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Abstract
We show how Hölder estimates for Feller semigroups can be used to obtain regularity
results for solutions to the Poisson equation A f = g associated with the (extended)
infinitesimal generator of a Feller process. The regularity of f is described in terms
of Hölder–Zygmund spaces of variable order and, moreover, we establish Schauder
estimates. Since Hölder estimates for Feller semigroups have been intensively studied
in the last years, our results apply to a wide class of Feller processes, e.g. random
time changes of Lévy processes and solutions to Lévy-driven stochastic differential
equations.Most prominently, we establish Schauder estimates for the Poisson equation
associated with the fractional Laplacian of variable order. As a by-product, we obtain
new regularity estimates for semigroups associated with stable-like processes.

Keywords Feller process · Infinitesimal generator · Regularity · Hölder space of
variable order · Favard space
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1 Introduction

Let (Xt )t≥0 be an Rd -valued Feller process with semigroup Pt f (x) = Ex f (Xt ),
x ∈ Rd . In this paper, we study the regularity of functions in the abstract Hölder
space

F1 :=
{
f ∈ Bb(R

d); sup
t∈(0,1)

sup
x∈Rd

∣∣∣∣ Pt f (x) − f (x)

t

∣∣∣∣ < ∞
}

,
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the so-called Favard space of order 1; cf. [9,14]. It is known that for any f ∈ F1 the
limit

Ae f (x) := lim
t→0

Ex f (Xt ) − f (x)

t
(1)

exists up to a set of potential zero (cf. [1]) and this gives rise to the extended infinites-
imal generator Ae which maps the Favard space F1 into the space of bounded Borel
measurable functions Bb(R

d); cf. Sect. 2 for details. It is immediate from Dynkin’s
formula that Ae extends the (strong) infinitesimal generator A of (Xt )t≥0; in particular,
F1 contains the domain D(A) of the infinitesimal generator. We are interested in the
following questions:

• What does the existence of limit (1) tell us about the regularity of f ∈ F1? In
particular: How smooth are functions in the domain of the infinitesimal generator
of (Xt )t≥0?

• If f ∈ F1 is a solution to the equation Ae f = g and g has a certain regularity,
say g is Hölder continuous of order δ ∈ (0, 1), then what additional information
do we get on the smoothness of f ?

Our aim is to describe the regularity of f in terms of Hölder spaces of variable order.
More precisely, we are looking for a mapping κ : Rd → (0, 2) such that

f ∈ F1 �⇒ f ∈ C
κ(·)
b (Rd)

where Cκ(·)
b (Rd) denotes the Hölder–Zygmund space of variable order equipped with

the norm

‖ f ‖
C

κ(·)
b (Rd )

:= ‖ f ‖∞ + sup
x∈Rd

sup
0<|h|≤1

| f (x + 2h) − 2 f (x + h) + f (x)|
|h|κ(x)

,

cf. Sect. 2 for details. If Ae f = g ∈ Cδ
b(R

d) for some δ > 0, then it is natural to
expect that f “inherits” some regularity from g, i. e.

f ∈ F1, Ae f = g ∈ Cδ
b(R

d) �⇒ f ∈ C
κ(·)+�

b (Rd)

for some constant � = �(δ) > 0.Moreover, we are interested in establishing Schauder
estimates, i. e. estimates of the form

‖ f ‖
C

κ(·)
b (Rd )

≤ C(‖ f ‖∞ + ‖Ae f ‖∞) and

‖ f ‖
C

κ(·)+�
b (Rd )

≤ C ′(‖ f ‖∞ + ‖Ae f ‖Cδ
b(R

d )). (2)

Let us mention that the results, which we present in this paper, do not apply to Feller
semigroups with a roughening effect (see e.g. [16] for examples of such semigroups);
we study exclusively Feller semigroupswith a smoothing effect (see below for details).
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The toy example, which we have in mind, is the stable-like Feller process (Xt )t≥0
with infinitesimal generator A,

A f (x) = cd,α(x)

∫
y �=0

(
f (x + y) − f (x) − y · ∇ f (x)1(0,1)(|y|)

) 1

|y|d+α(x)
dy, (3)

which is, roughly speaking, a fractional Laplacian of variable order, that is
A = −(−�)α(•)/2. Intuitively, (Xt )t≥0 behaves locally like an isotropic stable Lévy
process, but its index of stability depends on the current position of the process. In
view of the results in [27,30], it is an educated guess that any function f ∈ D(A) is
“almost” locally Hölder continuous with Hölder exponent α(·), in the sense that

| f (x + 2h) − 2 f (x + h) + f (x)| ≤ C f ,ε|h|α(x)−ε, x, h ∈ Rd (4)

for any small ε > 0. We will show that this is indeed true and, moreover, we will
establish Schauder estimates for the equation −(−�)α(•)/2 f = g (cf. Theorem 4.1
and Corollary 4.3).

Let us comment on related literature. For some particular examples of Feller gener-
ators A, there are Schauder estimates for solutions to the integro-differential equation
A f = g available in the literature; for instance, Bass obtained Schauder estimates for
a class of stable-like operators (ν(x, dy) = c(x, y)|y|−d−α with c : R2 → (0,∞)

bounded and infx,y c(x, y) > 0), and Bae and Kassmann [2] studied operators with
functional order of differentiability (ν(x, dy) = c(x, y)/(|y|dϕ(y) dy) for “nice” ϕ).
The recent article [27] establishes Schauder estimates for a large class of Lévy gen-
erators using gradient estimate for the transition density pt of the associated Lévy
process. Moreover, we would like to mention the article [30] which studies a comple-
mentary question—namely, what are sufficient conditions for the existence of limit (1)
in the space C∞(Rd) of continuous functions vanishing at infinity—and which shows
that certain Hölder space of variable order is contained in the domain of the (strong)
infinitesimal generator. Schauder estimates have interesting applications in the the-
ory of stochastic differential equations (SDES): they can be used to obtain uniqueness
results for solutions to SDEs driven by Lévy processes and to study the convergence of
the Euler–Maruyama approximation (see e.g. [11,31,46] and the references therein).

This paper consists of two parts. In Sect. 3, we show how regularity estimates on
Feller semigroups can be used to establish Schauder estimates (2) for functions f in
the Favard space of a Feller process (Xt )t≥0. Our first result, Proposition 3.1, states
that if the semigroup Ptu(x) := Exu(Xt ) satisfies

‖Ptu‖Cκ
b (Rd ) ≤ ct−β‖u‖∞, t ∈ (0, 1), u ∈ Bb(R

d)

for some β ∈ [0, 1) and κ > 0, then F1 ⊆ Cκ
b(R

d) and

‖ f ‖Cκ
b (Rd ) ≤ C (‖ f ‖∞ + ‖Ae f ‖∞) for all f ∈ F1.

Proposition 3.1 has interesting applications, but, in general, it does not give optimal
regularity results but rather a worst-case estimate on the regularity of f ∈ F1; for
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instance, if (Xt )t≥0 is an isotropic stable-like process with infinitesimal generator
A = −(−�)α(•)/2 (cf. (3)), then an application of Proposition 3.1 shows

| f (x + 2h) − 2 f (x + h) + f (x)| ≤ C f ,ε|h|α0−ε, x, h ∈ Rd , f ∈ D(A),

where α0 := infx∈Rd α(x), and this is much weaker than regularity (4) which we
would expect. Our main result in Sect. 3 is a “localized” version of Proposition 3.1
which takes into account the local behaviour of the Feller process (Xt )t≥0 and which
allows us to describe the local regularity of a function f ∈ F1 (cf. Theorem 3.2 and
Corollary 3.4). As an application, we obtain a regularity result for solutions to the
Poisson equation Ae f = g with g ∈ Cδ

b(R
d) (cf. Theorem 3.5).

In the second part of the paper, Sect. 4, we illustrate the results from Sect. 3 with
several examples. Applying the results to isotropic stable-like processes, we establish
Schauder estimates for the Poisson equation −(−�)α(•)/2 f = g associated with the
fractional Laplacian of variable order (cf. Theorem 4.1 and Corollary 4.3). Schauder
estimates of this type seem to be a novelty in the literature. As a by-product of the
proof, we obtain Hölder estimates for semigroups of isotropic stable-like processes
which are of independent interest (see Sect. 6.1). Furthermore, we present Schauder
estimates for random time changes of Lévy processes (Proposition 4.5) and solutions
to Lévy-driven SDEs (Proposition 4.7) and discuss possible extensions.

2 Basic Definitions and Notation

Weconsider theEuclidean spaceRd with the scalar product x ·y := ∑d
j=1 x j y j and the

Borel σ -algebra B(Rd) generated by the open balls B(x, r) and closed balls B(x, r).
As usual, we set x∧y := min{x, y} and x∨y := max{x, y} for x, y ∈ R. If f is a real-
valued function, then supp f denotes its support,∇ f the gradient and∇2 f theHessian

of f . For two stochastic processes (Xt )t≥0 and (Yt )t≥0 we write (Xt )t≥0
d= (Yt )t≥0 if

(Xt )t≥0 and (Yt )t≥0 have the same finite-dimensional distributions.

Function spaces: Bb(R
d) is the space of bounded Borel measurable functions f :

Rd → R. The smooth functions with compact support are denoted by C∞
c (Rd), and

C∞(Rd) is the space of continuous functions f : Rd → R vanishing at infinity.
Superscripts k ∈ N are used to denote the order of differentiability, e.g. f ∈ Ck∞(Rd)

means that f and its derivatives up to order k are C∞(Rd)-functions. For U ⊆ Rd

and α : U → [0,∞) bounded we define Hölder–Zygmund spaces of variable order
by

Cα(·)(U ) :=
{
f ∈ C(U ); ∀x ∈ U : sup

0<|h|≤1
x±h∈U

|�k
h f (x)|

|h|α(x)
< ∞

}
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and

C
α(·)
b (U ) :=

{
f ∈ Cb(U ); ‖ f ‖

C
α(·)
b (U )

:= sup
x∈U

| f (x)|+ sup
x∈U ,0<|h|≤1
B(x,k|h|)⊂U

|�k
h f (x)|

|h|α(x)
<∞

}
,

where k ∈ N is the smallest number strictly larger than ‖α‖∞ and

�h f (x) := f (x + h) − f (x), �m
h f (x) := �h�

m−1
h f (x), m ≥ 2, (5)

are the iterated difference operators. Moreover, we set

C
α(·)+
b (U ) :=

⋃
ε>0

C
α(·)+ε
b (U ) and C

α(·)−
b (U ) :=

⋂
ε>0

C
max{α(·)−ε,0}
b (U ).

Clearly,

C
α(·)+
b (U ) ⊆ C

α(·)
b (U ) ⊆ C

α(·)−
b (U ) and C

α(·)
b (U ) ⊆ Cα(·)(U ).

If α(x) = α is constant, then we write Cα(U ) and Cα
b (U ) for the associated Hölder–

Zygmund spaces. ForU = Rd and α /∈ N, the Hölder–Zygmund space Cα
b (Rd) is the

“classical” Hölder space Cα
b (Rd) equipped with the norm

‖ f ‖Cα
b (Rd ) := ‖ f ‖∞ +

�α�∑
j=0

∑
β∈Nd

0|β|= j

‖∂β f ‖∞ + max
β∈Nd

0|β|=�α�
sup
x �=y

|∂β f (x) − ∂β f (y)|
|x − y|α−�α� ;

cf. [52, Section 2.7]. For α = 1, it is possible to show that C1
b(R

d) is strictly larger
than the space of bounded Lipschitz continuous functions (cf. [51, p. 148]), which is
in turn strictly larger than C1

b(R
d).

Feller processes: AMarkov process (Xt )t≥0 is aFeller process if the associated transi-
tion semigroup Pt f (x) := Ex f (Xt ) is a Feller semigroup (see e.g. [6,19] for details).
Without loss of generality, we may assume that (Xt )t≥0 has right-continuous sample
paths with finite left-hand limits. Following [14, II.5.(b)], we call

F1 := FX
1 :=

{
f ∈ Bb(R

d); sup
t∈(0,1)

∥∥∥∥ Pt f − f

t

∥∥∥∥∞
< ∞

}
(6)

the Favard space of order 1. The (strong) infinitesimal generator (A,D(A)) is defined
by
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D(A) :=
{
f ∈ C∞(Rd); ∃g ∈ C∞(Rd) : lim

t→0

∥∥∥∥ Pt f − f

t
− g

∥∥∥∥∞
= 0

}
,

A f := lim
t→0

Pt f − f

t
, f ∈ D(A).

IfD(A) is rich, in the sense that C∞
c (Rd) ⊆ D(A), then a result by Courrège and von

Waldenfels (see e.g. [6, Theorem 2.21]), shows that A|C∞
c (Rd ) is a pseudo-differential

operator,

A f (x) = −q(x, D) f (x) := −
∫
Rd

q(x, ξ)ei x ·ξ f̂ (ξ) dξ, f ∈ C∞
c (Rd), (7)

where f̂ (ξ) := (2π)−d
∫
Rd e−i x ·ξ f (x) dx is the Fourier transform of f and

q(x, ξ) = q(x, 0) − ib(x) · ξ + 1

2
ξ · Q(x)ξ

+
∫
y �=0

(
1 − eiy·ξ + iy · ξ1(0,1)(|y|)

)
ν(x, dy) (8)

is a continuous negative definite symbol. If (7) holds, then we say that (Xt )t≥0 is
a Feller process with symbol q. We assume from now on that q(x, 0) = 0. For
each x ∈ Rd , (b(x), Q(x), ν(x, dy)) is a Lévy triplet, i. e. b(x) ∈ Rd , Q(x) ∈
Rd×d is symmetric positive semidefinite and ν(x, ·) is a measure onRd\{0} satisfying∫
y �=0 min{1, |y|2} ν(x, dy) < ∞. The symbol q has bounded coefficients if

sup
x∈Rd

(
|b(x)| + |Q(x)| +

∫
y �=0

min{1, |y|2} ν(x, dy)

)
< ∞;

by [49, Lemma 6.2], q has bounded coefficients if, and only if,

sup
x∈Rd

sup
|ξ |≤1

|q(x, ξ)| < ∞.

If (Xt )t≥0 is a Feller process with symbol q, then

Px
(
sup
s≤t

|Xs − x | > r

)
≤ ct sup

|y−x |≤r
sup

|ξ |≤r−1
|q(y, ξ)|, r > 0, t > 0, x ∈ Rd (9)

holds for an absolute constant c > 0; this maximal inequality goes back to
Schilling [47] (see also [6, Theorem 5.1] or [22, Lemma 1.29]). If the symbol
q(ξ) = q(x, ξ) of a Feller process (Lt )t≥0 does not depend on x ∈ Rd , then (Lt )t≥0
is a Lévy process. By [6, Theorem 2.6], this is equivalent to saying that (Lt )t≥0 has
stationary and independent increments. It is natural to askwhether for a givenmapping
q of form (8), there is a Feller process (Xt )t≥0 with symbol q. In general, the answer
is negative; see the monographs [6,19,22] for a survey on known existence results for
Feller processes. In this article, we will frequently use an existence theorem from [22]
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which constructs Feller processes with symbol of the form q(x, ξ) = ψα(x)(ξ), where
α : Rd → I is a Hölder continuous mapping and ξ �→ ψβ(ξ), β ∈ I , is a family
of characteristic exponents of Lévy processes. For instance, it can be applied to the
family ψβ(ξ) = |ξ |β , β ∈ I = (0, 2], to prove the existence of isotropic stable-like
processes, i.e. Feller processes with symbol q(x, ξ) = |ξ |α(x), where α : Rd → (0, 2]
is Hölder continuous and infx∈Rd α(x) > 0 (cf. [22, Theorem 5.2]).

Later on, we will use that any Feller process (Xt )t≥0 with infinitesimal generator
(A,D(A)) solves the (A,D(A))-martingale problem, i. e.

Mt := f (Xt ) − f (X0) −
∫ t

0
A f (Xs) ds

is a Px -martingale for any x ∈ Rd and f ∈ D(A). Our standard reference for Feller
processes are the monographs [6,19]; for further information on martingale problems,
we refer the reader to [15,18].

In the remaining part of this section, we define the extended infinitesimal generator
and state some results which we will need later on. Following [44], we define the
extended (infinitesimal) generator Ae in terms of the λ-potential operator Rλ, that is,
f ∈ D(Ae) and g = Ae f if and only if

(i) f ∈ Bb(R
d) and g is a measurable function such that ‖Rλ(|g|)‖∞ < ∞ for some

(all) λ > 0,
(ii) f = Rλ(λ f − g) for all λ > 0.

Themapping g = Ae f is defined up to a set of potential zero, i.e. up to a set B ∈ B(Rd)

which satisfies Ex
∫
(0,∞)

1B(Xt ) dt = 0 for all x ∈ Rd . We will often choose a
representative with a certain property; for instance if we write “Ae f is continuous”,
this means that there exists a continuous function g such that (i),(ii) hold. In abuse of
notation, we set

‖Ae f ‖∞ := inf{c > 0; |Ae f | ≤ c up to a set of potential zero}.

Clearly, the extended infinitesimal generator (Ae,D(Ae)) extends the (strong)
infinitesimal generator (A,D(A)). The following result is essentially due to Airault
and Föllmer [1] and shows the connection to the Favard space of order 1 (cf. (6)).

Theorem 2.1 Let (Xt )t≥0 be a Feller process with semigroup (Pt )t≥0 and extended
generator (Ae,D(Ae)). The associated Favard space F1 of order 1 satisfies

F1 = { f ∈ D(Ae); ‖Ae f ‖∞ < ∞}.

If f ∈ F1 then

sup
t∈(0,1)

1

t
‖Pt f − f ‖∞ = ‖Ae f ‖∞ (10)

and, moreover, Dynkin’s formula

Ex f (Xτ ) − f (x) = Ex
(∫ τ

0
Ae f (Xs) ds

)
(11)
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holds for any x ∈ Rd and any stopping time τ such that Exτ < ∞.

The next corollary shows how the Favard space can be defined in terms of the
stopped process Xt∧τ xr

. Since we will frequently use stopping techniques, it plays an
important role in our proofs .

Corollary 2.2 Let (Xt )t≥0 be a Feller process with semigroup (Pt )t≥0, extended gen-
erator (Ae,D(Ae)) and symbol q. Denote by

τ x
r := inf{t > 0; |Xt − x | > r}

the exit time of (Xt )t≥0 from the closed ball B(x, r). If q has bounded coefficients,
then the following statements are equivalent for any f ∈ Bb(R

d):

(i) f ∈ F1, i. e. f ∈ D(Ae) and supt∈(0,1) t
−1‖Pt f − f ‖∞ = ‖Ae f ‖∞ < ∞;

(ii) There exists r > 0 such that

Kr ( f ) := sup
t∈(0,1)

1

t
sup
x∈Rd

|Ex f (Xt∧τ xr
) − f (x)| < ∞.

If one (hence both) of the conditions is satisfied, then

Ae f (x) = lim
t→0

Ex f (Xt∧τ xr
) − f (x)

t
(12)

up to a set of potential zero for any r > 0. In particular, ‖Ae f ‖∞ ≤ Kr ( f ) for r > 0.

For the proof of Theorem 2.1 and Corollary 2.2 and some further remarks, we refer
to Appendix A.

3 Main Results

Let (Xt )t≥0 be a Feller process with semigroup (Pt )t≥0. Throughout this section,

FX
1 := F1 :=

{
f ∈ Bb(R

d); sup
t∈(0,1)

∥∥∥∥ Pt f − f

t

∥∥∥∥∞
< ∞

}

is the Favard space of order 1 associated with (Xt )t≥0. By Theorem 2.1, we have

F1 = { f ∈ D(Ae); ‖Ae f ‖∞ < ∞},

where Ae denotes the extended infinitesimal generator. The results which we present
in this section will be proved in Sect. 5.

Our first result, Proposition 3.1, shows how regularity estimates for the semigroup
(Pt )t≥0 can be used to obtain Schauder estimates of the form

‖ f ‖Cκ
b (Rd ) ≤ C(‖ f ‖∞ + ‖Ae f ‖∞), f ∈ F1.
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Proposition 3.1 Let (Xt )t≥0 be a Feller process with semigroup (Pt )t≥0, extended
generator (Ae,D(Ae)) and Favard space F1. If there exist constants M > 0, T > 0,
κ ≥ 0 and β ∈ (0, 1) such that

‖Ptu‖Cκ
b (Rd ) ≤ Mt−β‖u‖∞ (13)

for all u ∈ Bb(R
d) and t ∈ (0, T ], then

F1 ⊆ Cκ
b(R

d)

and

‖ f ‖Cκ
b (Rd ) ≤ C(‖ f ‖∞ + ‖Ae f ‖∞), f ∈ F1,

for some constant C = C(T , M, κ, β).

Since the domain D(A) of the (strong) infinitesimal generator of (Xt )t≥0 is con-
tained in F1, Proposition 3.1 gives, in particular, D(A) ⊆ Cκ

b(R
d).

Proposition 3.1 is a useful tool, but it does not, in general, give optimal regularity
results. Since Feller processes are inhomogeneous in space, the regularity of f ∈ F1
will, in general, depend on the space variable x , e.g.

|�2
h f (x)| = | f (x + 2h) − 2 f (x + h) + f (x)| ≤ C |h|κ(x), |h| ≤ 1, (14)

and therefore it is much more natural to use Hölder–Zygmund spaces of variable order
to describe the regularity; this is also indicated by the results obtained in [30].

