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Abstract
We study semi-martingale obliquely reflected Brownian motion with drift in the first
quadrant of the plane in the transient case.Ourmain result determines a general explicit
integral expression for the moment generating function of Green’s functions of this
process. To that purpose we establish a new kernel functional equation connecting
moment generating functions of Green’s functions inside the quadrant and on its
edges. This is reminiscent of the recurrent case where a functional equation derives
from the basic adjoint relationship which characterizes the stationary distribution.
This equation leads us to a non-homogeneous Carleman boundary value problem. Its
resolution provides a formula for the moment generating function in terms of contour
integrals and a conformal mapping.

Keywords Green’s function · Oblique Neumann boundary condition · Obliquely
reflected Brownian motion in a wedge · Semi-martingale reflected Brownian motion ·
Laplace transform · Conformal mapping · Carleman boundary value problem

Mathematics Subject Classification (2010) 30E25 · 60J45 · 60J65 · 60H30
1 Introduction

1.1 Overview

Main Goal

In this article, we consider Z = (Z(t), t ≥ 0), an obliquely reflected Brownian motion
with drift in R2+ starting from x . Denote the transition semigroup by (Pt )t≥0. We will
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Fig. 1 Reflection vectors and
drift

focus on the quadrant case because thanks to a simple linear transform it is easy to
extend all the results to any wedge, see [31, Appendix A]. This process behaves as a
Brownian motion with drift vector μ and covariance matrix Σ in the interior of this
quadrant and reflects instantaneously in a constant direction Ri for i = 1, 2 on each
edge, see Fig. 1 and Proposition 1 for more details. We are interested in the case where
this process is transient, that is when the parameters make the process tend to infinity
almost surely, see Sect. 2.2.

The main goal of this article is to study G, Green’s measure (potential kernel) of
Z :

G(x, A) := Ex

[∫ ∞

0
1A(Z(t)) dt

]
=

∫ ∞

0
Pt (x, A) dt

which represents the mean time spent by the process in some measurable set A of
the quadrant. Let us remark that if A is bounded and if Z is transient then G(x, A) is
finite. The density of the measure G with respect to the Lebesgue measure is called
Green’s function and is equal to

g(x, ·) :=
∫ ∞

0
pt (x, ·) dt,

if we assume that pt is a transition density for Z(t). The kernel G defines a potential
operator

G f (x) := Ex

[∫ ∞

0
f (Z(t)) dt

]
=

∫
R
2+
f (y) g(x, y) dy,

for every positive measurable function f . We define H1 and H2 the boundary Green’s
measures on the edges such that for i = 1, 2,

Hi (x, A) := Ex

[∫ ∞

0
1A(Z(t)) dLi (t)

]

where we integrate with respect to Li (t), the local time of the process on the edge
zi = 0. The support of H1 lies on the vertical axis and the support of H2 lies on the
horizontal axis. We can say that Hi (x, A) represents the mean local time spent on the
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corresponding edge. When it exists, the density of the measure Hi with respect to the
Lebesgue measure is denoted hi and the boundary potential kernel is given by

Hi f (x) := Ex

[∫ ∞

0
f (Z(t)) dLi

t

]
=

∫
R
2+
f (y)hi (x, y) dy.

In this article we determine an explicit formula for ψ x and ψ x
i the Laplace transforms

of g and hi usually named moment generating functions, defined by

ψ x (θ) := Ex

[∫ ∞

0
eθ ·Z(t) dt

]
and ψ x

i (θ) := Ex

[∫ ∞

0
eθ ·Z(t) dLi (t)

]
(1)

where θ = (θ1, θ2) ∈ C
2. Thereafter, we will often omit to write the x . Furthermore,

we notice that the functionsψi depend on only one variable. We will then denote them
by ψ(θ), ψ1(θ2) and ψ2(θ1).

Context

Obliquely reflectedBrownianmotion in the quadrant and in orthants of any dimensions
was introduced and extensively studied in the eighties by Harrison, Reiman, Varad-
han and Williams [33,34,55–57]. The initial motivation for the study of this kind of
processes was because it serves as an approximation of large queuing networks as we
can see in [3,26,28,36,51]. Recurrence or transience in two dimensions, which is an
important aspect for us, was studied in [15,38,57]. In higher dimensions the problem
is more complex, see for example [8,9,12,16]. The intertwining relations of obliquely
reflecting Brownian motion have been studied in [21,40], its Lyapunov functions in
[22], its cone points in [44] and its existence in non-smooth planar domains and its
links with complex and harmonic analysis in [11]. Some articles link SRBM in the
orthant to financial models as in [4,39]. Such a process and these financial models are
also related to competing Brownian particle systems as in [10,53]. Finally, some other
related stochastic processes have been studied too as two-dimensional oblique Bessel
processes in [45] and two-dimensional obliquely sticky Brownian motion in [14].

Green’s Functions and Invariant Measures

Green’s functions and invariant measures are two similar concepts, the first dealing
with the transient case and the second the recurrent case. Indeed, in the transient case
the process spends a finite time in a bounded set while in the recurrent case it spends
an infinite time in it. Thus, Green’s measure may be interpreted as the average time
spent in some set while ergodic theorems say that the invariant measure is the average
proportion of time spent in some set.

In the discrete setting, Green’s functions of random walks in the quadrant have
been studied in several articles, as in the reflecting case in [43] or in the absorbed case
in [41]. To our knowledge it seems that in the continuous setting, Green’s functions
of reflected Brownian motion in cones has not been studied yet (except in dimension
one, see [13]).
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On the other hand, the invariant measure of this kind of processes has been deeply
studied in the literature: the asymptotics of the stationary distribution is the subject
of many articles as [18,19,29,35,54], numerical methods to compute the stationary
distribution have been developed in [15,17] and explicit expressions for the stationary
distribution are found in some particular cases in [3,6,20,26,28,30,37] and in the
general case in [31].

Oblique Neumann Boundary Problem

Green’s functions and invariant measures of Markov processes are central in poten-
tial theory and in ergodic theorems for additive functionals. In particular they give
a probabilistic interpretation to the solutions of some partial differential equations.
“Appendix A” illustrates this. Our case is especially complicated because we consider
a non-smooth unbounded domain, and reflection at the boundary is oblique.

Consider Z , an obliquely reflected Brownianmotion with drift vectorμ, covariance
matrix Σ , and reflection matrix R. Its first and second columns R1 and R2 form
reflection vectors at the faces {(0, z)|z ≥ 0} and {(z, 0)|z ≥ 0}. Its generator inside
the quarter plane L and its dual generator L∗ are equals to

L f = 1

2
∇ · Σ∇ + μ · ∇ and L∗ f = 1

2
∇ · Σ∇ − μ · ∇. (2)

Harrison and Reiman [33, (8.2) and (8.3)] derive (informally) the backward and the
forward equations (with boundary and initial conditions) for pt (x, y), the transition
density of the process. The forward equation (or Fokker–Planck equation) may be
written as

⎧⎪⎨
⎪⎩
L∗
y pt (x, y) = ∂t pt (x, y),

∂R∗
i
pt (x, y) − 2μi pt (x, y) = 0 if yi = 0,

p0(x, ·) = δx ,

where

R∗ = 2Σ − R diag(R)−1diag(Σ),

R∗
i is its i th columnand ∂R∗

i
= R∗

i ·∇y the derivative along R∗
i on the boundary. (In [33],

notation is different: Rowvectors instead of column vectors.) Letting t going to infinity
in the forward equation, Harrison and Reiman conclude that, in the positive recurrent
case, the density π of the stationary distribution satisfies the following steady-state
equation [33, (8.5)]

{
L∗π = 0,

∂R∗
i
π − 2μiπ = 0 if yi = 0.

In the transient case, integrating the forward equation in time from0 to infinity suggests
that the Green’s function g satisfies the following partial differential equation with
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Robin boundary condition (specification of the values of a linear combination of a
function and its derivative on the boundary)

{
L∗
yg(x, ·) = − δx ,

∂R∗
i
g(x, ·) − 2μi g(x, ·) = 0 if yi = 0.

(3)

A similar equation holds in dimension one, see (32). The Green’s function g of the
obliquely reflected Brownian motion in the quadrant is then a fundamental solution
of the dual operator L∗. Together with the boundary Green’s functions hi they should
allow to solve the following oblique Neumann boundary problem

{
Lu = − f in R2+,

∂Ri u = ϕi if yi = 0,

where ∂Ri = Ri · ∇y is the derivative along Ri . If a solution u exists, it should satisfy

u = G f + H1ϕ1 + H2ϕ2.

One may see “Appendix A” to better understand this thought.

