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Abstract

We prove under general conditions that a trimmed subordinator satisfies a self-
standardized central limit theorem (SSCLT). Our basic tool is a powerful distributional
approximation result of Zaitsev (Probab Theory Relat Fields 74:535-566, 1987).
Among other results, we obtain as special cases of our subordinator result the recent
SSCLTs of Ipsen et al. (Stoch Process Appl 130:2228-2249, 2020) for trimmed sub-
ordinators and a trimmed subordinator analog of a central limit theorem of Csorgd
et al. (Probab Theory Relat Fields 72:1-16, 1986) for intermediate trimmed sums in
the domain of attraction of a stable law. We then use our methods to prove a similar
theorem for general Lévy processes.

Keywords Trimmed Lévy processes - Trimmed subordinators - Distributional
approximation
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1 Introduction

We shall begin by stating our results for trimmed subordinators. Special cases of
our main result for subordinators, Theorem 1 below, have already been proved by
Ipsen, Maller and Resnick (IMR) [6] , using classical methods. See, in particular,
their Theorem 4.1. Our approach is based on a powerful distributional approximation
result of Zaitsev [11], which we shall see in Sect. 5 extends to general trimmed Lévy
processes. We shall first establish some basic notation.
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Let V;,t >0,bea suboElinator with Lévy measure A on R+ = (0, oo) and drift
0. Define the fail function A(x) = A((x, 00)), for x > 0, and for u > 0 let

@(u) = sup{x : A(x) > u}, ()
where sup @ := 0.
Remark 1 For later use, we observe that we always have
o) — 0,as u — oo. 2)
Notice that (2) is formally true if A(0+) = ¢ > 0, since in this case for all u > ¢,

sup{x : A(x) > u} = @ and we define sup @ := 0, and thus ¢(u) = 0 foru > c. The
limit (2) also holds whenever

A(0+) = oo. 3

To see this, assume (3) and choose any sequence x, \ 0 such that u, := Alxp) >0
for n > 1. Clearly, u, — o0 as n — oo. By the definition (1), the fact that Ais
nonincreasing on (0, o) and x,, ¢ {x : A(x) > u,} necessarily ¢(u,) < x,, and thus
since ¢ is nonincreasing, (2) holds. Furthermore, when (3) holds,

¢(u) > 0 forall u > 0. (4)

To verify this, choose 0 < y,41 < y, such that y, 0, as n — 00, and v,41 =
A(Yn41) > vy, = A(yp) for n > 1. Therefore, y,4+1 € {x : A(x) > v,} and hence
@(vy) > yp41 > Oforalln > 1. Since v, /' 0o, we have (4).

Recall that the Lévy measure of a subordinator satisfies

1 00
/ x A(dx) < oo, equivalently, for all y > 0, / ¢ (x)dx < oo. )
0 y
The subordinator V;, ¢ > 0, has Laplace transform
Eexp(—AV;) =exp(—t® (1)), AL >0, 6)

where
o
0= [ (1= exp(hu) 4@,
0
which can be written after a change of variable
o0
=/0 (I —exp (—=A¢ (u))) du. (N
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For any r > 0 denote the ordered jump sequence mt(l) > mt(z) > ... of V; on the

interval [0, ¢]. Let w1, wo, ... be i.i.d. exponential random variables with parameter 1
and foreachn > 1let I;, = w; + - - - + wy. It is well known that for each r > 0

(mt(k))kzl = (fﬂ <%>>k>] ’ ®)

See, for instance, equation (1.3) in IMR [6] and the references therein. It can also be
inferred from a general representation for subordinators due to Rosiriski [9].

Set Vt(o) := V, and for any integer k > 1 consider the trimmed subordinator
k 1 k
VO = v, —m® — o, ©)
which on account of (8) says for any integer k > 1 and 7 > 0
D w— I;
k i =k
D (7) e (10)
i=k+1

Set forany y > 0
oo 2 > 2
m () :=f @ (x)dx and o~ (y) :=/ @~ (x)dx.
y y

We see by Remark 1 that (3) implies that
o2 (y) > 0 forall y > 0. (11)

Throughout these notes, Z, Z1, Z> denote standard normal random variables. Here
is our self-standardized central limit theorem (SSCLT) for trimmed subordinators. In
Examples 4 and 5 we show that our theorem implies Theorem 4.1 and Remark 4.1 of
IMR [6], who treat the case when 1, = ¢ is fixed and k,, — oo.

Theorem 1 Assume that A(0+) = oc. For any sequence of positive integers {kn}ns1
converging to infinity and sequence of positive constants {t,},> satisfying

M—%oo,asn%oo, (12)
(p(Fk,,/tn)

we have uniformly in x, as n — oo,

£o. (13)

b { Vi — g (I, /1)

< x|y, —P{Z <x}
1wo (Ik, /tn) }
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which implies as n — 00

%?O_HN(QJM)D

«/EU (Fkn /tn)

(14)

Corollary 1 Assume that V;, t > 0, is a subordinator with drift 0, whose Lévy tail
function A is regularly varying at zero with index —a, where 0 < a < 1. For any
sequence of positive integers {k,},>| converging to infinity and sequence of positive
constants {ty},> satisfying k /t, — 00, we have as n — oo,

VS g /1) D [2

— . —Z. (15)
\/EO' (kn/tn) (04
Remark 2 Notice that whenever
o0
lim inff 02 (x) dx/ (w<p2 (w)) —. B >0, (16)
w—>00 w

p
I, /ta = o0 and k, — oo, then

o (Fkn/tn) P

ST ) o ) = Yo

and thus (12) holds. In particular, (16) is satisfied whenever ¢ is regularly varying at
infinity with index —1/o with0 < o < 2.