Our second result, Theorem 3.2, shows howHölder estimates for Feller semigroups
can be used to establish local Hölder estimates (14). Before stating the result, let us
explain the idea. Let (Xt )t≥0 be a Feller process with symbol q and Favard space FX

1 ,
and fix x ∈ Rd . Let (Yt )t≥0 be another Feller process which has the same behaviour
as (Xt )t≥0 in a neighbourhood of x , in the sense that its symbol p satisfies

p(z, ξ) = q(z, ξ), z ∈ B(x, δ), ξ ∈ Rd (15)

for some δ > 0. The aim is to choose (Yt )t≥0 in such a way that its semigroup (Tt )t≥0
satisfies a “good” regularity estimate

‖Ttu‖Cκ
b (Rd ) ≤ Mt−β‖u‖∞, u ∈ Bb(R

d);

here “good” means that κ is large. Because of (15), it is intuitively clear that

|Ez f (Xt ) − f (z)| ≈ |Ez f (Yt ) − f (z)| for z close to x and “small” t . (16)

(We will use stopping to specify what “small” means; see Lemma 5.2.) If χ is a
truncation function such that 1B(x,ε) ≤ χ ≤ 1B(x,2ε) for small ε > 0, then it is,
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because of (16), natural to expect that for any f ∈ FX
1 the truncatedmapping g := f ·χ

is in the Favard space FY
1 associated with (Yt )t≥0, i. e.

sup
t∈(0,1)

sup
z∈Rd

t−1|Ez( f · χ)(Yt ) − ( f · χ)(z)| < ∞.

Since, by Proposition 3.1, g ∈ FY
1 ⊆ Cκ

b(R
d), and g = f in a neighbourhood of x ,

this entails that f (·) is κ-Hölder continuous in a neighbourhood of x . Since κ = κ(x)
depends on the point x ∈ Rd ,whichwefixed at the beginning, this localizingprocedure
allows us to obtain local Hölder estimates (14) for f .

Theorem 3.2 Let (Xt )t≥0 be a Feller process with extended generator (Ae,D(Ae))

and Favard space F X
1 such that

Ae f (z) = −q(z, D) f (z), f ∈ C∞
c (Rd), z ∈ Rd ,

for a continuous negative definite symbol q (cf. (7)). Let x ∈ Rd and δ ∈ (0, 1) be
such that there exists a Feller process (Y (x)

t )t≥0 with the following properties:

(C1) The infinitesimal generator (L(x),D(L(x))) of (Y (x)
t )t≥0 restricted to C∞

c (Rd)

is a pseudo-differential operator with negative definite symbol p(x),

p(x)(z, ξ) = −ib(x)(z) · ξ

+
∫
y �=0

(
1 − eiy·ξ + iy · ξ1(0,1)(|y|)

)
ν(x)(z, dy), z, ξ ∈ Rd ;

p(x) has bounded coefficients, and

p(x)(z, ξ) = q(z, ξ) for all ξ ∈ Rd , |z − x | ≤ 4δ. (17)

(C2) The (L(x),C∞
c (Rd))-martingale problem is well-posed.

(C3) There exist constants M(x) > 0, κ(x) ∈ [0, 2] and β(x) ∈ (0, 1) such that the
semigroup (T (x)

t )t≥0 associated with (Y (x)
t )t≥0 satisfies

‖T (x)
t u‖

C
κ(x)
b (Rd )

≤ M(x)t−β(x)‖u‖∞

for all u ∈ Bb(R
d), t ∈ (0, 1).

If f ∈ FX
1 and �(x) ∈ [0, 1] are such that

‖ f ‖
C

�(x)
b (B(x,4δ))

< ∞ and sup
|z−x |≤4δ

∫
|y|≤1

|y|1+�(x) ν(x)(z, dy) < ∞, (18)

then

|�2
h f (x)| ≤ C |h|κ(x)

(
‖ f ‖∞ + ‖Ae f ‖∞ + ‖ f ‖

C
�(x)
b (B(x,4δ))

)
(19)
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for all |h| ≤ δ/2. The finite constant C > 0 depends continuously on M(x) ∈ [0,∞),
β(x) ∈ [0, 1) and K (x) ∈ [0,∞) with

K (x) := sup
z∈Rd

(
|b(x)(z)| +

∫
y �=0

min{1, |y|2} ν(x)(z, dy)

)

+ sup
|z−x |≤4δ

∫
y �=0

min{|y|�(x)+1, 1} ν(x)(z, dy).

Remark 3.3 (i) The assumption f ∈ C�(x)
b (B(x, 4δ)) is an a priori estimate on the

regularity of f . If the semigroup (Pt )t≥0 of (Xt )t≥0 satisfies a regularity estimate
of form (13), then such an a priori estimate can be obtained from Proposition 3.1.
Note that, by (18), there is a trade-off between the required a priori regularity of
f and the roughness of the measures ν(x)(z, dy), z ∈ B(x, 4δ). If the measures
ν(x)(z, dy) only have a weak singularity at y = 0, in the sense that

sup
|z−x |≤4δ

∫
|y|≤1

|y| ν(x)(z, dy) < ∞,

then we can choose �(x) = 0, i. e. it suffices that f is continuous. In contrast, if
(at least) one of the measures has a strong singularity at y = 0, then we need a
higher regularity of f (in a neighbourhood of x).

(ii) It is not very restrictive to assume that (Y (x)
t )t≥0 has bounded coefficients since

(Y (x)
t )t≥0 is only supposed tomimic the behaviour of (Xt )t≥0 in a neighbourhood

of x (cf. (17)). We are, essentially, free to choose the behaviour of the process far
away from x . In dimension d = 1, it is, for instance, a natural idea to consider

p(x)(z, ξ) :=

⎧⎪⎨
⎪⎩
q(x − 4δ, ξ), z ≤ x − 4δ,

q(z, ξ), |z − x | < 4δ,

q(x + 4δ, ξ), z ≥ x + 4δ;

note that p(x) has bounded coefficients even if q has unbounded coefficients.
(iii) Condition (C2) is automatically satisfied ifC∞

c (Rd) is a core for the infinitesimal

generator of (Y (x)
t )t≥0; see e.g. [20, Proposition 3.9.3] or [22, Theorem 1.38].

(iv) It is possible to extend Theorem 3.2 to Feller processes with a non-vanishing
diffusion part. The idea of the proof is similar, but we need to impose stronger
assumptions on the regularity on f , e.g. that f |B(x,4δ) is differentiable.

As a direct consequence of Theorem 3.2, we obtain the following corollary.

Corollary 3.4 Let (Xt )t≥0 be a Feller process with extended generator (Ae,D(Ae))

and symbol q. If there exist U ⊆ Rd open, δ > 0 and � : U → [0, 1] such that for
any x ∈ U the assumptions of Theorem 3.2 hold, then the Favard space of order 1
satisfies

C�(·)(U ) ∩ F1 ⊆ Cκ(·)(U ).
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If additionally

sup
x∈U

(M(x) + K (x)) < ∞ and sup
x∈U

β(x) < 1, (20)

then C
�(·)
b (U ) ∩ F1 ⊆ C

κ(·)
b (U ) and there exists a constant C > 0 such that

‖ f ‖
C

κ(·)
b (U )

≤ C
(
‖ f ‖∞ + ‖Ae f ‖∞ + ‖ f ‖

C
�(·)
b (U )

)
for all f ∈ C

�(·)
b (U ) ∩ F1;

(21)

in particular, the domain D(A) of the (strong) infinitesimal generator A satisfies
C

�(·)
b (U ) ∩ D(A) ⊆ C

κ(·)
b (U ) and (21) holds for any f ∈ C

�(·)
b (U ) ∩ D(A).

In many examples (see e.g. Sect. 4), it is possible to choose the mapping � in such
a way that F1 ⊆ C

�(·)
b (U ); in this case, Corollary 3.4 shows that F1 ⊆ Cκ(·)(U ) (resp.

F1 ⊆ C
κ(·)
b (U )) and the Schauder estimate (21) holds for any function f ∈ F1. In our

applications, wewill even have ‖ f ‖
C

�(·)
b (U )

≤ c(‖ f ‖∞+‖Ae f ‖∞), and therefore (21)

becomes

‖ f ‖
C

κ(·)
b (U )

≤ C ′ (‖ f ‖∞ + ‖Ae f ‖∞) for all f ∈ F1.

In Sect. 4, we will apply Corollary 3.4 to isotropic stable-like processes, i. e. Feller
processes with symbol of the form q(x, ξ) = |ξ |α(x). The study of the domain D(A)

of the infinitesimal generator A is particularly interesting since A is an operator of
variable order. We will show that any function f ∈ D(A) satisfies the Hölder estimate
of variable order

|�2
h f (x)| ≤ Cε|h|α(x)−ε(‖ f ‖∞ + ‖A f ‖∞), |h| ≤ 1, x ∈ Rd ,

for ε > 0 (cf. Theorem 4.1) for the precise statement.
Our final result in this section is concerned with Schauder estimates for solu-

tions to the equation Ae f = g for Hölder continuous mappings g. To establish such
Schauder estimates, we need additional assumptions on the regularity of the symbol
and improved regularity estimates for the semigroup of the “localizing” Feller process
(Y (x)

t )t≥0 in Theorem 3.2.

Theorem 3.5 Let (Xt )t≥0 be a Feller process with extended generator (Ae,D(Ae))

and Favard space F X
1 such that

Ae f (z) = −q(z, D) f (z), f ∈ C∞
c (Rd), z ∈ Rd ,

for a continuous negative definite symbol q. Assume that there exists δ ∈ (0, 1) such
that for any x ∈ Rd there exists a Feller process (Y (x)

t )t≥0 with symbol
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p(x)(z, ξ)=−ib(x)(z) · ξ +
∫
y �=0

(
1 − eiy·ξ + iy · ξ1(0,1)(|y|)

)
ν(x)(z, dy), (22)

satisfying (C1)-(C3) in Theorem3.2. Assume additionally that the following conditions
hold for absolute constants C1,C2 > 0:

(S1) For any x, z ∈ Rd , there exists α(x)(z) ∈ (0, 2) such that

ν(x)(z, dy) ≤ C1|y|−d−α(x)(z) dy on B(0, 1)

and 0 < inf x,z∈Rd α(x)(z) ≤ supx,z∈Rd α(x)(z) < 2.
(S2) There exists θ ∈ (0, 1] such that

|b(x)(z) − b(x)(z + h)| ≤ C2|h|θ , x, z, h ∈ Rd , (23)

and the following statement holds for every r ∈ (0, 1) and every x, z ∈ Rd: If
u : Rd → R is a measurable mapping such that

|u(y)| ≤ cu min{|y|α(x)(z)+r , 1}, y ∈ Rd ,

for some cu > 0, then there exist C3,r > 0 and Hr > 0 (not depending on u,
x, z) such that

∣∣∣∣
∫

u(y) ν(x)(z, dy) −
∫

u(y) ν(x)(z + h, dy)

∣∣∣∣ ≤ C3,r cu |h|θ (24)

for all |h| ≤ Hr .
(S3) There exists � > 0 such that the semigroup (T (x)

t )t≥0 of the Feller process
(Y (x)

t )t≥0 satisfies

‖T (x)
t u‖

C
λ+κ(x)
b (Rd )

≤ M(x)t−β(x)‖u‖Cλ
b(R

d ), u ∈ Cλ
b(R

d), t ∈ (0, 1), (25)

for any x ∈ Rd and λ ∈ [0,�]; here M(x), κ(x) and β(x) denote the constants
from (C3).

(S4) The mapping κ : Rd → (0,∞) is uniformly continuous and bounded away
from zero, i. e. κ0 := inf x∈Rd κ(x) > 0.

(S5) supx∈Rd M(x) < ∞, supx∈Rd β(x) < 1, and

sup
x,z∈Rd

(
|b(x)(z)| +

∫
|y|≥1

ν(x)(z, dy)

)
< ∞.

Let � : Rd → [0, 2] be a uniformly continuous function satisfying

σ := inf
x∈Rd

inf|z−x |≤4δ

(
1 + �(x) − α(x)(z)

)
> 0. (26)
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If f ∈ FX
1 is such that f ∈ C

�(·)
b (Rd) and

Ae f = g ∈ Cλ
b(R

d)

for some λ ∈ [0,�], then f ∈ C
(κ(·)+min{θ,λ,σ })−
b (Rd), i. e.

f ∈
⋂

ε∈(0,κ0)

C
κ(·)+min{θ,λ,σ }−ε
b (Rd). (27)

Moreover, the Schauder estimate

‖ f ‖
C

κ(·)+min{θ,λ,σ }−ε
b (Rd )

≤ Cε

(
‖Ae f ‖Cλ

b(R
d ) + ‖ f ‖

C
�(·)
b (Rd )

)
(28)

holds for any ε ∈ (0, κ0) and some finite constant Cε which does not depend on f , g.

Remark 3.6 (i) In our examples in Sect. 4, we will be able to choose � in such a
way that α(x)(z) − �(z) is arbitrarily small for x ∈ Rd and z ∈ B(x, 4δ), and
therefore the constant σ in (26) will be close to 1. Noting that θ ≤ 1, it follows
that we can discard σ in (27) and (28) i. e. we get

f ∈ C
κ(·)+min{θ,λ}−ε
b (Rd), ε ∈ (0, κ0). (29)

We would like to point out that it is, in general, not possible to improve this
estimate and to obtain that f ∈ C

κ(·)+λ−ε
b (Rd), ε ∈ (0, κ0). To see this, consider

a Feller process (Xt )t≥0 with symbol q(x, ξ) = ib(x)ξ , x, ξ ∈ R, for a mapping
b ∈ Cb(R

d) with infx b(x) > 0. If we define

f (x) :=
∫ x

0

1

b(y)
dy, x ∈ Rd ,

then Ae f = b f ′ = 1 is smooth. However, the regularity of f clearly depends
on the regularity of b,

regularity of f ≈ 1 + regularity of b,

which means that f is less regular than Ae f .
(ii) It suffices to check (25) for λ = �; for λ ∈ (0,�), the inequality then follows

from the interpolation theorem (see e.g. [52, Section 1.3.3] or [39, Theorem 1.6])
and the fact that Cγ

b (Rd) can be written as a real interpolation space (see [52,
Theorem 2.7.2.1] for details).

(iii) (24) is an assumption on the regularity of z �→ ν(x)(z, dy). If ν(x)(z, dy) has
a density, say m(x)(z, y), with respect to Lebesgue measure, then a sufficient
condition for (24) is∫

y �=0
min{1, |y|α(x)(z)+r }|m(x)(z, y) − m(x)(z + h, y)| dy ≤ C3,r |h|θ .
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(iv) Condition (S1) is not strictly necessary for the proof of Theorem 3.5; essentially
we need suitable upper bounds for

∫
|y|≤r

|y|γ ν(x)(z, dy) and
∫
r<|y|≤R

|y|γ ν(x)(z, dy),

where 0 < r < R < 1, x, z ∈ Rd and γ ∈ (0, 3).
(v) In (S2), we assume that θ ≤ 1; this assumption can be relaxed. To this end, we

have to replace in (23) and (24) the differences of first order,

|b(x)(z) − b(x)(z + h)| and

∣∣∣∣
∫

u(y) ν(x)(z, dy) −
∫

u(y) ν(x)(z + h, dy)

∣∣∣∣ ,
by iterated differences of higher order (cf. (5)). This makes the proof more tech-
nical, but the idea of the proof stays the same.

The proofs of the results stated in this section will be presented in Sect. 5.

4 Applications

In this section,we apply the results from the previous section to various classes of Feller
processes. We will study processes of variable order (Theorem 4.1 and Corollary 4.3),
random time changes of Lévy processes (Proposition 4.5) and solutions to Lévy-driven
SDEs (Proposition 4.7). Our aim is to illustrate the range of applications, and therefore,
we do not strive for the greatest generality of the examples; we will, however, point the
reader to possible extensions of the results which we present. We remind the reader
of the notation

C
α(·)+
b (Rd) :=

⋃
ε>0

C
α(·)+ε
b (Rd) C

α(·)−
b (Rd) :=

⋂
ε>0

C
max{α(·)−ε,0}
b (Rd)

introduced in Sect. 2.
The first part of this section is devoted to isotropic stable-like processes, i. e. Feller

processes (Xt )t≥0 with symbol of the form q(x, ξ) = |ξ |α(x); they appeared first in
papers by Bass [3]. A sufficient condition for the existence of such a Feller process is
that α : Rd → (0, 2] is Hölder continuous and bounded from below (cf. [22, Theorem
5.2]). If α(Rd) ⊆ (0, 2), then the infinitesimal generator A of (Xt )t≥0 satisfies

A f (x) = cd,α(x)

∫
y �=0

(
f (x + y) − f (x) − y · ∇ f (x)1(0,1)(|y|)

) 1

|y|d+α(x)
dy,

for all f ∈ C∞
c (Rd), which means that A is a fractional Laplacian of variable order,

i.e. A = −(−�)α(·)/2. This makes A—and hence the stable-like process (Xt )t≥0—an
interesting object of study. To our knowledge, there are no Schauder estimates for the
Poisson equation A f = g available in the existing literature. Using the results from
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the previous section, we are able to derive Schauder estimates for functions f in the
Favard space F1 (and, hence in particular, for f ∈ D(A)) (cf. Theorem 4.1), as well
as Schauder estimates for solutions to A f = g (cf. Corollary 4.3).

Theorem 4.1 Let (Xt )t≥0 be a Feller process with symbol q(x, ξ) = |ξ |α(x) for a
Hölder continuous function α : Rd → (0, 2) such that

0 < αL := inf
x∈Rd

α(x) ≤ sup
x∈Rd

α(x) < 2.

The associated Favard space F1 of order 1 (cf. (6)) satisfies

F1 ⊆ C
α(·)−
b (Rd).

For any ε ∈ (0, αL), there exists a finite constant C = C(ε, α) such that

‖ f ‖
C

α(·)−ε
b (Rd )

≤ C(‖ f ‖∞ + ‖Ae f ‖∞), f ∈ F1, (30)

where Ae denotes the extended generator of (Xt )t≥0. In particular, (30) holds for any
f in the domainD(A) of the (strong) generator of (Xt )t≥0, andD(A) ⊆ C

α(·)−
b (Rd).

Remark 4.2 (i) Theorem 4.1 allows us to obtain information on the regularity of
the transition density p(t, x, y) of (Xt )t≥0. Since p(t, ·, y) ∈ D(A) for each
t > 0 and y ∈ Rd (cf. [22, Corollary 3.6]), it follows from Theorem 4.1 that
p(t, ·, y) ∈ C

α(·)−
b (Rd); in particular, x �→ p(t, x, y) is differentiable at x ∈

{α > 1}. Moreover, (∂t − Ax )p(t, x, y) = 0 entails by [22, Theorem 3.8] that

‖p(t, ·, y)‖
C

α(·)−ε
b (Rd )

≤ Ct−1−d/αL , t ∈ (0, T ), y ∈ Rd ,

for a finite constant C = C(ε, α, T ). Some related results on the regularity of
the transition density were recently obtained in [10].

(ii) Theorem 4.1 gives a necessary condition for a function f ∈ C∞(Rd) to be
in the domain D(A) of the infinitesimal generator; sufficient conditions were
established in [30, Example 5.5]. Combining both results, it should be possible
to show that D(A) is an algebra, i. e. f , g ∈ D(A) implies f · g ∈ D(A), and
that

A( f · g) = f Ag + gA f + �( f , g), f , g ∈ D(A),

see [27, Proof of Theorem 4.3(iii)] for the idea of the proof; here

�( f , g)(x) := cd,α(x)

∫
y �=0

( f (x + y) − f (x)) (g(x + y) − g(x))
1

|y|d+α(x)
dy
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is the so-called carré du champ operator (cf. [8,12]) and ν(x, dy) = cd,α(x)

|y|−d−α(x) dy is the family of Lévy measures associated with the symbol |ξ |α(x)

via the Lévy–Khintchine representation.
(iii) Theorem 4.1 can be generalized to a larger class of “stable-like” Feller processes,

e.g. relativistic stable-like processes and tempered stable-like processes (cf. [22,
Section 5.1] or [25, Example 4.7]) for the existence of such processes. In order
to apply the results from Sect. 3, we need two key ingredients: general existence
results—which ensure the existence of a “nice” Feller process (Yt )t≥0 whose
symbol is “truncated” in a suitable way (cf. Step 1 in the proof of Theorem 4.1)—
and certain heat kernel estimates needed to establish Hölder estimates for the
semigroup; in [22], both ingredients were established for a wide class of stable-
like processes.

As a corollary of Theorem 4.1 and Theorem 3.5, we will establish the following
Schauder estimates for the elliptic equation A f = g associated with the infinitesimal
generator A of the isotropic stable-like process.

Corollary 4.3 Let (Xt )t≥0 be a Feller process with infinitesimal generator (A,D(A))

and symbol q(x, ξ) = |ξ |α(x) for a mapping α : Rd → (0, 2) which satisfies

0 < αL := inf
x∈Rd

≤ sup
x∈Rd

α(x) < 2 (31)

and α ∈ Cγ

b (Rd) for some γ ∈ (0, 1). If f ∈ D(A) is such that

A f = g ∈ Cλ
b(R

d)

for some λ > 0, then f ∈ C
(α(·)+min{λ,γ })−
b (Rd). For any ε ∈ (0, αL), there exists a

constant Cε > 0 (not depending on f , g) such that

‖ f ‖
C

α(·)+min{λ,γ }−ε
b (Rd )

≤ Cε

(
‖A f ‖

C
min{λ,γ }
b (Rd )

+ ‖ f ‖∞
)

. (32)

It is possible to extend Corollary 4.3 to a larger class of “stable-like” processes (see
also Remark 4.2(ii)). Let us give some remarks on the assumption that α ∈ Cγ

b (Rd)

for γ ∈ (0, 1).

Remark 4.4 (i) Let α : Rd → (0, 2) be Lipschitz continuous function satisfying (31).
Since α ∈ C1−ε

b (Rd) for every ε ∈ (0, 1), the Schauder estimate (32) holds with
γ = 1 − ε/2 and ε � ε/2, and this entails that (32) holds with γ = 1. This
means that Corollary 4.3 remains valid for Lipschitz continuous functions (with
γ = 1 in (32)).

(ii) If α ∈ Cγ

b (Rd) for γ > 1, we can apply Corollary 4.3 with γ = 1, but this
gives a weaker regularity estimate for f than we would expect; this is because we
lose some information on the regularity of α. The reason why we have to restrict
ourselves to γ ∈ (0, 1) is that two tools which we need for the proof (Theorem 3.5
and Proposition 6.2) are only available for γ ∈ (0, 1). However, we believe that
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both results are valid for γ > 0, and hence that that the assumption γ ∈ (0, 1) in
Corollary 4.3 can be dropped.