1.2 Main Results and Strategy

Functional Equation

To find ψ and ψi the moment generation functions of Green’s functions, we will
establish in Proposition 5 a new kernel functional equation connecting what happens
inside the quadrant and on its boundaries, namely

− γ (θ)ψ(θ) = γ1(θ)ψ1(θ2) + γ2(θ)ψ2(θ1) + eθ ·x (4)

where x is the starting point and the kernel γ and γi are some polynomials given in
Eq. (9). To our knowledge this formula has not yet appeared in the literature. Such
an equation is reminiscent of the balance equation satisfied by the moment generation
function of the invariant measure in the recurrent case which derives from the basic
adjoint relationship, see [18, (2.3) and (4.1)] and [31, (5)]. The additional term eθ ·x
depending on the starting point makes this equation differ from the one of the recurrent
case. It reminds also of the several kernel equations obtained in the discrete setting in
order to study random walks and count walks in the quadrant [25,42].

Analytic Approach

In the seventies, Malyshev [24,47] introduced an analytic approach to solve such
functional equations. Thismethod is presented in the famous bookof Fayolle et al. [25].
Since then, it has been used a lot in the discrete setting in order to solvemany problems
as counting walks, studying Martin boundaries, determining invariant measures or
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Green’s functions, see [5,7,41–43]. This approach has also been used in the continuous
setting in order to study stationary distributions in a few articles as in [3,26,28,31].
However, to our knowledge it is the first time that this method is used to find Green’s
functions in the continuous case. To obtain an explicit expression of the Laplace
transforms using this analytic approach we will go through the following steps:

(i) Find a functional equation, see Sect. 3.1;
(ii) Study the kernel (and its related Riemann surface) and extend meromorphically

the Laplace transforms, see Sects. 3.2 and 3.3;
(iii) Deduce from the functional equation a boundary value problem (BVP), see

Sect. 4.2;
(iv) Find some conformal glueing function and solve the BVP, see Sects. 4.3 and 4.5.

For some analytic steps, our strategy of proof is similar to the one used in [31] to
determine the stationary distribution. In some places, the technical details will be
identical to [3,31], especially related to the kernel. But, being in the transient case,
the probabilistic study differs from [31] and leads to a different functional equation
and to a more complicated boundary value problem whose analytic resolution is more
difficult.

Boundary Value Problem

In Lemma 8 we establish a Carleman boundary value problem satisfied by the Laplace
transformψ1. For some functionsG and g defined in (19) and (20) and some hyperbola
R defined in (17) which depend on the parameters (μ,Σ, R) we obtain the boundary
condition (21):

ψ1(θ2) = G(θ2)ψ1(θ2) + g(θ2), ∀θ2 ∈ R.

This equation is particularly complicated: The function g makes the BVP doubly non-
homogeneous due to the function G but also to g which comes from the term eθ ·z0 in
the functional Eq. (4). The function g makes the BVP differ from the one obtained in
the recurrent case for the Laplace transform of the stationary distribution [31, (22)].

Explicit Expression

The resolution of such a BVP is technical and uses the general theory of BVP. In
order to make the paper self-contained, “Appendix B” briefly presents this theory. The
solutions can be expressed in terms of Cauchy integral and some conformal mapping
w defined in (23). Our main result is an integral formula for the Laplace transform ψ1
precisely stated in Theorem 11. Let us give now the shape of the solution. We have

ψ1(θ2) = −Y (w(θ2))

2iπ

∫
R−

g(t)

Y+(w(t))

(
w′(t)

w(t) − w(θ2)
+ χ

w′(t)
w(t)

)
dt
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where

Y (w(θ2)) = w(θ2)
χ exp

(
1

2iπ

∫
R−

log(G(s))

(
w′(s)

w(s) − w(θ2)
− w′(s)

w(s)

)
ds

)
,

χ = 0 or 1 and Y+ is the limit of Y on R. This formula is analogous but more
complicated than the one obtained in [31, (14)]. In the same way there is a similar
formula forψ2, and then the functional Eq. (4) gives an explicit formula for the Laplace
transformψ . Green’s functions are obtained by taking the inverse Laplace transforms.

1.3 Perspectives

Developing the analytic approach, it would be certainly be possible to study further
Green’s functions and obliquely reflected Brownian motion in wedges. Here, are some
research topic perspectives:

• Study the algebraic nature of Green’s function: as in the discrete models it would
require to introduce the group related to the process and analyze further the struc-
ture of the BVP in studying the existence of multiplicative and additive decoupling
functions, see Sect. 4.6 and [5–7,47];

• Determine the asymptotics of Green’s function, the Martin boundary and the cor-
responding harmonic functions: to do this we should study the singularities and
invert the Laplace transforms in order to use transfer lemmas and the saddle point
method on the Riemann surface, see [23,29,41,43,49,50];

• Give an explicit expression for the transition function: to do that, we could try to
find a functional equation satisfied by the resolvent of the process, which would
contain one more variable, and seek to solve it.

We leave these questions for future works. Furthermore, even if there are some
attempts, extending the analytic approach to higher dimensions remains an open ques-
tion.

1.4 Structure of the Paper

• Section 2 presents the process we are studying and focuses on the transience
conditions.

• Section 3 establishes the new functional equation which is the starting point of
our analytic study. The kernel is studied and the Laplace transform is continued
on some domain.

• Section 4 states and solves the boundary value problem satisfied by the Laplace
transform ψ1. The main result, which is the explicit expression of ψ1, is stated in
Theorem 11.

• “Appendix A” presents in a brief way the potential theory which links Green’s
functions and the partial differential equations.

• “Appendix B” presents the general theory of boundary value problems which is
used in Sect. 4.
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• “Appendix C” studies Green’s functions of reflected Brownian motion in dimen-
sion one.

• “Appendix D” explain how to generalize the results to the case of a non-positive
drift.

2 Transient SRBM in the Quadrant

2.1 Definition

Let

Σ =
(

σ11 σ12
σ12 σ22

)
∈ R

2×2,

μ =
(

μ1
μ2

)
∈ R

2, R = (R1, R2) =
(

1 r12
r21 1

)
∈ R

2×2

respectively be a positive-definite covariance matrix, a drift and a reflection matrix.
The matrix R has two reflection vectors giving the reflection direction R1 along the
y-axis and R2 along the x-axis, see Fig. 1. We will define the obliquely reflected
Brownian motion in the quadrant in the case where the process is a semi-martingale,
see Williams [56]. Such a process is also called semimartingale reflected Brownian
motion (SRBM).

Proposition 1 (Existence and uniqueness) Let us define Z = (Z(t), t ≥ 0) a SRBM
with drift in the quarter plane R

2+ associated to (Σ,μ, R) as the semi-martingale
such that for t ∈ R+ we have

Z(t) = x + W (t) + μt + RL(t) ∈ R
2+,

where x is the starting point, W is a planar Brownian motion starting from 0 and
of covariance Σ and for i = 1, 2 the coordinate Li (t) of L(t) is a continuous non-
decreasing processwhich increases onlywhen Zi = 0, that iswhen the process reaches
the face i of the boundary (

∫
{t :Zi (t)>0} dLi (t) = 0). The process Z exists in a weak

sense if and only if one of the three conditions holds

r12 > 0, r21 > 0, r12r21 < 1. (5)

In this case the process is unique in law and defines a Feller continuous strongMarkov
process.

The process L(t) represents the local time on the boundaries, more specifically its
first coordinate L1(t) is the local time on the vertical axis and the second coordinate
L2(t) the local time on the horizontal axis. The proof of existence and uniqueness
can be found in the survey of Williams [58, Theorem 2.3] for orthants, in general
dimension d ≥ 2. These conditions mean that the reflection vectors must not be too
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(a) (b)

Fig. 2 Existence conditions

much inclined toward 0 for the process to exist. Otherwise the process will be trapped
in the corner, see Fig. 2. The limit condition r12r21 = 1 is satisfied when the two
reflection vectors are collinear and of opposite directions.

2.2 Recurrence and Transience

Markov processes have approximately two possible behaviors as explained in the book
of Revuz and Yor [52, p. 424]. Either they converge to infinity which is the transient
case, or they come back at arbitrarily large times to some small sets which is the
recurrent case. We present very briefly some results of the corresponding theory, for
more details (in particular on topological issues) one can read the articles of Azéma
et al. [1,2].

Let X(t) be a Feller continuous strong Markov process on state space E , a locally
compact set with countable base. We say that the point x leads to y if for all neigh-
borhood V of y we have Px (τV < ∞) > 0 where τV = inf{t > 0 : X(t) ∈ V }.
The points x and y communicate if x leads to y and y leads to x , it is an equivalence
relation. For x ∈ E we say that

• x is recurrent if Px
(
limt→∞1U (X(t)) = 1

) = 1 for all U neighborhoods of x ,
• x is transient if Px

(
limt→∞1U (X(t)) = 1

) = 0 for all U relatively compact
neighborhoods of x .

