
Journal of Theoretical Probability (2021) 34:2117–2144
https://doi.org/10.1007/s10959-020-01021-0

Self-Standardized Central Limit Theorems for Trimmed
Lévy Processes

David M. Mason1

Received: 25 January 2020 / Revised: 28 May 2020 / Published online: 14 July 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We prove under general conditions that a trimmed subordinator satisfies a self-
standardized central limit theorem (SSCLT). Our basic tool is a powerful distributional
approximation result of Zaitsev (Probab Theory Relat Fields 74:535–566, 1987).
Among other results, we obtain as special cases of our subordinator result the recent
SSCLTs of Ipsen et al. (Stoch Process Appl 130:2228–2249, 2020) for trimmed sub-
ordinators and a trimmed subordinator analog of a central limit theorem of Csörgő
et al. (Probab Theory Relat Fields 72:1–16, 1986) for intermediate trimmed sums in
the domain of attraction of a stable law. We then use our methods to prove a similar
theorem for general Lévy processes.

Keywords Trimmed Lévy processes · Trimmed subordinators · Distributional
approximation

Mathematics Subject Classification (2010) 60F05 · 60G51

1 Introduction

We shall begin by stating our results for trimmed subordinators. Special cases of
our main result for subordinators, Theorem 1 below, have already been proved by
Ipsen, Maller and Resnick (IMR) [6] , using classical methods. See, in particular,
their Theorem 4.1. Our approach is based on a powerful distributional approximation
result of Zaitsev [11], which we shall see in Sect. 5 extends to general trimmed Lévy
processes. We shall first establish some basic notation.
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Let Vt , t ≥ 0, be a subordinator with Lévy measure Λ on R
+ = (0,∞) and drift

0. Define the tail function Λ(x) = Λ((x,∞)), for x > 0, and for u > 0 let

ϕ(u) = sup{x : Λ(x) > u}, (1)

where sup∅ := 0.

Remark 1 For later use, we observe that we always have

ϕ(u) → 0, as u → ∞. (2)

Notice that (2) is formally true if Λ(0+) = c > 0, since in this case for all u > c,
sup{x : Λ(x) > u} = ∅ and we define sup∅ := 0, and thus ϕ(u) = 0 for u > c. The
limit (2) also holds whenever

Λ(0+) = ∞. (3)

To see this, assume (3) and choose any sequence xn ↘ 0 such that un := Λ(xn) > 0
for n ≥ 1. Clearly, un → ∞ as n → ∞. By the definition (1), the fact that Λ is
nonincreasing on (0,∞) and xn /∈ {x : Λ(x) > un} necessarily ϕ(un) ≤ xn , and thus
since ϕ is nonincreasing, (2) holds. Furthermore, when (3) holds,

ϕ(u) > 0 for all u > 0. (4)

To verify this, choose 0 < yn+1 < yn such that yn ↘ 0, as n → ∞, and vn+1 =
Λ(yn+1) > vn = Λ(yn) for n ≥ 1. Therefore, yn+1 ∈ {x : Λ(x) > vn} and hence
ϕ(vn) ≥ yn+1 > 0 for all n ≥ 1. Since vn ↗ ∞, we have (4).

Recall that the Lévy measure of a subordinator satisfies

∫ 1

0
xΛ(dx) < ∞, equivalently, for all y > 0,

∫ ∞

y
ϕ (x) dx < ∞. (5)

The subordinator Vt , t ≥ 0, has Laplace transform

E exp (−λVt ) = exp (−tΦ (λ)) , λ ≥ 0, (6)

where

Φ (λ) =
∫ ∞

0
(1 − exp (−λv))Λ (dv) ,

which can be written after a change of variable

=
∫ ∞

0
(1 − exp (−λϕ (u))) du. (7)
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For any t > 0 denote the ordered jump sequence m(1)
t ≥ m(2)

t ≥ · · · of Vt on the
interval [0, t]. Let ω1, ω2, . . . be i.i.d. exponential random variables with parameter 1
and for each n ≥ 1 let Γn = ω1 + · · · + ωn . It is well known that for each t > 0

(
m(k)

t

)
k≥1

D=
(

ϕ

(
Γk

t

))
k≥1

. (8)

See, for instance, equation (1.3) in IMR [6] and the references therein. It can also be
inferred from a general representation for subordinators due to Rosiński [9].

Set V (0)
t := Vt and for any integer k ≥ 1 consider the trimmed subordinator

V (k)
t := Vt − m(1)

t − · · · − m(k)
t , (9)

which on account of (8) says for any integer k ≥ 1 and t > 0

V (k)
t

D=
∞∑

i=k+1

ϕ

(
Γi

t

)
=: Ṽ (k)

t . (10)

Set for any y > 0

μ (y) :=
∫ ∞

y
ϕ (x) dx and σ 2 (y) :=

∫ ∞

y
ϕ2 (x) dx .

We see by Remark 1 that (3) implies that

σ 2 (y) > 0 for all y > 0. (11)

Throughout these notes, Z , Z1, Z2 denote standard normal random variables. Here
is our self-standardized central limit theorem (SSCLT) for trimmed subordinators. In
Examples 4 and 5 we show that our theorem implies Theorem 4.1 and Remark 4.1 of
IMR [6], who treat the case when tn = t is fixed and kn → ∞.

Theorem 1 Assume that Λ(0+) = ∞. For any sequence of positive integers {kn}n≥1
converging to infinity and sequence of positive constants {tn}n≥1 satisfying

√
tnσ
(
Γkn/tn

)
ϕ
(
Γkn/tn

) P→ ∞, as n → ∞, (12)

we have uniformly in x, as n → ∞,

∣∣∣∣∣P
{
Ṽ (kn)
tn − tnμ

(
Γkn/tn

)
√
tnσ
(
Γkn/tn

) ≤ x |Γkn

}
− P {Z ≤ x}

∣∣∣∣∣
P→ 0, (13)
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which implies as n → ∞

Ṽ (kn)
tn − tnμ

(
Γkn/tn

)
√
tnσ
(
Γkn/tn

) D→ Z . (14)

Corollary 1 Assume that Vt , t ≥ 0, is a subordinator with drift 0, whose Lévy tail
function Λ is regularly varying at zero with index −α, where 0 < α < 1. For any
sequence of positive integers {kn}n≥1 converging to infinity and sequence of positive
constants {tn}n≥1 satisfying kn/tn → ∞, we have as n → ∞,

Ṽ (kn)
tn − tnμ (kn/tn)√

tnσ (kn/tn)
D→
√

2

α
Z . (15)

Remark 2 Notice that whenever

lim inf
w→∞

∫ ∞

w

ϕ2 (x) dx/
(
wϕ2 (w)

)
=: β > 0, (16)

Γkn/tn
P→ ∞ and kn → ∞, then

√
Γkn tnσ

2
(
Γkn/tn

)
/
(
Γknϕ

2
(
Γkn/tn

)) =
√
tnσ
(
Γkn/tn

)
ϕ
(
Γkn/tn

) P→ ∞,

and thus (12) holds. In particular, (16) is satisfied whenever ϕ is regularly varying at
infinity with index −1/α with 0 < α < 2.

