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Abstract

We show how Holder estimates for Feller semigroups can be used to obtain regularity
results for solutions to the Poisson equation Af = g associated with the (extended)
infinitesimal generator of a Feller process. The regularity of f is described in terms
of Holder—Zygmund spaces of variable order and, moreover, we establish Schauder
estimates. Since Holder estimates for Feller semigroups have been intensively studied
in the last years, our results apply to a wide class of Feller processes, e.g. random
time changes of Lévy processes and solutions to Lévy-driven stochastic differential
equations. Most prominently, we establish Schauder estimates for the Poisson equation
associated with the fractional Laplacian of variable order. As a by-product, we obtain
new regularity estimates for semigroups associated with stable-like processes.
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1 Introduction

Let (X;);>0 be an R¥-valued Feller process with semigroup P f(x) = E* f(X,),
x € RY. In this paper, we study the regularity of functions in the abstract Holder

space
Pf(x) — f(x) }
— | <00y,

Fi=1Ff € By(RY); sup sup ;

1€(0,1) xeR4
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the so-called Favard space of order 1; cf. [9,14]. It is known that for any f € F) the
limit
E*f (X)) — f(x)

Ao f(x) = }%f ey

exists up to a set of potential zero (cf. [1]) and this gives rise to the extended infinites-
imal generator A, which maps the Favard space Fj into the space of bounded Borel
measurable functions B (RY); cf. Sect. 2 for details. It is immediate from Dynkin’s
formula that A, extends the (strong) infinitesimal generator A of (X;);>0; in particular,
F contains the domain D(A) of the infinitesimal generator. We are interested in the
following questions:

e What does the existence of limit (1) tell us about the regularity of f € Fi? In
particular: How smooth are functions in the domain of the infinitesimal generator
of (X1)r>0?

e If f € Fj is a solution to the equation A, f = g and g has a certain regularity,
say g is Holder continuous of order § € (0, 1), then what additional information
do we get on the smoothness of f?

Our aim is to describe the regularity of f in terms of Holder spaces of variable order.
More precisely, we are looking for a mapping « : R? — (0, 2) such that

feFR = feC®R)

where GZ(') (R?) denotes the Holder—Zygmund space of variable order equipped with
the norm

|f(x +2h) —2f(x +h) + f(x)]

1/ lex gy = 1 lloo + sup sup TGS

xeR4 0<|h|<1

cf. Sect. 2 for details. If A, f = g € Gg(Rd) for some § > 0, then it is natural to
expect that f “inherits” some regularity from g, i.e.

feFLAf=ge@®R) = fee"mY

for some constant o = ¢(§) > 0. Moreover, we are interested in establishing Schauder
estimates, i.e. estimates of the form

1 £lextr gy < CLflloo + 14 flloc)  and
£l trvegay < €' Flloo + 1 Ae fllegqun)- )

Let us mention that the results, which we present in this paper, do not apply to Feller
semigroups with a roughening effect (see e.g. [16] for examples of such semigroups);
we study exclusively Feller semigroups with a smoothing effect (see below for details).
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The toy example, which we have in mind, is the stable-like Feller process (X;);>0
with infinitesimal generator A,

1
Af(x) = Cda(x) f (fGa+y) = f) =y VD) LonyDh) [y dy.(3)

y#0

which is, roughly speaking, a fractional Laplacian of variable order, that is
A= —(=A)¥®/ 2, Intuitively, (X;);>0 behaves locally like an isotropic stable Lévy
process, but its index of stability depends on the current position of the process. In
view of the results in [27,30], it is an educated guess that any function f € D(A) is
“almost” locally Holder continuous with Holder exponent «(-), in the sense that

If(x +2h) —=2f(x +h) + f)] < Crelh|®™@7¢, x,h e RY 4)

for any small ¢ > 0. We will show that this is indeed true and, moreover, we will
establish Schauder estimates for the equation —(—A)*®)/2 f = g (cf. Theorem 4.1
and Corollary 4.3).