Each point is either recurrent or transient, and if two states communicate, they are
either both recurrent or both transient, see [1, Theorem III 1]. The process is called
recurrent or transient if each point is recurrent or transient, respectively. The next
proposition may be found in [1, Proposition III 1].

Proposition 2 (Transience properties) The following properties are equivalent

1. every point is transient;
2. X(t) tends to infinity when t → ∞ a.s.;
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3. for all compact K of E and for all starting point x Green’s measure of K is finite:

G(x, K ) = Ex

[∫ ∞

0
1K (X(t)) dt

]
< ∞.

Themain articleswhich study the recurrence and the transience of SRBM inwedges
are [57] with zero drift [38] with nonzero drift and the survey [58]. The process has
only one equivalence class equal to the whole quadrant, see for example [57, (4.1)].
The process will be recurrent if for each set V (of positive Lebesgue measure) and
all starting point x , Px (τV < ∞) = 1, otherwise it will be transient. It will be called
positive recurrent and will admit a stationary distribution if Ex [τV ] < ∞ and null
recurrent if Ex [τV ] = ∞ for all x and V .

Proposition 3 (Transience and recurrence) Assume that the existence condition (5) is
satisfied and note μ−

1 and μ−
2 the negative parts of the drift components. The process

Z is transient if and only if

μ1 + r12μ
−
2 > 0 or μ2 + r21μ

−
1 > 0, (6)

and recurrent if and only if

μ1 + r12μ
−
2 ≤ 0 and μ2 + r21μ

−
1 ≤ 0. (7)

In the latter case the process is positive recurrent and admit a unique stationary
distribution if and only if μ1 + r12μ

−
2 < 0 and μ2 + r21μ

−
1 < 0, and is null recurrent

if and only if μ1 + r12μ
−
2 = 0 or μ2 + r21μ

−
1 = 0.

This result may be found in [38,57,58]. In order to restrict the number of cases to
handle, we will now assume that the drift has positive coordinates, that is

μ1 > 0 and μ2 > 0. (8)

In this case the process is then obviously transient and converges to infinity. In the other
transient cases the process tends to infinity but along one of the axis. See for example
[27] which computes the probability of escaping along each axis when μ1 < 0 and
μ2 < 0. These cases could be treated in the same way with additional technical issues.
See “Appendix D” which details the main differences of the study and generalize the
results to the case of a non-positive drift.

Assumption (8) is the counterpart to the rather standard hypothesis made in the
recurrent case (as in [20,26,28,29,31]) which takes μ1 < 0 and μ2 < 0.

3 A New Functional Equation

3.1 Functional Equation

We determine a kernel functional equation which is the starting point of our analytic
study. This key formula connects the Laplace transforms of Green’s function inside
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(a) Recurrent cases

(b) Transient cases

Fig. 3 Recurrence and transience conditions according to the parameters

and on the boundaries of the quarter plane. Let us define the kernel γ , γ1 and γ2 the
two variables polynomials such that for θ = (θ1, θ2) we have

⎧⎪⎨
⎪⎩

γ (θ) = 1
2θ · Σθ + θ · μ = 1

2 (σ11θ
2
1 + 2σ12θ1θ2 + σ22θ

2
2 ) + μ1θ1 + μ2θ2,

γ1(θ) = R1 · θ = θ1 + r21θ2,

γ2(θ) = R2 · θ = r12θ1 + θ2,

(9)

where · is the scalar product. The equations γ = 0, γ1 = 0 and γ2 = 0, respectively,
define inR2 an ellipse and two straight lines. Let θ∗ (resp. θ∗∗) be the point inR2\(0, 0)
such that γ (θ∗) = 0 and γ1(θ

∗) = 0 (resp. γ2(θ∗∗) = 0). The point θ∗ (resp. θ∗∗) is
the intersection point between the ellipse γ = 0 and the straight line γ1 = 0 (resp.
γ2 = 0), see Fig. 4.

Remark 4 Notice that the driftμ is an outer normal vector to the ellipse in (0, 0). Then,
the ellipse {θ ∈ R

2 : γ (θ) = 0} ⊂ {θ ∈ C
2 : �θ · μ < 0}.

Proposition 5 (Functional equation) Assume that μ1 > 0 and μ2 > 0. Denoting by x
the starting point of the transient process Z, the following formula holds

− γ (θ)ψ(θ) = γ1(θ)ψ1(θ2) + γ2(θ)ψ2(θ1) + eθ ·x (10)

for all θ = (θ1, θ2) ∈ C
2 such that �θ · μ < 0 and such that the integrals ψ(θ),

ψ1(θ2) and ψ2(θ1) are finite. Furthermore:

• ψ1(θ2) is finite on {θ2 ∈ C : �θ2 ≤ θ∗∗
2 },

• ψ2(θ1) is finite on {θ1 ∈ C : �θ1 ≤ θ∗
1 },
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Fig. 4 Ellipse γ = 0, straight
lines γ1 = 0 and γ2 = 0 and
intersection points θ∗ and θ∗∗

• ψ(θ) is finite on {θ ∈ C
2 : �θ1 < θ∗

1 ∧ 0 and �θ2 < θ∗∗
2 ∧ 0} ⊂ {θ ∈ C

2 :
�θ · μ < 0}.

Proof The proof of this functional equation is a consequence of Ito’s formula. For
f ∈ C2(R2+) we have

f (Z(t)) − f (Z0) =
∫ t

0
∇ f (Z(s))·dWs +

∫ t

0
L f (Z(s)) ds

+
2∑

i=1

∫ t

0
Ri · ∇ f (Z(s)) dLi (t),

where L is the generator defined in (2). Choosing f (z) = eθ ·z for z ∈ R
2+ and taking

the expectation of the last equality we obtain :

Ex [eθ ·Z(t)]−eθ ·x = 0+γ (θ)Ex

[∫ t

0
eθ ·Z(s) ds

]
+

2∑
i=1

γi (θ)Ex

[∫ t

0
eθ ·Z(s) dLi (t)

]
.

(11)
Indeed

∫ t
0 ∇ f (Z(s))·dWs is a martingale and then its expectation is zero. Now, let

t tend to infinity. Due to (8) we have θ · Z(t)/t −→
t→∞ θ · μ Choosing θ such that

�θ · μ < 0 then implies that �θ · Z(t) → −∞. We deduce that Ex [eθ ·Z(t)] −→
t→∞ 0.

The expectations of the following formula being finite by hypothesis, we obtain

0 − eθ ·x = γ (θ)Ex

[∫ ∞

0
eθ ·Z(s) ds

]
+

2∑
i=1

γi (θ)Ex

[∫ ∞

0
eθ ·Z(s) dLi (t)

]

which is the desired Eq. (10).
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Let us now assume that θ = θ∗ in equality (11), we obtain

Ex [eθ∗·Z(t)] − eθ∗·x = γ2(θ
∗)Ex

[∫ t

0
eθ∗·Z(s) dL2(t)

]
.

Let t tend to infinity. Thanks to Remark 4 we have θ∗ · Z(t) → −∞ and we obtain

ψ2(θ
∗
1 ) = Ex

[∫ ∞

0
eθ∗·Z(s) dL2(t)

]
= −eθ∗·x

γ2(θ∗)
< ∞.

It implies that ψ2(θ1) is finite for all �θ1 ≤ θ∗
1 . On the same way we obtain that

ψ1(θ2) is finite for all θ2 ≤ θ∗∗
2 .

Now assume that θ satisfies �θ1 < θ∗
1 ∧ 0, �θ2 < θ∗∗

2 ∧ 0 and let us deduce that
the Laplace transform ψ(θ1, θ2) is finite. Thanks to (8) we have �θ · μ < 0 and then
Ex [eθ ·Z(t)] −→

t→∞ 0. Let us consider two cases:

• if γ (θ∗
1 ∧0, θ∗∗

2 ∧0) �= 0, taking θ = (θ∗
1 ∧0, θ∗∗

2 ∧0) and letting t tend to infinity
in (11), we obtain that ψ(θ∗

1 ∧ 0, θ∗∗
2 ∧ 0) is finite. Then, ψ(θ1, θ2) is finite for all

(θ1, θ2) such that �θ1 ≤ θ∗
1 ∧ 0 and �θ2 ≤ θ∗∗

2 ∧ 0.
• if γ (θ∗

1 ∧ 0, θ∗∗
2 ∧ 0) = 0 it is possible to find ε > 0 as small as we want such

that γ (θ∗
1 ∧ 0 − ε, θ∗∗

2 ∧ 0 − ε) �= 0. In the same way that in the previous case
we deduce that ψ(θ1, θ2) is finite for all (θ1, θ2) such that �θ1 < θ∗

1 ∧ 0 and �θ2
< θ∗∗

2 ∧ 0. ��

3.2 Kernel

The kernel γ defined in (9) can be written as

γ (θ1, θ2) = a(θ1)θ
2
2 + b(θ1)θ2 + c(θ1),

where a, b, c are polynomials in θ1 such that

a(θ1) = 1

2
σ22, b(θ1) = σ12θ1 + μ2, c(θ1) = 1

2
σ11θ

2
1 + μ1θ1.

