (48)

where XN is either a Wigner or a random sample covariance matrix and uN is some
deterministic vector and p(z) and q(z) are some (scalar-valued) polynomials and
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polynomials of type

z2(Cn ⊕ 0N−n + IN ) + zXN + Dn ⊕ 0N−n,

where Cn, Dn ∈ C
n×n are diagonal deterministic matrices. This we see as a step

forward in a systematic study of polynomials with random entries. The problem of
localising the spectrum of (48) is a clear extension of the usual perturbation problem
for random matrices, see, for example, [11,16,20,26,31,40,41,46,51,55]. Indeed, the
latter problem can be seen as studying the pencil XN − z IN + uNu∗

N . In Example 27,
we will demonstrate an essential difference between these two problems. The general
case, i.e. following the setting of Theorem 11, is as yet unclear and requires developing
new methods for estimating the expression

∥
∥K (z)−1

∥
∥
2 appearing therein.

Note that matrix polynomials of type A − p(z)IN + q(z)uu∗ (A ∈ C
n×n , u ∈ C

n)
appear in many practical problems connected with modelling, cf. [6].

Theorem 26 Let

C(z) = q(z) ∈ C
1×1[z], AN (z) := q(z)uNu

∗
N ∈ C

N×N [z],

be deterministic matrix polynomials, where uN ∈ C
N , N = 1, 2, . . . . Let XN (z) =

XN − p(z)IN ∈ C
N×N [z] be a random matrix polynomial, and let neither p(z) nor

q(z) depend on N. We assume that

(a1.2) XN is either a Wigner matrix from Example 7 or a random sample covariance
matrix fromExample8, so that the resolvent of XN has a local limit lawm�(z)IN
on the family of setsS�

N ,ω with the rate��
N (z), where � ∈ {W,MP}, respectively,

and let T be a compact set that does not intersect the real line.
(a2.3) p(z) and q(z) are fixed nonzero polynomials,
(a4.3) uN is a deterministic vector of norm one, having at most n nonzero entries,

where n is fixed and independent from N.

Then, the eigenvalues of XN (z) + AN (z) are with high probability outside the set

S̃�
N ,ω =

{

z ∈ C : p(z) ∈ S�
N ,ω, |m�(p(z)) + q(z)−1| > N−βω

}

.

and
T̃N :=

{

z ∈ C : p(z) ∈ T : |m�(p(z)) + q(z)−1| > N−β
}

, (49)

where β < α < 1
2 . The resolvent of the polynomial XN (z) + AN (z) has on S̃�

N ,ω and

T̃N the following limit law

M̃N (z) = m�(p(z))IN − m�(p(z))2

m�(p(z)) + q(z)−1 uNu
∗
N ,

with the rates

N
ω
2 ��

N (z) and Nα��
N (z),
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respectively.
Furthermore, for each solution z0 with p(z0) ∈ C \R of the equation m�(p(z)) +

q(z)−1 = 0 there exist eigenvalues λN
j , j = 1, . . . , k, where k ≥ 1, of XN (z) con-

verging to z0 as

|z0 − λN
j | ≺ N−1/2, j = 1, . . . , k.

Proof For the proof, we note that the assumptions of Theorem 11 are satisfied, XN (z)
has a limit law m�(p(z))IN and that

K (z) = m�(p(z)) + q(z)−1,

and so the first part of the claim follows directly.
The statement concerning the convergence of eigenvalues follows fromTheorem 14

and from the form of the set T̃N , cf. the proofs of Theorems 16 and 22. 
�
Example 27 We present an example showing how the techniques above may be useful
in localising eigenvalues of second-order matrix polynomials. Consider a particular
matrix polynomial (48):

P(z) = −4π2
(

IN − 1

2
eN e

�
N

)

z2 + 2π · eN e�
N z + 2IN − eN e

�
N − WN , (50)

where WN is the real Wigner matrix. Note that a similar matrix can be found in [6]
as Problem acoustic_wave_1d (after substitution z = λ

N ), but with the Wigner
matrix replaced by

⎡

⎢
⎢
⎢
⎣

−1

−1 . . .
. . . −1

−1

⎤

⎥
⎥
⎥
⎦

.

The matrix polynomial in (50) is real and symmetric; hence, its spectrum is symmetric
with respect to the real line. Let us note that the spectrum is a priori not localised on
the real and imaginary axis, for small N , we can have eigenvalues with relatively large
both real and imaginary parts. However, these eigenvalues will converge to the real and
imaginary axis as N grows. To see this, first note that the sets S̃WN ,ω ⊂ p−1(SWN ,ω) are
contained in the first and third quadrant of the plane. However, due to the symmetry
of the spectrum, we may extend the set to