Since the proofs of Theorem 4.1 and Corollary 4.3 are quite technical, we defer
them to Sect. 6. The idea is to apply Theorem 3.2 and Theorem 3.5. As “localizing”
process (Y (x)

t )t≥0, we will use a Feller process with symbol

p(x)(z, ξ) := |ξ |α(x)(z), z, ξ ∈ Rd ,

where

α(x)(z) := (α(x) − ε) ∨ α(z) ∧ (α(x) + ε), z ∈ Rd ,

for fixed x ∈ Rd and small ε > 0. In order to apply the results from the previous
section, we need suitable regularity estimates for the semigroup (Pt )t≥0 associated
with an isotropic stable-like process (Yt )t≥0. We will study the regularity of x �→
Ptu(x) using the parametrix construction of (the transition density of) (Yt )t≥0 in [22];
the results are of independent interest, we refer the reader to Sect. 6.1.

Next we study Feller processes with symbols of the form q(x, ξ) = m(x)|ξ |α .
They can be constructed as random time changes of isotropic α-stable Lévy processes
(see e.g. [6, Section 4.1] and [26] for further details). This class of Feller processes
includes, in particular, solutions to SDEs

dXt = σ(Xt−) dLt , X0 = x,

driven by a one-dimensional isotropic α-stable Lévy process (Lt )t≥0, α ∈ (0, 2]; for
instance if σ > 0 is continuous and at most of linear growth, then there exists a
unique weak solution to the SDE, and the solution is a Feller process with symbol
q(x, ξ) = |σ(x)|α|ξ |α (cf. [23, Example 5.4]).

Proposition 4.5 Let (Xt )t≥0 be a Feller process with symbol q(x, ξ) = m(x)|ξ |α for
α ∈ (0, 2) and a Hölder continuous function m : Rd → (0,∞) such that

0 < inf
x∈Rd

m(x) ≤ sup
x∈Rd

m(x) < ∞.

(i) The infinitesimal generator (A,D(A)) and the Favard space F1 of order 1 satisfy

Cα+∞ (Rd) ⊆ D(A) ⊆ F1 ⊆ Cα−
b (Rd),

where

Cα+∞ (Rd) := Cα+
b (Rd) ∩ C�α�∞ (Rd) =

{
Cα
b (Rd) ∩ C∞(Rd), α ∈ (0, 1),

Cα
b (Rd) ∩ C1∞(Rd), α ∈ [1, 2). (33)
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For any κ ∈ (0, α) there exists a finite constant C1 > 0 such that

‖ f ‖Cκ
b (Rd ) ≤ C1(‖ f ‖∞ + ‖Ae f ‖∞) for all f ∈ F1; (34)

here Ae denotes the extended infinitesimal generator.
(ii) Let θ ∈ (0, 1] be such that m ∈ Cθ

b (Rd). If f ∈ D(A) is such that

A f = g ∈ Cλ
b(R

d)

for some λ > 0, then f ∈ C
(α+min{λ,θ})−
b (Rd) and for any κ ∈ (0, α) there exists

a constant C2 > 0 (not depending on f , A f ) such that

‖ f ‖
C

κ+min{λ,θ}
b (Rd )

≤ C2

(
‖ f ‖∞ + ‖A f ‖

C
min{λ,θ}
b (Rd )

)
.

Proof It follows from [22, Theorem 3.3] that there exists a unique Feller process
(Xt )t≥0 with symbol q(x, ξ) = m(x)|ξ |α , x, ξ ∈ Rd . As in the proof of Propo-
sition 6.1 and Proposition 6.2, it follows from the parametrix construction of the
transition density p in [22] that the semigroup (Pt )t≥0 satisfies

‖Ptu‖Cκ
b (Rd ) ≤ c1,κ t

−κ/α‖u‖∞, u ∈ Bb(R
d), t ∈ (0, 1),

and

‖Ptu‖Cκ+λ
b (Rd )

≤ c2,κ t
−κ/α‖u‖Cλ

b(R
d ), u ∈ Cλ

b(R
d), t ∈ (0, 1),

for any κ ∈ (0, α) and λ ∈ [0, θ ]; for the particular case α ∈ (0, 1] the first inequality
follows from [37]. Applying Proposition 3.1, we get (34); in particular F1 ⊆ Cα−

b (Rd).
The inclusion Cα+∞ (Rd) ⊆ D(A) is a direct consequence of [30, Example 5.4]. The
Schauder estimate in (ii) follows Theorem 3.5 applied with Y (x)

t := Xt for all x ∈ Rd

(using the regularity estimates for (Pt )t≥0 from above). ��
Remark 4.6 (Possible extensions of Proposition 4.5)

(i) Proposition 4.5 can be extended to symbols q(x, ξ) = m(x)ψ(ξ) for “nice”
continuous negative definite functions ψ , e.g. the characteristic exponent of a
relativistic stable or tempered stable Lévy process (cf. [22, Table 5.2] for further
examples).

(ii) The family of Lévy kernels associated with the Feller process (Xt )t≥0 is of the
form ν(x, dy) = m(x)|y|−d−α dy. More generally, it is possible to consider Feller
processes with Lévy kernels ν(x, dy) = m(x, y) ν(dy), for instance [5,37,50]
establish existence results as well as Hölder estimates under suitable assumptions
on m and ν (in particular, x �→ m(x, y) needs to satisfy some Hölder condition).
Combining the results with Proposition 3.1, we can obtain Schauder estimates for
functions in the domain of the infinitesimal generator of (Xt )t≥0. Let us mention
that for ν(x, y) = m(x, y)|y|−d−α dy Schauder estimates were studied in [4].
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We close this section with some results on solutions to Lévy-driven SDEs.

Proposition 4.7 Let (Lt )t≥0 be a 1-dimensional isotropic α-stable Lévy process for
some α ∈ (0, 2). Consider the SDE

dXt = b(Xt−) dt + σ(Xt−) dLt , X0 = x, (35)

for a bounded β-Hölder continuous mapping b : R → R and a bounded Lipschitz
continuous mapping σ : R → (0,∞). If

β + α > 1 and σL := inf
x∈R σ(x) > 0, (36)

then there exists a unique weak solution (Xt )t≥0 to (35), and it gives rise to a Feller
process with infinitesimal generator (A,D(A)). The associated Favard space F1 of
order 1 satisfies

D(A) ⊆ F1 ⊆
⋂
k∈N

C
min{1,α−1/k}
b (R),

and there exists for any k ∈ N a finite constant C > 0 such that

‖ f ‖
C
min{α−1/k,1}
b (R)

≤ C(‖ f ‖∞ + ‖Ae f ‖∞) for all f ∈ F1, (37)

where Ae denotes the extended generator. In particular, (37) holds for any f ∈ D(A)

with Ae f = A f .

Proof It follows from (36) that SDE (35) has a unique weak solution (Xt )t≥0 for any
x ∈ R (cf. [33]). By [49] (see also [24]), (Xt )t≥0 is a Feller process. Moreover, [36]
shows that for any κ < α there exists a constant c > 0 such that the semigroup (Pt )t≥0
satisfies

‖Ptu‖Cκ∧1
b (R) ≤ c‖u‖∞t−κ/α

for all t ∈ (0, 1) and u ∈ Bb(R). Applying Proposition 3.1 proves the assertion. ��
Before giving some remarks on possible extensions of Proposition 4.7, let us men-

tion that sufficient conditions for a function f to be in the domainD(A) were studied
in [30]. For instance, if the SDE has no drift part, i. e. b = 0, then it follows from
Proposition 4.7 and [30, Example 5.6] that

Cα+∞ (R) ⊆ D(A) ⊆ Cα−
b (R) if α ∈ (0, 1] (38)

and

Cα+∞ (R) ⊆ D(A) ⊆ C1
b(R) if α ∈ (1, 2); (39)
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see (33) for the definition of Cα+∞ (R). Intuitively, one would expect that (38) holds for
α ∈ (0, 2). If we knew that the semigroup (Pt )t≥0 of the solution to (35) satisfies

‖Ptu‖Cκ
b (R) ≤ ct−κ/α‖u‖∞, u ∈ Bb(R), t ∈ (0, 1), κ ∈ (0, α) (40)

for some constant c = c(κ) > 0, this would immediately follow from Proposition 3.1.
We could not find (40) in the literature, but we strongly believe that the parametrix
construction of the transition density in [33] can be used to establish such an estimate;
this is also indicated by the proof of Theorem 4.1 (see in particular the proof of
Proposition 6.1). In fact, we believe that the parametrix construction in [33] entails
estimates of the form

‖Ptu‖
C

κ+min{λ,β}
b (R)

≤ ct−κ/α‖u‖
C
min{λ,β}
b (R)

, u ∈ Cλ
b(R), t ∈ (0, 1),

for κ ∈ (0, α), λ > 0 (recall that β is the Hölder exponent of the drift b), which would
then allow us to establish Schauder estimates to the equation A f = g for g ∈ Cλ

b(R)

using Theorem 3.5.

Remark 4.8 (Possible extensions of Proposition 4.7)

(i) The gradient estimates in [36] were obtained under more general conditions, and
(the proof of) Proposition 4.7 extends naturally to this more general framework.
Firstly, Proposition 4.7 can be extended to higher dimensions; the assumption
σL > 0 in (36) is then replaced by the assumption that σ is uniformly non-
degenerate in the sense that

M−1|ξ | ≤ inf
x∈Rd

min{|σ(x)ξ |, |σ(x)−1ξ |}
≤ sup

x∈Rd
max{|σ(x)ξ |, |σ(x)−1ξ |} ≤ M |ξ |

for some absolute constant M > 0 which does not depend on ξ ∈ Rd . Secondly,
Proposition 4.7 holds for a larger class of driving Lévy processes; it suffices to
assume that the Lévy measure ν satisfies ν(dz) ≥ c|z|−d−α1{|z|≤η} for some
c, η > 0 and that SDE (35) has a unique weak solution. Under the stronger
balance condition β + α/2 > 1 this is automatically satisfied for a large class of
Lévy processes, e.g. if (Lt )t≥0 is an relativistic stable or a tempered stable Lévy
process (cf. [11]).

(ii) Recently, Kulczycki et al. [32] established Hölder estimates for the semigroup
associated with the solution to the SDE

dXt = σ(Xt−) dLt

driven by a d-dimensional Lévy process (Lt )t≥0, d ≥ 2, whose components
are independent α-stable Lévy processes, α ∈ (0, 1), under the assumption that
the coefficient σ : Rd → Rd×d is bounded, Lipschitz continuous and satisfies
inf x det(σ (x)) > 0. Combining the estimates with Proposition 3.1, we find that
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the assertion of Proposition 4.7 remains valid in this framework, i.e. the Favard
space F1 associated with the unique solution (Xt )t≥0 satisfies F1 ⊆ Cα−

b (Rd)

and

‖ f ‖
C

α−1/k
b (Rd )

≤ Ck(‖ f ‖∞ + ‖Ae f ‖∞), f ∈ F1.

(iii) Using coupling methods, Luo and Wang [41, Section 5.1] and Liang et. al [38]
recently studied the regularity of semigroups associated with solutions to SDEs
with additive noise

dXt = b(Xt−) dt + dLt

for a large class of driving Lévy processes (Lt )t≥0. The results from [38,41] and
Sect. 3 can be used to obtain Schauder estimates for functions in the domain of
the infinitesimal generator of (Xt )t≥0.

5 Proofs of Results from Sect. 3

For the proof of Proposition 3.1, we use the following lemmawhich shows howHölder
estimates for a Feller semigroup translate to regularity properties of the λ-potential
operator

Rλu :=
∫

(0,∞)

e−λt Ptu dt, u ∈ Bb(R
d), λ > 0.

Lemma 5.1 Let (Xt )t≥0 be a Feller process with semigroup (Pt )t≥0 and λ-potential
operators (Rλ)λ>0.

(i) If there exist T > 0, M ≥ 0, κ ≥ 0 and β ≥ 0 such that

‖Ptu‖Cκ
b (Rd ) ≤ Mt−β‖u‖∞

for all t ∈ (0, T ) and u ∈ Bb(R
d), then

‖Ptu‖Cκ
b (Rd ) ≤ Memt t−β‖u‖∞ (41)

for all t > 0 and u ∈ Bb(R
d), where m := log(2)β/T .

(ii) If u ∈ Bb(R
d) is such that (41) holds for some β ∈ [0, 1), then Rλu ∈ Cκ

b(R
d)

for any λ > m and

‖Rλu‖Cκ
b (Rd ) ≤ ‖u‖∞

(
1

λ − m
+ 1

1 − β

)
(M + 1).
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Proof (i) By the contraction property of (Pt )t≥0, ‖Ptu‖Cκ
b (Rd ) ≤ ‖Pt/2u‖Cκ

b (Rd ) for
all t ≥ 0, and so

‖Ptu‖Cκ
b (Rd ) ≤ M

(
t

2

)−β

= M2β t−β for all t ∈ (0, 2T ).

Iterating the procedure, it follows easily that (41) holds.
(ii) Let u ∈ Bb(R

d) be such that (41) holds for some β < 1. If we choose K > κ ,
then (41) gives that the iterated difference operator �K

h (cf. (5)) satisfies

|�K
h Ptu(x)| ≤ Memt t−β‖u‖∞|h|κ

for any x ∈ Rd and |h| ≤ 1. Since, by the linearity of the integral,

�K
h Rλu(x) =

∫
(0,∞)

e−λt�K
h Ptu(x) dt,

we find that

|�K
h Rλu(x)| ≤ M |h|κ‖u‖∞

∫
(0,∞)

e−t(λ−m)t−β dt .

On the other hand, we have ‖Rλu‖∞ ≤ λ−1‖u‖∞, and therefore we get for all λ > m

‖Rλu‖Cκ
b (Rd ) ≤ λ−1‖u‖∞ + M‖u‖∞

(∫ 1

0
t−β dt +

∫ ∞

1
e−t(λ−m) dt

)
,

which proves the assertion. ��
We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1 By Lemma 5.1(i), (41) holds with m := log(2)β/T for any
u ∈ Bb(R

d). If we set λ := 2m and u := λ f − Ae f for f ∈ F1, then f = Rλu.
Applying Lemma 5.1(ii), we find that

‖ f ‖Cκ
b (Rd ) = ‖Rλu‖Cκ

b (Rd ) ≤ K‖u‖∞ ≤ λK‖ f ‖∞ + K‖Ae f ‖∞

for K := 2m−1 + (1 − β)−1. ��
For the proof of Theorem 3.2, we need two auxiliary results.

Lemma 5.2 Let (Xt )t≥0 and (Yt )t≥0 be Feller processes with infinitesimal generator
(A,D(A)) and (L,D(L)), respectively, such that

A f (z)=−q(z, D) f (z) and L f (z)=−p(z, D) f (z) for all f ∈C∞
c (Rd), z∈Rd

123



Journal of Theoretical Probability (2021) 34:1506–1578 1529

(cf. (7)) and assume that the (A,C∞
c (Rd))-martingale problem is well-posed. Let

U ⊆ Rd be an open set such that

p(z, ξ) = q(z, ξ) for all z ∈ U , ξ ∈ Rd .

If x ∈ U and r > 0 are such that B(x, r) ⊆ U, then for the stopping times

τ X := inf{t > 0; |Xt − x | > r} τY := inf{t > 0; |Yt − x | > r} (42)

the random variables Xt∧τ X and Yt∧τY are equal in distribution with respect to Px

for any t ≥ 0.1

Proof Set

σ X := inf{t > 0; Xt /∈ U or Xt− /∈ U }, σ Y := inf{t > 0; Yt /∈ U or Yt− /∈ U }.

It follows from the well-posedness of the (A,C∞
c (Rd))-martingale problem that

the local martingale problem for U is well-posed (cf. [15, Theorem 4.6.1] or [18]
for details). On the other hand, Dynkin’s formula shows that both (Xt∧σ X )t≥0 and
(Yt∧σY )t≥0 are solutions to the local martingale problem, and therefore (Xt∧σ X )t≥0
equals in distribution (Yt∧σY )t≥0 with respect to Px for any x ∈ U . If x ∈ U and
r > 0 are such that B(x, r) ⊆ U , then it follows from the definition of τ X and τY that
τ X ≤ σ X and τY ≤ σ Y

U ; in particular,

Xt∧τ X = Xt∧τ X∧σ X and Yt∧τY = Yt∧τY∧σY .

Approximating τ X and τY from above by sequences of discrete-valued stopping times,

we conclude from (Xt∧σ X )t≥0
d= (Yt∧σY )t≥0 that Xt∧τ X

d= Yt∧τY . ��
Lemma 5.3 Let (Yt )t≥0 be a Feller process with infinitesimal generator (A,D(A))

and symbol

p(x, ξ) = −ib(x) · ξ +
∫
y �=0

(
1 − eiy·ξ + iy · ξ1(0,1)(|y|)

)
ν(x, dy), x, ξ ∈ Rd .

If α > 1 and U ∈ B(Rd) are such that

sup
z∈U

(
|b(z)| +

∫
y �=0

min{1, |y|α} ν(z, dy)

)
< ∞,

1 Here and below we are a bit sloppy in our notation. The Feller processes (Xt )t≥0 and (Yt )t≥0 each
come with a family of probability measures, i.e. their semigroups are of the form

∫
f (Xt )P

x (dy) and∫
f (Yt ) P̃x (dy), respectively, for families of probability measures (Px )x∈Rd and (P̃x )x∈Rd . To keep the

notation simple, we will not distinguish these two families. Formally written, the assertion of Lemma 3.5
reads Px (Xt∧τ X ∈ ·) = P̃x (Yt∧τY ∈ ·).
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then there exists an absolute constant c > 0 such that the stopped process (Yt∧τU )t≥0,
where

τU := inf{t ≥ 0; Yt /∈ U },

satisfies

Ex (|Yt∧τU − x |α ∧ 1) ≤ ct sup
z∈U

(
|b(z)| +

∫
y �=0

min{1, |y|α} ν(z, dy)

)
(43)

for all x ∈ U, t ≥ 0.

Note that (43) implies, by Jensen’s inequality, that the moment estimate

Ex (|Yt∧τU − x |β ∧ 1) ≤ c′tβ/α sup
z∈U

(
|b(z)| +

∫
y �=0

min{1, |y|α} ν(z, dy)

)β/α

(44)

holds for any β ∈ [0, α], x ∈ U and t ≥ 0. If (Yt )t≥0 has a compensated drift, in
the sense that b(z) = ∫

|y|<1 y ν(z, dy) for all z ∈ U , then Lemma 5.3 holds also for
α ∈ (0, 1]. Let us mention that estimates for fractional moments of Feller processes
were studied in [21]; it is, however, not immediate how Lemma 5.3 can be derived
from the results in [21].

Proof of Lemma 5.3 Let ( fk)k∈N ⊆ Cα
b (Rd)∩Cc(R

d) be a sequence such that fk ≥ 0,
fk(z) = min{1, |z|α} for |z| ≤ k and M := supk ‖ fk‖Cα

b
< ∞. Pick χ ∈ C∞

c (Rd),

χ ≥ 0, such that
∫
Rd χ(x) dx = 1 and set χε(z) := ε−1χ(ε−1z). If we define for

fixed x ∈ U

fk,ε(z) := ( fk(· − x) ∗ χε)(z) :=
∫
Rd

fk(z − x − y)χε(y) dy, z ∈ Rd ,

then fk,ε → fk(· − x) uniformly as ε → 0 and ‖ fk,ε‖Cα
b (Rd ) ≤ M for all k ∈ N. As

fk,ε ∈ C∞
c (Rd) ⊆ D(A), an application of Dynkin’s formula shows that

Ex fk,ε(Yt∧τU ) − fk,ε(x) = Ex
(∫

(0,t∧τU )

A fk,ε(Ys) ds

)

for all t ≥ 0. Since α > 1, there exists an absolute constant C > 0 such that

|∇ fk,ε(z)| ≤ C‖ fk,ε‖Cα
b (Rd ) ≤ CM

and

∣∣ fk,ε(z + y) − fk,ε(z) − y · ∇ fk,ε(z)1(0,1)(|y|)
∣∣ ≤ C‖ fk,ε‖Cα

b (Rd ) min{1, |y|α}
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for all z ∈ Rd . This implies

|A fk,ε(z)| ≤ |b(z)| |∇ fk,ε(z)|
+

∫
y �=0

∣∣ fk,ε(z + y) − fk,ε(z) − y · ∇ fk,ε(z)1(0,1)(|y|)
∣∣ ν(z, dy)

≤ CM

(
|b(z)| +

∫
y �=0

min{1, |y|α} ν(z, dy)

)

for any z ∈ U . Hence,

Ex fk,ε(Yt∧τU ) ≤ fk,ε(x) + 2CMt sup
z∈U

(
|b(z)| +

∫
y �=0

min{1, |y|α} ν(z, dy)

)

for x ∈ U . Applying Fatou’s lemma twice, we conclude that

Ex min{1, |Yt∧τU − x |α} ≤ lim inf
k→∞ lim inf

ε→0
Ex fk,ε(Yt∧τU )

≤ 2CMt sup
z∈U

(
|b(z)| +

∫
y �=0

min{1, |y|α} ν(z, dy)

)
.

��
We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2 Since x ∈ Rd is fixed throughout this proof, we will omit the
superscript x in the notation which we used in the statement of Theorem 3.2, e.g. we
will write (Yt )t≥0 instead of (Y (x)

t )t≥0, L instead of L(x) etc.
Denote by (Le,D(Le)) the extended generator of (Yt )t≥0, and fix a truncation

function χ ∈ C∞
c (Rd) such that 1B(x,δ) ≤ χ ≤ 1B(x,2δ) and ‖χ‖C2

b (Rd ) ≤ 10δ−2. To
prove the assertion, it suffices by (C3) and Proposition 3.1 to show that v := f · χ is
in D(Le) and

‖Lev‖∞ ≤ C
(
‖Ae f ‖∞ + ‖ f ‖∞ + ‖ f ‖

C
�(x)
b (B(x,4δ))

)
(45)

for a suitable constant C > 0. The first- and main- step is to estimate

sup
t∈(0,1)

1

t
sup
z∈Rd

|Ezv(Yt∧τ zδ
) − v(z)| (46)

for the stopping time

τ z
δ := inf{t > 0; |Yt − z| > δ}.