Let d(θ1) = b2(θ1) − 4a(θ1)c(θ1) be the discriminant. It has two real zeros θ±
1 of

opposite sign which are equal to

θ±
1 =

(μ2σ12 − μ1σ22) ±
√

(μ2σ12 − μ1σ22)2 + μ2
2 detΣ

detΣ
. (12)

We define Θ2(θ1) a bivalued algebraic function which has two branch points θ±
1 by

γ (θ1,Θ2(θ1)) = 0. We define the two branchesΘ±
2 on the cut planeC\((−∞, θ−

1 )∪
(θ+

1 ,∞)) by Θ±
2 (θ1) = −b(θ1)±√

d(θ1)
2a(θ1)

, that is
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Θ±
2 (θ1) =

−(σ12θ1 + μ2) ±
√

θ21 (σ 2
12 − σ11σ22) + 2θ1(μ2σ12 − μ1σ22) + μ2

2

σ22
.

(13)

On (−∞, θ−
1 ) ∪ (θ+

1 ,∞) the discriminant d is negative and the branches Θ±
2 take

conjugate complex values on this set. It will imply that the curveR defined in Eq. (17)
is symmetric with respect to the horizontal axis. On the same way we define θ±

2 and
Θ±

1 , it yields

θ±
2 =

(μ1σ12 − μ2σ11) ±
√

(μ1σ12 − μ2σ11)2 + μ2
1 detΣ

detΣ

and

Θ±
1 (θ2) =

−(σ12θ2 + μ1) ±
√

θ22 (σ 2
12 − σ11σ22) + 2θ2(μ1σ12 − μ2σ11) + μ2

1

σ11
.

(14)
The previous formulas can also be found in [31, (7) and (8)].

3.3 Holomorphic Continuation

The boundary value problem satisfied by ψ1(θ2) in Sect. 4 lies on a curve outside of
the convergence domain established in Proposition 5 that is {θ2 ∈ C : �θ2 ≤ θ∗∗

2 }.
That is why we extend holomorphically the Laplace transform ψ1. We assume that
the transient condition (6) is satisfied.

Lemma 6 (Holomorphic continuation) The Laplace transform ψ1 may be holomor-
phically extended to the open set

{θ2 ∈ C\(θ+
2 ,∞) : � θ2 < θ∗∗

2 or �Θ−
1 (θ2) < θ∗

1 }. (15)

Proof This proof is similar to the one of Lemma 3 of [31]. The Laplace transform ψ1
is initially defined on {θ2 ∈ C : � θ2 < θ∗∗

2 }, see Proposition 5. By evaluating the
functional Eq. (10) at (Θ−

1 (θ2), θ2) we have

ψ1(θ2) = −γ2(Θ
−
1 (θ2), θ2)ψ2(Θ

−
1 (θ2)) + exp(Θ−

1 (θ2)x1 + θ2x2)

γ1(Θ
−
1 (θ2), θ2)

(16)

for θ2 in the open and non-empty set {θ2 ∈ C : � θ2 < θ∗∗
2 and �Θ−

1 (θ2) < θ∗
1 }. The

formula (16) then allows to continue meromorphically ψ1 on {θ2 ∈ C : �Θ−
1 (θ2) <

θ∗
1 }. The potential poles may come from the zeros of γ1(Θ

−
1 (θ2), θ2). The points θ∗

and (0, 0) are the only points at which γ1 is 0. We notice that Θ−
1 (0) �= 0 as μ1 > 0.

Then, the only possible value in that domain at which the denominator of (16) takes
the value 0 is θ∗

2 when θ∗ = (Θ−
1 (θ∗

2 ), θ∗
2 ). In that case θ∗

2 < θ∗∗
2 and thanks to
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Proposition 5 we deduce that ψ1(θ
∗
2 ) is finite (which means that the numerator of (16)

is zero). We conclude that ψ1 is holomorphic in the domain (15). ��
This continuation is similar towhat is done for theLaplace transformof the invariant

measure in [29–31]. In fact it would be possible to introduce the Riemann surface S =
{(θ1, θ2) ∈ C

2 : γ (θ1, θ2) = 0} which is a sphere and to continue meromorphically
the Laplace transforms to the whole surface and even on its universal covering.

4 A Boundary Value Problem

The goal of this section is to establish and to solve the non-homogeneous Carle-
man boundary value problem with shift satisfied by ψ1(θ2), the Laplace transform of
Green’s function on the vertical axis. Here, the shift is the complex conjugation. We
will refer to the reference books on boundary value problems [32,46,48] and one will
see “Appendix B” for a brief survey of this theory. In this section we will assume that
transience condition (6) is satisfied.

4.1 Boundary and Domain

This section is mostly technical. Before to state the BVP in Sect. 4.2 we need to
introduce the boundary R and the domain GR where the BVP will be satisfied.

An Hyperbola

The curveR is a branch of hyperbola already introduced in [3,30,31]. We defineR as

R = {θ2 ∈ C : γ (θ1, θ2) = 0 et θ1 ∈ (−∞, θ−
1 )} = Θ±

2 ((−∞, θ−
1 )) (17)

and GR as the open domain ofC bounded byR on the right, see Fig. 5. As we noticed
in Sect. 3.2 the curveR is symmetric with respect to the horizontal axis, see Fig. 5. See
[30,31] or [3, Lemma 9] for more details and a study of this hyperbola. In particular
the equation of the hyperbola is given by

σ22(σ
2
12 − σ11σ22)x

2 + σ 2
12σ22y

2 − 2σ22(σ11μ2 − σ12μ1)x = μ2(σ11μ2 − 2σ12μ1).

(18)
In Fig. 6 one can see the shape of R according to the sign of the covariance σ12.

The part of R with negative imaginary part is denoted by R−.

Continuation on the Domain

Together with Lemma 6 the following lemma implies thatψ1 may be holomorphically
extended to a domain containing GR.

Lemma 7 The set GR is strictly included in the domain

{θ2 ∈ C\(θ+
2 ,∞) : � θ2 < θ∗∗

2 or �Θ−
1 (θ2) < θ∗

1 }
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Fig. 5 CurveR defined in (17)
in green and domain GR in blue

defined in (15).

Proof This proof is similar to the one of Lemma 5 of [31]. First we notice that the
set GR ∩ {θ2 ∈ C : � θ2 < θ∗∗

2 } is included in the domain defined in (15). Then, it
remains to prove that the set

S := GR ∩ {θ2 ∈ C : � θ2 ≥ θ∗∗
2 }

is a subset of the domain (15). More precisely, we show that S is included in

T := {θ2 ∈ C\(θ+
2 ,∞) : �Θ−

1 (θ2) < θ∗
1 }.

First of all, notice that the set S is bounded by (a part of) the hyperbola R and (a
part of) the straight line θ∗∗

2 + iR. We denote θ∗∗
2 ± i t1 the two intersection points of

these two curves when they exist, see Fig. 6. The definition ofR implies thatR ⊂ T .
Indeed the image of R by Θ−

1 is included in (−∞, θ−
1 ) and θ−

1 ≤ θ∗
1 . Furthermore,

(the part of) θ∗∗
2 + iR that bounds S also belongs to T because for t ∈ R+ and using

the fact that detΣ > 0 Eq. (14) yields after some calculations

{�Θ−
1 (θ∗∗

2 ± i t) ≤ �Θ−
1 (θ∗∗

2 ) = θ∗∗
1 < θ∗

1 , when θ∗∗
2 ≤ Θ2(θ

−
1 );

�Θ−
1 (θ∗∗

2 ± i(t1 + t)) ≤ �Θ−
1 (θ∗∗

2 ± i t1) < θ∗
1 , when θ∗∗

2 > Θ2(θ
−
1 ).