Using the change of variables formula: For p > 1, whenever the integrals exist, for
r >0,

@(r) 00
/ xPA@dx) = / o (u) du, a7
0 r

(for (17), see p. 301 of Brémaud [3]) one readily sees that (16) is fulfilled whenever
the Feller class at zero condition holds (e.g., Maller and Mason [8]):

limeup 2 A® (18)
ot Al

(For more details, refer to Example 2.)

Remark 3 Corollary 1 implies part of Theorem 9.1 of IMR [6], namely, whenever for
O<a<l,

Ax) =x"%1{x >0},x >0,
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then for each fixed ¢t > 0, as n — o0,

‘Z(n)—ty,(n/t) D (2
M S N3 1
o Va? 1

The first part of their Theorem 9.1 can be shown to be equivalent to (19).

Remark 4 The analog of Corollary 1 for a sequence of i.i.d. positive random variables
&1, & ... in the domain of attraction of a stable law of index 0 < o < 2 says that as
n — 0o,

S, & —ne (ra/n) b [2
J/na (r, /n) 22—«

where for each n > 2, S,El) > 0> g,i”) denote the order statistics of &1, ..., &,
{rn},>1 is a sequence of positive integers 1 < r, < n satisfying r, — 00 and
rp,/n — 0 asn — oo, and ¢ (r,/n) and a (r,/n) are appropriate centering and
norming constants. For details refer to S. Csorgd, Horvith and Mason [4]. The proof
of our Corollary 1 borrows ideas from the proof of their Theorem 1.

Z7

2 Preliminaries for Proofs

In this section, we collect some facts that are needed in our proofs. Lemmas 1 and 2
are elementary; however, for completeness we indicate proofs.

2.1 A Useful Special Case of a Result of Zaitsev [11]

We shall be making use of the following special case of Theorem 1.2 of Zaitsev [11].
which in this paper we shall call the Zaitsev Fact.

Fact (Zaitsev [11]) Let Y be an infinitely divisible mean 0 and variance 1 random
variable with Lévy measure A and Z be a standard normal random variable. Assume
that the support of A is contained in a closed ball with center 0 of radius t > 0, then
for universal positive constants C1 and C» for any L > 0

A
I1(Y,Z;)) <Cq exp(——c ),
2T

where

(Y,Z;2) = supmax {P{Y € B} —P{Z e B*} ,P{Z € B} —P{Y € B"}},
BeB

with B* = {y € R:inf,cp |x — y| < A} for B € B, the Borel sets of R.
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Notice that under the conditions of the Zaitsev Fact for all x, A > 0 and ¢ >
I1 (Y, Z; X)), withe > 0,

P{Y <x}<P{Z<x+A}+¢
and
P{Z <x—-A}<P{Y <x}+e,
and thus
P{Z<x—-2A—-e<P{Y <x}<P{Z<x+A}+e

In particular, the Zaitsev Fact says that for all x € R and A > 0,
A
P{Z <x—-A}—C exp<——> <P{Y < x}
Cort

A
EP{Z§x+X}+C1exp(—C—>.
2T

2.2 Moments of a Positive Random Variable
Given ¢ > 0, let X; be a positive random variable with Laplace transform
Uy, (A) = Eexp (—AX;) =exp (—tP (1)),

where @ is the Laplace exponent

Q)= /0 (1 —exp (—Ap (u))) du,

and ¢ a nonincreasing positive function on (0, co) such that ¢ (u) - Oasu — oo .
Assume that

o0 o0
u::/ w(u)du<ooand02:=f <p2(u)du<oo,
0 0

which implies @ (A) < oo for all A > 0 and @ (A) twice differentiable on (0, c0) .
Differentiating ¥x, (1) with respect to A twice and evaluating lll)’(l (0+) and ¥, (0+),
we get the following moments:

Lemma 1 Under the above assumptions,

EX; =ty and VarX; = to>.
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2.3 An Asymptotic Independence Result
We shall need the following elementary asymptotic independence result.