We consider separately the cases z ∈ B(x, 3δ) and z ∈ Rd\B(x, 3δ). For fixed
z ∈ Rd\B(x, 3δ) it follows from suppχ ⊆ B(x, 2δ) that v = 0 on B(z, δ), and so

v(Yt∧τ zδ
(ω)) − v(z) = 0 for all ω ∈ {τ z

δ > t}.
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Hence,

|Ezv(Yt∧τ zδ
) − v(z)| ≤ 2‖v‖∞Pz(τ z

δ ≤ t).

Applying the maximal inequality (9) for Feller processes, we find that there exists an
absolute constant c1 > 0 such that

|Ezv(Yt∧τ zδ
) − v(z)| ≤ c1t‖ f ‖∞ sup

y∈Rd
sup

|ξ |≤δ−1
|p(y, ξ)|

for all z ∈ Rd\B(x, 3δ); the right-hand side is finite since p has, by assumption,
bounded coefficients.

For z ∈ B(x, 3δ) we write

|Ezv(Yt∧τ zδ
) − v(z)| ≤ I1 + I2 + I3

for

I1 := |χ(z)Ez( f (Yt∧τ zδ
) − f (z))|,

I2 := | f (z)Ez(χ(Yt∧τ zδ
) − χ(z))|,

I3 :=
∣∣∣Ez

[(
f (Yt∧τ zδ

) − f (z)
)(

χ(Yt∧τ zδ
) − χ(z)

)]∣∣∣ .
We estimate the terms separately. By (17) and (C2), it follows from Lemma 5.2 that

Ez f (Xt∧τ zδ (X)) = Ez f (Yt∧τ zδ
) for all t ≥ 0,

where τ z
δ (X) is the exit time of (Xt )t≥0 from B(z, δ). As 0 ≤ χ ≤ 1 we thus find

I1 ≤ |Ez( f (Xt∧τ zδ (X)) − f (z))|.

Since f ∈ FX
1 , an application of Dynkin’s formula (11) shows that

I1 ≤ ‖Ae f ‖∞Ez(t ∧ τ z
δ (X)) ≤ ‖Ae f ‖∞t .

We turn to I2. As χ ∈ C∞
c (Rd) ⊆ D(L) we find from the (classical) Dynkin formula

that

|I2| ≤ ‖ f ‖∞|Ez(χ(Yt∧τ zδ
) − χ(z))| = ‖ f ‖∞

∣∣∣∣∣Ez

(∫
(0,t∧τ zδ )

Lχ(Ys) ds

)∣∣∣∣∣
≤ t‖ f ‖∞ sup

|z−x |≤4δ
|Lχ(z)|.
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A straightforward application of Taylor’s formula shows that

|Lχ(z)| ≤ 2‖χ‖C2
b (Rd )

(
|b(z)| +

∫
y �=0

min{1, |y|2} ν(z, dy)

)
.

Since 0 ≤ �(x) ≤ 1 and χ is chosen such that ‖χ‖C2
b (Rd ) ≤ 10δ−2, we thus get

I2 ≤ 20δ−2t‖ f ‖∞ sup
|z−x |≤4δ

(
|b(z)| +

∫
y �=0

min{1, |y|1+�(x)} ν(z, dy)

)
.

It remains to estimate I3. Because of the assumptions on the Hölder regularity of f
on B(x, 4δ), we have

I3 ≤ 16δ−2(‖ f ‖
C

�(x)
b (B(x,4δ))

+ ‖ f ‖∞)‖χ‖C1
b (Rd )E

z(|Yt∧τ zδ
− z|1+�(x) ∧ 1).

It follows from Lemma 5.3 that there exists an absolute constant c2 > 0 such that I3
is bounded above by

c2δ
−4t

(
‖ f ‖

C
�(x)
b (B(x,4δ))

+ ‖ f ‖∞
)

sup
|z−x |≤4δ

(
|b(z)| +

∫
y �=0

min{|y|�(x)+1, 1} ν(z, dy)

)
.

Combining the estimates and applying Corollary 2.2, we find that v = χ · f ∈ D(Le)

and

‖Lev‖∞ ≤ C ′ (‖Aε f ‖∞ + ‖ f ‖∞ + ‖ f ‖
C

�(x)
b (B(x,4δ))

)
,

where

C ′ := c3 sup
z∈Rd

sup
|ξ |≤δ−1

|p(z, ξ)|

+ c3δ
−4 sup

|z−x |≤4δ

(
|b(z)| +

∫
y �=0

min{|y|1+�(x), 1} ν(z, dy)

)

for some absolute constant c3 > 0. Since there exists an absolute constant c4 > 0
such that

sup
z∈Rd

sup
|ξ |≤δ−1

|p(z, δ)| ≤ c4 sup
z∈Rd

(
|b(z)| +

∫
y �=0

min{1, |y|2} ν(z, dy)

)
δ−2

for δ ∈ (0, 1) (cf. [49, Lemma 6.2] and [6, Theorem 2.31]), we obtain, in particular,
that

‖Lev‖∞ ≤ C ′′ (‖Aε f ‖∞ + ‖ f ‖∞ + ‖ f ‖
C

�(x)
b (B(x,4δ))

)
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for

C ′′ := c5δ
−4 sup

z∈Rd

(
|b(z)| +

∫
y �=0

min{1, |y|2} ν(z, dy)

)

+ c5δ
−4 sup

|z−x |≤4δ

∫
|y|≤1

min{|y|1+�(x), 1} ν(z, dy).

This finishes the proof of (45). The continuous dependence of the constant C > 0
in (19) on the parameters β(x) ∈ [0, 1), M(x) ∈ [0,∞), K (x) ∈ [0,∞) follows
from the fact that each of the constants in this proof depends continuously on these
parameters; see also Lemma 5.1. ��

The remaining part of this section is devoted to the proof of Theorem 3.5. We need
the following auxiliary result.

Lemma 5.4 Let (Yt )t≥0 be a Feller process with infinitesimal generator (L,D(L)),
symbol p and characteristics (b(x), Q(x), ν(x, dy)). For x ∈ Rd and r > 0 denote
by

τ x
r = inf{t > 0; |Yt − x | > r}

the exit time from the closed ball B(x, r). For any fixed x ∈ Rd and r > 0, the family
of measures

μt (x, B) := 1

t
Px (Yt∧τ xr

− x ∈ B), t > 0, B ∈ B(Rd\{0}),

converges vaguely to ν(x, dy), i. e.

lim
t→0

1

t
Ex f (Yt∧τ xr

− x) =
∫
y �=0

f (y) ν(x, dy) for all f ∈ Cc(R
d\{0}).

The main ingredient for the proof of Lemma 5.4 is [30, Theorem 4.2], which states
that the family ofmeasures pt (x, B) := t−1Px (Yt −x ∈ B), t > 0, converges vaguely
to ν(x, dy) as t → 0.

Proof of Lemma 5.4 By the Portmanteau theorem, it suffices to show that

lim sup
t→0

μt (x, K ) ≤ ν(x, K ) (47)

for any compact set K ⊆ Rd\{0}. For given K ⊆ Rd\{0} compact, there exists by
Urysohn’s lemma a sequence (χn)n∈N ⊆ C∞

c (Rd) and a constant δ > 0 such that
suppχn ⊆ B(0, δ)c for all n ∈ N and 1K = infn∈N χn . It follows from [30, Theorem
4.2] that

lim
t→0

Exχn(Yt − x)

t
=

∫
y �=0

χn(y) ν(x, dy)
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for all n ∈ N. On the other hand, an application of Dynkin’s formula yields that

|Exχn(Yt∧τ xr
− x) − Exχn(Yt − x)| ≤ ‖Lχn‖∞Ex (t − min{t, τ x

r })
≤ t‖Lχn‖∞Px (τ x

r ≤ t).

Since (Yt )t≥0 has right-continuous sample paths, we havePx (τ x
r ≤ t) → 0 as t → 0,

and therefore we obtain that

lim
t→0

Exχn(Yt∧τ xr
− x)

t
=

∫
y �=0

χn(y) ν(x, dy).

Hence,

lim sup
t→0

μt (x, K ) ≤ lim sup
t→0

1

t
Exχn(Yt∧τ xr

− x) =
∫
y �=0

χn(y) ν(x, dy).

As 1K = infn∈N χn , the monotone convergence theorem gives (47). ��

Proof of Theorem 3.5 For fixed x ∈ Rd let (Y (x)
t )t≥0 be the Feller process from Theo-

rem 3.5. Letχ0 ∈ C∞
c (Rd) be a truncation function such that1B(0,δ) ≤ χ0 ≤ 1B(0,2δ),

and set χ(x)(z) := χ0(z − x), z ∈ Rd . Since x ∈ Rd is fixed throughout Step 1–3
of this proof, we will often omit the superscript x in our notation, i.e. we will write
(Yt )t≥0 instead of (Y (x)

t )t≥0, χ(z) instead of χ(x)(z), etc.

Step 1 Show that v := χ · f is in the domain D(Le) of the extended generator of
(Yt )t≥0 and determine Le(v).

First of all, we note that (Xt )t≥0, (Yt )t≥0 and f satisfy the assumptions of The-
orem 3.2. Since we have seen in the proof of Theorem 3.2 that v = χ · f is in the
Favard space FY

1 of order 1 associated with (Yt )t≥0, it follows that v ∈ D(Le) and
‖Le(v)‖∞ < ∞. Applying Corollary 2.2, we find that

Lev(z) = lim
t→0

Ezv(Yt∧τ zδ
) − v(z)

t

(up to a set of potential zero), where

τ z
δ := inf{t > 0; |Yt − z| > δ}.

On the other hand, the proof of Theorem 3.2 shows that

Ezv(Yt∧τ zδ
) − v(z)

t
= I1(t) + I2(t) + I3(t),
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where

I1(t) := t−1 f (z)(Ezχ(Yt∧τ zδ
) − χ(z)),

I2(t) := t−1χ(z)(Ez f (Xt∧τ zδ (X)) − f (z)),

I3(t) := t−1Ez[( f (Yt∧τ zδ
) − f (z))(χ(Yt∧τ zδ

) − χ(z))
];

here τ z
δ (X) denotes the exit time of (Xt )t≥0 from B(z, δ). Since χ ∈ C∞

c (Rd) is in
the domain of the (strong) infinitesimal generator L of (Yt )t≥0 and f is the Favard
space FX

1 associated with (Xt )t≥0, another application of Corollary 2.2 shows that

lim
t→0

I1(t) = f (z)Lχ(z) and lim
t→0

I2(t) = χ(z)Ae f (z)

for all z ∈ Rd . We claim that

lim
t→0

I3(t) = �( f , χ)(z) :=
∫
y �=0

( f (z + y) − f (z))(χ(z + y) − χ(z)) ν(z, dy)

(48)

for all z ∈ Rd , where ν(z, dy) = ν(x)(z, dy) denotes the family of Lévy measures
associated with (Yt )t≥0 = (Y (x)

t )t≥0 (cf. (22)). Once we have shown this, it follows
that

Lev = f Lχ + χ Ae f + �( f , χ). (49)

To prove (48), we fix a function ϕ ∈ C∞
c (Rd) such that 1B(0,1) ≤ ϕ ≤ 1B(0,2) and

set ϕε(y) := ϕ(ε−1y) for ε > 0, y ∈ Rd . Since y �→ (1 − ϕε(y)) is zero in a
neighbourhood of 0, we find from Lemma 5.4 that

Ez
[
(1 − ϕε(Yt∧τ zδ

− z))( f (Yt∧τ zδ
) − f (z))(χ(Yt∧τ zδ

) − χ(z))
]

t
t→0−−→

∫
y �=0

(1 − ϕε(y))( f (y + z) − f (z))(χ(z + y) − χ(z)) ν(z, dy).

If z ∈ Rd\B(x, 3δ), then χ = 0 on B(z, δ), and therefore the integrand on the right
hand side equals zero for |y| < δ. By dominated convergence, the right-hand side
converges to �( f , χ)(z), defined in (48), as ε → 0. For z ∈ B(x, 3δ) we note that
χ ∈ C1

b(R
d) and f ∈ C

�(·)
b (Rd) for � satisfying (26); it now follows from (S1) and

dominated convergence that the right-hand side converges to �( f , χ)(z) as ε → 0.
To prove (48), it remains to show that

J (ε, t, z) :=
∣∣∣Ez[ϕε(Yt∧τ zδ

− z)( f (Yt∧τ zδ
) − f (z))(χ(Yt∧τ zδ

) − χ(z))
]∣∣∣
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satisfies

lim sup
ε→0

lim sup
t→0

1

t
J (ε, t, z) = 0 for all z ∈ Rd .

By (26) and (S1), there exists some constant γ > 0 such that

1 + min{�(z), 1} ≥ α(z) + 2γ for all z ∈ B(x, 3δ). (50)

Indeed: On {� ≥ 1} this inequality holds since α is bounded away from 2 (cf. (S1)),
and on {� < 1} this is a direct consequence of (26). Now fix some z ∈ B(x, 3δ). As
suppϕε ⊆ B(0, 2ε), it follows from f ∈ C

�(·)
b (Rd) and χ ∈ C1

b(R
d) that

J (ε, t, z) ≤ c1ε
γ ‖ f ‖

C
�(·)
b (Rd )

‖χ‖C1
b (Rd )E

z min{|Yt∧τ zδ
− z|α(z)+γ , 1}

with γ from (50) and some constant c1 > 0 (not depending on f , x , z). An application
of Lemma 5.3 now yields

J (ε, t, z) ≤ c2ε
γ t sup

|z−x |≤4δ

(
|b(z)| +

∫
y �=0

min{|y|α(z)+γ , 1}ν(z, dy)

)
,

which is finite because of (S1) and (S5). Hence,

lim sup
t→0

lim sup
ε→0

1

t
J (ε, t, z) = 0 for all |z − x | ≤ 3δ.

If z ∈ Rd\B(x, 3δ), then it follows from χ |B(z,δ) = 0 and suppϕ ⊆ B(0, 2ε) that

J (ε, t, z) ≤ 4ε‖ f ‖∞‖χ‖C1
b (Rd )P

z(τ z
δ ≤ t).

Applying the maximal inequality (9) for Feller processes, we conclude that

lim sup
ε→0

lim sup
t→0

t−1 J (ε, t, z) = 0 for all z ∈ Rd\B(x, 3δ).

Step 2 If � : Rd → [0, 2] is a uniformly continuous function satisfying (26) and
�0 := inf z �(z) > 0, then

f ∈ FX
1 ∩ C

�(·)
b (Rd), Ae f = g ∈ Cλ

b(R
d)

�⇒ ∀ε > 0 : Le( f χ) ∈ C
(�0∧λ∧θ∧σ)−ε

b (Rd)

for any λ ∈ [0,�] where χ = χ(x) is the truncation function chosen at the beginning
of the proof; see (S2), (S3) and (26) for the definition of θ , � and σ .
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Indeed: We know from Step 1 that

Le( f χ) = f Lχ + χ Ae f + �( f , χ) =: I1 + I2 + I3.

As θ ≤ 1 we have �0 ∧ λ ∧ θ ∧ σ ≤ 1, and therefore it suffices to estimate

sup
z∈Rd

|Ik(z)| + sup
z,h∈Rd

|Ik(z + h) − Ik(z)|

for k = 1, 2, 3.

Estimate of I1 = f Lχ : First we estimate the Hölder norm of Lχ . As χ ∈ C∞
c (Rd)

a straight-forward application of Taylor’s formula shows that

‖Lχ‖∞ ≤ 2‖χ‖C2
b (Rd ) sup

z∈Rd

(
|b(z)| +

∫
y �=0

min{1, |y|2} ν(z, dy)

)
.

If we set Dyχ(z) := χ(z + y) − χ(z) − χ ′(z)y1(0,1)(|y|), then
|Lχ(z) − Lχ(z + h)|

≤ |b(z)| |∇χ(z + h) − ∇χ(z)| + |b(z + h) − b(z)| |∇χ(z + h)|
+

∫
y �=0

|Dyχ(z + h) − Dyχ(z)| ν(z, dy)

+
∣∣∣∣
∫
y �=0

Dyχ(z + h) (ν(z + h, dy) − ν(z, dy))

∣∣∣∣
for all z, h ∈ Rd . To estimate the first two terms on the right-hand side we use the
Hölder continuity of b (cf. (S2)) and the fact that χ ∈ C2

b (R
d). For the third term, we

use

|Dyχ(z + h) − Dyχ(z)| ≤ ‖χ‖C3
b (Rd )|h|min{|y|2, 1};

cf. [4, Theorem 5.1] for details, and noting that

|Dyχ(z + h)| ≤ 2‖χ‖C2
b (Rd ) min{1, |y|2}

we can estimate the fourth term for small h by applying (S2). Hence,

|Lχ(z) − Lχ(z + h)| ≤ |h|‖χ‖C3
b (Rd )

(
|b(z)| +

∫
y �=0

min{1, |y|2} ν(z, dy)

)

+2C |h|θ‖χ‖C2
b (Rd )

for small h > 0. Hence,

‖Lχ‖Cθ
b(R

d ) ≤ c1‖χ‖C3
b (Rd ) sup

z∈Rd

(
1 + |b(z)| +

∫
y �=0

min{1, |y|2} ν(z, dy)

)
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for some absolute constant c1 > 0. Since f ∈ C
�(·)
b (Rd) ⊆ C

�0
b (Rd), this entails that

‖ f Lχ‖
C

θ∧�0
b (Rd )

≤ c′
1‖ f ‖C�0

b (Rd )
‖χ‖C3

b (Rd ) sup
z∈Rd

(
1 + |b(z)| +

∫
y �=0

min{1, |y|2} ν(z, dy)

)
.

Estimate of I2 = χ Ae f : By assumption, Ae f = g ∈ Cλ
b(R

d) and χ ∈ C∞
c (Rd).

Thus,

‖χ Ae f ‖Cλ
b

≤ 2‖χ‖Cλ
b
‖Ae f ‖Cλ

b
< ∞.

Estimate of I3 = �( f , χ): As f ∈ C�(·)
b (Rd) and χ ∈ C1

b(R
d), it follows from the

definition of �( f , χ) (cf. (48)) that

|�( f , χ)(z)|
≤ 4‖ f ‖

C
�(·)
b (Rd )

‖χ‖C1
b (Rd )

∫
y �=0

min{|y|1+min{1,�(z)} ∧ 1, 1} ν(z, dy) < ∞

for all |z − x | ≤ 3δ. If z ∈ Rd\B(x, 3δ), then �yχ(z) = 0 for all |y| ≤ δ, and so

|�( f , χ)(z)| ≤ 4‖ f ‖∞
∫

|y|>δ/2
ν(z, dy)

for all z ∈ Rd\B(x, 3δ). Combining both estimates and using (26), (S1) and (S5), we
get

‖�( f , χ)‖∞ ≤ c2‖ f ‖
C

�(·)
b (Rd )

for some constant c2 > 0 not depending on x , z and f . To study the regularity of
�( f , χ)we consider separately the cases ‖�‖∞ ≤ 1 and ‖�‖∞ > 1. We start with the
case ‖�‖∞ ≤ 1; see the end of this step for the other case. To estimate �h�( f , χ),
we note that

|�h�( f , χ)(z)| = |�( f , χ)(z + h) − �( f , χ)(z)| ≤ J1 + J2 + J3, (51)

where

J1(z) :=
∫
y �=0

|�y f (z + h) − �y f (z)| |�yχ(z + h)| ν(z, dy),

J2(z) :=
∫
y �=0

|�y f (z)| |�yχ(z + h) − �yχ(z)| ν(z, dy),

J3(z) :=
∣∣∣∣
∫
y �=0

�y f (z + h)�yχ(z + h)(ν(z, dy) − ν(z + h, dy))

∣∣∣∣ .
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We estimate the terms separately, and start with J1. Fix ε ∈ (0,min{�0, σ }/2) (cf. (26)
for the definition of σ ). Since � is uniformly continuous, there exists r ∈ (0, 1) such
that

|�(z) − �(z + h)| ≤ ε for all z ∈ Rd , |h| ≤ r .

For |h| ≤ r and |y| ≤ r it then follows from f ∈ C
�(·)
b (Rd) that

|�y f (z + h) − �y f (z)| ≤ 2‖ f ‖
C

�(·)
b (Rd )

min{|y|�(z)∧�(z+h), |h|�(y+z)∧�(z)}
≤ 2‖ f ‖

C
�(·)
b (Rd )

min{|y|�(z)−ε, |h|�(z)−ε}.

(Here we use ‖�‖∞ ≤ 1; otherwise we would need to replace �(z) by �(z) ∧ 1 etc.)
On the other hand, we also have

|�y f (z + h) − �y f (z)| ≤ 2‖ f ‖
C

�(·)
b (Rd )

|h|�0 (52)

for all y ∈ Rd . Combining both estimates yields

J1(z) ≤ 2‖ f ‖
C

�(·)
b (Rd )

‖χ‖C1
b (Rd )

·
(∫

|y|≤r
min{|y|�(z)−ε, |h|�(z)−ε}|y| ν(z, dy) + |h|�0

∫
|y|>r

ν(z, dy)

)

for |h| ≤ r . It is now not difficult to see from (S1) and (S5) that there exists a constant
c3 > 0 (not depending on x , z, f ) such that

J1(z) ≤ c3‖ f ‖
C

�(·)
b (Rd )

(|h|�0 + |h|�(z)+1−α(z)−ε) for all |h| ≤ r , z ∈ B(x, 3δ).