The inequality θ∗∗
1 < θ∗

1 follows from the assumption that θ∗∗
2 ≤ Θ2(θ

−
1 ) and the

inequality �Θ−
1 (θ∗∗

2 ± i t1) < θ∗
1 follows from the fact that θ∗∗

2 ± i t1 ∈ R ⊂ T . Let

us denote β = arccos
(
− σ12√

σ11σ22

)
. To conclude we consider two cases:

• σ12 < 0 or equivalently 0 < β < π
2 : the set S is either empty or bounded, see

the left picture on Fig. 6. Applying the maximum principle to the function �Θ−
1

show that the image of every point of S by �Θ−
1 is smaller than θ∗

1 and then that
S is included in T .

123



Journal of Theoretical Probability (2021) 34:1775–1810 1791

Fig. 6 On the left σ12 < 0, and on the right σ12 ≥ 0. The blue domain is the set S

• σ12 ≥ 0 or equivalently π
2 ≤ β < π : henceforth the set S is unbounded as we

can see on the right picture of Figure 6. It is no longer possible to apply directly
the maximum principle. However, to conclude we show that the image by �Θ−

1
of a point reit ∈ T near to infinity is smaller than θ∗

1 . The asymptotic directions
of θ∗

1 + iR are ±π
2 and (18) implies that those ofR are ±(π − β). Then, as in the

proof of Lemma 5 of [31] we prove with (14) that for t ∈ (π − β, π
2 ) we have

Θ−
1 (re±i t ) ∼

r→∞ r

√
σ22

σ11
e±i(t+β).

For t ∈ (π − β, π
2 ) this implies that �Θ−

1 (re±i t ) −→
r→∞ −∞ and we obtain that

�Θ−
1 (re±i t ) < θ∗

1 for r large enough. As in the case σ12 < 0 we finish the proof
with the maximum principle. ��

4.2 Carleman Boundary Value Problem

We establish a boundary value problem (BVP) with shift (here it is the complex
conjugation) on the hyperbola R. Let us define the functions G and g such that

G(θ2) := γ1

γ2
(Θ−

1 (θ2), θ2)
γ2

γ1
(Θ−

1 (θ2), θ2), (19)

g(θ2) := γ2

γ1
(Θ−

1 (θ2), θ2)

(
e(Θ−

1 (θ2),θ2)·x

γ2(Θ
−
1 (θ2), θ2)

− e(Θ−
1 (θ2),θ2)·x

γ2(Θ
−
1 (θ2), θ2)

)
. (20)
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Lemma 8 (BVP for ψ1) The Laplace transform ψ1 satisfies the following boundary
value problem:

(i) ψ1 is analytic on GR, continuous on its closure GR and tends to 0 at infinity;
(ii) ψ1 satisfies the boundary condition

ψ1(θ2) = G(θ2)ψ1(θ2) + g(θ2), ∀θ2 ∈ R. (21)

This BVP is said to be non-homogeneous because of the function g coming from
the term eθ ·x in the functional equation.

Proof The analytic and continuous properties of item (i) follow from Lemmas 6 and 7.
The behavior at infinity follows from the integral formula (1)which defines theLaplace
transform ψ1 and from the continuation formula (16). We now show item (ii). For
θ1 ∈ (−∞, θ−

1 ) let us evaluate the functional equation (10) at the points (θ1,Θ
±
2 (θ1).

It yields the two equations

0 = γ1(θ1,Θ
±
2 (θ1))ψ1(Θ

±
2 (θ1)) + γ2(θ1,Θ

±
2 (θ1))ψ2(θ1) + e(θ1,Θ

±
2 (θ1))·x .

Eliminating ψ2(θ1) from the two equations gives

ψ1(Θ
+
2 (θ1)) =γ1

γ2
(θ1,Θ

−
2 (θ1))

γ2

γ1
(θ1,Θ

+
2 (θ1))ψ1(Θ

−
2 (θ1))

+ γ2

γ1
(θ1,Θ

+
2 (θ1))

e(θ1,Θ
−
2 (θ1))·x

γ2(θ1,Θ
−
2 (θ1))

− e(θ1,Θ
+
2 (θ1)·x

γ1(θ1,Θ
+
2 (θ1))

.

Choosing θ1 ∈ (−∞, θ−
1 ), the quantities Θ+

2 (θ1) and Θ−
2 (θ1) go through the whole

curve R (defined in (17)) and are complex conjugate, see Sect. 3.2. Noticing in that
case that Θ−

1 (Θ−
2 (θ1)) = θ1, we obtain Eq. (21). ��

4.3 Conformal Glueing Function

To solve the BVP of Lemma 8 we need a function w which satisfies the following
conditions:

(i) w is holomorphic on GR, continuous on GR and tends to infinity at infinity,
(ii) w is one to one from GR to C\(−∞,− 1],
(iii) w(θ2) = w(θ2) for all θ2 ∈ R.

Such a function w is called a conformal glueing function because it glues together the
upper and the lower part of the hyperbola R. Let us define w in terms of generalized
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Chebyshev polynomial

Ta(x) := cos(a arccos(x)) = 1

2

[(
x +

√
x2 − 1

)a + (
x −

√
x2 − 1

)a]
,

β := arccos

(
− σ12√

σ11σ22

)
, (22)

w(θ2) := Tπ
β

(
− 2θ2 − (θ+

2 + θ−
2 )

θ+
2 − θ−

2

)
for all θ2 ∈ C\[θ+

2 ,∞). (23)

The function w is a conformal glueing function which satisfies (i), (ii), (iii) and
w(Θ±

2 (θ−
1 )) = − 1. See [30, Lemma 3.4] for the proof of these properties. The

following lemma is a direct consequence of these properties.

Lemma 9 (Conformal glueing function) The function W defined by

W (θ2) = w(θ2) + 1

w(θ2)

satisfies the following properties :

1. W is holomorphic on GR\{w−1(0)}, continuous on GR\{w−1(0)} and tends to 1
at infinity,

2. W is one to one from GR\{w−1(0)} to C\[0, 1],
3. W (θ2) = W (θ2) for all θ2 ∈ R.

WeintroduceW to avoid any technical problemat infinity.Wehave a cut on the segment
[0, 1] and we will be able to apply the propositions presented in “Appendix B”. Notice
that we have chosen arbitrarily the pole ofW inw−1(0), but every other pointw−1(x)
for x ∈ C\(−∞,−1] would have been suitable.

4.4 Index of the BVP

We denote

Δ = [arg G]R− and d = arg G(Θ±
2 (θ−

1 )) ∈ (−π, π ].

To solve the BVP of Lemma 8 we need to compute the index χ which is defined by

χ =
⌊
d + Δ

2π

⌋
.

Lemma 10 (Index) The index χ is equal to

χ =
{
0 if γ1(θ

−
1 ,Θ±

2 (θ−
1 ))γ2(θ

−
1 ,Θ±

2 (θ−
1 )) ≤ 0,

1 if γ1(θ
−
1 ,Θ±

2 (θ−
1 ))γ2(θ

−
1 ,Θ±

2 (θ−
1 )) > 0.
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Fig. 7 On the left χ = 0 and on the right χ = 1

The index is then equal to 0 or 1 depending on the position of the two straight lines
γ1 = 0 and γ2 = 0 with respect to the red point (θ−

1 ,Θ±
2 (θ−

1 )). See Fig. 7 which
illustrates this lemma.

Proof The proof is similar in each step to the proof of Lemma 14 in [31] except that
in our case γ2(θ

−
1 ,Θ±

2 (θ−
1 )) is not always positive. ��

4.5 Resolution of the BVP

The following theorem, already presented in the introduction as the main result of this
paper, holds.

Theorem 11 (Explicit expression ofψ1) Assume conditions (6) and (8). For θ2 ∈ GR,
the Laplace transform ψ1 defined in (1) is equal to

ψ1(θ2) = −Y (w(θ2))

2iπ

∫
R−

g(t)

Y+(w(t))

(
w′(t)

w(t) − w(θ2)
+ χ

w′(t)
w(t)

)
dt (24)

with

Y (w(θ2)) = w(θ2)
χ exp

(
1

2iπ

∫
R−

log(G(s))

(
w′(s)

w(s) − w(θ2)
− w′(s)

w(s)

)
ds

)
,

and where

• G is defined in (19) and g in (20),
• w is the conformal glueing function defined in (23),
• R− is the part of the hyperbola R defined in (17) with negative imaginary part,
• χ = 0 or 1 is determined by Lemma 10,
• Y+ is the limit value on R− of Y (and may be expressed thanks to Sokhotski–
Plemelj formulas stated in Proposition 12 of “Appendix B”).
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Proof We define the function Ψ by

Ψ (z) = ψ1(W
−1(z)), for z ∈ C\[0, 1].