Let us comment on related literature. For some particular examples of Feller gener-
ators A, there are Schauder estimates for solutions to the integro-differential equation
Af = g available in the literature; for instance, Bass obtained Schauder estimates for
a class of stable-like operators (v(x,dy) = c(x, W74 with ¢ : R?2 — (0, 00)
bounded and inf, , c(x, y) > 0), and Bae and Kassmann [2] studied operators with
functional order of differentiability (v(x,dy) = c(x, ¥)/(] yldgo( y) dy) for “nice” ¢).
The recent article [27] establishes Schauder estimates for a large class of Lévy gen-
erators using gradient estimate for the transition density p, of the associated Lévy
process. Moreover, we would like to mention the article [30] which studies a comple-
mentary question—namely, what are sufficient conditions for the existence of limit (1)
in the space Coo (R?) of continuous functions vanishing at infinity—and which shows
that certain Holder space of variable order is contained in the domain of the (strong)
infinitesimal generator. Schauder estimates have interesting applications in the the-
ory of stochastic differential equations (SDES): they can be used to obtain uniqueness
results for solutions to SDEs driven by Lévy processes and to study the convergence of
the Euler—-Maruyama approximation (see e.g. [11,31,46] and the references therein).

This paper consists of two parts. In Sect. 3, we show how regularity estimates on
Feller semigroups can be used to establish Schauder estimates (2) for functions f in
the Favard space of a Feller process (X;);>0. Our first result, Proposition 3.1, states
that if the semigroup Pyu(x) := E*u(X,) satisfies

1Pl ey < et P llulloo, 1€ (0, 1), u € Bp(RY
for some B € [0, 1) and k > 0, then F} € C5(RY) and

[ fllesmay = C U flloo + 1Ae flloo) forall f e F.

Proposition 3.1 has interesting applications, but, in general, it does not give optimal
regularity results but rather a worst-case estimate on the regularity of f € Fy; for

@ Springer



Journal of Theoretical Probability (2021) 34:1506-1578 1509

instance, if (X;);>0 is an isotropic stable-like process with infinitesimal generator
A = —(—A)¥®/2 (cf. (3)), then an application of Proposition 3.1 shows

|f(x +2h) —2f(x +h) + f(x)| < Crelh|®F, x,heR?, feDA),

where «g := inf,  ge o(x), and this is much weaker than regularity (4) which we
would expect. Our main result in Sect. 3 is a “localized” version of Proposition 3.1
which takes into account the local behaviour of the Feller process (X;);>0 and which
allows us to describe the local regularity of a function f € Fj (cf. Theorem 3.2 and
Corollary 3.4). As an application, we obtain a regularity result for solutions to the
Poisson equation A, f = g with g € (‘32 (R9) (cf. Theorem 3.5).

In the second part of the paper, Sect. 4, we illustrate the results from Sect. 3 with
several examples. Applying the results to isotropic stable-like processes, we establish
Schauder estimates for the Poisson equation —(—A)*(®)/2 f = g associated with the
fractional Laplacian of variable order (cf. Theorem 4.1 and Corollary 4.3). Schauder
estimates of this type seem to be a novelty in the literature. As a by-product of the
proof, we obtain Holder estimates for semigroups of isotropic stable-like processes
which are of independent interest (see Sect. 6.1). Furthermore, we present Schauder
estimates for random time changes of Lévy processes (Proposition 4.5) and solutions
to Lévy-driven SDEs (Proposition 4.7) and discuss possible extensions.

2 Basic Definitions and Notation

We consider the Euclidean space R¢ with the scalar product x-y := Zj{:] x;yjandthe

Borel o-algebra B(RY) generated by the open balls B(x, r) and closed balls B(x, r).
Asusual, wesetx Ay := min{x, y}and x Vy := max{x, y} forx, y € R.If f isareal-
valued function, then supp f denotes its support, V f the gradient and V2 f the Hessian

of f. For two stochastic processes (X;);>0 and (¥;);>0 we write (X;);>0 4 (Y1)i>0if
(X1)s=0 and (Y;);>0 have the same finite-dimensional distributions.