Using the change of variables formula: For p ≥ 1, whenever the integrals exist, for
r > 0,

∫ ϕ(r)

0
x pΛ(dx) =

∫ ∞

r
ϕ p (u) du, (17)

(for (17), see p. 301 of Brémaud [3]) one readily sees that (16) is fulfilled whenever
the Feller class at zero condition holds (e.g., Maller and Mason [8]):

lim sup
x↓0

x2Λ(x)∫ x
0 u2Λ(du)

< ∞. (18)

(For more details, refer to Example 2.)

Remark 3 Corollary 1 implies part of Theorem 9.1 of IMR [6], namely, whenever for
0 < α < 1,

Λ(x) = x−α1 {x > 0} , x > 0,
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then for each fixed t > 0, as n → ∞,

Ṽ (n)
t − tμ (n/t)√

tσ (n/t)

D→
√

2

α
Z . (19)

The first part of their Theorem 9.1 can be shown to be equivalent to (19).

Remark 4 The analog of Corollary 1 for a sequence of i.i.d. positive random variables
ξ1, ξ2 . . . in the domain of attraction of a stable law of index 0 < α < 2 says that as
n → ∞,

∑n
i=rn+1 ξ

(i)
n − nc (rn/n)√

na (rn/n)

D→
√

2

2 − α
Z ,

where for each n ≥ 2, ξ
(1)
n ≥ · · · ≥ ξ

(n)
n denote the order statistics of ξ1, . . . , ξn ,

{rn}n≥1 is a sequence of positive integers 1 ≤ rn ≤ n satisfying rn → ∞ and
rn/n → 0 as n → ∞, and c (rn/n) and a (rn/n) are appropriate centering and
norming constants. For details refer to S. Csörgő, Horváth and Mason [4]. The proof
of our Corollary 1 borrows ideas from the proof of their Theorem 1.

2 Preliminaries for Proofs

In this section, we collect some facts that are needed in our proofs. Lemmas 1 and 2
are elementary; however, for completeness we indicate proofs.

2.1 A Useful Special Case of a Result of Zaitsev [11]

We shall be making use of the following special case of Theorem 1.2 of Zaitsev [11].
which in this paper we shall call the Zaitsev Fact.

Fact (Zaitsev [11]) Let Y be an infinitely divisible mean 0 and variance 1 random
variable with Lévy measure Λ and Z be a standard normal random variable. Assume
that the support of Λ is contained in a closed ball with center 0 of radius τ > 0, then
for universal positive constants C1 and C2 for any λ > 0

Π (Y , Z; λ) ≤ C1 exp

(
− λ

C2τ

)
,

where

Π (Y , Z; λ) := sup
B∈B

max
{
P {Y ∈ B} − P

{
Z ∈ Bλ

}
, P {Z ∈ B} − P

{
Y ∈ Bλ

}}
,

with Bλ = {y ∈ R: inf x∈B |x − y| < λ} for B ∈ B, the Borel sets of R.
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Notice that under the conditions of the Zaitsev Fact for all x , λ > 0 and ε >

Π (Y , Z; λ), with ε > 0,

P {Y ≤ x} ≤ P {Z ≤ x + λ} + ε

and

P {Z ≤ x − λ} ≤ P {Y ≤ x} + ε,

and thus

P {Z ≤ x − λ} − ε ≤ P {Y ≤ x} ≤ P {Z ≤ x + λ} + ε.

In particular, the Zaitsev Fact says that for all x ∈ R and λ > 0,

P {Z ≤ x − λ} − C1 exp

(
− λ

C2τ

)
≤ P {Y ≤ x}

≤ P {Z ≤ x + λ} + C1 exp

(
− λ

C2τ

)
.

2.2 Moments of a Positive RandomVariable

Given t > 0, let Xt be a positive random variable with Laplace transform

ΨXt (λ) := E exp (−λXt ) = exp (−tΦ (λ)) ,

where Φ is the Laplace exponent

Φ (λ) =
∫ ∞

0
(1 − exp (−λϕ (u))) du,

and ϕ a nonincreasing positive function on (0,∞) such that ϕ (u) → 0 as u → ∞ .
Assume that

μ :=
∫ ∞

0
ϕ (u) du < ∞ and σ 2 :=

∫ ∞

0
ϕ2 (u) du < ∞,

which implies Φ (λ) < ∞ for all λ > 0 and Φ (λ) twice differentiable on (0,∞) .

DifferentiatingΨXt (λ)with respect to λ twice and evaluatingΨ ′
Xt

(0+) andΨ
′′
X (0+),

we get the following moments:

Lemma 1 Under the above assumptions,

EXt = tμ and VarXt = tσ 2.
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2.3 An Asymptotic Independence Result

We shall need the following elementary asymptotic independence result.

Lemma 2 Let (Xn,Yn)n≥1 be a sequence of pairs of real-valued random variables
on the same probability space, and for each n ≥ 1 let φn be a measurable function.
Suppose that for distribution functions F and G for all continuity points x of F and
y of G

P {Xn ≤ x |Yn} P→ F (x) and P {φn (Yn) ≤ y} → G (y) , (20)

then

P {Xn ≤ x, φn (Yn) ≤ y} → F (x)G (y) . (21)

Proof Notice that

|P {Xn ≤ x, φn (Yn) ≤ y} − F (x)G (y)|
≤ |E [(P {Xn ≤ x |Yn} − F (x)) 1 {φn (Yn) ≤ y}]|

+ |F (x) P {φn (Yn) ≤ y} − F(x)G(y)|
≤ E |P {Xn ≤ x |Yn} − F (x)| + |P {φn (Yn) ≤ y} − G(y)| ,

which by (20) converges to zero. �

3 Proof of Subordinator Results

3.1 Proof of Theorem 1

For each t > 0 and y > 0, consider the random variable

T (t, y) =
∞∑
i=1

ϕ

(
y

t
+ Γ ′

i

t

)
,

with
(
Γ ′
i

)
i≥1

D= (Γi )i≥1 , which has Laplace transform

Υt,y (λ) := E exp (−λT (t, y)) = exp
(−tΦt,y (λ)

)
,

where Φt,y (λ) is the Laplace exponent,

Φt,y (λ) =
∫ ∞

0

(
1 − exp

(
−λϕ

( y
t

+ u
)))

du.
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Introducing the Lévy measure Λt,y defined on (0,∞) by the tail function

Λy/t (u) =
{

Λ(u) − y
t , for 0 < u < ϕ

( y
t

)
0, for u ≥ ϕ

( y
t

) ,

we see that

sup{x : Λy/t (x) > u} = sup
{
x : Λ(x) − y

t
> u

}

= ϕ
( y
t

+ u
)

and thus

Φt,y (λ) =
∫ ∞

0
(1 − exp (−λv)) Λt,y (dv) .