Then,Ψ satisfies the Riemann BVP of Proposition 23 in “Appendix B”. The resolution
of this BVP leads to Proposition 24 which gives a formula for the Laplace transform
ψ1 = Ψ ◦ W . We then have

ψ1(θ2) =
{
X(W (θ2))ϕ(W (θ2)) for χ = − 1,

X(W (θ2))(ϕ(W (θ2)) + C) for χ = 0,

where C is a constant, χ is determined in Lemma 10 and the functions X and ϕ are
defined by

X(W (θ2)) : = (W (θ2) − 1)−χ exp

(
1

2iπ

∫
R−

log(G(t))
W ′(t)

W (t) − W (θ2)
dt

)
,

θ2 ∈ GR,

and

ϕ(W (θ2)) := −1

2iπ

∫
R−

g(t)

X+(W (t))

W ′(t)
W (t) − W (θ2)

dt, θ2 ∈ GR.

Whenχ = 0 the constant is determined evaluatingψ1 at−∞.We haveψ1(−∞) = 0,
W (−∞) = 0 and we obtain C = −ϕ(1) = 1

2iπ

∫
R−

g(t)
X+(W (t))

W ′(t)
W (t)−1 dt . To end the

proof we just have to notice that

W (θ2) − 1 = 1

w(θ2)
,

W ′(t)
W (t) − W (θ2)

= w′(t)
w(t) − w(θ2)

− w′(t)
w(t)

and

W ′(t)
W (t) − 1

= −w′(t)
w(t)

.

��

4.6 Decoupling Functions

Due to the function G �= 1 in (21), the boundary value problem is complex. When it
is possible to reduce the BVP to the case where G = 1, it is then possible to solve it
directly thanks to Sokhotski–Plemelj formulas, see Remark 13 in “Appendix B”.

In some specific cases it is possible to find a rational function F satisfying the
decoupling condition

G(θ2) = F(θ2)

F(θ2)
, ∀θ2 ∈ R, (25)
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where G is defined in (19). Such a function F is called a decoupling function. In [6]
the authors show that such a function exists if and only if the following condition holds

ε + δ ∈ βZ + πZ, (26)

where β is defined in (22) and ε, δ ∈ (0, π) are defined by

tan ε = sin β

r21
√

σ11
σ22

+ cosβ
and tan δ = sin β

r12
√

σ22
σ11

+ cosβ
.

In this case it is possible to solve in an easier way the boundary value problem. The
boundary condition (21) may be rewritten as

(Fψ1)(θ2) = (Fψ1)(θ2) + F(θ2)g(θ2), ∀θ2 ∈ R.

Using again the conformal glueing function w, we transform the BVP into a Riemann
BVP, see “Appendix B”. Such an approach leads to an alternative formula for ψ1
which is simpler. Indeed, thanks to Remark 13, in the cases where the rational fraction
F tends to 0 at infinity, we obtain

ψ1(θ2) = 1

2iπ

1

F(θ2)

∫
R−

F(t)g(t)

w(t) − w(θ2)
dt, θ2 ∈ GR.
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Appendix A. Potential Theory

There have not been many studies to determine explicit expressions for Green’s func-
tions of diffusions. In order to make the article self-contained and give context, in
this appendix we illustrate in an informal way the links between partial differential
equations and Green’s functions of Markov processes in potential theory.

A.1. Dirichlet Boundary Condition and Killed Process

Let Ω be an open, bounded, smooth subset of Rd and X an homogeneous diffusion
of generator L starting from x and killed at the boundary ∂Ω . Assume that X admits
a transition density pt (x, y) and denote by g(x, y) the Green’s function defined by

g(x, y) =
∫ ∞

0
pt (x, y) dt .
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The forward Kolmogorov equation (or Fokker–Planck equation) with boundary and
initial condition says that

⎧⎪⎨
⎪⎩
L∗
y pt (x, y) = ∂t pt (x, y),

pt (x, ·) = 0 on ∂Ω,

p0(x, ·) = δx .

Integrating this equation in time we can see that Green’s function is a fundamental
solution of the dual operator L∗ and satisfies

{
L∗
yg(x, ·) = − δx in Ω,

g(x, ·) = 0 on ∂Ω.

Now, let f be a continuous function on Ω and ϕ a continuous function on ∂Ω . If we
assume that the equation

{
Lu = − f in Ω,

u = ϕ on ∂Ω,

admits a unique solution, it is possible to express it in terms of Green’s functions. We
have

u(x) = Ex

[∫ τ

0
f (X(t)) dt

]
+ Ex [ϕ(Xτ )]

=
∫

Ω

f (y)g(x, y) dy +
∫

∂Ω

ϕ(y)∂ny g(x, y) dy,

where τ is the first exit time of Ω . (Note that ∂ny g, the inner normal derivative on
the boundary of Green’s function, may be interpreted as the density of the distribution
of the exit place.) Thanks to Green’s functions it is then possible to solve an interior
Poisson’s type equation with Dirichlet boundary conditions which specify the value
of u on the boundary and the value of Lu inside Ω .

A.2. Neumann Boundary Condition and Reflected Process

Henceforth, let us replace the interior Dirichlet problem by an exterior Neumann
boundary problem which specifies the value of the normal derivative of u on the
boundary and the value of Lu outside Ω in Ωc = R

d\Ω :

{
Lu = − f in Ωc,

∂nu = ϕ on ∂Ω.

While the Dirichlet equation was linked to some killed process on the boundary, the
Neumann equation is linked to a reflected process. From now, let us denote X the
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reflected process on ∂Ω of generator L insideΩc. Let us recall that Ωc is unbounded,
we assume that the process is transient and we note g its Green’s function. This time
again, g is a fundamental solution of L∗ (with a more complex boundary condition
of Robin type linking u and ∂nu). There are some necessary compatibility conditions
linking f and ϕ in order for a solution to exist, for example if L = Δ the interior
Neumannboundary problemcanhave a solution only if

∫
Ω

f = − ∫
∂Ω

ϕ. The solution
vanishing at infinity of the Neumann problem, if it exists, is equal to

u(x) = Ex

[∫ ∞

0
f (X(t)) dt

]
+ Ex

[∫ ∞

0
ϕ(X(t)) dL(t)

]

=
∫

Ω

f (y)g(x, y) dy +
∫

∂Ω

ϕ(y)h(x, y) ds(y).

We have noted L the local time that the process spends on the boundary ∂Ω and h the
density of the boundary Green’s measure H which is equal to

H(x, A) = Ex

[∫ ∞

0
1A(X(t)) dL(t)

]
for A ⊂ ∂Ω,

and represents the average local time that the process spends on the set A of the
boundary. In fact h and the restriction of g to ∂Ω are intimately related, for example
if L = Δ then h = g|∂Ω

. These formulas present, in an informal way, how to solve a
Neumannboundary equation thanks toGreen’s functions. The “AppendixC” illustrates
this by giving an explicit example in one dimension in (32).

Unfortunately, finding Green’s functions is often a difficult task. Notice that in this
paper Ωc = R

2+ and Ω is therefore neither bounded nor smooth, and the reflection is
oblique, rather than normal. This makes our task in this article more complicated.

Appendix B. Carleman Boundary Value Problem

This appendix is a short presentation of the boundary value problems (BVP) theory.
It introduces methods and techniques used for the resolution of BVP. The results
presented here can be found in the reference books of Litvinchuk [46], Muskhelishvili
[48] and Gakhov [32].

B.1. Sokhotski–Plemelj Formulae

Sokhotski–Plemelj formulas are central in the resolution of Riemann boundary value
problems. Let L a contour (open or closed) smooth and oriented and f ∈ Hμ(L) the
set of μ-Hölder continuous functions on L for 0 < μ ≤ 1. A function is sectionally
holomorphic if it is holomorphic on the whole complex plane except L and admits
right and left limits on L (except on its potential ends).
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Fig. 8 An oriented smooth open
contour L of ends a and b; right
limit F− and left limit F+ of F
on L

Proposition 12 (Sokhotski–Plemelj formulae) The function

F(z) := 1

2iπ

∫
L

f (t)

t − z
dt, z /∈ L

is sectionally holomorphic. The functions F+ and F− on L taking the limit values of
F, respectively, on the left and on the right satisfy for t ∈ L the formulas

F+(t) = 1

2
f (t) + 1

2iπ

∫
L

f (s)

s − t
ds and F−(t) = −1

2
f (t) + 1

2iπ

∫
L

f (s)

s − t
ds.

Theses formulas are equivalent to the equations

F+(t) − F−(t) = f (t) and F+(t) + F−(t) = 1

iπ

∫
L

f (s)

s − t
ds.

These integrals are understood in the sense of the principal value, see [32, Chap. 1,
Sect. 12].