By the very definition of σ (cf. (26)), this implies that

sup
z∈B(x,3δ)

J1(z) ≤ c3‖ f ‖
C

�(·)
b (Rd )

|h|min{�0,σ }−ε for all |h| ≤ r .

If z ∈ Rd\B(x, 3δ), then �yχ(z + h) = 0 for |h| ≤ δ/2 and |y| ≤ δ/2. Using (52),
we get

J1(z) ≤ 2|h|�0‖ f ‖
C

�(·)
b (Rd )

∫
|y|≥δ/2

ν(z, dy) for all |h| ≤ δ/2.

Invoking once more (S1) and (S5), we obtain that

sup
z∈Rd\B(x,3δ)

J1(z) ≤ c4|h|�0‖ f ‖
C

�(·)
b (Rd )

, |h| ≤ δ/2,
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for some constant c4 not depending on x , z and f . In summary, we have shown that

sup
z∈Rd

J1(z) ≤ c5|h|min{�0,σ }−ε‖ f ‖
C

�(·)
b (Rd )

.

To estimate J2, consider again separately the cases z ∈ B(x, 3δ) and z ∈ Rd\B(x, 3δ).
If z ∈ Rd\B(x, 3δ), then�yχ(z+h) = 0 = �yχ(z) for all |y| ≤ δ/2 and |h| ≤ δ/2.
Since we also have

|�yχ(z + h) − �yχ(z)| ≤ 2‖χ‖C2
b (Rd ) min{|y|, |h|}, (53)

we find that

J2(z) ≤ 4‖ f ‖∞‖χ‖C2
b (Rd )|h|

∫
|y|≥δ/2

ν(z, dy)

for |h| ≤ δ/2. Because of (S1) and (S5), this gives the existence of a constant c6 > 0
(not depending on f , x and z) such that

sup
z∈Rd\B(x,3δ)

J2(z) ≤ c6‖ f ‖∞|h|.

For z ∈ B(x, 3δ), we combine

|�y f (z)| ≤ 2‖ f ‖
C

�(·)
b (Rd )

min{|y|�(z), 1}

with (53) to get

J2(z) ≤ 4‖ f ‖
C

�(·)
b (Rd )

‖χ‖C2
b (Rd )

∫
y �=0

min{|y|�(z), 1}min{|y|, |h|} ν(z, dy),

which implies, by (S1), (S5) and (26), that

sup
z∈B(x,3δ)

J2 ≤ c7‖ f ‖
C

�(·)
b (Rd )

|h|σ∧1.

We conclude that

sup
z∈Rd

J2(z) ≤ c8|h|σ∧1‖ f ‖
C

�(·)
b (Rd )

.

It remains to estimate J3. By the uniform continuity of � there exists r ∈ (0, 1) such
that |�h�(z)| ≤ σ/2 for all |h| ≤ r . Since f ∈ C

�(·)
b (Rd) we have

|�y f (z + h)�yχ(z + h)| ≤ 4‖ f ‖
C

�(·)
b (Rd )

‖χ‖C1
b (Rd ) min{|y|�(z+h)+1, 1},
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and thus, by (26) and our choice of r ∈ (0, 1),

|�y f (z + h)�yχ(z + h)| ≤ 4‖ f ‖
C

�(·)
b (Rd )

‖χ‖C1
b (Rd ) min{|y|�(z)+1−σ/2, 1}

≤ 4‖ f ‖
C

�(·)
b (Rd )

‖χ‖C1
b (Rd ) min{|y|σ/2+α(z), 1}

for all |z − x | ≤ 3δ and |h| ≤ r . On the other hand, if z ∈ Rd\B(x, 3δ), then χ = 0
on B(z, δ) and so

|�y f (z + h)�yχ(z + h)| = 0 for all |h| ≤ δ/2, |y| ≤ δ/2.

Consequently, there exists a constant c9 = c9(δ, r) > 0 such that

|�y f (z + h)�yχ(z + h)| ≤ c9‖ f ‖
C

�(·)
b (Rd )

‖χ‖C1
b (Rd ) min{|y|σ+α(z), 1}

for all z ∈ Rd , y ∈ Rd and |h| ≤ min{r , δ}/2. Applying (S2), we thus find

sup
z∈Rd

J3(z) ≤ c10|h|θ‖ f ‖
C

�(·)
b (Rd )

.

Combining the above estimates, we conclude that

‖�( f , χ)‖
C

�0∧θ∧σ−ε

b (Rd )
≤ c11‖ f ‖

C
�(·)
b (Rd )

,

provided that ‖�‖∞ ≤ 1. In the other case, i. e. if � takes values strictly larger than
one, then we need to consider second differences �2

h�( f , χ)(z) in order to capture
the full information on the regularity of f . The calculations are very similar to the
above ones but quite lengthy (it is necessary to consider nine terms separately) and so
we do not present the details here.

Conclusion of Step 2 For any small ε > 0 there exists a finite constant K1,ε > 0 such
that

‖Le( f χ)‖
C
min{�0,λ,θ,σ }−ε

b (Rd )
≤ K1,ε

(
‖Ae f ‖Cλ

b(R
d ) + ‖ f ‖

C
�(·)
b (Rd )

)
. (54)

The constant K1,ε does not depend on x , z and f .

Step 3 If u ∈ D(Le) is such that u ∈ Cλ
b(R

d) and Leu ∈ Cλ
b(R

d) for some λ ≤ � (cf.
(S3)), then

‖u‖
C

κ(x)+λ
b (Rd )

≤ K2(‖u‖Cλ
b(R

d ) + ‖Leu‖Cλ
b(R

d ))

for some constant K2 > 0which does not depend on x , z and f . (Recall that Le = L(x)
e

is the extended generator of the Feller process (Yt )t≥0 = (Y (x)
t )t≥0; this explains the

x-dependence of the regularity on the left-hand side of the inequality.)
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Indeed The μ-potential operators (Rμ)μ>0 associated with (Yt )t≥0 = (Y (x)
t )t≥0 sat-

isfies

‖Rμv‖
C

κ(x)+λ
b (Rd )

≤ K‖v‖Cλ
b(R

d ), v ∈ Cλ
b(R

d), λ ≤ � (55)

forμ sufficiently large and some constant K = K (μ) > 0. This is a direct consequence
of (S3) andLemma5.1.Now ifu ∈ D(Le) is such thatu ∈ Cλ

b(R
d) and Leu ∈ Cλ

b(R
d),

thenwe have u = Rμv for v := μu−Leu ∈ Cλ
b(R

d). Applying (55) proves the desired
estimate.

Conclusion of the proof Let f ∈ C
�(·)
b (Rd) ∩ FX

1 for � satisfying (26) be such that
Ae f ∈ Cλ

b(R
d) for some λ ≤ �. Without loss of generality, we may assume that

�0 := infx �(x) > 0. Indeed: It follows from Corollary 3.4 that f ∈ C
κ(·)−ε
b (Rd) for

ε := κ0/2 := infx κ(x)/2 > 0, and therefore we may replace � by

�̃(z) := max{�(z), κ(z) − ε},

which is clearly bounded away from zero and satisfies the assumptions of Theorem3.5.
For fixed x ∈ Rd , denote by χ = χ(x) the truncation function chosen at the

beginning of the proof, and fix ε ∈ (0,min{�0, κ0}/2). It follows from Step 2 and
Step 3 that there exists a constant c1 > 0 such that

‖ f χ(x)‖
C

κ(x)+min{�0,σ,θ,λ}−ε

b (Rd )
≤ c1

(
‖Ae f ‖Cλ

b(R
d ) + ‖ f ‖

C
�(·)
b (Rd )

)

for all x ∈ Rd . As χ(x) = 1 on B(x, δ), we obtain that

‖ f ‖
C

κ(·)+min{�0,σ,θ,λ}−ε

b (Rd )
≤ c′

1

(
‖Ae f ‖Cλ

b(R
d ) + ‖ f ‖

C
�(·)
b (Rd )

)
.

Since, by assumption, f ∈ C
�(·)
b (Rd), this implies f ∈ C

�1(·)
b (Rd) for

�1(x) := max{�(x), κ(x) − ε + min{�0, σ, θ, λ}}, x ∈ Rd ,

and we have

‖ f ‖
C

�1(·)
b (Rd )

≤ (c′
1 + 1)

(
‖Ae f ‖Cλ

b(R
d ) + ‖ f ‖

C
�(·)
b (Rd )

)
.

As �1 satisfies (26) (with � replaced by �1), we each apply Step 2 with � replaced by
�1 to obtain

‖ f χ(x)‖
C

κ(x)+min{�10 ,σ,θ,λ}−ε

b (Rd )
≤ c2

(
‖Ae f ‖Cλ

b(R
d ) + ‖ f ‖

C
�(·)
b (Rd )

)
,

where �1
0 := inf x∈Rd �1(x). Repeating the argument, i. e. using that χ(x) = 1 on

B(x, δ), we obtain f ∈ C
�2(·)
b (Rd) for
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�2(x) := max{�(x), κ(x) − ε + min{�1
0, σ, θ, λ}}

and

‖ f ‖
C

�2(·)
b (Rd )

≤ c′
2

(
‖Ae f ‖Cλ

b(R
d ) + ‖ f ‖

C
�(·)
b (Rd )

)
.

We proceed iteratively, i.e. we set

�n(x) := max{�(x), κ(x) − ε + min{�n−1
0 , σ, θ, λ}}, n ≥ 2,

where �n−1
0 := inf x �n−1(x). By Steps 2 and 3, we then have

‖ f ‖
C

�n (·)
b (Rd )

≤ cn
(
‖Ae f ‖Cλ

b(R
d ) + ‖ f ‖

C
�(·)
b (Rd )

)
(56)

for some constant cn > 0. Since κ0 = infx κ(x) > 0 and ε < κ0/2, it is not difficult
to see that we can choose n ∈ N sufficiently large such that �n

0 ≥ min{σ, θ, λ}, and so

�n+1(x) ≥ κ(x) − ε + min{σ, θ, λ}.
Using (56) (with n replaced by n + 1), we conclude that

‖ f ‖
C

κ(·)+min{σ,θ,λ}−ε
b (Rd )

≤ cn+1

(
‖Ae f ‖Cλ

b(R
d ) + ‖ f ‖

C
�(·)
b (Rd )

)
.

��

6 Proof of Schauder Estimates for Isotropic Stable-Like Processes

In this section we present the proof of the Schauder estimates for isotropic stable-like
processes which we stated in Theorem 4.1 and Corollary 4.3. Throughout this section,
(Xt )t≥0 is an isotropic stable-like process, i. e. a Feller process with symbol of the
form q(x, ξ) = |ξ |α(x), x, ξ ∈ Rd , for a mapping α : Rd → (0, 2]. We remind the
reader that such a Feller process exists if α is Hölder continuous and bounded away
from zero.

We will apply the results from Sect. 3 to establish the Schauder estimates. To this
end, we need regularity estimates for the semigroup (Pt )t≥0 associated with (Xt )t≥0.
The results, which we obtain, are of independent interest and we present them in
Sect. 6.1. Once we have established another auxiliary statement in Sect. 6.2, we will
present the proof of Theorem 4.1 and Corollary 4.3 in Sect. 6.3.

6.1 Regularity Estimates for the Semigroup of Stable-Like Processes

Let (Pt )t≥0 be the semigroup of an isotropic stable-like process (Xt )t≥0 with symbol
q(x, ξ) = |ξ |α(x). In this subsection, we study the regularity of the mapping x �→
Ptu(x). We will see that there are several parameters which influence the regularity
of Ptu:
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• the regularity of x �→ u(x),
• the regularity of x �→ α(x),
• αL := infx∈Rd α(x);

the larger these quantities are, the higher the regularity of Ptu. The regularity estimates
we present rely on the parametrix construction of (the transition density of) (Xt )t≥0
in [22]. We mention that there are other approaches to obtain regularity estimates
for the semigroup. Using coupling methods, Luo and Wang [40] showed that for any
κ ∈ (0, αL) there exists c > 0 such that

‖Ptu‖Cκ∧1
b (Rd ) ≤ c‖u‖∞t−(κ∧1)/αL for all u ∈ Bb(R

d), t ∈ (0, T ].

For αL > 1, this estimate is not good enough for our purpose; we need a higher
regularity of Ptu.

Proposition 6.1 Let (Xt )t≥0 be a Feller process with symbol q(x, ξ) = |ξ |α(x),
x, ξ ∈ Rd , for a mapping α : Rd → (0, 2) bounded away from zero, i.e.
αL := infx∈Rd α(x) > 0, and γ -Hölder continuous for γ ∈ (0, 1). For any T > 0 and
κ ∈ (0, αL) there exists a constant C > 0 such that the semigroup (Pt )t≥0 satisfies

‖Ptu‖Cκ
b (Rd ) ≤ C‖u‖∞t−κ/αL for all u ∈ Bb(R

d), t ∈ (0, T ]. (57)

In particular, (Pt )t≥0 has the strong Feller property. The constant C > 0 depends
continuously on αL ∈ (0, 2), αL −κ ∈ (0, αL), ‖α‖Cγ

b (Rd ) ∈ [0,∞) and T ∈ [0,∞).

For the proof of Proposition 6.1, we use a representation for the transition density
p which was obtained in [22] using a parametrix construction; see also [25]. For
� ∈ (0, 2), denote by p�(t, x) the transition density of an isotropic �-stable Lévy
process and set

p0(t, x, y) := pα(y)(t, x − y), t > 0, x, y ∈ Rd .

The transition density p of (Xt )t≥0 has the representation

p(t, x, y) = p0(t, x, y) + (p0 � �)(t, x, y), t > 0, x, y ∈ Rd , (58)

where � is the time-space convolution and � is a suitable function satisfying

sup
x∈Rd

∫
Rd

|�(t, x, y)| dy ≤ C1t
−1+λ, t ∈ (0, T ), (59)

for some constant λ > 0 and C1 = C1(T ) > 0. For further details, we refer the reader
to “Appendix B” where we collect the material from [22] which we need in this article.

Proof of Proposition 6.1 Fix T > 0, u ∈ Bb(R
d) and κ ∈ (0, αL). By contractivity

‖Ptu‖∞ ≤ ‖u‖∞, it suffices to show that the iterated differences of order 2 (cf. (5))
satisfy

sup
x∈Rd

|�2
h Ptu(x)| ≤ Ct−κ/αL‖u‖∞ for all t ∈ (0, T ], |h| ≤ 1.
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By (58),

|�2
h Ptu(x)| ≤ |�2

h P
(0)
t u(x)| + |�2

h P
(1)
t u(x)|

for any x, h ∈ Rd and t ∈ (0, T ], where

P(0)
t u(z) :=

∫
Rd

u(y)p0(t, z, y) dy and P(1)
t u(z) :=

∫
Rd

u(y)(p0 � �)(t, z, y) dy.

We estimate the terms separately; we start with P(0). The transition density p�(t, x)
of an isotropic �-stable Lévy process is twice differentiable, and there exists a constant
c1 > 0 such that

|p�(t, x)| ≤ c1S(x, �, t),

|∂xi p�(t, x)| ≤ c1t
−1/�S(x, �, t),

|∂xi ∂x j p�(t, x)| ≤ c1t
−2/�S(x, �, t), (60)

where

S(x, �, t) := min

{
t−d/α,

t

|x |d+α

}
, (61)

and � ∈ [αL , ‖α‖∞], t ∈ (0, T ), x ∈ Rd and i, j ∈ {1, . . . , d} (cf. Lemma B.1). For
the parametrix p0(t, x, y) = pα(y)(t, x − y) this implies, by Taylor’s formula, that
there exists is c2 > 0 such that

|p0(t, x + 2h, y) − 2p0(t, x + h, y) + p0(t, x, y)|
≤ c2t

−2/α(y)|h|2S(η(x, h) − y, α(y), t), x, h ∈ Rd

for some intermediate value η(x, h) ∈ B(x, 2h). As t ≤ T , we find that

|p0(t, x + 2h, y) − 2p0(t, x + h, y) + p0(t, x, y)|
≤ c3t

−2/αL |h|2S(η(x, h) − y, α(y), t), x, h ∈ Rd

for a suitable constant c3 = c3(T , αL , ‖α‖∞). On the other hand, (60) gives

|p0(t, x + 2h, y) − 2p0(t, x + h, y) + p0(t, x, y)|
≤ c1(S(x + 2h − y, α(y), t) + 2S(x + h − y, α(y), t) + S(x − y, α(y), t)).

Combiningboth estimates,weobtain that there exists a constant c4 = c4(T , αL , ‖α‖∞)

such that

|p0(t, x + 2h, y) − 2p0(t, x + h, y) + p0(t, x, y)| ≤ c4|h|κ t−κ/αLU (t, x, y, h)

(62)
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for

U (t, x, y, h) := S(η(x, h) − y, α(y), t) + S(x+h−y, α(y), t)

+ S(x−h−y, α(y), t)+S(x − y, α(y), t);

cf. Lemma C.1 with r := t1/αL . Hence,

|P(0)
t u(x + 2h) − 2P(0)

t u(x + h) + P(0)
t u(x)|

≤ c4‖u‖∞t−κ/αL |h|κ
∫
Rd

U (t, x, y, h) dy

for any x, h ∈ Rd and t ∈ (0, T ). Since

cT := sup
t∈(0,T )

sup
z∈Rd

∫
Rd

S(z − y, α(y), t) dy < ∞, (63)

(cf. Appendix B), we have

sup
t∈(0,T )

sup
z∈Rd

∫
Rd

U (t, z, y, h) dy ≤ 4cT < ∞, (64)

and so we conclude that

|P(0)
t u(x + 2h) − 2P(0)

t u(x + h) + P(0)
t u(x)| ≤ 4c4cT ‖u‖∞t−κ/αL |h|κ .

It remains to establish the Hölder estimate for P(1)
t . By (62),

|(p0 � �)(t, x + 2h, y) − 2(p0 � �)(t, x + h, y) + (p0 � �)(t, x, y)|
≤ c4|h|κ

∫ t

0

∫
Rd

(t − s)−κ/αLU (t − s, x, z, h)|�(s, z, y)| dz ds.

Integrating with respect to y ∈ Rd , it follows from (59) and (64) that

|P(1)
t u(x + 2h) − 2P(1)

t u(x + h) + P(1)
t u(x)|

≤ c6|h|κ‖u‖∞
∫ t

0
(t − s)−κ/αL s−1+λ ds

≤ c7|h|κ t−κ/αL‖u‖∞

for suitable constants c6 and c7. Combining the estimates, (57) holds for some finite
constant C > 0. The continous dependence of C on the parameters αL − κ ∈ (0, αL),
αL ∈ (0, 2), ‖α‖Cγ

b
> 0 and T > 0 follows from the fact that each of the constants in

this proof depends continuously on these parameters. ��
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In Proposition 6.1, we studied the regularity of x �→ Ptu(x) for measurable func-
tions u. The next result is concernedwith the regularity of Ptu(·) forHölder continuous
functions u. It is natural to expect that Ptu “inherits” some regularity from u.

Proposition 6.2 Let (Xt )t≥0 be a Feller process with symbol q(x, ξ) = |ξ |α(x), x, ξ ∈
Rd , for a mapping α : Rd → (0, 2) such that αL := infx∈Rd α(x) is strictly positive
and α ∈ Cγ

b (Rd) for some γ ∈ (0, 1) satisfying

γ > γ0 := ‖α‖∞ − αL .

For any T > 0, κ ∈ (0, αL) and ε ∈ (γ0,min{γ, αL}), there exists a constant C > 0
such that the semigroup (Pt )t≥0 of (Xt )t≥0 satisfies

‖Ptu‖
C

κ+min{δ,γ }−ε
b (Rd )

≤ C(1 + | log t |)t−κ/αL‖u‖
C
min{δ,γ }
b (Rd )

, u ∈ Cδ
b(R

d), (65)

for all δ > 0 and t ∈ (0, T ]. The constant C > 0 depends continuously onαL ∈ (0, 2),
κ − αL ∈ (0, 2), (ε − ‖α‖∞)/αL ∈ (1,∞), ‖α‖Cγ

b (Rd ) ∈ [0,∞) and T ∈ [0,∞).

For the proof of the Schauder estimates, Corollary 4.3, we will apply Proposi-
tion 6.2 for an isotropic stable-like process (Xt )t≥0 with symbol q(x, ξ) = |ξ |α(x) for
a “truncated” function α of the form

α(x) := (�(x0) − δ) ∨ �(x) ∧ (�(x0) + δ), x ∈ Rd ,

where x0 ∈ Rd is fixed and δ > 0 is a constant which we can choose as small as we
like; in particular γ0 := ‖α‖∞ −αL ≤ 2δ is small, and so the assumptions ε > γ0 and
γ > γ0 in Proposition 6.2 are not a restriction. Let us mention that both assumptions,
i. e. ε > γ0 and γ > γ0, come into play when estimating one particular term in the
proof of Proposition 6.2; see (76); a more careful analysis of this term would probably
allow us to relax these two conditions.

Proof of Proposition 6.2 Fix ε ∈ (γ0, γ ∧ αL), κ ∈ (0, αL) and T > 0. First of all, we
note that it clearly suffices to show (65) for u ∈ Cδ

b(R
d) with δ ≤ γ ≤ 1. Throughout

the first part of this proof, we will assume that

κ ≤ 1. (66)

Under (66), the assertion follows if we can show that

|�2
h Ptu(x)| ≤ C‖u‖Cδ

b(R
d )(1 + | log(t)|)t−κ/αL |h|κ+δ−ε,

for all x ∈ R
d , |h| ≤ 1 and t ∈ (0, T ], where �2

h denotes as usual the iterated differ-
ence operator (cf. (5)). For the proof of this inequality, we use again the parametrix
construction of the transition density p of (Xt )t≥0,

p(t, x, y) = p0(t, x, y) + (p0 � �)(t, x, y), t > 0, ut x, y ∈ Rd , (67)
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where

p0(t, x, y) = pα(y)(t, x − y), t > 0, x, y ∈ Rd , (68)

see Appendix B for details. Since

�h Ptu(x) =
∫
Rd

�hu(y)p(t, x, y) dy

−
∫
Rd

(u(y + h)p(t, x, y) − u(y)p(t, x + h, y)) dy

=
∫
Rd

�hu(y)p(t, x, y) dy

−
∫
Rd

u(y + h)(p(t, x, y) − p(t, x + h, y + h)) dy,

we find that �2
h Pt f (x) = J1 − J2, where

J1 :=
∫
Rd

�hu(y) (p(t, x + h, y) − p(t, x, y)) dy,

J2 :=
∫
Rd

u(y + h)
(
p(t, x + h, y) − p(t, x + 2h, y + h)

− p(t, x, y) + p(t, x + h, y + h)
)
dy.