Clearly, T (t, y) is an infinitely divisible random variable and the support of Λy/t is
contained in [0, ϕ(y/t)]. Applying Lemma 1, one finds that

ET (t, y) = t
∫ ∞

y/t
ϕ (u) du =: tμ

( y
t

)

and

VarT (t, y) = t
∫ ∞

y/t
ϕ2 (u) du =: tσ 2

( y
t

)
.

Note that (3) implies (11) and thus for all y > 0, σ 2
( y
t

)
> 0. For each t > 0 and

y > 0, consider the standardized version of T (t, y)

S (t, y) = T (t, y) − ET (t, y)√
VarT (t, y)

.

We can write

S (t, y) = T (t, y) − tμ
( y
t

)
√
tσ
( y
t

) .

Now S (t, y) is an infinitely divisible random with

ES (t, y) = 0 and VarS (t, y) = 1,

whose Lévy measure has support contained in
[
0, ϕ(y/t)/

(√
tσ
( y
t

))]
. Applying the

Zaitsev Fact to the infinitely divisible random variable S (t, y), we get for any t > 0,
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y > 0 and λ > 0 and for universal positive constants C1 and C2

Π (S (t, y) , Z; λ) ≤ C1 exp

(
−λ

√
tσ
( y
t

)
C2ϕ(y/t)

)
.

This implies that whenever {tn}n≥1 is a sequence of positive constants and Ykn is a
sequence of positive random variables such that each Ykn is independent of

(
Γ ′
i

)
i≥1

and

√
tnσ
(
Ykn/tn

)
ϕ
(
Ykn/tn

) P→ ∞, as n → ∞, (22)

then uniformly in x

∣∣P {S (tn,Ykn ) ≤ x |Ykn
}− P {Z ≤ x}∣∣ P→ 0, as n → ∞, (23)

and thus we have

∣∣P {S (tn,Ykn ) ≤ x
}− P {Z ≤ x}∣∣→ 0, as n → ∞. (24)

By choosing Ykn = Γkn and independent of
(
Γ ′
i

)
i≥1 , with

(
Γ ′
i

)
i≥1

D= (Γi )i≥1, we get
by (10) that

Ṽ (kn)
tn − tnμ

(
Γkn
tn

)
√
tnσ
(

Γkn
tn

) D=
∑∞

i=1 ϕ(
(
Ykn + Γ ′

i

)
/tn) − tnμ

(
Ykn
tn

)
√
tnσ
(
Ykn
tn

)

=
T
(
tn,Ykn

)− tnμ
(
Ykn
tn

)
√
tnσ
(
Ykn
tn

) = S
(
tn,Ykn

)
.

Keeping (12) in mind, (13) and (14) follow from (23) and (24), respectively. �

3.2 Proof of Corollary 1

The proof will be a consequence of Theorem 1 and Lemma 2. Note that Vt has Laplace
transform

E exp (−λVt ) = exp (−tΦ (λ)) , λ ≥ 0,

of the form given by (6). Since Λ is assumed to be regularly varying at 0 with index
−α, 0 < α < 1, the ϕ in (7) is regularly varying at ∞ with index −1/α and thus for
x > 0,

ϕ(x) = L (x) x−1/α , (25)

123



2126 Journal of Theoretical Probability (2021) 34:2117–2144

where L (x) is slowly varying at infinity. This implies that as z → ∞,

μ (z) =
∫ ∞

z
ϕ (u) du ∼ aαL (z) z−1/α+1, (26)

and

σ 2 (z) =
∫ ∞

z
ϕ2 (u) du ∼ b2αL

2 (z) z−2/α+1, (27)

where aα = α/ (1 − α) and b2α = α/ (2 − α).
With this notation, we can write

tnμ
(

Γkn
tn

)
− tnμ

(
kn
tn

)
√
tnσ
(

Γkn
tn

) = − tn
∫ Γkn /tn
kn/tn

ϕ (u) du
√
tnσ
(

Γkn
tn

) ,

which equals

− ϕ (kn/tn)
(
Γkn − kn

)
√
tnσ
(

Γkn
tn

) −
√
tn

σ
(

Γkn
tn

)
∫ Γkn /tn

kn/tn
(ϕ (u) − ϕ (kn/tn)) du. (28)

Claim 1 As n → ∞,

σ
(
Γkn/tn

)
/σ (kn/tn)

P→ 1.

Proof This follows from the fact that Γkn/kn
P→ 1, kn/tn → ∞ and σ (z) is regularly

varying at ∞ with index −1/α + 1/2. �
Claim 2 As n → ∞,

√
knϕ (kn/tn) /

(√
tnσ (kn/tn)

)→ b−1
α =

√
2 − α

α
.

Proof This is a consequence of kn/tn → ∞ combined with (25) and (27), which
together say

√
knϕ (kn/tn) ∼ √knL (kn/tn) (kn/tn)

−1/α

and

√
tnσ (kn/tn) ∼ bα

√
tn L (kn/tn) (kn/tn)

−1/α+1/2 .

�
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Claim 3 As n → ∞,

tn

∫ Γkn /tn

kn/tn
(ϕ (u) − ϕ (kn/tn)) du/

(√
tnσ (kn/tn)

) P→ 0.

Proof Since

(
Γkn − kn

)
/
√
kn

D→ Z , as n → ∞, (29)

for any 0 < ε < 1 there exists a c > 0 such that

P

{
Γkn ∈

[
kn − c

√
kn, kn + c

√
kn
]}

> 1 − ε

for all large enough n. When Γkn ∈ [kn − c
√
kn, kn − c

√
kn
]
,

tn√
knϕ (kn/tn)

∣∣∣∣
∫ Γkn /tn

kn/tn
(ϕ (u) − ϕ (kn/tn))

∣∣∣∣ du

≤ tn√
knϕ (kn/tn)

∫ (kn+c
√
kn)/tn

(kn−c
√
kn)/tn

[
ϕ

(
kn − c

√
kn

tn

)
− ϕ

(
kn + c

√
kn

tn

)]
du

= 2c

ϕ (kn/tn)

[
ϕ

(
kn − c

√
kn

tn

)
− ϕ

(
kn + c

√
kn

tn

)]
.

Now for any λ > 1, for all large enough n

2c

ϕ (kn/tn)

[
ϕ

(
kn − c

√
kn

tn

)
− ϕ

(
kn + c

√
kn

tn

)]

≤ 2c

ϕ (kn/tn)

[
ϕ

(
kn
λtn

)
− ϕ

(
λkn
tn

)]
,

which converges to

2c
(
λ1/α − λ−1/α

)
.