Remark 13 (Sectionally holomorphic functions for a given discontinuity) Liouville’s
theorem shows that the function F defined above is the unique sectionally holomorphic
function Φ satisfying the equation

Φ+(t) − Φ−(t) = f (t), ∀t ∈ L

and which vanishes at infinity. The solutions of this equation of finite degree at infinity
are the functions such that

Φ = F + P

where P is a polynomial.

Remark 14 (Behavior at the ends) It is possible to show that if L is an oriented open
contour from end a to end b, then in the neighborhood of an end c it exists Fc(z), an
holomorphic function in the neighborhood of c, such that

F(z) = εc

2iπ
f (c) log(z − c) + Fc(z) where εc =

{
− 1 if c = a,

1 if c = b.
(27)
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Fig. 9 Oriented closed smooth
contour L, domains L+ and L−
and limit values of Φ on the
right and on the left

B.2. Riemann Boundary Value Problem

In a standard way, a boundary value problem is composed of a regularity condition on
a domain and a boundary condition on that domain.

Definition 15 (Riemann BVP) We say that Φ satisfies a Riemann BVP on L if:

• Φ is sectionally holomorphic onC\L and admits Φ+ as left limit and Φ− as right
limit, Φ if of finite degree at infinity;

• Φ satisfies the boundary condition

Φ+(t) = G(t)Φ−(t) + g(t), t ∈ L

where G and g are functions defined on L.

We assume here that G and g ∈ Hμ(L) and that G doesn’t cancel on L. When
g = 0 we talk about a homogeneous Riemann BVP.

B.2.1. Closed Contour

We assume that the contour L is closed and we denote L+ the open bounded set of
boundary L, and L− the complementary of L+ ∪ L.

To solve the Riemann BVP we need to introduce the index

χ := 1

2iπ
[logG]L = 1

2π
[argG]L

which quantifies the variation of the argument of G on the contour L in the positive
direction. Without any loss of generality we assume that 0 is in L+. It is then possible
to define the single-valued function

log(t−χG(t)), t ∈ L

which satisfies the Hölder condition.

Proposition 16 (Solution of homogeneous Riemann BVP on a closed contour) Let us
define

Γ (z) := 1

2iπ

∫
L
log(t−χG(t))

t − z
dt, z /∈ L
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and

X(z) :=
{
expΓ (z), z ∈ L+,

z−χ expΓ (z), z ∈ L−.

The function X is the fundamental solution of the homogeneous Riemann BVP of
Definition 15, i.e., X satisfies the boundary condition X+(t) = G(t)X−(t) for t ∈ L.
The function X is of degree −χ at infinity. If Φ is a solution of the homogeneous
Riemann BVP, then Φ(z) = X(z)P(z) where P is a polynomial.

If we denote k the degree of P , the solution Φ is of degree k − χ at infinity. The
fundamental solution X of degree −χ is then the nonzero homogeneous solution of
smallest degree to infinity.

Proof For t ∈ L, let us denote Γ̃ (t) = 1
2iπ

∫
L

log(s−χG(s))
s−t ds where the integral is

understood in the sense of principal value. Sokhotski–Plemelj formulas applied at Γ
show that

X+(t) = eΓ̃ (t)
√
t−χG(t) and X−(t) = t−χeΓ̃ (t) 1√

t−χG(t)
for t ∈ L, (28)

and then that X is a solution of the homogeneous problem. If Φ is a solution of the
problem, as X±(z) �= 0 for z ∈ L we obtain

Φ+

X+ (z) = Φ−

X− (z), z ∈ L.

By analytic continuation the function Φ
X is then holomorphic in the whole complex

plane, is of finite degree at infinity and is then a polynomial according to Liouville’s
theorem. ��
Proposition 17 (Solution of Riemann BVP on a closed contour) We define

ϕ(z) := 1

2iπ

∫
L

g(t)

X+(t)(t − z)
dt, z /∈ L.

The solutions of the Riemann BVP of Definition 15 are the functions such that

Φ(z) = X(z)ϕ(z) + X(z)Pχ (z)

where Pχ is a polynomial of degree χ for χ ≥ 0 and Pχ = 0 for χ ≤ −1.

Remark 18 (Left limit X+) We have X+(t) = (t − b)−χeΓ +(t) where Γ +(t) is the
left limit value of Γ on L given by the Sokhotski–Plemelj formulas of Proposition 12,
see (28).
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Remark 19 (Solubility conditions) For χ < −1 the solutions are holomorphic at infin-
ity (and then bounded) if and only if the following conditions are satisfied:

∫
L
g(t)tk−1

X+(t)
dt = 0, k = 1, · · · ,−χ − 1. (29)

Proof The fundamental solution X± does not cancel onL andwehave the factorization
G = X+

X− . If Φ is a solution of the BVP we have

Φ+

X+ (t) = Φ−

X− (t) + g

X+ (t), t ∈ L.

The function Φ
X being of finite degree at infinity, Remark 13 gives Φ

X = ϕ + P . ��

B.2.2. Open Contour

We assume that the function Φ we are looking for satisfies the Riemann BVP on an
open contour oriented from end a to end b and that Φ is bounded at the neighborhood
of a and b. More generally, one could look for the solutions admitting singularities
integrable at the ends. We denote δ, Δ, ρa and ρb such that

G(a) = ρae
iδ, Δ = [argG]L et G(b) = ρbe

i(δ+Δ)

choosing −2π < δ ≤ 0 and the corresponding determination of the logarithm logG.
We define the index

χ :=
⌊

δ + Δ

2π

⌋
.

Proposition 20 (Solution of Riemann BVP on an open contour) Let us define

Γ (z) := 1

2iπ

∫
L
log(G(t))

t − z
dt, z /∈ L.

The function

X(z) := (z − b)−χeΓ (z)

is a solution of the homogeneous Riemann BVP and is bounded at the ends. This
solution is of order −χ at infinity. If Φ is a solution of the homogeneous problem, it
may be written as Φ(z) = X(z)P(z) where P is a polynomial. We define

ϕ(z) := 1

2iπ

∫
L

g(t)

X+(t)(t − z)
dt, z /∈ L.
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The solutions of the Riemann BVP bounded at the ends are the functions

Φ(z) = X(z)ϕ(z) + X(z)Pχ (z)

where Pχ is a polynomial of degree χ for χ ≥ 0 and Pχ = 0 for χ ≤ −1.

Proof Due to Remark 14, in the neighborhood of one end c we have

eΓ (z) = (z − c)λc eΓc(z)

for Γc a holomorphic function in the neighborhood of c and

λa = − δ

2π
+ i

log ρa

2π
and λb = δ + Δ

2π
− i

log ρb

2π
.

Since δ ≤ 0 the function eΓ (z) is bounded at a. Furthermore, we notice that the
function X(z) = (z − b)−χeΓ (z) is bounded at b (and at a). The rest of the proof is
similar to the closed contour case. ��

B.3. Carleman Boundary Value Problemwith Shift

A shift α(t) is a homeomorphism from the contour L on itself such that its derivative
does not cancel and which satisfies Hölder’s condition. Most of the time the condition
α(α(t)) = t is satisfied and we say that α is a Carleman automorphism of L. In this
paper the shift function is the complex conjugation.

Definition 21 (CarlemanBVP) The functionΦ satisfies aCarlemanBVPon the closed
contour L (or having its two ends at infinity, as in this paper) if:

• Φ is holomorphic on the whole domain L+ bounded by L and continuous on L;
• Φ satisfies the boundary condition

Φ(α(t)) = G(t)Φ(t) + g(t), t ∈ L,

where G and g are two functions defined on L.
We will assume that G and g ∈ Hμ(L) and that G does not cancel on L. When

g = 0 the Riemann BVP is said to be homogeneous.
To solve the Carleman BVP we introduce a conformal glueing function. The fol-

lowing result establishes the existence of such functions.

Proposition 22 (Conformal glueing function) Let α be a Carleman automorphism of
the curve L. It exists W , a function

• holomorphic on L+ deprived of one point where W has a simple pole;
• satisfying the glueing condition

W (α(t)) = W (t), t ∈ L.
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Fig. 10 Conformal glueing function from L+ to C\M

Such a functionW establishes a conformal transform (holomorphic bijection) from
L+ to the complex place deprived of a smooth open contour M. This conformal
glueing function admits two fixed points A and B of image a and b which are the
ends of M.

If we find such a conformal glueing function, we can transform the Carleman BVP
into a Riemann BVP. We orient M from a to b choosing it such that the orientation
of L be conserved by W . We then denote W−1 the reciprocal of W and (W−1)+ its
left limit and (W−1)− its right limit on M. See Fig. 10. For t on the arc L oriented
from B to A, these functions satisfy

(W−1)+(W (t)) = α(t) and (W−1)−(W (t)) = t .