Lemma2 Let (X,, Yy),>1 be a sequence of pairs of real-valued random variables
on the same probability space, and for each n > 1 let ¢, be a measurable function.
Suppose that for distribution functions F and G for all continuity points x of F and

yofG
P{Xn < x|¥n} 5 F(x) and P{pp (Yn) =y} — G (y), (20)
then
P{Xy <x,¢0 (Yn) =y} > F ()G (y). (2D
Proof Notice that

P{Xn <x, 00 (Yn) <y} — F (x) G ()]
< |E[P{Xy = x[Yy} — F (x)) 1{ (Yn) = y}]I
+IF () P{¢n (Yn) = y} = F(X)G(y)|
< EIP{X, < x|Yp} = F )|+ [P{¢n Yn) <y} = GO,

which by (20) converges to zero. O

3 Proof of Subordinator Results
3.1 Proof of Theorem 1

For eacht > 0 and y > 0, consider the random variable
o /
y 5
T(t,y) = =+ L),
(t.y) ; ¢ (r t )

with (F/ )i>1 D (13);>1 » which has Laplace transform

Tiy (1) = Eexp (=AT (1, y)) = exp (—1 Py (W),

where @, (1) is the Laplace exponent,

@y () = fooo (1 —exp (—Mp (% + u))) du.
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Introducing the Lévy measure A, y defined on (0, 0o) by the tail function

—- _ Z(u)—%, f0r0<u<(p(¥)
Ay/t(“)—{ 0, for u Zq)(%') ,
we see that
Ny ey y
sup{x : Ay (x) > u} = sup {x cAx) — ? > u}
—o(? )
—<,0(t +u
and thus

D1y (M) = /0 (I —exp (=Av)) Ay (dv) .

Clearly, T (¢, y) is an infinitely divisible random variable and the support of A,/ is
contained in [0, ¢(y/t)]. Applying Lemma 1, one finds that

o0

y
ET (t,y) =t du =:tp (=
@y /y/tw(u) u “(z)

and

o0

Y

VarT (¢, y) =t/ 02 () du =: 10> (?)

v/t

Note that (3) implies (11) and thus for all y > O, o2 (%) > 0. For each t > 0 and
y > 0, consider the standardized version of T (¢, y)

_ Ty —ET@Y)

S (t,
@) IV T @)
We can write
T(,y)—tu(2
S(t,y)=—( 0 =t ()

Vio ()
Now S (¢, y) is an infinitely divisible random with
ES (¢,y) =0 and VarS (z,y) =1,

whose Lévy measure has support contained in [0, ¢(y/1)/ (v/fo (¥))]. Applying the
Zaitsev Fact to the infinitely divisible random variable S (¢, y), we get for any ¢ > 0,
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y > 0and A > 0 and for universal positive constants C| and C»

Wio <%>> |

(St y), Z;2) < Crexp (‘W

This implies that whenever {f,},>; is a sequence of positive constants and Y, is a
sequence of positive random variables such that each Yy, is independent of (Fl/ )

d i>1
an
Y
M—lﬁoo,asneoo, (22)
w (Ykn/tn)
then uniformly in x
LS (b, Yi,) < xI¥i,} — P{Z < x}| = 0, as n — oo, (23)
and thus we have
|P{S (ta, Yi,) <x} —P{Z <x}| > 0, as n — oo. (24)

. D
with (I7) o = (Iiz1, we get

i>1" i

By choosing Yy, = I}, and independent of (Fl/ )
by (10) that

5 (ky I, Yin
T — g (B) 2 oY, + 1Y) 1) — tae ()

Ty - Yy,
t,o (#) N2 (t_nn)

)

T (tn. Yi,) —;,,,L(ii;n

1,0 (i"” )
n

Keeping (12) in mind, (13) and (14) follow from (23) and (24), respectively. []

=S (t, Yi,) -

3.2 Proof of Corollary 1

The proof will be a consequence of Theorem 1 and Lemma 2. Note that V; has Laplace
transform

Eexp(=AVy) =exp(=t® (1), 1 =0,
of the form given by (6). Since A is assumed to be regularly varying at O with index
—a,0 < o < 1, the ¢ in (7) is regularly varying at co with index —1/« and thus for
x>0,

p(x) =L (x)x~ ', (25)
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where L (x) is slowly varying at infinity. This implies that as z — oo,

1(z) = / @ () du ~ ag L (z) 71/ H1, (26)
Z
and
o2 (2) = / gpz (u) du ~ bglL2 (z) 272/t 27

where ay = o/ (1 —a) and b2 = a/ (2 — ).
With this notation, we can write

Fn kn Fn n
i (5) = () [ g @ au

I - I
a0 (%) (e (%)
n n

which equals

(¢ (u) — @ (kn/tn))du.  (28)

@ ka/te) (T, —kn) Vi /rkn/rn
wr () o ()

Claim1 Asn — oo,

n/tn

o (T, /1n) Jo Ghn/tn) — 1.