We estimate the terms separately. For fixed h ∈ Rd , |h| ≤ 1, define an auxiliary
function v by v(y) := �hu(y). Proposition 6.1 gives

|J1| ≤ |h|κ‖Ptv‖Cκ
b (Rd ) ≤ C1|h|κ‖v‖∞t−κ/αL , t ∈ (0, T ],

and so, by the definition of v and the Hölder continuity of u,

|J1| ≤ C1|h|κ+δ‖u‖Cδ
b(R

d )t
−κ/αL , t ∈ (0, T ].

It remains to establish the corresponding estimate for J2, and to this end we use
representation (67) for the transition density p.

Step 1 There exists a constant c1 > 0 such that

q(t, x, y) := p0(t, x + h, y) − p0(t, x + 2h, y + h) − p0(t, x, y)

+p0(t, x + h, y + h) (69)

satisfies∫
Rd

|q(t, x, y)| dy ≤ c1|h|κ+γ (1 + | log(t)|)t−κ/αL for all x, h ∈ Rd , t ∈ (0, T ].
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Indeed: If we denote by p� the transition density of the d-dimensional isotropic �-
stable Lévy process, � ∈ (0, 2), then there is a constant c2 > 0 such that

∫
Rd

∣∣∣∣ ∂

∂�
p�(t, x)

∣∣∣∣ dx ≤ c2(1 + | log(t)|)∫
Rd

∣∣∣∣ ∂

∂x j

∂

∂�
p�(t, x)

∣∣∣∣ dx ≤ c2(1 + | log(t)|)t−1/αL (70)

for all t ∈ (0, T ], j ∈ {1, . . . , d} and � ∈ [αL , ‖α‖∞] ⊆ (0, 2] (cf. Lemma B.1). To
shorten the notation, we fix x, h ∈ Rd and t ∈ (0, T ], and write q(y) for the function
defined in (69). By definition of p0 (cf. (68)), we have

|q(y)| =
∣∣∣pα(y)(t, x + h − y) − pα(y+h)(t, x + h − y)

−pα(y)(t, x − y) + pα(y+h)(t, x − y)
∣∣∣ ,

and so, by the fundamental theorem of calculus and the mean-value theorem,

|q(y)| =
∣∣∣∣∣
∫ α(y+h)

α(y)

(
∂� p

�(t, x + h − y) − ∂� p
�(t, x − y)

)
d�

∣∣∣∣∣
≤ |h|

∫ α(y+h)

α(y)

∣∣∇x∂� p
�(t, η�(x, h) − y)

∣∣ d� (71)

for some intermediate value η�(x, h) ∈ B(x, h). Integrating with respect to y and
using (70), we obtain that

∫
Rd

|q(y)| dy ≤ c3(1 + | log(t)|)t−1/αL |h| sup
z∈Rd

∫ α(z+h)

α(z)
d� (72)

≤ c3‖α‖Cγ
b (Rd )(1 + | log(t)|)t−1/αL |h|1+γ . (73)

On the other hand, it follows from (71) and the Hölder continuity of α that

∫
Rd

|q(y)| dy ≤ |h|γ ‖α‖Cγ
b (Rd ) sup

�∈[αL ,‖α‖∞]
sup

η∈Rd

∫
Rd

|∂� p
�(t, η − y)| dy.

Hence, by (70),

∫
Rd

|q(y)| dy ≤ c4|h|γ (1 + | log(t)|). (74)

Combining (73) and (74), we find that

∫
Rd

|q(y)| dy ≤ c5|h|κ+γ (1 + | log(t)|)t−κ/αL , κ ∈ [0, αL ];
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the reasoning is very similar to the proof of Lemma C.1. Alternatively, we can use an
interpolation theorem.

Step 2 There exists a constant c > 0 such that

|J2|≤c|h|κ+δ−ε‖u‖Cδ
b(R

d )(1+| log(t)|)t−κ/αL for all t ∈ (0, T ], |h|≤1, x ∈Rd;

recall that ε ∈ (γ0, αL ∧ γ ) has been fixed at the beginning of the proof.

Indeed: Because of decomposition (67), we have J2 = J2,1 + J2,2 for

J2,1 :=
∫
Rd

u(y + h)q(t, x, y) dy,

J2,2 :=
∫
Rd

u(y + h) ((p0 � �)(t, x + h, y) − (p0 � �)(t, x + 2h, y + h)) dy

+
∫
Rd

u(y + h) ((p0 � �)(t, x + h, y + h) − (p0 � �)(t, x, y)) dy,

with q defined in (69). It follows from Step 1 that

|J2,1| ≤ c1‖u‖Cδ
b(R

d )(1 + | log(t)|)t−κ/αL |h|κ+δ, t ∈ (0, T ].

It remains to estimate J2,2. By the definition of the time-space convolution,

(p0 � �)(t, x + h, y) − (p0 � �)(t, x + 2h, y + h) − (p0 � �)(t, x, y)

+ (p0 � �)(t, x + h, y + h)

=
∫ t

0

∫
Rd

(p0(t − s, x + h, z) − p0(t − s, x, z))�(s, z, y) dz ds

−
∫ t

0

∫
Rd

(p0(t − s, x + 2h, z) − p0(t − s, x + h, z))�(s, z, y + h) dz ds

=
∫ t

0

∫
Rd

q(t − s, x, z)�(s, z, y) dz ds

−
∫ t

0

∫
(p0(t − s, x + 2h, z + h) − p0(t − s, x + h, z + h))

(�(s, z + h, y + h) − �(s, z, y)) dz ds

=: H1(t, y) − H2(t, y).

Integrating with respect to y and applying Tonelli’s theorem,

∣∣∣∣
∫
Rd

u(y + h)H1(t, y) dy

∣∣∣∣
≤ ‖u‖∞

∫ t

0

(
sup

η∈Rd

∫
Rd

|�(s, η, y)| dy
) (∫

Rd
|q(t − s, x, z)| dz

)
ds.
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Thus, by (59) and Step 1,

∣∣∣∣
∫
Rd

u(y + h)H1(t, y) dy

∣∣∣∣
≤ c6|h|κ+γ ‖u‖∞

∫ t

0
s−1+λ1(1 + | log(t − s)|)(t − s)−κ/αL ds (75)

for a suitable constant c6 > 0 and λ1 > 0. It remains to estimate H2. We claim that
there exist constants c7 > 0 and λ2 > 0 such that

sup
z∈Rd

∫
Rd

|�(t, z + h, y + h) − �(t, z, y)| dy ≤ c7|h|γ−εt−1+λ2 (76)

for all t ∈ (0, T ] and |h| ≤ 1; here ε ∈ (γ0, αL ∧ γ ) is as above. We postpone the
proof of (76) to the end of this subsection (see Lemma 6.3). Using (76) and the fact
that∫

Rd
|p0(t − s, x + 2h, z + h) − p0(t − s, x + h, z + h)| dz ≤ c8|t − s|−κ/αL |h|κ

for some constant c8 > 0 (which follows by a similar reasoning to that in the first part
of the proof of Proposition 6.1), we obtain

∣∣∣∣
∫
Rd

u(y + h)H2(t, y) dy

∣∣∣∣ ≤ c7c8‖u‖∞|h|γ+κ−ε

∫ t

0
s−1+λ2(t − s)−κ/αL ds.

Combining this estimate with (75) gives

|J2,2| ≤ (c6 + c7c8)‖u‖∞|h|γ+κ−ε

∫ t

0
s−1+λ(t − s)−κ/αL (1 + | log(t − s)|) ds.

Hence,

|J2,2| ≤ c9‖u‖∞|h|γ+κ−εt−κ/αL

∫ 1

0
r−1+λ(1 − r)−κ/αL (1 + | log(1 − r)|) dr

for all t ∈ (0, T ] where λ := min{λ1, λ2}. This finishes the proof of Step 2 and hence
of Proposition 6.2 for the case κ ≤ 1. If κ > 1, we need to estimate the iterated
differences of third order �3

h Ptu(x); the calculations then become more technical and
lengthy, but the idea of the proof does not change. We refer the reader to the arXiv
version [28] of this paper for full details. ��
Lemma 6.3 Let (Xt )t≥0 be a Feller process with symbol q(x, ξ) = |ξ |α(x) satisfying
the assumptions of Proposition 6.2, and denote by

p(t, x, y) = p0(t, x, y) + (p0 � �)(t, x, y)
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the parametrix representation of the transition density p of (Xt )t≥0 (cf. Appendix C).
For any T > 0 and any ε ∈ (γ0, γ ∧αL), there exist finite constants C > 0 and λ > 0
such that

∫
Rd

|�(t, x + h, y + h) − �(t, x, y)| dy ≤ C |h|γ−εt−1+λ

for all x ∈ Rd , |h| ≤ 1 and t ∈ (0, T ]. The constant C > 0 depends continuously on
αL ∈ (0, 2), κ − αL ∈ (0, 2), (ε − ‖α‖∞)/αL ∈ (1,∞), ‖α‖Cγ

b (Rd ) ∈ [0,∞) and
T ∈ [0,∞). The constant λ > 0 depends continuously on (ε − ‖α‖∞)/αL ∈ (1,∞)

and (γ − ‖α‖∞)/αL ∈ (1,∞).

Proof Fix ε ∈ (γ0, αL∧γ ). To keep the calculations as simple as possible, we consider
T := 1. To prove the assertion, we will use that

�(t, x, y) =
∞∑
i=1

F�i (t, x, y), t > 0, x, y ∈ Rd , (77)

where F�i := F � F�(i−1) denotes the i th convolution power of

F(t, x, y) := (2π)−d
∫
Rd

(
|ξ |α(y) − |ξ |α(x)

)
eiξ ·(y−x)e−t |ξ |α(y)

dξ,

cf. Appendix C.

Step 1 There exist constants C > 0 and λ > 0 such that

∫
Rd

|F(t, x + h, y + h) − F(t, x, y)| dy ≤ C |h|γ−εt−1+λ (78)

for all x ∈ Rd , |h| ≤ 1, t ∈ (0, 1).

Indeed: For fixed |h| ≤ 1, we write

F(t, x + h, y + h) − F(t, x, y) = (2π)−d (D1(t, x, y) + D2(t, x, y))

where

D1(t, x, y) :=
∫
Rd

((
|ξ |α(y+h) − |ξ |α(y)

)
−

(
|ξ |α(x+h) − |ξ |α(x)

))
eiξ ·(y−x)e−t |ξ |α(y)

dξ,

D2(t, x, y) :=
∫
Rd

(
|ξ |α(y) − |ξ |α(x)

)
eiξ ·(y−x)

(
e−t |ξ |α(y+h) − e−t |ξ |α(y)

)
dξ.
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Weestimate the terms separately.Asα ∈ C
γ

b (Rd), it follows that x �→ rα(x) ∈ C
γ

b (Rd)

for any fixed r ≥ 0 and

‖rα(·)‖Cγ
b (Rd ) ≤

(
‖α‖Cγ

b (Rd )| log(r)| + 1
)
max{rαL , r‖α‖∞}.

By Lemma C.2, there exists a constant c1 > 0 such that

∣∣∣(rα(y+h) − rα(y)
)

−
(
rα(x+h) − rα(x)

)∣∣∣
≤ c1|h|γ−ε|x − y|ε‖rα(·)‖Cγ

b (Rd )

≤ c′
1|h|γ−ε|x − y|ε(| log(r)| + 1)max{rαL , r‖α‖∞},

for all r ≥ 0, x, y ∈ Rd and |h| ≤ 1. By [22, (proof of) Theorem 4.7], this implies
that there is a constant c2 > 0 such that

|D1(t, x, y)| ≤ c2|h|γ−ε|x − y|ε

·
{
(1+| log(t)|)t−(d+‖α‖∞)/αL ∧ 1+| log(|x − y|)|

min{|x − y|d+αL , |x−y|d+‖α‖∞}
}

,

for all x, y ∈ Rd , t ∈ (0, 1) and |h| ≤ 1. Splitting up the domain of integration into
three parts

{y ∈ Rd; |x − y| < t1/αL } {y ∈ Rd ; t1/αL ≤ |x − y| ≤ 1} {y ∈ Rd ; |x − y| > 1}

we find that
∫
Rd |D1(t, x, y)| dy is bounded by

c2|h|γ−ε

(
(1 + | log(t)|)t−(d+|α‖∞−ε)/αL

∫
|z|<t1/αL

dz

+
∫
t1/αL ≤|z|≤1

1 + | log(|z|)|
|z|d+‖α‖∞−ε

dz +
∫

|z|>1

1 + | log(|z|)|
|z|d+αL−ε

dz

)

≤ c′
2|h|γ−ε(1 + | log(t)|)t−(|α‖∞−ε)/αL .

As ε > γ0 = ‖α‖∞ − αL , there exists λ1 > 0 such that

∫
Rd

|D1(t, x, y)| dy ≤ c3t
−1+λ1 |h|γ−ε, t ∈ (0, 1), x ∈ Rd .

To estimate the second term, note that

D2(t, x, y) = −t
∫ α(y+h)

α(y)

∫ α(y)

α(x)

∫
Rd

(log(|ξ |))2|ξ |ueiξ ·(y−x)e−t |ξ |� dξ du d�.

123



Journal of Theoretical Probability (2021) 34:1506–1578 1555

From [22, Theorem 4.7] and the Hölder continuity of α, there exists a constant c4 > 0
such that

|D2(t, x, y)| ≤ c4t |h|γ |x − y|γ

·
{
(1 + | log(t)|2)t−(d+‖α‖∞)/αL ∧ 1 + | log(|x − y|)|2

min{|x − y|d+αL , ‖x − y|d+‖α‖∞}
}

.

Now we can proceed exactly as in the first part of this step to conclude that

∫
Rd

|D2(t, x, y)| dy ≤ c5|h|γ (1 + | log(t)|2)t−(‖α‖∞−γ )/αL ≤ c′
5|h|γ t−1+λ2

for all x ∈ Rd , |h| ≤ 1 and t ∈ (0, 1) and suitable constants c5, c′
5, λ2 > 0; for the

second estimate, we used that γ > γ0 = ‖α‖∞ − αL .

Step 2 For any ε ∈ (γ0,min{γ, αL}) there exist constants C > 0 and λ > 0 such that

∫
Rd

|F�i (t, x + h, y + h) − F�i (t, x, y)| dy ≤ 2iCi �(λ)i

�(iλ)
t−1+iλ|h|γ−ε (79)

for all i ∈ N, x ∈ Rd , |h| ≤ 1 and t ∈ (0, 1).

Indeed Fix ε ∈ (γ0,min{γ, α}). There exist constants C > 0 and λ > 0 such that

∫
Rd

|F�i (t, x, y)| dy ≤ Ci �(λ)i

�(iλ)
t−1+iλ (80)

for all x ∈ Rd , i ≥ 1 and t ∈ (0, 1) (cf. Appendix C). Without loss of generality, we
may assume that C > 0 and λ > 0 are such that (78) holds (otherwise increase C > 0
and decrease λ > 0). We claim that (79) holds for this choice ofC > 0 and λ > 0, and
prove this by induction. For i = 1 the estimate is a direct consequence of (78). Now
assume that (79) holds for some i ≥ 1. By the definition of the time-space convolution,

(F � F�i )(t, x + h, y + h)

=
∫ t

0

∫
Rd

F(t − s, x + h, z)F�i (s, z, y + h) dz ds

=
∫ t

0

∫
Rd

F(t − s, x + h, z + h)F�i (s, z + h, y + h) dz ds,

so

|(F � F�i )(t, x + h, y + h) − (F � F�i )(t, x, y)| ≤ I1(t, x, y) + I2(t, x, y)
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for

I1(t, x, y) :=
∫ t

0

∫
Rd

∣∣∣(F(t − s, x + h, z + h)

−F(t − s, x, z))F�i (s, z + h, y + h)

∣∣∣ dz ds,
I2(t, x, y) :=

∫ t

0

∫
Rd

∣∣∣(F�i (s, z + h, y + h) − F�i (s, z, y))F(t − s, x, z)
∣∣∣ dz ds.

From first (80) and then (78),

∫
Rd

|I1(t, x, y)| dy ≤ Ci+1 �(λ)i

�(iλ)
|h|γ−ε

∫ t

0
(t − s)−1+λs−1+iλ ds,

for all x ∈ Rd , |h| ≤ 1 and t ∈ (0, 1). To estimate the second term, we use (80) with
i = 1 and our induction hypothesis to find that

∫
Rd

|I2(t, x, y)| dy ≤ 2iCi+1 �(λ)i

�(iλ)
|h|γ−ε

∫ t

0
(t − s)−1+λs−1+iλ ds

for all x ∈ Rd , |h| ≤ 1 and t ∈ (0, 1). Combining these, F�(i+1) = F � F�i satisfies

∫
Rd

|F�(i+1)(t, x + h, y + h) − F�(i+1)(t, x, y)| dy

≤ (2C)i+1 �(λ)i

�(iλ)
|h|γ−ε

∫ t

0
(t − s)−1+λs−1+iλ ds.

By a change of variables s � tr and Euler’s formula for the Beta function, B(u, v) =
�(u)�(v)/�(u + v),

∫ t

0
(t − s)−1+λs−1+iλ ds = t−1+(i+1)λB(λ, iλ) = t−1+(i+1)λ �(i)�(iλ)

�((i + 1)λ)
.

Plugging this identity in the previous estimate shows that (79) holds for i +1, and this
finishes the proof of Step 2.

Conclusion of the proof Fix ε ∈ (γ0, γ ∧ αL). Since, by (77),

|�(t, x + h, y + h) − �(t, x, y)| ≤
∞∑
i=1

|F�i (t, x + h, y + h) − F�i (t, x, y)|,
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the monotone convergence theorem gives

∫
Rd

|�(t, x + h, y + h) − �(t, x, y)| dy

≤
∞∑
i=1

∫
Rd

|F�i (t, x + h, y + h) − F�i (t, x, y)| dy.

So, by Step 2,

∫
Rd

|�(t, x + h, y + h) − �(t, x, y)| dy ≤ |h|γ−εt−1+λ
∑
i≥1

2iCi �(λ)i

�(iλ)
,

for all x ∈ Rd , |h| ≤ 1 and t ∈ (0, 1) and suitable constants C > 0 and λ > 0 (not
depending on x , h, t). It is not difficult to see that the series on the right-hand side
converges, and consequently, we have proved the desired estimate. ��

6.2 Auxiliary Result for the Proof of Theorem 4.1

Let (Xt )t≥0 be an isotropic stable-like process with symbol q(x, ξ) = |ξ |α(x) for
a Hölder continuous mapping α : Rd → (0, 2) with αL := infx α(x) > 0. By
Proposition 6.1 and Proposition 3.1, any function f in the Favard space F1 associated
with (Xt )t≥0 satisfies the a priori estimate

‖ f ‖Cκ
b (Rd ) ≤ c(‖Ae f ‖∞ + ‖ f ‖∞) (81)

for κ ∈ (0, αL); in particular, F1 ⊆ C
αL−
b (Rd). For the proof of Theorem 4.1, we need

the following auxiliary result, which will give us an improved a priori estimate once
we have shown that f ∈ F1 is sufficiently regular on {x ∈ Rd;α(x) ≤ 1}.
Lemma 6.4 Let (Xt )t≥0 be a Feller process with extended infinitesimal generator
(Ae,D(Ae)), Favard space F1 and symbol q(x, ξ) = |ξ |α(x) for a Hölder continuous
mapping α : Rd → (0, 2) such that

0 < αL := inf
x∈Rd

α(x) ≤ sup
x∈Rd

α(x) < 2.

Let f ∈ F1 be such that for any ε ∈ (0, αL) there exists a constant M(ε) > 0 such
that

|�h f (x)| = | f (x + h) − f (x)| ≤ M(ε)|h|α(x)−ε, |h| ≤ 1, (82)

for any x ∈ {α ≤ 1}. Then there exists for any θ ∈ (0, 1) a constant C = C(α, θ)

such that
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|�2
h f (x)| ≤ C |h|1−θ (‖Ae f ‖∞ + ‖ f ‖∞ + M(θ/12)), |h| ≤ 1,

for any x ∈ {α ≥ 1}.
Proof The idea of the proof is similar to the proof of Theorem 3.2. For fixed 0 <

θ < min{αL , 1/4}, define α̃(x) := max{1 − 3θ, α(x)}. By [22, Theorem 5.2], there
exists a Feller process (Yt )t≥0 with symbol p(x, ξ) := |ξ |α̃(x), and the (L,C∞

c (Rd))-
martingale problem for the generator L of (Yt )t≥0 is well-posed. Since α is Hölder
continuous, there exists δ > 0 such that

|x − z| ≤ 2δ �⇒ |α(x) − α(z)| ≤ θ. (83)

As usual, we denote by

τ x
δ := inf{t > 0; |Yt − x | > δ}

the exit time from the closed ball B(x, δ). Pick κ ∈ C∞
b (Rd), 0 ≤ κ ≤ 1, such that

κ(x) = 0 for any x ∈ {α ≤ 1−2θ} and κ(x) = 1 for x ∈ {α ≥ 1−θ}; see LemmaD.1
for the existence of such a mapping.