Since λ > 1 can be made arbitrarily close to 1 and ε > 0 can be chosen arbitrarily
close to 0, we see using Claim 2 that Claim 3 is true. �

Putting everything together, keeping (29) in mind, we conclude that as n → ∞,

tnμ
(

Γkn
tn

)
− tnμ

(
kn
tn

)
√
tnσ
(

Γkn
tn

) D→ −
√
2 − α

α
Z . (30)

Choose Ykn = Γkn and independent of
(
Γ ′
i

)
i≥1

D= (Γi )i≥1. We get by Remark 2 that
(12) holds, which implies (13). Thus, by (13) and Lemma 2, for independent standard
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normal random variables Z1 and Z2, as n → ∞

T
(
tn,Ykn

)− tnμ
(
kn
tn

)
√
tnσ
(
Ykn
tn

)

=
T
(
tn,Ykn

)− tnμ
(
Ykn
tn

)
√
tnσ
(
Ykn
tn

) +
tnμ
(
Ykn
tn

)
− tnμ

(
kn
tn

)
√
tnσ
(
Ykn
tn

) D→ Z1 +
√
2 − α

α
Z2.

Noting that σ
(
Ykn
tn

)
/σ
(
kn
tn

)
P→ 1 and Z1 +

√
2−α
α

Z2
D=
√

2
α
Z , we get as n → ∞,

T
(
tn,Ykn

)− tnμ
(
kn
tn

)
√
tnσ
(
kn
tn

) D→
√

2

α
Z ,

which since

T
(
tn,Ykn

)− tnμ
(
kn
tn

)
√
tnσ
(
kn
tn

) D=
Ṽ (kn)
tn − tnμ

(
Γkn
tn

)
√
tnσ
(
kn
tn

) ,

gives (15). �

4 Examples of Theorem 1

In the following examples, we always assume that (3) holds.

Example 1 There always exist kn → ∞ and tn → ∞ such that (12) holds. For example

for any kn → ∞, let tn = ρkn for some ρ > 0. Since Γkn/kn
P→ 1, Γkn/tn

P→ 1/ρ,
which implies that

P

{√
tnσ
(
Γkn/tn

)
ϕ
(
Γkn/tn

) >

√
ρknσ (2/ρ)

ϕ (1/ (2ρ))

}
→ 1

and thus (12) holds and hence by Theorem 1, we conclude ( 13) and (14).

Example 2 Assume the Feller class at zero condition (18). Noting thatΛ(ϕ(y)−) ≥ y,
we get from (18) that

lim sup
y→∞

ϕ2 (y) y∫ ϕ(y)
0 u2Λ(du)

≤ lim sup
y→∞

ϕ2 (y) y∫ ϕ(y)−
0 u2Λ(du)

≤ lim sup
y→∞

ϕ2 (y) Λ(ϕ (y) −)∫ ϕ(y)−
0 u2Λ(du)

< ∞,
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which says

lim sup
y→∞

ϕ2 (y) y∫∞
y ϕ2 (x) dx

< ∞.

This implies that

lim inf
y→∞

∫ ∞

y
ϕ2 (x) dx/

(
yϕ2 (y)

)
=: β > 0.

Therefore, as in Remark 2, we see that if Γkn/tn
P→ ∞ and kn → ∞, then (12) holds

and thus by Theorem 1, we infer (13) and (14).

Example 3 Let

Λ(x) =
{
log (1/x) , 0 < x < 1
0, x ≥ 1

Clearly, ϕ(u) = exp (−u), 0 < u < ∞, and for 0 < x < 1

x2Λ(x)∫ x
0 u2Λ(du)

= 2 log (1/x) ,

which↗ ∞, as x ↘ 0. Thus, the Feller class at zero condition does not hold. However,
the domain of attraction to normal at infinity condition holds (e.g., Doney and Maller
[5] and Maller and Mason [7]), since for all x ≥ 1

x2Λ(x)∫ x
0 u2Λ(du)

= 0.

In this example for all y > 0 and t > 0,

σ (y/t)

ϕ (y/t)
= 1√

2
.

Thus, for any sequence of positive integers kn → ∞ and sequence of positive constants
tn → ∞

√
tnσ
(
Γkn/tn

)
ϕ
(
Γkn/tn

) P→ ∞, as n → ∞,

which says that (12) is satisfied and hence by Theorem 1, ( 13) and (14) hold.

Next we show that as a special case of Theorem 1, we get Theorem 4.1 and Remark
4.1 of IMR [6], who consider the case when tn = t is fixed and kn → ∞. Their
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Theorem 4.1 and Remark 4.1 say that whenever there exist constants an and bn such
that for a nondegenerate random variable Δ

m(n)
1 − bn
an

D= ϕ (Γn) − bn
an

D→ Δ (31)

then for all t > 0 the following self-standardized trimmed central limit theorem (CLT)
holds

Ṽ (n)
t − tμ (Γn/t)√

tσ (Γn/t)

D→ Z .

Remark 5 We should note that in the statements of Theorem 4.1 and Remark 4.1 of
IMR [6], “ μ” should be “tμ” , and, in equation (4.2), “ limr→∞ ” should be removed
and “= Φ (x), x ∈ R.” should be replaced by “⇒ Φ (x), x ∈ R, as r → ∞.”

IMR [6] have shown in their Theorem 2.1 that for (31) to hold it is necessary
and sufficient that there exist functions a (r) and b (r) of r > 0 such that whenever
a (r) x + b (r) > 0

lim
r→∞

r − Λ(a (r) x + b (r))√
r

= h (x) , (32)

where h (x) ∈ R is a nondecreasing function having the form for some γ ≤ 0,

h (x) =
{
2x, if γ = 0,
− 2

γ
log (1 − γ x) , when γ < 0 and 1 − γ x > 0. (33)

In which case P {Δ ≤ x} = P {Z ≤ h (x)}.
The next two examples show that whenever (31) holds and hence (32) with h (x) as

in (33) is satisfied, then special cases of condition (12) are fulfilled. Example 4 treats
the case when γ < 0 in (33), and Example 5 considers the case when γ = 0 in (33).
Example 4 [The case γ < 0 in (33)] From Proposition 4.1 of IMR [6], we get that
whenever (31) holds and we have (33) for some γ < 0 then

∫ x

0
u2Λ(du) ∼ 2x2

√
Λ(x)

|γ | , as x ↓ 0, (34)

and Λ(x) is slowly varying at 0. Since ϕ (z) ↘ 0 as z ↗ ∞, this implies that as y/t
converges to ∞,

tσ 2 (ϕ (y/t))

ϕ2 (y/t)
= t

∫ ϕ(y/t)
0 u2Λ(du)

ϕ2 (y/t)

∼ 2t
√

Λ(ϕ (y/t))

|γ | , as y/t → ∞,
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which by (3), for each fixed t > 0, converges to infinity as y → ∞. We readily see
then that (12) is satisfied, whenever kn → ∞ and tn = t > 0, fixed, as n → ∞, and
thus by Theorem 1, (13) and (14) hold. Notice that a Lévy measure that satisfies (34)
is not in the Feller class at zero.
Example 5 [The case γ = 0 in (33)] Using the notation from Proposition 4.2 of IMR
[6], set

H (r) = e2
√
r , V (x) = ϕ

(
1

4
(log x)2

)
andg2

(
e2

√
r
)

= ϕ2 (r)
√
r .