Proof This follows from the fact that I, /k, —P> 1, k, /t, — oo and o (z) is regularly
varying at oo with index —1 /o + 1/2. O

Claim2 Asn — oo,

2—«

Vet knftn) | (Va0 hn /1)) = by =

o

Proof This is a consequence of k,/t, — oo combined with (25) and (27), which
together say

Vkn@ (en Jtn) ~ kL (ki /12) Gk /1)~

and

V100 (kn [tn) ~ bo/tn L (ki /1) (ki [ 1)~ /42
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Claim3 Asn — oo,

Fkn/tn P
b /k (0 0) — ¢ (/1)) dit] (Vim0 (hn 1)) 2 0.

n/tn
Proof Since
(T, = kn) /vkn = Z,as n — o0, (29)

for any 0 < ¢ < 1 there exists a ¢ > 0 such that
]P’{Fkn c [kn—c\/la,kﬁc k,,]] S1—¢

for all large enough n. When I, € [kn — cv/ku, kn — c/kn ],

In Ty /1
Vg (kn/tn) /k N P <0<kn/tn))‘ du
n n n n tn

t, (kn+ev/kn) /tn [ <kn e /_kn) (kn e /_kn)i|

< —— ol ———— )| —p| ——— | |du
Nkno (ki /th) (kn—c/kn) [t In Iy

2c |}0 (kn —c«/kn> _¢<kn—|—c«/k,,>i|

@ (kn/tn) tn tn

Now for any A > 1, for all large enough n

2c [(p (kn —tc\/k_,,> y (k,, +cJE):|

W(kn/tn) n h
<samleGr) ()]
= ot 1P\ ) O\

which converges to

2c (A1 7).

Since A > 1 can be made arbitrarily close to 1 and ¢ > 0 can be chosen arbitrarily
close to 0, we see using Claim 2 that Claim 3 is true. O
Putting everything together, keeping (29) in mind, we conclude that as n — oo,

T, kn
ne () =nn (), pa
- —

I§
[ (%) o
n

Choose Yy, = I, and independent of (Fl.’)l.>l 2 (17)i>1. We get by Remark 2 that
(12) holds, which implies (13). Thus, by (13) and Lemma 2, for independent standard

Z. (30)
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normal random variables Z; and Z,, as n — 00

T (tn, Yk") — L (%)

t,,a(y’;")
Y] Y,
Tl Ye) - t”'u( kn) t”“(tin>_’n“<%) D 2 -«
- — 71+, —7Z».

+
o (%) o (%) a
n

Notmgthata( )/a(”)—)landzl—{— 2"‘Z —\/>Z we get as n — 00,

T oY) =0 (8) o [3
— .| —Z,

CIONE

which since

5 (kn I
T (0 Vi) =t (52) ) Vi = g ()
G (2) i (2)

gives (15). o

4 Examples of Theorem 1

In the following examples, we always assume that (3) holds.

Example 1 There always existk, — oo andf, — oo such that (12) holds. For example

for any k, — oo, lett, = pk, for some p > 0. Since I, /k, —P> 1L, I, /ta —P> 1/p,
which implies that

p | V0o (T/tn) _ /okao 2/p)
> — 1
¢ (I, /1) ¢ (1/(2p))

and thus (12) holds and hence by Theorem 1, we conclude ( 13) and (14).
Example 2 Assume the Feller class at zero condition (18). Noting that X((p -) >y,

we get from (18) that

2 2
lim sup "y < lim sup P Yy

y—>00 f‘p(y)uzA(du) y=>00 f‘pm* u? A(du)

<1 0% () Alg () )
< lim sup
y—00 f‘p(" u? A(du)
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which says

lim sup —(pZ )y
y—>00 f;o @2 (x)dx

This implies that
oo
lim inff 02 (x) dx/ (y<p2 (y)) — B >0.
y=oo J,
Therefore, as in Remark 2, we see that if I}, /1, —P> oo and k, — oo, then (12) holds

and thus by Theorem 1, we infer (13) and (14).

Example 3 Let

A ={er0. 02y

Clearly, ¢(u) = exp(—u),0 <u < oo,and for0 < x < 1

xZA(x)

f 2 A W) =2log(1/x),

which 7 0o,asx N\ 0. Thus, the Feller class at zero condition does not hold. However,
the domain of attraction to normal at infinity condition holds (e.g., Doney and Maller
[5] and Maller and Mason [7]), since for all x > 1

xzx(x) _
fo urAddu)

In this example for all y > 0 and ¢ > 0,

o/ 1

e/t V2

Thus, for any sequence of positive integers k;, — oo and sequence of positive constants
ty = 00

VinO Lk /tn) (Fk"/tn) 5 00, a8 n —> o0
@ (Fkn/fn) ’ ’

which says that (12) is satisfied and hence by Theorem 1, ( 13) and (14) hold.

Next we show that as a special case of Theorem 1, we get Theorem 4.1 and Remark
4.1 of IMR [6], who consider the case when #, = t is fixed and k, — oo. Their
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Theorem 4.1 and Remark 4.1 say that whenever there exist constants a, and b,, such
that for a nondegenerate random variable A

m™ —b, b o) —by D
= —
a, a,

A €19}

then for all # > 0 the following self-standardized trimmed central limit theorem (CLT)
holds

V" — i (Tu/t)
Jio (/1)

Remark 5 We should note that in the statements of Theorem 4.1 and Remark 4.1 of
IMR [6], “ i should be “¢11”, and, in equation (4.2), “ lim,_. ~ should be removed
and “= @ (x), x € R.” should be replaced by “= @ (x),x € R,as r — 00.”