Step 1 We show that for any f ∈ F1 the product v := f · κ is in the domain D(Le)

of the extended generator of (Yt )t≥0; we will use a similar reasoning as in the proof
of Theorem 3.2, i. e. we will estimate

1

t
sup
x∈Rd

|Exv(Yt∧τ xδ
) − v(x)|.

Clearly,

|Exv(Yt∧τ xδ
) − v(x)| ≤ I1(x) + I2(x) + I3(x),

where

I1(x) := |κ(x)Ex ( f (Yt∧τ xδ
) − f (x))|,

I2(x) := | f (x)Ex (κ(Yt∧τ xδ
) − κ(x))|,

I3(x) :=
∣∣∣Ex(( f (Yt∧τ xδ

) − f (x))(κ(Yt∧τ xδ
) − κ(x))

)∣∣∣ .
We estimate the terms separately; we start with I1. If x ∈ {α ≥ 1−2θ}, then it follows
from (83) that B(x, 2δ) ⊆ {α ≥ 1 − 3θ} and therefore

q(z, ξ) = |ξ |α(z) = |ξ |α̃(z) = p(z, ξ) for all z ∈ B(x, 2δ), ξ ∈ Rd . (84)

Applying Lemma 5.2,

I1(x) = |κ(x)Ex ( f (Xt∧τ xδ (X)) − f (x))|,
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with τ x
δ (X) the exit time of (Xt )t≥0 from B(x, δ). As f ∈ F1, Dynkin’s formula (11)

gives

I1(x) ≤ t‖Ae f ‖∞.

If x ∈ {α < 1 − 2θ}, then κ(x) = 0 by the very definition of κ , and so I1(x) = 0.
Hence,

sup
x∈Rd

I1(x) ≤ t‖Ae f ‖∞.

For I2, we note that κ ∈ C∞
b (Rd) ⊆ D(L), and so the (classical) Dynkin formula

gives

sup
x∈Rd

I2(x) ≤ t‖ f ‖∞‖Lκ‖∞.

To estimate I3, we consider two cases separately. If x ∈ {α ≤ 1}, then from our
assumption on the regularity of f , cf. (82), and the Lipschitz continuity of κ ,

| f (Yt∧τ xδ
) − f (x)| · |κ(Yt∧τ xδ

) − κ(x)|
≤ 4(‖ f ‖∞ + M(θ/3))‖κ‖C1

b (Rd ) min{|Yt∧τ xδ
− x |α(x)−θ/3+1, 1}.

By Lemma 5.3, there exists a constant c2 = c2(αL , ‖α‖∞) > 0 such that

I3(x) ≤ c2(‖ f ‖∞ + M(θ/3))‖κ‖C1
b (Rd ) (∗)

· sup
|z−x |≤δ

∫
y �=0

min{1, |y|α(x)−θ/3+1} 1

|y|d+α̃(z)
dy.

For x ∈ Rd with α(x) ≤ 1 − 2θ we note that it follows from the definition of α̃ that
α̃(z) ≥ 1 − 3θ for all z ∈ Rd , and so

sup
x∈{α≤1−2θ}

I3(x)

≤ c2(‖ f ‖∞ + M(θ/3))

(∫
|y|≤1

|y|−d+2θ/3 dy +
∫

|y|>1
|y|−d−1+3θ dy

)
< ∞.

If 1 − 2θ ≤ α(x) ≤ 1, then α(z) = α̃(z) for all |z − x | ≤ δ; using (83), we find from
(∗) that

sup
x∈{1−2θ≤α≤1}

I3(x)

≤ c2(‖ f ‖∞ + M(θ/3))

(∫
|y|≤1

|y|−d+1−4θ/3 dy +
∫

|y|>1
|y|−d−αL dy

)
< ∞.
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Finally, if x ∈ {α > 1}, then B(x, δ) ⊆ {α ≥ 1 − θ}, and therefore κ(z) = 1 for any
|z − x | ≤ δ; hence,

| f (Yt∧τ xδ
) − f (x)| · |κ(Yt∧τ xδ

) − κ(x)| ≤ 2‖ f ‖∞1{τ xδ ≤t},

which implies

I3(x) ≤ 2‖ f ‖∞Px (τ x
δ ≤ t).

By the maximal inequality (9),

I3(x) ≤ c3‖ f ‖∞t sup
|z−x |≤δ

sup
|ξ |≤δ−1

|p(z, ξ)|,

for some absolute constant c3 > 0. As |p(z, ξ)| ≤ |ξ |2 for all ξ ∈ Rd , this shows that

sup
x∈{α>1}

I3(x) ≤ c3‖ f ‖∞tδ−2.

Combining the estimates,

sup
t>0

1

t
sup
x∈Rd

|Exv(Yt∧τ xδ
) − v(x)| ≤ c4(‖ f ‖∞ + ‖Ae f ‖∞ + M(θ/3))

for some constant c4 = c4(θ, δ, αL , ‖α‖∞, ‖Lκ‖∞).

Step 2 Applying Corollary 2.2 we find that v = f · κ is in the Favard space FY
1 of

order 1 associated with (Yt )t≥0 and

‖Le( f · κ)‖∞ ≤ c5(‖ f ‖∞ + ‖Ae f ‖∞ + M(θ/3)).

Since Proposition 6.1 shows that the semigroup (Tt )t≥0 associated with (Yt )t≥0 satis-
fies the Hölder estimate

‖Ttu‖C1−4θ
b (Rd )

≤ c6‖u‖∞t−(1−4θ)/(1−3θ), t ∈ (0, 1], u ∈ Bb(R
d),

for c6 = c6(α, θ) > 0, Proposition 3.1 gives

‖ f · κ‖C1−4θ
b (Rd )

≤ c7(‖ f ‖∞ + ‖Ae f ‖∞ + M(θ/3))

for some constant c7 > 0 which does not depend on f . Finally, we note that for any
x ∈ {α ≥ 1} we have κ(z) = 1 for z ∈ B(x, δ), and so for all |h| ≤ δ/2

| f (x + 2h) − 2 f (x + h) + f (x)|
= |κ(x + 2h) f (x + 2h) − 2κ(x + h) f (x + h) + κ(x) + f (x)|
≤ c7|h|1−4θ (‖ f ‖∞ + ‖Ae f ‖∞ + M(θ/3)).

��
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6.3 Proof of Theorem 4.1 and Corollary 4.3

Proof of Theorem 4.1 Fix ε ∈ (0, αL). Since α is Hölder continuous, there exists δ > 0
such that

|α(x) − α(y)| ≤ ε

2
for all |x − y| ≤ 4δ. (∗)

Moreover, as ‖α‖∞ < 2, we can choose θ ∈ (0, αL) such that α(x) < 2 − θ for
all x ∈ Rd ; without loss of generality, we may assume that ε ≤ θ . We divide the
proof in two steps. First, we will establish the Hölder regularity of functions f ∈ F1
at points x ∈ Rd such that α(x) ≤ 1 + αL − θ . In the second part, we will consider
the remaining points.

Step 1 There exists a constant C1 > 0 such that

|�2
h f (x)| ≤ C1|h|α(x)−ε(‖Ae f ‖∞ + ‖ f ‖∞) (85)

for all f ∈ F1, |h| ≤ δ, x ∈ {α ≤ αL + 1 − θ}.
Indeed: Fix x ∈ Rd such that α(x) ≤ αL + 1 − θ , and define

αx (z) := max{α(z), α(x) − ε/2}, z ∈ Rd .

It is not difficult to see that ‖αx‖Cγ
b (Rd ) ≤ ‖α‖Cγ

b (Rd ) and, moreover,

αx
L := inf

z∈Rd
αx (z) ≥ α(x) − ε

2
> 0.

It follows from [22, Theorem 5.2] that there exists a Feller process with symbol
p(z, ξ) := |ξ |αx (z) and that the (L,C∞

c (Rd))-martingale problem for the generator L
of (Yt )t≥0 is well-posed. Note that, by (∗), αx (z) = α(z) for |z − x | ≤ 4δ, and so

q(z, ξ) = |ξ |α(z) = |ξ |αx (z) = p(x)(z, ξ) for all ξ ∈ Rd , |z − x | ≤ 4δ.

Moreover, an application ofLemma6.4 shows that there exists a constant c1 = c1(ε, α)

such that the semigroup (Tt )t≥0 associated with (Yt )t≥0 satisfies

‖Ttu‖
C

α(x)−ε
b (Rd )

≤ c1‖u‖∞t−(α(x)−ε)/(α(x)−ε/2) (86)

for any u ∈ Bb(R
d) and t ∈ (0, 1]. So the conditions (C1)-(C3) in Theorem 3.2 are

satisfied. By (81), it follows from Theorem 3.2 (with �(x) := αL − θ/4) that there
exists a constant c2 = c2(ε, α) such that

|�2
h f (x)| ≤ c2K (x)|h|α(x)−ε(‖Ae f ‖∞ + ‖ f ‖∞), f ∈ F1, |h| ≤ δ,
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where

K (x) := sup
z∈Rd

∫
y �=0

min{1, |y|2} 1

|y|d+αx (z)
dy

+ sup
|z−x |≤4δ

∫
y �=0

min{1, |y|1+αL−θ/4} 1

|y|d+αx (z)
dy;

if we can show that K := supx∈{α≤αL+1−θ} K (x) < ∞ this gives (85). To this end,
we note that ε ≤ θ and (∗) imply

αx (z) = α(z) ≤ α(x) + ε

2
≤ (αL + 1 − θ) + θ

2
= αL + 1 − θ

2

for all |z − x | ≤ 4δ, and so

K ≤ sup
β∈[αL ,‖α‖∞]

∫
y �=0

min{1, |y|2} 1

|y|d+β
dy

+ sup
β∈[αL ,αL+1−θ/2]

∫
y �=0

min{1, |y|1+αL−θ/4} 1

|y|d+β
dy < ∞.

Step 2 There exists C2 > 0 such that

|�2
h f (x)| ≤ C2|h|α(x)−ε(‖Ae f ‖∞ + ‖ f ‖∞)

for all f ∈ F1, |h| ≤ δ, x ∈ {α ≥ αL + 1 − θ}.
Indeed: It follows from Lemma 6.4 and Step 1 that there exists a constant c3 > 0 such
that

|�2
h f (x)| ≤ c3|h|1−θ/2(‖Ae f ‖∞ + ‖ f ‖∞), |h| ≤ 1, (87)

for any f ∈ F1 and x ∈ {α ≥ 1}. Thanks to this improved a priori estimate for
f ∈ F1, we can use a very similar reasoning to that in the first part of the proof
to deduce the desired estimate. If we set αx (z) := max{α(z), α(x) − ε/2} for fixed
x ∈ {α ≥ 1+αL−θ}, then it follows exactly as in Step 1 that the Feller process (Yt )t≥0
with symbol p(z, ξ) := |ξ |αx (z) satisfies (C1)-(C3) in Theorem 3.2; in particular, (86)
holds for the associated semigroup (Tt )t≥0. By (87), we may apply Theorem 3.2 with
�(x) := 1 − θ/2 to obtain

|�2
h f (x)| ≤ c4K (x)|h|α(x)−ε(‖Ae f ‖∞ + ‖ f ‖∞), f ∈ F1,
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for some constant c4 (not depending on f and x) and

K (x) := sup
z∈Rd

∫
y �=0

min{1, |y|2} 1

|y|d+αx (z)
dy

+ sup
|z−x |≤4δ

∫
y �=0

min{1, |y|2−θ/2} 1

|y|d+αx (z)
dy.

By our choice of θ , we have αL ≤ αx (z) ≤ ‖α‖∞ < 2 − θ , and so

sup
x∈{α≥1+αL−θ}

K (x) ≤ 2 sup
β∈[αL ,‖α‖∞]

∫
y �=0

min{1, |y|2} 1

|y|d+β
dy

+
∫

|y|≤1
|y|−d+θ/2 dy < ∞. ��

Proof of Corollary 4.3 We are going to apply Theorem 3.5 to prove the assertion. To
this end, we first need to construct for each x ∈ Rd a Feller process (Y (x)

t )t≥0 which
satisfies (C1)-(C3) from Theorem 3.2, as well as (S1)-(S5) from Theorem 3.5. Recall
that αL = inf x α(x) > 0 and that γ ∈ (0, 1) is the Hölder exponent of α.

Fix ε ∈ (0, αL ∧ γ ) and x ∈ Rd . Since α is Hölder continuous, there exists δ > 0
such that

|α(z + y) − α(z)| ≤ ε

4
for all z ∈ Rd , |h| ≤ δ. (∗)

If we define

αx (z) := (α(x) − ε/4) ∨ α(z) ∧ (α(x) + ε/4), z ∈ Rd ,

then it follows from [22, Theorem 5.2] that there exists a Feller process (Y (x)
t )t≥0 with

symbol p(x)(z, ξ) := |ξ |αx (z) such that the martingale problem for its generator is
well-posed. Moreover, by our choice of δ,

q(z, ξ) = |ξ |α(z) = |ξ |αx (z) = p(x)(z, ξ) for all ξ ∈ Rd , |z − x | ≤ 4δ,

and so (C1) and (C2) from Theorem 3.2 hold. By Proposition 6.1 and Proposition 6.2,
the semigroup (T (x)

t )t≥0 associated with (Y (x)
t )t≥0 satisfies

‖T (x)
t u‖

C
κ(x)
b (Rd )

≤ c1‖u‖∞t−β(x), u ∈ Bb(R
d), t ∈ (0, 1),

and

‖T (x)
t u‖

C
κ(x)+λ
b (Rd )

≤ c1‖u‖Cλ
b(R

d )t
−β(x), u ∈ Cλ

b(R
d), t ∈ (0, 1),
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for any λ ≤ � := γ , where c1 > 0 is some constant (not depending on u, t , x) and

κ(x) := α(x) − ε, β(x) := α(x) − 2ε

α(x) − ε/4
.

Consequently, we have established (C3) and (S3). Since κ is clearly uniformly contin-
uous and bounded away from zero, we get immediately that (S4) holds. Moreover, as
α is bounded away from zero and from two, it follows easily that (S1) and (S5) hold
with α(x)(z) := αx (z). Finally, we note that the Hölder condition (S2) on the symbol
p(x) is a consequence of the Hölder continuity of α; see Lemma 6.5 for details.

We are ready to apply Theorem 3.5. Let f ∈ D(A) be such that A f = g ∈ Cλ
b(R

d)

for some λ > 0. Without loss of generality, we may assume that λ ≤ γ . Since
(Xt )t≥0 satisfies the assumptions of Theorem 4.1, it follows that f ∈ C

�(·)
b (Rd) for

�(x) := α(x) − ε/4 and, moreover,

‖ f ‖
C

�(·)
b (Rd )

≤ Cε(‖A f ‖∞ + ‖ f ‖∞). (88)

Furthermore, by our choice of δ (cf. (∗)), we find that

σ := inf
x∈Rd

inf|z−x |≤4δ
(1 + �(x) − αx (z))

satisfies σ ≥ 1 − ε/4. Applying Theorem 3.5, we conclude that

f ∈ C
κ(·)+min{γ,λ,1−ε/4}−ε/4
b (Rd) ⊆ C

α(·)+min{γ,λ}−2ε
b (Rd)

and

‖ f ‖
C

α(·)+min{γ,λ}−2ε
b (Rd )

≤ C ′
ε(‖A f ‖Cλ

b(R
d ) + ‖ f ‖

C
�(·)
b (Rd )

)

≤ C ′′
ε (‖A f ‖Cλ

b(R
d ) + ‖ f ‖∞),

where we used (88) for the last inequality. ��
Lemma 6.5 For fixed α ∈ (0, 2), denote by να the Lévy measure of the isotropic
α-stable Lévy process, i. e.

|ξ |α =
∫
y �=0

(1 − cos(y · ξ)) να(dy), ξ ∈ Rd . (89)

Let β : Rd → (0, 2) be such that β ∈ Cγ

b (Rd) for some γ ∈ (0, 1] and

0 < βL := inf
z∈Rd

β(z) ≤ sup
z∈Rd

β(z) < 2.

If u : Rd → R is a measurable mapping such that

|u(y)| ≤ M min{|y|β(z)+r , 1}, y ∈ Rd , (90)
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for some z ∈ Rd , r > 0 and M > 0, then there exist constants K > 0 and H > 0
(not depending on u or z) such that

∣∣∣∣
∫

u(y) νβ(z)(dy) −
∫

u(y) νβ(z+h)(dy)

∣∣∣∣ ≤ MK |h|γ for all |h| ≤ H .

Proof It is well known that να(dy) = c(α)|y|−d−α with c(α) a normalizing constant
such that (89) holds. Noting that, by the rotational invariance of ξ �→ |ξ |α ,

|ξ |α =c(α)

∫
y �=0

(1 − cos(y1|ξ |)) 1

|y|d+α
dy=|ξ |αc(α)

∫
y �=0

(1−cos(y1))
1

|y|d+α
dy

for all ξ ∈ Rd , we find that c(α) = 1/h(α), where

h(α) :=
∫
y �=0

(1 − cos(y1))
1

|y|d+α
dy.

From ∣∣∣∣ 1

rd+α
− 1

rd+α̃

∣∣∣∣ = 1

r2d+α+β
|rd+α̃ − rd+α|

≤ | log(r)|r−d max{r−α, r−α̃}|α − α̃|, r > 0, (91)

and α, α̃ ∈ I := [βL , ‖β‖∞] ⊆ (0, 2), it follows that

|h(α) − h(α̃)| ≤ C1|α − α̃|, α, α̃ ∈ I

for some constant C1 > 0. As infα∈I h(α) > 0, this implies that c(α) = 1/h(α)

satisfies

|c(α) − c(α̃)| ≤ C2|α − α̃|, α, α̃ ∈ I , (92)

for some constant C2 > 0.
Now let u : Rd → R be a measurable mapping such that (90) holds for some

z ∈ Rd , M > 0 and r > 0. Since να(dy) = c(α)|y|−d−α dy,

∣∣∣∣
∫

u(y) νβ(z)(dy) −
∫

u(y) νβ(z+h)(dy)

∣∣∣∣ ≤ I1 + I2,

where

I1 := |c(β(z)) − c(β(z + h))|
∫
y∈Rd

|u(y)| 1

|y|d+β(z)
dy,

I2 := c(β(z + h))

∫
y �=0

|u(y)|
∣∣∣∣ 1

|y|d+β(z)
− 1

|y|d+β(z+h)

∣∣∣∣ dy.

123



1566 Journal of Theoretical Probability (2021) 34:1506–1578

By the first part of the proof (cf. (92)) and by (90),

I1 ≤ C2M |β(z) − β(z + h)|
∫
y∈Rd

min{|y|β(z)+r , 1} 1

|y|d+β(z)
dy,

and so

I1 ≤ C2M |h|γ ‖β‖Cγ
b (Rd ) sup

α∈I

∫
y �=0

min{|y|α+r , 1}|y|d−α dy =: C3M |h|γ ,

for all h ∈ Rd . To estimate I2, we choose H > 0 such that

|β(x) − β(x + h)| ≤ min{r , βL}
2

for all x ∈ Rd , |h| ≤ H .

By (90) and (91),

I2 ≤ M |β(z) − β(z + h)| sup
α∈I

c(α)

·
∫
y �=0

min{|y|β(z)+r , 1}| log(|y|)|max{|y|−β(z), |y|−β(z+h)}
|y|d dy,

for all |h| ≤ H . By our choice of H ,

β(z)

2
≤ β(z) − βL

2
≤ β(z + h) ≤ β(z) + r

2
for all |h| ≤ H ,

and so

I2 ≤ M |β(z) − β(z + h)| sup
α∈I

c(α)

·
(∫

|y|≤1
|y|−d+r/2| log(|y|)| dy +

∫
|y|>1

|y|−d−β(z)/2 log(|y|) dy
)

≤ C4M |h|γ ,

for all |h| ≤ H and

C4 := ‖β‖Cγ
b (Rd ) sup

α∈I
c(α)

·
(∫

|y|≤1
|y|−d+r/2| log(|y|)| dy + sup

α∈I

∫
|y|>1

|y|−d−α/2 log(|y|) dy
)

< ∞.
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Appendix A: Extended Generator

In this section, we collect some material on the extended generator of a Feller process;
in particular, we present the proofs of Theorem 2.1 and Corollary 2.2. The extended
infinitesimal generator was originally introduced by Kunita [34] and was studied quite
intensively in the 1980s, e.g. by Airault and Föllmer [1], Bouleau [7], Hirsch [17],
Meyer [44] and Mokobodzki [45]. Recall the following definition (cf. Sect. 2).

Definition A.1 Let (Xt )t≥0 be a Feller process with μ-potential operators (Rλ)λ>0. A
function f is in the domain D(Ae) of the extended generator and g = Ae f if

(i) f ∈ Bb(R
d) and g is a measurable function such that ‖Rλ(|g|)‖∞ < ∞ for some

(all) λ > 0,
(ii) f = Rλ(λ f − g) for all λ > 0.

Condition A.1(ii) may be replaced by

(ii’) Mt := f (Xt ) − f (X0) − ∫ t
0 g(Xs) ds, t ≥ 0, is a local Px -martingale for any

x ∈ Rd ;

cf.Meyer [44] orBouleau [7].Moreover, itwas shown in [1] that the extendedgenerator
can also be defined in terms of pointwise limits

lim
t→0

t−1(Ex f (Xt ) − f (x)), (93)

see also Corollary A.4. The domainD(Ae) is, in general, quite large; an indication is
that it is possible to show, under relatively weak assumptions (e.g.C∞

c (Rd) ⊆ D(Ae))
that D(Ae) is closed under multiplication (cf. [44, pp. 144] or [8, Theorem 4.3.6]).
There is a close connection between the extended generator and the carré du champ
operator (cf. [8, Section 4.3] or [12]). The following statement is essentially due to
Airault and Föllmer [1].

Theorem A.2 Let (Xt )t≥0 be a Feller process with semigroup (Pt )t≥0 and extended
generator (Ae,D(Ae)). The associated Favard space F1 of order 1 (cf. (6)) satisfies

F1 = { f ∈ D(Ae); ‖Ae f ‖∞ < ∞}.