Function spaces: B,(RY) is the space of bounded Borel measurable functions f :
R¢ — R. The smooth functions with compact support are denoted by Ccx (R%), and
Coo(RY) is the space of continuous functions f : RY — R vanishing at infinity.
Superscripts k € IN are used to denote the order of differentiability, e.g. f € C lgo (RY)
means that f and its derivatives up to order k are Coo (R%)-functions. For U € R
and o : U — [0, 0o) bounded we define Holder—Zygmund spaces of variable order
by

k
*OW) = {feC(U);Ver: 183/ (Ol <oo}

O<lh<1  |R|¥E
x+heU
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and

. |A} f ()]
G“()Uzz{ e Cp(U); #() o i=SU )|+ su L Etaly ey O
, (U) feCyU) ||f||eh(>(U> XEB [f ()] er,0<p|h\51 a0

B(x,k|h))CU

where k € N is the smallest number strictly larger than ||« ||o and
Apf() = fx+h) = f@), AP :=MAT (), m=2, (5

are the iterated difference operators. Moreover, we set

eg()+(U) — U ez()-‘rS(U) and eg()_(U) — ﬂ el’bnax{a()*é‘,()}(u).

e>0 e>0

Clearly,
Yty cerVwy cer W) and €YW) c eV w).
If r(x) = « is constant, then we write €*(U) and Cj, (U) for the associated Holder—

Zygmund spaces. For U = R? and « ¢ IN, the Holder—Zygmund space (5 (R?) is the
“classical” Holder space Cj/ (R?) equipped with the norm

Lo]
107 f(x) = 3P £ ()]
| fllce@ay = 1Flloo + D D 197 flloo + max sup TR
=0 geNd BeNy x#y |x - J’|
AT 1BI=Lo]

cf. [52, Section 2.7]. For @ = 1, it is possible to show that Gllj (Rd ) is strictly larger
than the space of bounded Lipschitz continuous functions (cf. [51, p. 148]), which is
in turn strictly larger than C ,} (RY).

Feller processes: A Markov process (X;);>0 is a Feller process if the associated transi-
tion semigroup Py f (x) := E* f(X;) is a Feller semigroup (see e.g. [6,19] for details).
Without loss of generality, we may assume that (X;),>o has right-continuous sample
paths with finite left-hand limits. Following [14, I1.5.(b)], we call

] o e

F = le =1f€ By (RY); sup
te(0,1)

the Favard space of order 1. The (strong) infinitesimal generator (A, D(A)) is defined
by
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D(A) := {f € Coo(RY); 3g € Coo(RY) : lim ”@ - gH = 0} ,
t— 00

@, f e D(A).

Af = lim
t—0
If D(A) is rich, in the sense that C2° (R?) € D(A), then a result by Courrége and von

Waldenfels (see e.g. [6, Theorem 2.21]), shows that A|Ccoo (R4) 18 a pseudo-differential
operator,

Af(0) =—=q(x, D) f(x) = = /R LA O f@©)dE, f e CEMRD, ()
where f &) :=Qn)¢ f]Rd e~ *¢ f(x) dx is the Fourier transform of f and