Proposition 4.2 of IMR [6] says when γ = 0 in (33) that for a function π2

∫ ϕ(x)

0
u2Λ(du) =

∫ ∞

x
ϕ2 (s) ds = π2

(
e2

√
x
)
,

which from (4.13) in IMR [6] satisfies

∫ ϕ(x)
0 u2Λ(du)

ϕ2 (x)
√
x

=
π2

(
e2

√
x
)

g2
(
e2

√
x
) → ∞, as x → ∞.

This implies that as y/t converges to ∞ and t y is bounded away from 0, then

tσ 2 (ϕ (y/t))

ϕ2 (y/t)
=

√
t y
∫ ϕ(y/t)
0 u2Λ(du)

ϕ2 (y/t)
√
y/t

→ ∞.

Thus, if Γkn/tn
P→ ∞ and for some ε > 0, P

{
tnΓkn > ε

} → 1, then (12) is fulfilled
and hence by Theorem 1, (13) and (14) hold. In particular, this is satisfied when
kn → ∞ and tn = t > 0, fixed, as n → ∞.

5 A SSCLT for a Trimmed Lévy Process

Before we can talk about a SSCLT for a trimmed Lévy process, we must first establish
a pointwise representation for the Lévy process that we shall consider, as well as some
necessary notation and auxiliary results needed to define what we mean by a trimmed
Lévy process and to prove a SSCLT for it.

5.1 A Pointwise Representation for the Lévy Process

Let (Ω,F , P) be a probability space carrying a real-valued Lévy process (Xt )t≥0,
with X0 = 0 and canonical triplet (γ, σ 2,Λ), where γ ∈ R, σ 2 ≥ 0, and Λ is a Lévy
measure, that is a nonnegative measure on R satisfying

∫
R\{0}

(x2 ∧ 1)Λ(dx) < ∞.

123



2132 Journal of Theoretical Probability (2021) 34:2117–2144

For x > 0, put

Λ+(x) = Λ((x,∞)) and Λ−(x) = Λ((−∞,−x)), (35)

with corresponding Lévy measures Λ+ and Λ− on R
+ = (0,∞) and set

Λ(x) = Λ+(x) + Λ−(x). (36)

We assume always that

Λ+(0+) = Λ−(0+) = ∞. (37)

For u > 0 let

ϕ+(u) = sup{x : Λ+(x) > u} andϕ−(u) = sup{x : Λ−(x) > u}.

By Remark 1, we have

ϕ+(u) → 0 andϕ−(u) → 0, as u → ∞. (38)

The process (Xt )t≥0 has the representation (e.g., Bertoin [2] and Sato [10])

Xt = σ Zt + γ t + X (1)
t + X (2)

t ,

with

X (1)
t := lim

ε↘0

⎛
⎝ ∑

0<s≤t

ΔXs1 {ε < |ΔXs | ≤ 1} − tμε

⎞
⎠ , (39)

where for 0 < ε < 1

με :=
∫
R\{0}

x1 {ε < |x | ≤ 1} Λ(dx) ,

X (2)
t :=

∑
0<s≤t

ΔXs1 {|ΔXs | > 1} ,

and (Zt )t≥0 is a standard Wiener process independent of
(
X (1)
t

)
t≥0

and
(
X (2)
t

)
t≥0

.

(As usualΔXs = Xs − Xs−.) The limit in (39) is defined as in pages 14–15 of Bertoin
[2].

Decomposing further, we get

Xt = σ Zt + γ t + X (1,+)
t + X (1,−)

t + X (2,+)
t + X (2,−)

t , (40)
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with

X (1,±)
t = lim

ε↘0

⎛
⎝ ∑

0<s≤t

ΔXs1 {ε < ±ΔXs ≤ 1} − tμ±
ε

⎞
⎠ ,

where for 0 < ε < 1

μ±
ε := ±

∫ ∞

0
x1 {ε < x ≤ 1} Λ±(dx)

and

X (2,±)
t =

∑
0<s≤t

ΔXs1 {±ΔXs > 1} .

For any t > 0, denote the ordered positive jump sequence

m(1,+)
t ≥ m(2,+)

t ≥ · · ·

of Xt on the interval [0, t] and let

m(1,−)
t ≤ m(2,−)

t ≤ · · ·

denote the corresponding ordered negative jump sequence of Xt . Note that the positive
and negative jumps are independent. With this notation, we can write

X (1,±)
t = lim

ε↘0

( ∞∑
i=1

m(i,±)
t 1

{
ε < ±m(i,±)

t ≤ 1
}

− tμ±
ε

)
,

and

X (2,±)
t =

∞∑
i=1

m(i,±)
t 1

{
±m(i,±)

t > 1
}

.

Let
(
Γ +)

i≥1
D= (Γ −

i

)
i≥1

D= (Γi )i≥1, with
(
Γ +
i

)
i≥1 and

(
Γ −
i

)
i≥1 independent. It turns

out that by the same arguments that lead to (8), for each t > 0

(
m(1,+)

t ,m(2,+)
t , . . .

)
D=
(

ϕ+

(
Γ +
1

t

)
, ϕ+

(
Γ +
2

t

)
, . . .

)
(41)

and

(
m(1,−)

t ,m(2,−)
t , . . .

)
D=
(

−ϕ−

(
Γ −
1

t

)
,−ϕ−

(
Γ −
2

t

)
, . . .

)
. (42)
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Let X̂ (1,±)
t and X̂ (2,±)

t be defined as X (1,±)
t and X (2,±)

t with m(i,±)
t replaced by

±ϕ±
(

Γ ±
i
t

)
. We see then by (40) that for each fixed t ≥ 0

Xt
D= X̂t := σ Zt + γ t + X̂ (1,+)

t + X̂ (1,−)
t + X̂ (2,+)

t + X̂ (2,−)
t , (43)

where (Zt )t≥0 is a Wiener process independent of
(
Γ +
i

)
i≥1 and

(
Γ −
i

)
i≥1.