IMR [6] have shown in their Theorem 2.1 that for (31) to hold it is necessary
and sufficient that there exist functions a (r) and b (r) of r > 0 such that whenever
ar)x+b(@r)>0

r—=Ala(r)x+b(r)
Jim NG =h(x), (32)

where h (x) € R is a nondecreasing function having the form for some y < 0,

2x, if)/=0,

—%log(l—yx), wheny <Oand 1 — yx > 0. (33)

h(x)= {

In which case P {A <x} = P{Z < h (x)}.
The next two examples show that whenever (31) holds and hence (32) with & (x) as
in (33) is satisfied, then special cases of condition (12) are fulfilled. Example 4 treats
the case when y < 01in (33), and Example 5 considers the case when y = 0 in (33).

Example 4 [The case y < 0 in (33)] From Proposition 4.1 of IMR [6], we get that
whenever (31) holds and we have (33) for some y < O then

X 2 /A
/ u? A(du) ~ M
0

,as x | 0, (34)
ly|

and A(x) is slowly varying at 0. Since ¢ (z) \, 0 as z oo, this implies that as y /¢
converges to 0o,

102 (o (y/0) 1§ u? Adu)

2/ @2/
2t/ A t
~ #, as y/t — oo,

@ Springer



Journal of Theoretical Probability (2021) 34:2117-2144 2131

which by (3), for each fixed ¢+ > 0, converges to infinity as y — o0o. We readily see
then that (12) is satisfied, whenever k,, — oo and t, =t > 0, fixed, as n — o0, and
thus by Theorem 1, (13) and (14) hold. Notice that a Lévy measure that satisfies (34)
is not in the Feller class at zero.

Example 5 [The case y = 0in (33)] Using the notation from Proposition 4.2 of IMR
[6], set

H)y =, V() =g (% (logx>2> andg> (27) = ¢? () V7.

Proposition 4.2 of IMR [6] says when y = 0 in (33) that for a function 7

Px) 00
/ u? A(du) = / (pz (s)ds = mp <€2ﬁ> ,
0 X

which from (4.13) in IMR [6] satisfies

j‘O(/’(X) u? A(du) B b19) <e2ﬁ>
P2 VX g (e2VF)

This implies that as y/t converges to oo and ¢y is bounded away from 0, then

— 00,4a8 X —> 00.

102 (o (v/1) 1y [{O7 uP Adu)
P2/t @2 (/DY

Thus, if I, /t, —P> oo and for some ¢ > 0, P {tn Iy, > 8} — 1, then (12) is fulfilled
and hence by Theorem 1, (13) and (14) hold. In particular, this is satisfied when
k, — ooandt, =t > 0, fixed, as n — oo.

5 A SSCLT for a Trimmed Lévy Process
Before we can talk about a SSCLT for a trimmed Lévy process, we must first establish
a pointwise representation for the Lévy process that we shall consider, as well as some

necessary notation and auxiliary results needed to define what we mean by a trimmed
Lévy process and to prove a SSCLT for it.

5.1 A Pointwise Representation for the Lévy Process
Let (2, F,P) be a probability space carrying a real-valued Lévy process (X;);>0,

with Xo = 0 and canonical triplet (y, o2, A), where y € R, 62>0,and Aisa Lévy
measure, that is a nonnegative measure on R satisfying

/ (x2 A 1) A(dx) < oo.
R\{0}
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For x > 0, put
At (x) = A((x, 00)) and A_(x) = A((—00, —x)), (35)
with corresponding Lévy measures A, and A_ on RT = (0, 0o) and set
A(x) = A4 (x) + A_(x). (36)
We assume always that
A (0+) = A_(0+) = o0. (37)
For u > 0 let
¢+ (u) = supf{x :Z+(x) > u}and ¢_(u) = sup{x : A_(x) > u}.
By Remark 1, we have
¢4(u) > 0andp_(u) — 0, asu — oo. (38)
The process (X;);>0 has the representation (e.g., Bertoin [2] and Sato [10])
X =0Z +yt+xD +x2,

with

x{V=1im [ > AX1{e < |AX,| <1} -1 | (39)
eno O<s<t

where for0 < ¢ < 1

M:/ xle < |x] <1} Ay,
R\{0}

xP =3 AX1{lAX] > 1},

O<s<t

and (Z;);>( is a standard Wiener process independent of (X a )) and (X (2)) o
1>
(Asusual AX; = X5 — X_.) The limitin (39) is defined as in pages 14—15 of Bertoin

(2].
Decomposing further, we get

Xi=0Z +yr+ X0+ x4 x4 xP0, (40)
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with

(1,%)
t

X = lim ZAXS1{8<:E:AXS§1}—t,u,€i,

e\0

O<s<t

where for0 < ¢ < 1
o0
wE :=j:/ x1{e <x <1} Ar(dx)
0

and

PP = 3" AX 1 {£AX, > 1)

O<s<t
For any ¢ > 0, denote the ordered positive jump sequence

m§1,+) > ml(2,+) > ...

of X, on the interval [0, 7] and let

(1,— 2

D <@ <.