1
q(x,§) =q(x,0) —ib(x)-§ + 55 QW%

+ / (1-e™ iy 101 (¥D) vix. dy) ®)
y#0

is a continuous negative definite symbol. If (7) holds, then we say that (X;);>¢ is
a Feller process with symbol g. We assume from now on that g(x,0) = 0. For
each x € RY, (b(x), Q(x), v(x,dy)) is a Lévy triplet, i.e. b(x) € RY, Q(x) €
R4*4 is symmetric positive semidefinite and v(x, -) is a measure on R?\ {0} satisfying
fy#o min{1, |y|2} v(x, dy) < oco. The symbol g has bounded coefficients if

sup (Ib(X)I +10()| + /#O min{l, |y|2}V(x,dy)> < o0;
y

xeRd

by [49, Lemma 6.2], ¢ has bounded coefficients if, and only if,

sup sup lq(x, )| < oo.
xeR4 [§]<1

If (X;)s>0 is a Feller process with symbol ¢, then

P (sup|XS — x| > r) <ct sup sup |lg(v,&)], r>0,t>0,x¢€ R¢ )

s<t ly—x|=r g <!

holds for an absolute constant ¢ > 0; this maximal inequality goes back to
Schilling [47] (see also [6, Theorem 5.1] or [22, Lemma 1.29]). If the symbol
q(&) = q(x, &) of a Feller process (L;);>0 does not depend on x € RY, then (Lt)i=0
is a Lévy process. By [6, Theorem 2.6], this is equivalent to saying that (L;);>¢ has
stationary and independent increments. It is natural to ask whether for a given mapping
q of form (8), there is a Feller process (X;);>0 with symbol ¢. In general, the answer
is negative; see the monographs [6,19,22] for a survey on known existence results for
Feller processes. In this article, we will frequently use an existence theorem from [22]
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which constructs Feller processes with symbol of the form g (x, §) = Yy (x)(§), where
o : R?Y — [ is a Holder continuous mapping and £ > Yg(é), B € 1,is a family
of characteristic exponents of Lévy processes. For instance, it can be applied to the
family ¥g(¢§) = |§ |f, B € I = (0,2], to prove the existence of isotropic stable-like
processes, i.e. Feller processes with symbol g (x, £) = |£]|*), where « : R4 — (0, 2]
is Holder continuous and inf, cga o (x) > O (cf. [22, Theorem 5.2]).

Later on, we will use that any Feller process (X;);>0 with infinitesimal generator
(A, D(A)) solves the (A, D(A))-martingale problem, i.e.

t

M; = f(X1) — f(Xo) —fo Af(Xs)ds

is a P*-martingale for any x € R and f € D(A). Our standard reference for Feller
processes are the monographs [6,19]; for further information on martingale problems,
we refer the reader to [15,18].

In the remaining part of this section, we define the extended infinitesimal generator
and state some results which we will need later on. Following [44], we define the
extended (infinitesimal) generator A, in terms of the A-potential operator R, , that is,
f € D(A,) and g = A, f if and only if

(i) f € Bp(RY) and g is a measurable function such that || Ry (|g|)||ec < o0 for some
(all) A > 0,
(i) f=Ry(Af —g) foral i > 0.

The mapping ¢ = A, f is defined up to a set of potential zero, i.e. uptoaset B € B(RY)
which satisfies ¥ f(o, 00) 1p(X;)dr = 0 for all x € R?. We will often choose a
representative with a certain property; for instance if we write “A, f is continuous”,
this means that there exists a continuous function g such that (i),(ii) hold. In abuse of
notation, we set

|Ae flloo := inf{c > 0; |A. f| < c up to a set of potential zero}.

Clearly, the extended infinitesimal generator (A,, D(A.)) extends the (strong)
infinitesimal generator (A, D(A)). The following result is essentially due to Airault
and Follmer [1] and shows the connection to the Favard space of order 1 (cf. (6)).

Theorem 2.1 Let (X;);>0 be a Feller process with semigroup (P;);>0 and extended
generator (A., D(A.)). The associated Favard space Fy of order 1 satisfies

Fi ={f € D(Ae); [ Ac flloo < 00}
If f € F) then

1
sup =[P f = flloo = lAe flloo (10)
te(0,1) !

and, moreover, Dynkin’s formula

E*f(Xe) = f(x) =E* (fo Aef(Xs)ds> (In
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holds for any x € R and any stopping time t such that Bt < oo.