Our aim is to show that for a trimmed version T̃ (kn ,�n)
tn of X̂tn defined for suitable

sequences of positive integers (kn)n≥1 and (�n)n≥1 and positive constants (tn)n≥1 that
under appropriate regularity conditions there exist centering and norming functions
An (·, ·) and Bn (·, ·) such that uniformly in x ∈ R, as n → ∞,

P

⎧⎨
⎩
T̃ (kn ,�n)
tn − An

(
Γ +
kn

, Γ −
�n

)

Bn

(
Γ +
kn

, Γ −
�n

) ≤ x |Γ +
kn

, Γ −
�n

⎫⎬
⎭

P→ P {Z ≤ x} , (44)

which implies

T̃ (kn ,�n)
tn − An

(
Γ +
kn

, Γ −
�n

)

Bn

(
Γ +
kn

, Γ −
�n

) D→ Z . (45)

Statement (45) is what we call a SSCLT for a trimmed Lévy process. In order to define
T̃ (kn ,�n)
tn , specify the centering and norming functions An (·, ·) and Bn (·, ·), and state

and prove our versions of (44) and (45) given in Theorem 2 in Sect. 5.6, we must first
introduce some notation and preliminary results, which we shall do in the next four
subsections.

5.2 A Useful Spectrally Positive Lévy Process

Let (Pt )t≥0, be a nondegenerate spectrally positive Lévy process without a normal
component and having zero drift with infinitely divisible characteristic function

Eeiθ Pt = etΥ (θ), θ ∈ R,

where

Υ (θ) =
∫

(0,∞)

(
eiθx − 1 − iθx1{0<x≤1}

)
π(dx)

and π is a Lévy measure on R
+ with

∫
(0,∞)

(x2 ∧ 1)π(dx) finite. Such a process has
no negative jumps. Again we shall assume

π(0+) = ∞. (46)
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As above for u > 0 let ϕπ(u) = sup{x : π(x) > u}. Applying Remark 1, we see that
(46) implies

ϕπ(u) > 0 for all u > 0 and lim
u→∞ ϕπ(u) = 0. (47)

(Often in the definition of a spectrally positive Lévy process it is assumed that it is not
a subordinator. See Abdel-Hameed [1].)

The process (Pt )t≥0 has the representation

Pt = P(1)
t + P(2)

t ,

where P(1)
t =

lim
ε↘0

⎛
⎝ ∑

0<s≤t

ΔPs1 {ε < ΔPs ≤ 1} − t
∫ ∞

0
x1 {ε < x ≤ 1} π (dx)

⎞
⎠ (48)

and

P(2)
t =

∑
0<s≤t

ΔPs1 {ΔPs > 1} . (49)

The processes
(
P(1)
t

)
t≥0

and
(
P(2)
t

)
t≥0

are independent Lévy processes. Observe

that for any t > 0, we can write

P(1)
t

D= P̂(1)
t ,

with P̂(1)
t =

lim
ε↘0

( ∞∑
i=1

ϕπ (Γi/t) 1 {ε < ϕπ (Γi/t) ≤ 1} − t
∫ ∞

0
x1 {ε < x ≤ 1} π (dx)

)
,

where {Γi }i≥1 is as above. Also write

P̂(2)
t =

∞∑
i=1

ϕπ (Γi/t) 1 {ϕπ (Γi/t) > 1} .

For each t > 0, we have

Pt
D= P̂(1)

t + P̂(2)
t . (50)

The random variable P̂(1)
t has characteristic function

Eeiθ P̂
(1)
t = etΥ1(θ), θ ∈ R, (51)
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where

Υ1(θ) =
∫

(0,1]

(
eiθx − 1 − iθx1{0<x≤1}

)
π(dx). (52)

5.3 A Useful Infinitely Divisible RandomVariable

For each t > 0 and y > 0 with
(
Γ ′
i

)
i≥1

D= (Γi )i≥1 , consider the random variable

P̂(1)
t (y) = lim

ε↘0
P̂(1)
t (y, ε) , (53)

where for 0 < ε < 1

P̂(1)
t (y, ε) = P̂(1,1)

t (y, ε) − EP̂(1,1)
t (y, ε) , (54)

with

P̂(1,1)
t (y, ε) =

∞∑
i=1

ϕπ

(
y

t
+ Γ ′

i

t

)
1

{
ε < ϕπ

(
y

t
+ Γ ′

i

t

)
≤ 1

}
(55)

and

E P̂(1,1)
t (y, ε) =

∫ ∞

0
ϕπ

( y
t

+ x

t

)
1
{
ε < ϕπ

( y
t

+ x

t

)
≤ 1
}
dx

= t
∫ ∞

0
ϕπ

( y
t

+ x
)
1
{
ε < ϕπ

( y
t

+ x
)

≤ 1
}
dx =: tμπ

(
ε,

y

t

)
.

(56)

Also let

P̂(2)
t (y) =

∞∑
i=1

ϕπ

(
y

t
+ Γ ′

i

t

)
1

{
ϕπ

(
y

t
+ Γ ′

i

t

)
> 1

}
. (57)

Introduce the rate 1 Poisson process

N (x) =
∞∑
k=1

1
{
Γ ′
i ≤ x

}
, x ≥ 0. (58)

We can write (53) as

lim
ε↘0

(∫ ∞

0
ϕπ

( y
t

+ x

t

)
1
{
ε < ϕπ

( y
t

+ x

t

)
≤ 1
}

(N (dx) − dx)

)
. (59)
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Consider the Lévy measure πy/t defined on (0,∞) by the tail function

π y/t (x) =
{

π(x) − y
t , for 0 < x < ϕπ

( y
t

)
0, for u ≥ ϕπ

( y
t

)
.

Note that for all u > 0

sup
{
x : π y/t (x) > u

} = ϕπ

( y
t

+ u
)

. (60)

For future reference, we record that P̂(1)
t (y) has characteristic function

Eeiθ P̂
(1)
t (y) = etΥ1(θ,y), θ ∈ R, (61)

where

Υ1(θ, y) =
∫

(0,∞)

(
eiθx − 1 − iθx1{0<x≤1}

)
πy/t (dx)

=
∫

(0,∞)

(
eiθϕπ( y

t +u) − 1 − iθϕπ

( y
t

+ u
)
1{0<ϕπ( y

t +u)≤1}
)
du. (62)

By an examination of (61) and (62), we see that P̂(1)
t (y) is an infinitely divisible

random variable. Clearly, from (59), we get

EP̂(1)
t (y) = 0

and

lim
ε↘0

E
(
P̂(1)
t (y, ε)

)2 =
∫ ∞

0
ϕ2

π

( y
t

+ x

t

)
1
{
0 < ϕπ

( y
t

+ x

t

)
≤ 1
}
dx

= t
∫ ∞

0
ϕ2

π

( y
t

+ x
)
1
{
0 < ϕπ

( y
t

+ x
)

≤ 1
}
dx

= t
∫ ∞

y/t
ϕ2

π (u) 1 {0 < ϕπ (u) ≤ 1} du =: tσ 2
π (y/t) > 0, (63)

where the fact that σ 2
π (y/t) > 0 follows from ( 46) implies (47).