denote the corresponding ordered negative jump sequence of X,. Note that the positive
and negative jumps are independent. With this notation, we can write

o

1,%) : (i, %) (i, %) +

X, =g%(;mtl l{e<:|:mt’ 51]—tu8>,
=

and

o0
X,(Z‘i) = me"i)l [:I:mt(l’i) > 1} .
i=1

Let (1“*’)1.>l 2 (Fi_)izl 2 (I7)i>1, with (Fi+)i>1 and (Fi_)izl independent. It turns

out that by the same arguments that lead to (8), for each t > 0

+ +
L, 2, D I I
<m§ +),m,( +),...)=<(P+(Tl>’(ﬂ+(72>’“'> S
_ _ D Iy Iy
(mt(l’ ),mgz’ ),...)2 (—(0 (Tl>’_§0 (TZ>’) 42)
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Let X\(l‘i) and X\(z’i) be defined as X(l’i) and X(z’i) with mti’i) replaced by
+
=al/N8 (F ) We see then by (40) that for each fixed t > 0

b

X 2X =0Zi+yr+ X"+ X0+ X0 4 X7, 43)

where (Z;),>( is a Wiener process independent of (1"{")’.>1 and (Fi_)l.>1.

Our aim is to show that for a trimmed version T’l’(tk’“e”) of X, 1, defined for suitable
sequences of positive integers (ky),>1 and (¢,),> and positive constants (#,), > that
under appropriate regularity conditions there exist centering and norming functions
Ay (-, ) and By, (-, -) such that uniformly in x € R, asn — oo,

=) -
Tt _ g, (rkn,r )

P n
B, (1. 1)

<xF. It 5 P{Z <), (44)

which implies

Tt —a, (1) 0,
—

By (F,jn‘, Q;)

Statement (45) is what we call a SSCLT for a trimmed Lévy process. In order to define
T;,(lk"’e”), specify the centering and norming functions A, (-, -) and By, (-, -), and state
and prove our versions of (44) and (45) given in Theorem 2 in Sect. 5.6, we must first
introduce some notation and preliminary results, which we shall do in the next four
subsections.

(45)

5.2 A Useful Spectrally Positive Lévy Process

Let (Pt);>0, be a nondegenerate spectrally positive Lévy process without a normal
component and having zero drift with infinitely divisible characteristic function

EelfP — o/ T®) g R,

where
T(0) :/ (e”x —1 —i9x1{0<x§1}) 77(dx)
(0,00)

and 7 is a Lévy measure on R™ with [ 0.00) (x? A 1)z (dx) finite. Such a process has
no negative jumps. Again we shall assume

7(04) = oo. (46)
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As above for u > 0 let ¢ (1) = sup{x : T(x) > u}. Applying Remark 1, we see that
(46) implies

¢r(u) >0forallu > 0and lim ¢, (u) =0. 47)
u—0Q

(Often in the definition of a spectrally positive Lévy process it is assumed that it is not
a subordinator. See Abdel-Hameed [1].)
The process (P;),>¢ has the representation

P =PV + P2,
where P,(l) =

o
811{% ZAPSI{S<APS§1}—t/O x1{e <x < 1}7 (dx) (48)

O<s<t

and

PP = 3" AP1{AP, > 1}. (49)

O<s<t

The processes (P,(l)>
>0

that for any ¢ > 0, we can write

and (Ple)) o are independent Lévy processes. Observe
=

PO LB,

with i’\t(l) =

0]

Jim (;fp (/0 1 e < pn (I1/1) < 1}—t/0 xl{e <x < 1}n<dx>),

where {I7};> is as above. Also write

B =3 pr (1) Ugx (I1/1) > 1).
i=1

For each t > 0, we have
p2PY + P, (50)
The random variable 13\,(1) has characteristic function
EOF —eM® g R, (51)
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where

11(0) =/ (ei“ —1 —i@x1{0<x51}) 7 (dx). (52)
0,1]

5.3 A Useful Infinitely Divisible Random Variable

Foreacht > 0 and y > 0 with (I“l/ )l. 2 (I7)i>1 - consider the random variable

>1

P () =1im PV (v, ), (53)
e\0
where for0 < ¢ < 1
BV vy =BV (v.e) —EB"D (y.0). (54)
with
ﬁta,l)(y,g):g% <%+FT/>1{8<¢” (%-FFT/) 51} (55)
and

o0
EPt(lyl)()’ag):/ ‘Pn<%+;>l{8<¢ﬂ<§+i)sl}d)€
0

Also let
—~ y I/
P (y) = an (— 71) 1 {wn (; + 7’) > 1}. (57)
Introduce the rate 1 Poisson process
o
N(x):Z {I7 <x},x>0. (58)

We can write (53) as

;@)(fooown (%+;)1{8<¢n (%—l—;)gl}(N(dx)—dx)). (59)
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Consider the Lévy measure 7/, defined on (0, 00) by the tail function
_ T -2, for0<x < q (¥)
Tyf(x) = {O, foru > ¢z (¥).
Note that for all u > 0
7 — o (2 60
sup {x 1 Ty (x) > u} = ¢ ?—i—u ) (60)
For future reference, we record that i’\,(l) (y) has characteristic function
EP0) _ MO g c R, 61)

where

10 = [ (= 1= ioxlpesey ) my )
(0,00)