{

z ∈ C : z ∈ S̃WN ,ω or z̄ ∈ S̃WN ,ω

}

, (51)

which lies in all four quadrants of the complex plane. The spectrum of P(λ) is located
with high probability in the complement of the set (51). A sample set (51) is plotted in
Fig. 5. Note that the complement of (51) contains both the real and the imaginary axis
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Fig. 5 The spectrum of the quadratic random polynomial (50) with N = 500 (red crosses) and the set (51)
(blue) (Color figure online)

with some neighbourhood, which is not clearly seen in the picture. Hence, for large
N , the spectrum is either (approximately) on the real or imaginary axis. Furthermore,
the real spectrum concentrates on p−1([−2, 2]) = [− 1

π
, 1

π

]

and there is also one real
eigenvalue (near z = 0.5), which converges to a real solution of

mW(4π2z2 − 2) + 1

2π2z2 + 2π i z − 1
= 0. (52)

(We extend the function mW(z) onto the real line as mW(x) = limy↓0 m(x + i y),
similarly for the matrix A(5) in Example 20.)

Due to its role in applications, computation of spectra of quadratic polynomials is
currently an important task, see, for example, [6,36,39,50,57]. The usual procedure is
a linearisation (see [35,37]), which, however, has some limitations [27]. Above we
obtained a family of matrix polynomials (i.e. one coefficient is a random matrix) for
which we are able to control the real part of the nonreal eigenvalues. This property
can be useful, e.g. in testing particular numerical algorithms, by plotting maximum
of |Re λ|, over all nonreal eigenvalues λ. If the algorithm works properly, then this
quantity should converge to zero as approximately N−1. A preliminary picture in
matlab (Fig. 6) of maximum of |Re λ|, over all nonreal eigenvalues λ, does not
reveal any numerical anomalies for N ≤ 103, and the upper bound of order N−1 is
visible.

We present yet another possible application of themain results. Again, investigating
this particular polynomial is motivated by examples from [6].
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Fig. 6 Maximum of |Re λ|, over all nonreal eigenvalues λ of the polynomial (50)

Theorem 28 Let

C(z) := z2

⎡

⎣

c1
. . .

cn

⎤

⎦+
⎡

⎣

d1
. . .

dn

⎤

⎦ ∈ C
n×n[z],

AN (z) := C(z) ⊕ 0N−n ∈ C
N×N [z],

be deterministic matrix polynomials, where n ≥ 1 and c1, . . . , cn, d1, . . . , dn ∈ C

are fixed. Let XN (z) = z2 I + zXN ∈ C
N×N [z] be a random matrix polynomial. We

assume that

(a1.4) XN is either a Wigner matrix from Example 7 or a random sample covariance
matrix from Example 8, so that the resolvent of z2 IN + zXN has a limit law
z−1m�(z)IN on the family of setsS�

N ,ω with the rate��
N (z), where � ∈ {W,MP},

respectively, and let T be a compact set that does not intersect the real line.
(a2.4) z2ci +di �= 0 for z ∈ S�

N ,ω or z ∈ T, respectively, i = 1, . . . , n, e.g. ci , di > 0,
for i = 1, . . . , n.

Then, the eigenvalues of XN (z) + AN (z) are with high probability outside the set

S̃�
N ,ω =

{

z ∈ S�
N ,ω : min

i=1,...,n

∣
∣
∣
∣

1

z2ci + di
+ z−1m�(z)

∣
∣
∣
∣
> N−βω

}

.

and

T̃N :=
{

z ∈ T : min
i=1,...,n

∣
∣
∣
∣

1

z2ci + di
+ z−1m�(z)

∣
∣
∣
∣
> N−β

}

, (53)
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where β < α < 1
2 . The resolvent of the polynomial XN (z) + AN (z) has on S̃�

N ,ω and

T̃N the following limit law

M̃N (z) = z−1m�(z)IN −
⎡

⎣

f1
. . .

fn

⎤

⎦ ,

fi = z−2m�(z)2

(z2ci + di )−1 + z−1m�(z)
, i = 1, . . . n,

with the rates

N
ω
2 |z|−2��

N (z) and Nα��
N (z),

respectively.
Furthermore, for each solution z0 with z0 ∈ C \R of the equation (z2ci + di )−1 +

z−1m�(z) = 0 there exist eigenvalues λN
j , j = 1, . . . , k, where k ≥ 1, of XN (z)

converging to z0 as

|z0 − λN
j | ≺ N−1/2, j = 1, . . . , k.

Proof First, note that the resolvent of z2 IN +zXN has indeed the limit law z−1m�(z)IN
on the same sets and with the same convergence rate as XN − z IN . Now, the proof
becomes another application of Theorem 11 with

K (z) =
⎡

⎢
⎣

(z2c1 + d1)−1 + z−1m�(z)
. . .

(z2cn + dn)−1 + z−1m�(z)

⎤

⎥
⎦ ,

see Theorem 26 for details. We highlight that the factor ‖M(z)‖22 in the formula for
�̃(z) in Theorem 11 cannot be ignored here. (In previous applications, introducing this
factor was not necessary asm�(z) is bounded in the upper half-plane.) However, in the
current situation we have ‖MN (z)‖22 = const |z|−2 in the case S�

N and ‖MN (z)‖22 =
const in the case T. 
�
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