5.4 Application of the Above Constructions

For any fixed y > 0 and t > 0, consider the tail functions defined for x > 0 by

Λy/t,+(x) =
{

Λ+(x) − y
t , 0 < x < ϕ+

( y
t

)
0, x ≥ ϕ+(

y
t ).
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and

Λy/t,−(x) =
{

Λ−(x) − y
t , 0 < x < ϕ−

( y
t

)
0, x ≥ ϕ−(

y
t ).

Let N1 and N2 be two independent rate 1 Poisson processes on (0,∞)with jumpsΓ
(1)
i ,

i ≥ 1, and Γ
(2)
i , i ≥ 1, respectively. Now for t > 0 and y1 > 0 let X̂ (1,+)

t (y1) and

X̂ (2,+)
t (y1) be constructed as P̂

(1)
t (y1) and P̂(2)

t (y1) using the Poisson process N1 and
the LévymeasureΛ+ with inverseϕ+. In the sameway for t > 0 and y2 > 0, construct
X̂ (1,−)
t (y2) and X̂ (2,−)

t (y2) using the Poisson process N2 and the L évy measure Λ−
with inverse ϕ−. One finds that X̂ (1,+)

t (y1) and X̂ (1,−)
t (y2) are independent infinitely

divisible random variables with Lévy measures defined via the above tail functions
Λy1/t,+ and Λy2/t,−, respectively, whose supports are contained in

[
0, ϕ+(y1/t)

]
and[

0, ϕ−(y2/t)
]
, respectively. Moreover,

EX̂ (1,+)
t (y1) = EX̂ (1,−)

t (y2) = 0,

and by (63),

Var
(
X̂ (1,+)
t (y1)

)

= t
∫ ∞

y1/t
ϕ2+ (u) 1 {0 < ϕ+ (u) ≤ 1} du =: tσ 2+ (y1/t) > 0 (64)

and

Var
(
X̂ (1,−)
t (y2)

)

= t
∫ ∞

y2/t
ϕ2− (u) 1 {0 < ϕ− (u) ≤ 1} du =: tσ 2− (y2/t) > 0. (65)

For t > 0, y1 > 0 and y2 > 0, consider the random variable

Ŷ (1)
t (y1, y2) = σ Zt + X̂ (1,+)

t (y1) − X̂ (1,−)
t (y2) ,

where σ ≥ 0 and (Zt )t≥0 is a standard Brownian motion independent of the variables

X̂ (1,+)
t (y1) and X̂ (1,−)

t (y2). Set

VarŶ (1)
t (y1, y2) = tσ 2 + tσ 2+ (y1/t) + tσ 2− (y2/t) =: tσ 2 (t, y1, y2) , (66)

where by (64) and (65), σ 2 (t, y1, y2) > 0.
A basic step toward extending Theorem 1 from subordinators to general Lévy

processes is the following result: For each t > 0, y1 > 0 and y2 > 0 consider the
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standardized version of Ŷ (1)
t (y1, y2) given by

S(1) (t, y1, y2) = Ŷ (1)
t (y1, y2)√

VarŶ (1)
t (y1, y2)

= Ŷ (1)
t (y1, y2)√

t
√

σ 2 (t, y1, y2)
.

The random variable S(1) (t, y1, y2) is infinitely divisible with

ES(1) (t, y1, y2) = 0 and VarS(1) (t, y1, y2) = 1,

whose Lévy measure has support contained in

[ −ϕ−(y2/t)√
tσ (t, y1, y2)

,
ϕ+(y1/t)√
tσ (t, y1, y2)

]
.

Since the random variable S(1) (t, y1, y2) is infinitely divisible, we can apply the
Zaitsev Fact to get for t > 0 , y1 > 0, y2 > 0 and λ > 0 and for universal positive
constants C1 and C2

Π
(
S(1) (t, y1, y2) , Z; λ

)
≤ C1 exp

(
−λ

√
tσ (t, y1, y2)

C2ϕ (t, y1, y2)

)
, (67)

where ϕ (t, y1, y2) = max {ϕ+(y1/t), ϕ−(y2/t)}.

5.5 Definition of Trimmed Lévy Process

Set for 0 < ε < 1, t > 0 and y > 0

μ±
(
ε,

y

t

)
:=
∫ ∞

0
ϕ±
( y
t

+ x
)
1
{
ε < ϕ±

( y
t

+ x
)

≤ 1
}
dx . (68)

Let (Zt )t≥0,
(
Γ +
i

)
i≥1 and

(
Γ −
i

)
i≥1 be as in (43). We shall consider for sequences

of positive constants tn and positive integers kn and �n trimmed versions of the Lévy
process Xt at tn , namely X̂tn , given by

T̃ (kn ,�n)
tn := σ Ztn + γ tn + T̃ (kn ,+)

tn + T̃ (�n ,−)
tn , (69)

where T̃ (kn ,+)
tn =

= lim
ε↘0

⎛
⎝ ∞∑

i=kn+1

ϕ+

(
Γ +
i

tn

)
1

{
ε < ϕ+

(
Γ +
i

tn

)
≤ 1

}
− tnμ+

(
ε,

Γ +
kn

tn

)⎞
⎠

+
∞∑

i=kn+1

ϕ+

(
Γ +
i

tn

)
1

{
ϕ+

(
Γ +
i

tn

)
> 1

}
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and T̃ (�n ,−)
tn =

− lim
ε↘0

⎛
⎝ ∞∑

i=�n+1

ϕ−

(
Γ −
i

tn

)
1

{
ε < ϕ−

(
Γ −
i

tn

)
≤ 1

}
− tnμ−

(
ε,

Γ −
�n

tn

)⎞
⎠

−
∞∑

i=�n+1

ϕ−

(
Γ −
i

tn

)
1

{
ϕ−

(
Γ −
i

tn

)
> 1

}
.

Notice that by construction, Ztn , T̃
(kn ,+)
tn and T̃ (�n ,−)

tn are independent.

5.6 Our SSCLT for a Trimmed Lévy Process

Armed with the notation and auxiliary results established in the previous subsections,
we now state and prove our SSCLT for the trimmed Lévy process defined in (69). We
note in passing that assumption (37) can be relaxed a bit; however, the present version
of our SSCLT and its proof suffices to reveal the main ideas.

Theorem 2 Assume that (37) holds. For any two sequences of positive integers {kn}n≥1
and {�n}n≥1 converging to infinity and sequence of positive constants {tn}n≥1 satisfying

√
tnσ
(
tn, Γ

+
kn

, Γ −
�n

)

ϕ
(
tn, Γ

+
kn

, Γ −
�n

) P→ ∞, as → ∞ (70)

and

Γ +
kn

tn

P→ ∞ and
Γ −

�n

tn

P→ ∞, as → ∞, (71)

we have uniformly in x, as n → ∞
∣∣∣∣∣∣∣∣
P

⎧⎪⎪⎨
⎪⎪⎩

T̃ (kn ,�n)
tn − γ tn

√
tn

√
σ 2
(
tn, Γ

+
kn

, Γ −
�n

) ≤ x |Γ +
kn

, Γ −
�n

⎫⎪⎪⎬
⎪⎪⎭

− P {Z ≤ x}

∣∣∣∣∣∣∣∣
P→ 0, (72)

which implies as n → ∞

T̃ (kn ,�n)
tn − γ tn

√
tn

√
σ 2
(
tn, Γ

+
kn

, Γ −
�n

) D→ Z . (73)

A simple example Before we prove Theorem 2, we shall give a simple example. Let
(Xt )t≥0 be a Lévy process with canonical triplet (0, 0,Λ). Recall the notation (35).