= / (eiefﬂﬂ(%+"’) -1 ]0(,07-[ (% + M) 1{0<(p,,(%+u)§1}) du. (62)
(0,00)

By an examination of (61) and (62), we see that 13\,(1) (y) is an infinitely divisible

random variable. Clearly, from (59), we get
ER" (y) =0

and

—~ 2 o0
limE (P (v.e)) =/ 2+ o< (243) =1
eN\0 0 t

r
=t/(;00<p721(%+x)1{0<(pﬂ<%+x>§l}dx

= t/oo<p§ ) 1{0 < @r () < 1}du =: ta? (y/t) > 0,
v/t

t t

where the fact that O'j% (y/t) > 0 follows from ( 46) implies (47).

5.4 Application of the Above Constructions

For any fixed y > 0 and # > 0, consider the tail functions defined for x > 0 by

Ap(x) =3, 0<x <o (¥)

Ay 4(x) =
)/I,Jr( ) {O, XE(P-i-();))-

(63)
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and

A_(x)—%, 0<x<g_(¥)

t

Ay —(x) = {O, x> o ().

Let N1 and N, be two independent rate 1 Poisson processes on (0, co) with jumps Fl.(l),
i >1,and I“i(z), i > 1, respectively. Now for # > 0 and y; > O let Sf\t(l’ﬂ (y1) and

X t(2,+) (y1) be constructed as f’;(l) (y1) and 13;(2) (y1) using the Poisson process N1 and
the Lévy measure A with inverse ¢ . In the same way forz > 0 and y» > 0, construct

5(\,(1’_) () and 5(1(2’_) (y2) using the Poisson process N, and the L évy measure A_

with inverse ¢_. One finds that X ,(1’+) (y1) and X ,(1’_) (y2) are independent infinitely
divisible random variables with Lévy measures defined via the above tail functions
Ay 1.+ and Ay, _, respectively, whose supports are contained in [O, or(n/ t)] and
[0, o—(y2/1)], respectively. Moreover,

=1, S, —
EX"P (1) = EX" 7 (y2) =0,

and by (63),

Var (ffz(l’ﬂ (y1)>

= rfo/o 07 ) 1{0 < gy () < 1) du =: 103 (y1/1) > 0 (64)
yi/t

and
Var (?A(t(l’_) (yz))

=zfoo > () 1{0 < ¢_ (u) < 1}du =: to> (y2/1) > 0. (65)
)

2/t
Fort > 0, y; > 0 and y, > 0, consider the random variable
= (1, S(,—
7Y i =0z + X0 0 = X ()

where o > 0 and (Z;),>( is a standard Brownian motion independent of the variables
<>, >(1,—
XM (1) and X7 (7). Set

Var?\" (y1. y2) = 102 + 102 (/1) + 162 (/1) = 162 (1, y1. y2),  (66)
where by (64) and (65), o (¢, y1, y2) > 0.
A basic step toward extending Theorem 1 from subordinators to general Lévy

processes is the following result: For each t > 0, y; > 0 and y» > 0 consider the

@ Springer



Journal of Theoretical Probability (2021) 34:2117-2144 2139

standardized version of 2(1) (y1, ¥2) given by

a1 =3
7" (1. ) . v (1, )

(1 - 2 :
[ VarY, ) (1, v2) Vivol (i, yi, y2)

The random variable S (¢, ¥1, y2) is infinitely divisible with

SO, y1,v2) =

ESY (¢, y1, y2) = 0 and VarSY (¢, y1, y2) = 1,

whose Lévy measure has support contained in

[ —p_(y2/1) o+ (y1/1) }
Vio (t,y1,y2) Vo @t y1,y2) |

Since the random variable S (¢, y{, y2) is infinitely divisible, we can apply the

Zaitsev Fact to get fort > 0, y; > 0, y» > 0 and A > 0 and for universal positive
constants C; and C»

Mo (L, yi, Y2)) 67)

I (S“> t.y1, ). Z; A) < Crexp (—
Cro (t, y1, ¥2)
where ¢ (¢, y1, y2) = max {¢1 (y1/1), o—(y2/8)}.

5.5 Definition of Trimmed Lévy Process

SetforO0 <e <1,t>0andy >0

,ui(e,§):=‘/(;oogai(%+x>1[8<¢i(%+x)§l}dx. (68)

Let (Z1);>0- (I77),2; and (I77),, be as in (43). We shall consider for sequences
of positive constants £, and positive integers &, and £, trimmed versions of the Lévy

process X; at t,, namely X, , given by

T = 67y, + yty + TP + T (69)
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M2

r~ r~
i=0,+1 In I

Notice that by construction, Z; , ]N",flk”‘ﬂ and ]N",fle”’f) are independent.

5.6 Our SSCLT for a Trimmed Lévy Process

Armed with the notation and auxiliary results established in the previous subsections,
we now state and prove our SSCLT for the trimmed Lévy process defined in (69). We
note in passing that assumption (37) can be relaxed a bit; however, the present version
of our SSCLT and its proof suffices to reveal the main ideas.