Let Φ be a solution of the Carleman BVP, we define the function Ψ such that

Ψ (W (z)) := Φ(z), z ∈ L+.

We then have

Ψ (z) = Φ(W−1(z)), z ∈ C\M

and the limits on the left and on the right of Ψ onM are

Ψ +(t) = Φ((W−1)+(t)) and Ψ −(t) = Φ((W−1)−(t)), t ∈ M.

Let

H(t) = G((W−1)−(t)) and h(t) = g((W−1)−(t)), t ∈ M.

Proposition 23 The function Ψ satisfies the following Riemann BVP associated to the
contour M and to the functions H and h:

• Ψ is sectionally holomorphic on C\M;
• Ψ satisfies the boundary condition

Ψ +(t) = H(t)Ψ −(t) + h(t), t ∈ M.

Proof The proof derives from Definition 21, from Proposition 22 and from the above
notations. ��
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As Φ = Ψ ◦ W , to solve the Carleman BVP of Definition 21, it is enough to
determine the conformal glueing function W and to find Ψ thanks to Section B.2
which explains how to solve the Riemann BVP Proposition 23. Let us define

X(W (z)) := (W (z) − b)−χ exp

(
1

2iπ

∫
Ld

log(G(t))
W ′(t)

W (t) − W (z)
dt

)
, z /∈ L

and

ϕ(W (z)) := −1

2iπ

∫
Ld

g(t)

X+(W (t))

W ′(t)
(W (t) − W (z))

dt, z /∈ L,

where we denote Ld = (W−1)−(M) (the red curve on the left picture of Fig. 10). We
obtain the following proposition.

Proposition 24 (Solution of Carleman BVP) The solutions of the Carleman BVP of
Definition 21 are given by

Φ(z) = X(W (z))ϕ(W (z)) + X(W (z))Pχ (W (z)) (30)

where Pχ is a polynomial of degree χ for χ ≥ 0 and where Pχ = 0 for χ ≤ −1.
For χ < −1 the solution to the non-homogeneous problem exists if and only if some
solubility conditions of the form (29) are satisfied.

Appendix C. Green’s Functions in Dimension One

This appendix is intended to be an educational approach that illustrates in a simple case
the analytical method and the link between Green’s functions and partial differential
equations. In this section we study X a Brownian motion (in dimension one) with drift
reflected at 0. We are looking for Green’s functions of X . This problem has already
been studied in [13]. Here, we solve this question thanks to an analytic study which
is much simpler than in dimension two.

Definition 25 (Reflected Brownian motion with drift) We define X , a reflected Brown-
ianmotion of variance σ 2, of driftμ and starting from x0 ∈ R+, as the semi-martingale
satisfying the equation

X(t) = x0 + σW (t) + μt + L(t),

where L(t) is the (symmetric) local time in 0 of X(t) and Wt is a standard Brownian
motion.

Definition 26 (Green measures) Let A ⊂ R be a measurable set. Green’s measure of
the process X starting from x0 is defined by

G(x0, A) = Ex0

(∫ ∞

0
1A(X(s)) ds

)
=

∫ ∞

0
Px0(X(s) ∈ A) ds.
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Its density with respect to the Lebesgue measure is denoted g(x0, x) and is called
Green’s function. Green’s function satisfies

g(x0, x) =
∫ ∞

0
p(t, x0, x) dt,

where p(t, x0, x) is the transition density of the process X .

If μ > 0, the process is transient. In this case, G(x0, A) < ∞ for bounded subset
A ⊂ R+. Furthermore, notice that if f : R → R+ is measurable, by Fubini’s theorem
we have

∫
R

f (x) g(x0, x) dx = Ex0

[∫ ∞

0
f (X(t)) dt

]
.

Proposition 27 (Green’s functions and Laplace transform) If μ > 0, for all x ∈ R+
Green’s function of X is equal to

g(x0, x) = 1

μ
e

2μ
σ2

(x−x0)1{0≤x<x0} + 1

μ
1{x0≤x} (31)

and its Laplace transform ψ x0 is equal to

ψ x0(θ) :=
∫ ∞

0
eθx g(x0, x) dx = −eθx0 + θ σ 2

2μe
− 2μ

σ2
x0

μθ + 1
2σ

2θ2
.

Proof As in the two dimensional case, we are going to determine the Laplace transform
of Green’s function thanks to a functional equation. If f is a function C2, Itô formula
gives

f (X(t)) = f (x0) +
∫ t

0
f ′(X(s)) dX(t) + 1

2

∫ t

0
f ′′(X(s)) d〈X〉s

= f (x0) +
∫ t

0
f ′(X(s))(dW (t) + μdt + dL(t)) + 1

2

∫ t

0
f ′′(X(s))σ ds.

For f (x) = eθx and θ < 0 we take the expectation of this formula and we obtain

Ex0 [eθX(t)] = eθx0 +θEx0

[∫ t

0
eθX(s) dW (s)

]
︸ ︷︷ ︸

=0 because it is
the expectation of a martingale

+
(

μθ+ 1

2
σ 2θ2

)
Ex0

[∫ t

0
eθX(s) ds

]

+θEx0

[∫ t

0
eθX(s) dL(s)

]
.
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Fig. 11 On the left μ1 < 0 and μ2 > 0, on the right μ1 < 0 and μ2 < 0

As θ < 0 and as X(t) −→
t→∞ ∞ (as μ > 0), we have limt→∞ E[eθX(t)] = 0. Let t tend

to infinity. We obtain

0 = eθx0 +
(

μθ + 1

2
σ 2θ2

)
Ex0

[∫ ∞

0
eθX(s) ds

]
+ θEx0

[∫ ∞

0
eθX(s) dL(s)

]

= eθx0 +
(

μθ + 1

2
σ 2θ2

)
ψ x0(θ) + θEL(∞)

as eθX(s) = 1 on the support of dL(s) which is the set {s ≥ 0 : X(s) = 0}. By
evaluating at θ∗ = − 2μ/σ 2 we find that EL(∞) = − eθ∗x0

θ∗ = σ 2

2μe
− 2μ

σ2
x0 . We obtain

ψ x0(θ) = −eθx0 + θ σ 2

2μe
− 2μ

σ2
x0

μθ + 1
2σ

2θ2
.

Inverting this Laplace transform we find formula (31). ��
Remark 28 (Partial differential equation) It is easy to verify that g(x0, x) satisfies the
following partial differential equation

{
σ 2

2
∂2

∂x2
g(x0, x) − μ ∂

∂x g(x0, x) = − δx0(x),

σ 2 ∂
∂x g(x0, 0) − 2μg(x0, 0) = 0,

(32)

which is similar to Eq. (3) in dimension two.

Appendix D. Generalization to a Non-positive Drift

In this paper, results are obtained for a positive drift: μ1 > 0 and μ2 > 0. In this
appendix, we explain how to generalize these results to transient cases with a non-
positive drift, that is when μ1 ≤ 0 or μ2 ≤ 0. First of all, in these cases the ellipse
γ = 0 is oriented differently, see Fig. 11.
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This leads to another set of convergence for the moment generating function. This
is the main difference with the case of a positive drift. Analogously to Proposition 5,
we can show that
• when μ1 > 0 and μ2 ≤ 0:

– ψ1(θ2) is finite on {θ2 ∈ C : �θ2 ≤ θ∗∗
2 ∧ 0},

– ψ2(θ1) is finite on {θ1 ∈ C : �θ1 < 0},
– ψ(θ) is finite on {θ ∈ C

2 : �θ1 < 0 and �θ2 ≤ θ∗∗
2 ∧ 0};

• when μ1 ≤ 0 and μ2 > 0:

– ψ1(θ2) is finite on {θ2 ∈ C : �θ2 < 0},
– ψ2(θ1) is finite on {θ1 ∈ C : �θ1 ≤ θ∗

1 ∧ 0},
– ψ(θ) is finite on {θ ∈ C

2 : �θ2 < 0 and �θ1 ≤ θ∗
1 ∧ 0};

• when μ1 < 0 and μ2 < 0:

– ψ1(θ2) is finite on {θ2 ∈ C : �θ2 < 0},
– ψ2(θ1) is finite on {θ1 ∈ C : �θ1 < 0},
– ψ(θ) is finite on {θ ∈ C

2 : �θ1 < 0 and �θ2 < 0}.
In these sets the same functional Eq. (10) still holds. As in Lemmas 6 and 7 but

with some small technical differences in the proofs, it is then possible to continue the
function ψ1. We can therefore establish the same BVP as in Lemma 8. The resolution
of this BVP is similar and leads to the same formula as (24). This generalization is the
same phenomenon explained in [31, Sect. 3.6].
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