123



Journal of Theoretical Probability (2021) 34:2117–2144 2141

Assume that Λ+ = Λ− and Λ+ is regularly varying at zero with index −α, where
0 < α < 2. This implies that ϕ+ = ϕ− is regularly varying at ∞ with index −1/α
and thus for x > 0,

ϕ+(x) = ϕ− (x) = L (x) x−1/α, (74)

where L (x) is slowly varying at infinity.
Applying (64), we see that

σ 2+ (y1/t) =
∫ ∞

y1/t
ϕ2+ (u) 1 {0 < ϕ+ (u) ≤ 1} du,

which by (74), as y1/t → ∞,

∼ b2αL
2 (y1/t) (y1/t)

−2/α+1 , (75)

where b2α = α/ (2 − α). In the same way, we get as y2/t → ∞

σ 2− (y2/t) ∼ b2αL
2 (y2/t) (y2/t)

−2/α+1 . (76)

Note that in this example σ 2 = 0, so that

σ 2 (t, y1, y2) = σ 2+ (y1/t) + σ 2− (y2/t) .

Assuming kn → ∞ and kn/tn → ∞, we get that

Γ +
kn

kn

P→ 1 and
Γ −
kn

kn

P→ 1, as n → ∞,

and thus

Γ +
kn

tn

P→ ∞ and
Γ −
kn

tn

P→ ∞, as n → ∞.

This implies that

σ 2±
(
Γ ±
kn

/tn
)

/
(
b2αL

2 (kn/tn) (kn/tn)
−2/α+1

)
P→ 1, as n → ∞ (77)

and

ϕ
(
tn, Γ

+
kn

, Γ −
kn

)
/
(
L (kn/tn) (kn/tn)

−1/α
)

P→ 1 , as n → ∞,
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from which we readily infer that

√
tnσ
(
tn, Γ

+
kn

, Γ −
kn

)

ϕ
(
tn, Γ

+
kn

, Γ −
kn

) P→ ∞ , as n → ∞.

Thus, by Theorem 2 we have uniformly in x , as n → ∞
∣∣∣∣∣∣∣∣
P

⎧⎪⎪⎨
⎪⎪⎩

T̃ (kn ,kn)
tn

√
tn

√
σ 2
(
tn, Γ

+
kn

, Γ −
kn

) ≤ x

⎫⎪⎪⎬
⎪⎪⎭

− P {Z ≤ x}

∣∣∣∣∣∣∣∣
P→ 0. (78)

By (77) we can replace the random norming in (78) by a deterministic norming to get
uniformly in x , as n → ∞

∣∣∣∣∣∣P
⎧⎨
⎩

T̃ (kn ,kn)
tn√

tn
√
2σ 2+ (kk/t)

≤ x

⎫⎬
⎭− P {Z ≤ x}

∣∣∣∣∣∣
P→ 0.

Proof of Theorem 2 Consider two sequences of random variables (Y1,kn )n≥1, indepen-

dent of (Γ
(1)
i )i≥1, and (Y2,�n )n≥1, independent of (Γ

(2)
i )i≥1, and independent of each

other. Assume that tn > 0, kn > 0 and �n > 0 are such that

√
tnσ
(
tn,Y1,kn ,Y2,�n

)
ϕ
(
tn,Y1,kn ,Y2,�n

) P→ ∞, as → ∞, (79)

then by applying (67) we get uniformly in x , as n → ∞,

∣∣∣P
{
S(1) (tn,Y1,kn ,Y2,�n ) ≤ x |Y1,kn ,Y2,�n

}
− P {Z ≤ x}

∣∣∣ P→ 0. (80)

For t > 0, y1 > 0 and y2 > 0, set

Ŷ (2)
t (y1, y2) = X̂ (2,+)

t (y1) − X̂ (2,−)
t (y2)

=
∞∑
i=1

ϕ+

(
y1
t

+ Γ
(1)
i

t

)
1

{
ϕ+

(
y1
t

+ Γ
(1)
i

t

)
> 1

}

−
∞∑
i=1

ϕ−

(
y2
t

+ Γ
(2)
i

t

)
1

{
ϕ−

(
y2
t

+ Γ
(2)
i

t

)
> 1

}
.

Further, let

Ŷt (y1, y2) = Ŷ (1)
t (y1, y2) + Ŷ (2)

t (y1, y2)
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and

S (t, y1, y2) = Ŷt (y1, y2)√
t
√

σ 2 (t, y1, y2)
.

We see that, if addition to (79), we assume that tn > 0, kn > 0 and �n > 0 are such
that

Y1,kn
tn

P→ ∞ and
Y2,�n
tn

P→ ∞, as n → ∞, (81)

then by (38)

1

{
ϕ+
(
Y1,kn
tn

)
> 1

}
P→ 0 and 1

{
ϕ−
(
Y2,�n
tn

)
> 1

}
P→ 0, as n → ∞,

which implies that

P

{
Ŷ (2)
t
(
Y1,kn ,Y2,�n

) �= 0|Y1,kn ,Y2,�n
}

P→ 0, as n → ∞.

This gives

P

{
Ŷtn
(
Y1,kn ,Y2,�n

) = Ŷ (1)
tn

(
Y1,kn ,Y2,�n

) |Y1,kn ,Y2,�n
}

P→ 1, as n → ∞, (82)

which in combination with (80) implies that uniformly in x

∣∣P {S (tn,Y1,kn ,Y2,�n ) ≤ x |Y1,kn ,Y2,�n
}− P {Z ≤ x}∣∣ P→ 0, as n → ∞. (83)

Let
(
Y1,kn ,Y2,�n

) =
(
Γ +
kn

, Γ −
�n

)
, and be independent of

(
Γ

(1)
i

)
i≥1

and
(
Γ

(2)
i

)
i≥1

.

We see that

P

{
S
(
tn, Γ

+
kn

, Γ −
�n

)
≤ x |Γ +

kn
, Γ −

�n

}
D=

P

⎧⎪⎪⎨
⎪⎪⎩

T̃ (kn ,�n)
tn − γ tn

√
tn

√
σ 2
(
tn, Γ

+
kn

, Γ −
�n

) ≤ x |Γ +
kn

, Γ −
�n

⎫⎪⎪⎬
⎪⎪⎭

. (84)

Combining (83) with (84), we get (72) and (73 ). �
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