Theorem 2 Assume that (37) holds. For any two sequences of positive integers {k, },,> |
and {£y,},> converging to infinity and sequence of positive constants {t,},,> | satisfying

e (tn, 1“,5:,1“[;) .
— 00, as — 00 (70)
o (w1t 1)

and

+ -
Iy, P 0, P
— o0 and n — 00, as —> 090, 71)
n n

we have uniformly in x, asn — o0

ir(lknln)

—yt
P AN AR yull S TP | )
NN (t,,, F,:nr, F@)
which implies as n — 00
& (ki n)
T, — Yt
I B, (73)

Jinfo? (. 0T

A simple example Before we prove Theorem 2, we shall give a simple example. Let
(Xt)r=0 be a Lévy process with canonical triplet (0, 0, A). Recall the notation (35).
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Assume that AL = A_ and Ay is regularly varying at zero with index —«, where
0 < o < 2. This implies that ¢ = ¢_ is regularly varying at co with index —1/«
and thus for x > 0,

9r(x) =g (x) = L (x)x~ 1/, (74)

where L (x) is slowly varying at infinity.
Applying (64), we see that

0]

Gi(ydﬁ)zt// 93 ) 1{0 < g1 () < 1}du,
yi/t

which by (74), as y; /t — oo,
~ b L? (/) (/e (75)
where bg = o/ (2 — o). In the same way, we get as y2/t — 00
02 (/1) ~ baL? (/1) (/)21 (76)
Note that in this example o2 =0, so that
o (t,y1,y2) = 0 (/1) + 02 (/1)

Assuming k,, — oo and k, /t, — oo, we get that

r; r,

k”—P>1and k”—P>1,asn—>oo,

ky ky
and thus

Fk—: P Fk: P
— o0 and —* — 00, as n — 00.

n tn

This implies that
o2 (ka/t,,) / (b§L2 Kk /1) (ko /z,,)—2/“+1) L1, asn— oo 77

and

_ _ P
% (tn» Fk-:’ Fk,,) / <L (kn/tn) (kn /1) l/a) — 1 ,as n— oo,
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from which we readily infer that

120 (tn, ij, Fk;) b

- — 00 ,as n — OQ.
o (01t 1)

Thus, by Theorem 2 we have uniformly in x, as n — o0

rft(kn,kn)
]P) n

<x$—Piz<x| 5o (78)
Jinfo? (o, I 1)

By (77) we can replace the random norming in (78) by a deterministic norming to get
uniformly in x, as n — oo

T"t(knvkn) P
PI————— <x; —P{Z <x}| = 0.
Viny/ 203 (ki /1)
Proof of Theorem 2 Consider two sequences of random variables (Y x, ),>1, indepen-
dent of (Fl.(l))izl, and (Y2,¢,)n>1, independent of (I"i(z))i >1, and independent of each
other. Assume that #,, > 0, k,, > 0 and ¢,, > O are such that

120 (tn, Y1.kys Y2,0,) £ 0,88 > 00 (79)
@ (tn» Yl,kn’ szgn) ’ ’

then by applying (67) we get uniformly in x, as n — oo,

BLSD (10, Vi, Yar,) < xlVig, Yar | - PZ x| S0 60)

Fort > 0, y; > 0and y; > 0, set

= S, S0, —
Y2 1,y = X2 0 = X5 ()

00 (1) ()
o1 i 1
Zi=1(p+(t ¢ ) {<p+<t t
00 (2) (2)
v I v I
S (B )iie (2 ) s 1
i—l(p (t " ! ) {(p <t ! o)

5 (1 S
Yi (i, ) = Yt( ) (y1, y2) + Yt( ) (y1,y2)

Further, let
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and

Y: (i, y2)

S, y1,y2) = )
Vo (i, y1, y2)

We see that, if addition to (79), we assume that ¢, > 0, k, > 0 and ¢,, > O are such
that

Yig, P Y2,

— 00 and
n t)’l

L 00, as N —> 00, (81)

then by (38)

Y. Y.
oo (22 ) s 1V B oand 1{o (222 ) > 1V B 0,as n — oo,
+ t th

which implies that

P {?,(2) Y1k Yaz,) # OV 1z, Yz,@n} £ 0,25 n - 0.
This gives
P {2 Y1k Yat,) = Y0 (Y1 gy, Yo, ) Yo Yun} P lasn— oo, (82)
which in combination with (80) implies that uniformly in x
P {S (ta Yiky» Ya0,) < XI¥1 ks Yo, } — PAZ < x}| = 0,28 n — o0, (83)

Let (Yik,, Ya.0,) = (Fk+, F[) , and be independent of (Fi(l)) and (Fi(z))
n n ; 1

We see that
+ - + r—| D
]P’{S (t,,, Fkn,rgn) <x|I}, Fen} D
T (kn,Ln)
T, — yt
b <ot (84)
o2 <t,,, I,
Combining (83) with (84), we get (72) and (73 ). O
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