If f ∈ F1, then

K ( f ) := sup
t∈(0,1)

1

t
‖Pt f − f ‖∞ = ‖Ae f ‖∞,
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and, moreover, Dynkin’s formula

Ex f (Xτ ) − f (x) = Ex
(∫ τ

0
Ae f (Xs) ds

)
(94)

holds for any x ∈ Rd and any stopping time τ such that Exτ < ∞.

Proof Denote by (Rλ)λ>0 the λ-potential operators of (Xt )t≥0, and set

D := { f ∈ Bb(R
d); ‖Ae f ‖∞ < ∞}.

First we prove F1 ⊆ D. Let f ∈ F1. Airault and Föllmer [1, p. 320–322] showed that
the limit g(x) = limt→0 t−1(Pt f (x) − f (x)) exists outside a set of potential zero,
and that

Mt := f (Xt ) − f (X0) −
∫ t

0
g(Xs) ds, t ≥ 0,

is aPx -martingale for any x ∈ Rd ; we set g = 0 on the set of potential zero where the
limit does not exist. Clearly, ‖g‖∞ ≤ K ( f ) < ∞, and so it is obvious that Rλ(|g|) is
bounded for any λ > 0. It remains to check A.1(ii). Since the martingale (Mt )t≥0 has
constant expectation, we have Pt f = f + ∫ t

0 Psg ds, and thus

λ

∫
(0,∞)

e−λt Pt f (x) dt = λ

∫
(0,∞)

e−λt
(
f (x) +

∫ t

0
Psg(x) ds

)
dt

= f (x) −
∫

(0,∞)

(
d

dt
e−λt

)(∫ t

0
Psg(x) ds

)
dt .

Integrating by parts,

λ

∫
(0,∞)

e−λt Pt f (x) dt = f (x) +
∫

(0,∞)

e−λt Pt g(x) dt,

i. e. λRλ f = f + Rλg. This proves f ∈ D(Ae), Ae f = g and ‖Ae f ‖∞ ≤ K ( f ).
If f ∈ D, then the local martingale

Mt = f (Xt ) − f (X0) −
∫ t

0
Ae f (Xs) ds

satisfies

E
x (M2

t∧τ ) ≤ (2‖ f ‖∞ + ‖Ae f ‖∞)2(1 + t), t ≥ 0, x ∈ Rd ,

for any stopping time τ . By Doob’s maximal inequality, sups≤t |Ms | is square-
integrable, and hence (Mt )t≥0 is a martingale. In particular, Ex (Mt ) = E

x (M0),
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i. e.

Ex f (Xt ) − f (x) = Ex
(∫ t

0
Ae f (Xs) ds

)
,

and so K ( f ) ≤ ‖Ae f ‖∞ < ∞ and f ∈ F1. Finally, we note that Dynkin’s for-
mula (94) was shown in [1, Corollary 5.11] for any function f ∈ Bb(R

d) satisfying
K ( f ) < ∞. ��
Remark A.3 (i) Airault and Föllmer [1] show Dynkin’s formula (94), more generally,

for Markov processes (not necessarily having the Feller property). If (Xt )t≥0 is
a time-homogeneous Markov process with semigroup (Pt )t≥0 and Favard space
F1, then Dynkin’s formula (94) holds for all f ∈ F1, where Ae f is defined by

Ae f (x) = lim
t→0

Pt f (x) − f (x)

t
, f ∈ F1, x ∈ Rd;

this limit exists up to a set of potential zero (cf. [1]).
(ii) The weak infinitesimal generator Ã in the sense of Dynkin [13] is the linear

operator Ã : D( Ã) → Bb(R
d),

D( Ã) :=
{
f ∈ F1; ∃g ∈ Bb(R

d)∀x ∈ Rd : g(x) = lim
t→0

Pt f (x) − f (x)

t

}
,

Ã f (x) := lim
t→0

Pt f (x) − f (x)

t
.

By (the proof of) Theorem A.2, the extended generator (Ae,D(Ae)) is an exten-
sion of the weak generator ( Ã,D( Ã)). In view of the previous remark, this is not
only true for Feller processes but also for general Markov processes.

Corollary A.4 Let (Xt )t≥0 be a Feller process with semigroup (Pt )t≥0, extended gen-
erator (Ae,D(Ae)) and symbol q. Denote by

τ x
r := inf{t > 0; |Xt − x | > r}

the exit time of (Xt )t≥0 from the closed ball B(x, r). If the symbol q has bounded
coefficients, then the following statements are equivalent for any f ∈ Bb(R

d).

(i) f ∈ F1, i.e. f ∈ D(Ae) and supt∈(0,1) t
−1‖Pt f − f ‖∞ = ‖Ae f ‖∞ < ∞.

(ii) There exists r > 0 such that

K (1)
r ( f ) := sup

t∈(0,1)
sup
x∈Rd

1

Ex (t ∧ τ x
r )

|Ex f (Xt∧τ xr
) − f (x)| < ∞.

(iii) There exists r > 0 such that

K (2)
r ( f ) := sup

t∈(0,1)

1

t
sup
x∈Rd

|Ex f (Xt∧τ xr
) − f (x)| < ∞.
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If one (hence all) of the conditions is satisfied, then

Ae f (x) = lim
t→0

Ex f (Xt∧τ xr
) − f (x)

t
= lim

t→0

Ex f (Xt∧τ xr
) − f (x)

Ex (t ∧ τ x
r )

, (95)

up to a set of potential zero for any r ∈ (0,∞]. In particular, ‖Ae f ‖∞ ≤ K (i)
r ( f ) for

i ∈ {1, 2} and r ∈ (0,∞].
The proof of Corollary A.4 shows that the implications (i) �⇒ (ii), (i) �⇒ (iii)

and (i) �⇒ (95) remain valid if the symbol q has unbounded coefficients.

Proof of Corollary A.4 (i) �⇒ (ii): If f ∈ F1, then it follows from Dynkin’s for-
mula (94) that

K (1)
r ( f ) ≤ ‖Ae f ‖∞ < ∞ for all r > 0.

(ii) �⇒ (iii): This is obvious because Ex (t ∧ τ x
r ) ≤ t .

(iii) �⇒ (i): Fix t ∈ (0, 1). Clearly,

|Ex f (Xt ) − f (x)| ≤ |Ex f (Xt∧τ xr
) − f (x)| + |Ex ( f (Xt∧τ xr

) − f (Xt ))|.

By assumption, the first term on the right-hand side is bounded by K (2)
r ( f )t . For the

second term, we note that

|Ex ( f (Xt∧τ xr
) − f (Xt ))| ≤ 2‖ f ‖∞Px (τ x

r ≤ t).

The maximal inequality (9) for Feller processes shows that there exists an absolute
constant c > 0 such that

|Ex ( f (Xt∧τ xr
) − f (Xt ))| ≤ 2ct‖ f ‖∞ sup

|y−x |≤r
sup

|ξ |≤r−1
|q(y, ξ)|

≤ 2ct‖ f ‖∞ sup
y∈Rd

sup
|ξ |≤r−1

|q(y, ξ)|;

note that the right-hand side is finite because q has bounded coefficients. Combining
both estimates gives (i).

Proof of (95): For r = ∞, this follows from [1]; see the proof of Theorem A.2. Fix
r ∈ (0,∞). By Dynkin’s formula (94), we find∣∣∣∣Ex f (Xt ) − f (x)

t
− Ex f (Xt∧τ xr

) − f (x)

t

∣∣∣∣ ≤ 1

t
‖Ae f ‖∞Ex (t − min{τ x

r , t})
≤ ‖Ae f ‖∞Px (τ x

r ≤ t).

The right-continuity of the sample paths of (Xt )t≥0 gives Px (τ x
r ≤ t) → 0 as t → 0,

and so

lim
t→0

Ex f (Xt∧τ xr
) − f (x)

t
= lim

t→0

Ex f (Xt ) − f (x)

t
.
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Since the right-hand side equals Ae f (x) up to a set of potential zero (see the proof of
TheoremA.2), this proves the first equality in (95). Similarly, it follows fromDynkin’s
formula that

∣∣∣∣Ex f (Xt∧τ xr
) − f (x)

t
− Ex f (Xt∧τ xr

) − f (x)

Ex (t ∧ τ x
r )

∣∣∣∣
≤ ‖Ae f ‖∞Ex (τ x

r ∧ t)

∣∣∣∣1t − 1

Ex (t ∧ τ x
r )

∣∣∣∣
≤ ‖Ae f ‖∞Px (τ x

r ≤ t).

As Px (τ x
r ≤ t) → 0 we find that the right-hand side converges to 0 as t → 0, and

this proves the second equality in (95). ��

Appendix B: Parametrix Construction of the Transition Density

Let (Xt )t≥0 be a Feller process with symbol q(x, ξ) = |ξ |α(x) for a Hölder continuous
mapping α : Rd → (0, 2)with αL := inf x α(x) > 0. For the proof of Proposition 6.1,
the parametrix construction of the transition density of (Xt )≥0 from [22] plays a crucial
role (see also [25]). In this section, we collect some results from [22] needed for our
proofs. Throughout, p�(t, x) denotes the transition density of an isotropic �-stable
Lévy process, � ∈ (0, 2],

p�(t, x) = 1

(2π)d

∫
Rd

ei x ·ξ e−t |ξ |� dξ, x ∈ Rd , t > 0, (96)

and � is the time-space convolution, i. e.

( f � g)(t, x, y) :=
∫ t

0

∫
Rd

f (t − s, x, z)g(s, z, y) dz ds, t > 0, x, y ∈ Rd .

By [22, Theorem 5.2, Theorem 4.25], the transition density p of (Xt )t≥0 has the
representation

p(t, x, y) = p0(t, x, y) + (p0 � �)(t, x, y), t > 0, x, y ∈ Rd , (97)

where p0 is the zero-order approximation of p, defined by,

p0(t, x, y) := pα(y)(t, x − y), t > 0, x, y ∈ Rd , (98)

and � is a suitable function; see (99) for the precise definition. There exists for any
T > 0 a constant C1 > 0 such that

|p0(t, x, y)| ≤ C1S(x − y, α(y), t), t ∈ (0, T ), x, y ∈ Rd ,
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where

S(x, α, t) := min

{
t−d/α,

t

|x |d+α

}
;

cf. [22, Section 4.1]. A straightforward computation yields

∀0 < a < b ≤ 2 : sup
t∈(0,T )

sup
z∈Rd

sup
�∈[a,b]

∫
Rd

S(z − y, �, t) dy < ∞;

cf. [22, Lemma 4.16] for details. The function � in (97) has the representation

�(t, x, y) =
∞∑
i=1

F�i (t, x, y), t > 0, x, y ∈ Rd , (99)

where F�i := F � F�(i−1) denotes the i th convolution power of

F(t, x, y) :=(2π)−d
∫
Rd

(
|ξ |α(y)−|ξ |α(x)

)
eiξ ·(y−x)e−t |ξ |α(y)

dξ, t>0, x, y∈Rd .

It is possible to show that

sup
x∈Rd

∫
Rd

|�(t, x, y)| dy ≤ C2t
−1+λ, t ∈ (0, T ),

for some constant λ > 0 and C2 = C2(T ) > 0 (cf. [22, Theorem 4.25(iii), Lemma
A.8]).Moreover, by [22, Lemma4.21 and 4.24], there exist constantsC3 = C3(T ) > 0
and λ > 0 such that

∫
Rd

|F�i (t, x, y)| dy ≤ Ci
3
�(λ)i

�(iλ)
t−1+iλ, x ∈ Rd , t ∈ (0, T ).

Because of representation (98), the following estimates are a useful tool to derive
estimates for the transition density p.

Lemma B.1 Let I = [a, b] ⊂ (0, 2). For all T > 0 and k ∈ N0, there exists a constant
C > 0 such that the following estimates hold for any � ∈ [a, b], x ∈ Rd , t ∈ (0, T ),
and any multiindex β ∈ Nd

0 with |β| = k:

|∂β
x p

�(t, x)| ≤ Ct−|β|/�S(x, �, t), (100)∫
Rd

∣∣∣∣ ∂β

∂xβ

∂

∂�
p�(t, x)

∣∣∣∣ dx ≤ C(1 + | log(t)|)t−|β|/�. (101)

Proof We only prove (101); for the pointwise estimate (100), see [22, Theorem 4.12].
Denote by p� = p�,d the transition density of the d-dimensional isotropic �-stable
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Lévy process, � ∈ (0, 2). It follows from the Fourier representation (96) of p� that
� �→ p�,d(t, x) and x �→ p�,d(t, x) are infinitely often differentiable, and

∂�∂β
x p

�,d(t, x) = − t

(2π)d

∫
Rd

(iξ)βei x ·ξ e−t |ξ |� |ξ |� log(|ξ |) dξ,

for all � ∈ [a, b], x ∈ Rd , t > 0 and β ∈ Nd
0 . In particular,

∂

∂�
p�,d(t, x) = −t

1

(2π)d

∫
Rd

ei x ·ξ e−t |ξ |� |ξ |� log(|ξ |) dξ, t > 0, x ∈ Rd ,

(102)

and, by [22, Theorem 4.7], there exists a constant c2 > 0 such that∣∣∣∣ ∂

∂�
p�,d(t, x)

∣∣∣∣ ≤ c2 min

{
(1 + | log(t)|)t−d/�,

t

|x |d+�
(1 + | log(|x)|)

}
, (103)

for all t ∈ (0, T ], x ∈ Rd and � ∈ [a, b] ⊆ (0, 2). By (102), ∂� p�,d is the Fourier
transform of a rotationally invariant function, and so it follows from the dimension-
walk formula for the Fourier transform that

∂

∂x j

∂

∂�
p�,d(t, x) = −2πx j

∂

∂�
p�,d+2(t, x),

for j = 1, . . . , d, t > 0, x ∈ Rd and � ∈ (0, 2); the dimension-walk formula
goes back to Matheron [42, pp. 31–37] (see also [43]), and has been subsequently
“rediscovered” by several authors (see the article [29] and the references therein).
Using (103) for dimension d + 2, there is a constant c3 > 0 such that

∫
Rd

∣∣∣∣ ∂

∂x j

∂

∂�
p�,d(t, x)

∣∣∣∣ dx ≤ c3(1 + | log(t)|)t−1/αL , (104)

for all t ∈ (0, T ], j ∈ {1, . . . , d} and � ∈ [a, b] ⊆ (0, 2). By iteration, we get (101).
��

Appendix C: Inequalities for Hölder Continuous Functions

We present two inequalities for Hölder continuous functions which we used in Sect. 6.

Lemma C.1 Let f : Rd → R be a function. If x ∈ Rd and M1, M2 > 0 are such that

|�2
h f (x)| ≤ M1|h|2 and |�2

h f (x)| ≤ M2

for all h ∈ Rd , then

|�2
h f (x)| ≤ |h|κ max{M1r

2−κ , M2r
−κ}
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for any r > 0, h ∈ Rd and κ ∈ [0, 2].

Proof Fix κ ∈ [0, 2] and r > 0. If h ∈ Rd is such that |h| > r , then

|�2
h f (x)| ≤ M2 ≤ M2

|h|κ
rκ

.

If |h| ≤ r then

|�2
h f (x)| ≤ M1|h|2 ≤ M1|h|κr2−κ . ��

Lemma C.2 Let f ∈ C
γ

b (Rd) for some γ ∈ (0, 1). There exists a constant C =
C(γ ) > 0 such that

|�h f (x) − �h f (y)| ≤ C‖ f ‖Cγ
b (Rd )|x − y|α|h|γ−α (105)

for all α ∈ [0, γ ] and x, y, h ∈ Rd .

If f : Rd → R is Lipschitz continuous and bounded, then (105) holds for γ = 1;
the norm ‖ f ‖Cγ

b (Rd ) needs to be replaced by the sum of the supremum norm and the
Lipschitz constant of f .

Proof By definition of the Hölder–Zygmund space Cγ

b (Rd),

| f (x + h) − f (x)| ≤ ‖ f ‖Cγ
b (Rd )|h|γ1{|h|≤1} + 2‖ f ‖∞1{|h|>1} ≤ 2‖ f ‖Cγ

b (Rd )|h|γ ,

for any x, h ∈ Rd . Hence,

|�h f (x) − �h f (y)| ≤ | f (x + h) − f (x)| + | f (y + h) − f (y)|
≤ 4‖ f ‖Cγ

b (Rd )|h|γ , (106)

and

|�h f (x) − �h f (y)| ≤ | f (x) − f (y)| + | f (x + h) − f (y + h)|
≤ 4‖ f ‖Cγ

b (Rd )|x − y|γ , (107)

for all x, y, h ∈ Rd , i.e. (105) holds for α = 0 and α = γ . Next we show that (105)
holds for α = γ /2, for which we use interpolation theory. Let f = u + v for u ∈
Cb(R

d) and v ∈ C2
b (R

d). Clearly,

|�hu(x) − �hu(y)| ≤ 4‖u‖∞,
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and, by the gradient theorem,

|�hv(x) − �hv(y)| =
∣∣∣∣h

∫ 1

0
(∇v(x + rh) − ∇v(y + rh)) dr

∣∣∣∣
≤ |h| |x − y| ‖v‖C2

b (Rd ),

for all x, y, h ∈ Rd . Hence,

|�h f (x) − �h f (y)| ≤ 4‖u‖∞ + |h| |x − y| ‖v‖C2
b (Rd ), x, y, h ∈ Rd .

Since Cγ

b (Rd) is the real interpolation space2 (Cb(R
d),C2

b (R
d)γ /2,∞ (cf. [52, Section

2.7.2]), this implies that there exists a constant C > 0 such that

|�h f (x) − �h f (y)| ≤ C |h|γ /2|x − y|γ /2‖ f ‖Cγ
b (Rd ), (108)

which shows (105) for α = γ /2. Now let α ∈ (0, γ /2). For |h| ≤ |x − y|, (106) gives

|�h f (x) − �h f (y)| ≤ 4‖ f ‖Cγ
b (Rd )|h|γ ≤ 4‖ f ‖Cγ

b (Rd )|h|α|x − y|γ−α.

If |h| > |x − y|, then (108) gives

|�h f (x) − �h f (y)| ≤ C‖ f ‖Cγ
b (Rd )|x − y|γ /2|h|γ /2

≤ C‖ f ‖Cγ
b (Rd )|x − y|α|h|γ /2+(γ /2−α),

where we used α < γ/2 for the second estimate. For α ∈ (γ /2, γ ), a very similar
reasoning shows that (105) follows from (107) and (108). ��

Appendix D: A Separation Theorem for Closed Subsets

In Sect. 6, we used the following result on the smooth separation of closed subsets of
Rd .

Lemma D.1 Let F,G ⊆ Rd be closed sets. If

d(F,G) = inf{|x − y|; x ∈ F, y ∈ G} > 0, (109)

then there exists a function f ∈ C∞
b (Rd), 0 ≤ f ≤ 1, such that

f −1({0}) = F and f −1({1}) = G. (110)

2 More precisely, the norm on the interpolation space (Cb(R
d ),C2

b (Rd ))γ /2,∞ is equivalent to the norm

on Cγ
b (Rd ).
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It is well known (see e.g. [35]) that for closed sets F,G ⊆ Rd satisfying (109),
there exists f ∈ C∞(Rd), 0 ≤ f ≤ 1, satisfying (110); however, we could not
find a reference for the fact that (109) implies boundedness of the derivatives of f . It
is not difficult to see that boundedness of the derivatives fails, in general, to hold if
d(F,G) = 0; consider for instance F := R × (−∞, 0] and G := {(x, y); y ≥ ex }.
Proof of LemmaD.1 As d(F,G) > 0, we can choose ε > 0 such that the sets

Fε := F + B(0, ε), Gε := G + B(0, ε)

are disjoint. It is known (see e.g. [35, Problem 2–14]) that there exists h ∈ C∞(Rd),
0 ≤ h ≤ 1, such that h−1({0}) = Fε and h−1({1}) = Gε. Pick ϕ ∈ C∞

c (Rd), ϕ ≥ 0,
such that suppϕ = B(0, ε) and

∫
Rd ϕ(y) dy = 1, and set

f (x) := (h ∗ ϕ)(x) =
∫
Rd

h(y)ϕ(x − y) dy, x ∈ Rd .

Since f is the convolution of a bounded continuous function with a smooth function
with compact support, it follows that f is smooth and its derivatives are given by

∂α
x f (x) =

∫
Rd

h(y)∂α
x ϕ(x − y) dy, x ∈ Rd ,

for any multi-index α ∈ N
d
0 (see e.g. [48]). In particular, ‖∂α f ‖∞ ≤ ‖∂αϕ‖L1 < ∞,

and so f ∈ C∞
b (Rd). Moreover, as suppϕ ⊆ B(0, ε), it is obvious that f (x) = 0 for

any x ∈ F and f (x) = 1 for x ∈ G. It remains to check that 0 < f (x) < 1 for any
x ∈ (F ∪ G)c.

Case 1: x ∈ R
d\(Fε ∪ Gε). Then 0 < h(x) < 1, and so we can choose r ∈ (0, ε)

such that

0 < inf|y−x |≤r
h(y) ≤ sup

|y−x |≤r
h(y) < 1.

Since suppϕ = B(0, ε) ⊇ B(0, r), this implies

f (x) ≤
∫
Rd\B(x,r)

ϕ(x − y) dy + sup
|y−x |≤r

h(y)
∫
B(x,r)

ϕ(x − y) dy

<

∫
Rd

ϕ(x − y) dy = 1.

A very similar estimate shows f (x) > 0.
Case 2: x ∈ Fε\F . We have B(x, ε) ∩ Fc �= ∅, and so there exist y ∈ R

d and
r > 0 such that

B(y, r) ⊆ Fc ∩ B(x, ε).
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In particular,

0 < inf
z∈B(y,r)

h(z) ≤ sup
z∈B(y,r)

h(z) < 1.

As suppϕ = B(0, ε), it follows much as in the first case that 0 < f (x) < 1.
Case 3: x ∈ Gε\G. Analogous to Case 2. ��
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