The next corollary shows how the Favard space can be defined in terms of the
stopped process X;¢x. Since we will frequently use stopping techniques, it plays an
important role in our proofs .

Corollary 2.2 Let (X;);>0 be a Feller process with semigroup (P;);>0, extended gen-
erator (A., D(A.)) and symbol q. Denote by

7 =inf{r > 0; | X, — x| > r}

the exit time of (X;);>0 from the closed ball B(x,r). If g has bounded coefficients,
then the following statements are equivalent for any f € By(R?):

(i) f € Fiie feD(A)andsup,cq 1yt NP f = flloo = lAeflloo < 00;
(ii) There exists r > 0 such that

1
K, (f):= sup — sup |Exf(er;‘) — f(x)| < oo.
1€, I yeRrd

If one (hence both) of the conditions is satisfied, then

Exf(xmr;f) = f(x)
t

Aef(x) = lim (12)

up to a set of potential zero for any r > 0. In particular, ||A flloo < K (f) forr > 0.

For the proof of Theorem 2.1 and Corollary 2.2 and some further remarks, we refer
to Appendix A.

3 Main Results

Let (X;);>0 be a Feller process with semigroup (P;);>0. Throughout this section,

’sz—fH <OO}
t o

F{ = F = f e ByR?; sup
te(0,1)
is the Favard space of order 1 associated with (X;);>0. By Theorem 2.1, we have

Fi ={f € D(Ae): [|Ae flloo < 00},

where A, denotes the extended infinitesimal generator. The results which we present
in this section will be proved in Sect. 5.

Our first result, Proposition 3.1, shows how regularity estimates for the semigroup
(Pr)s>0 can be used to obtain Schauder estimates of the form

[ flesmay = CUIflloo +1Ac flloo),  f € Fi.
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Proposition 3.1 Let (X;);>0 be a Feller process with semigroup (P;);>0, extended
generator (A., D(A.)) and Favard space F). If there exist constants M > 0, T > 0,
k> 0and B € (0, 1) such that

1Pl s ey < M1 flulloo (13)

forallu € B,(R?Y) andt € (0, T, then
Fi C €5 (R7)
and

[ fllesmay = CUflloo + 1Aeflloo)s  f € F1,

for some constant C = C(T, M, k, B).

Since the domain D(A) of the (strong) infinitesimal generator of (X;);>o is con-
tained in Fy, Proposition 3.1 gives, in particular, D(A) C €} (RY).

Proposition 3.1 is a useful tool, but it does not, in general, give optimal regularity
results. Since Feller processes are inhomogeneous in space, the regularity of f € Fj
will, in general, depend on the space variable x, e.g.

IAFE = 1f(x+2h) = 2f(x +h) + f@)] < CIRKY, |hl <1, (14)
and therefore it is much more natural to use Holder—Zygmund spaces of variable order
to describe the regularity; this is also indicated by the results obtained in [30].

Our second result, Theorem 3.2, shows how Holder estimates for Feller semigroups
can be used to establish local Holder estimates (14). Before stating the result, let us
explain the idea. Let (X;);>¢ be a Feller process with symbol ¢ and Favard space F 1X ,

and fix x € R?. Let (Y;) >0 be another Feller process which has the same behaviour
as (X;);>0 in a neighbourhood of x, in the sense that its symbol p satisfies

p(z.6)=q(z.§), z€B(x,8), R’ (15)

for some § > 0. The aim is to choose (¥;);>¢ in such a way that its semigroup (7;);>0
satisfies a “good” regularity estimate

ITulles mey < Mt~ Jullos,  u € Bp(RY);
here “good” means that « is large. Because of (15), it is intuitively clear that
|E* f(X,) — f(@| = |E*f(Y;) — f(z)| forzclosetox and “small” t. (16)

(We will use stopping to specify what “small” means; see Lemma 5.2.) If x is a
truncation function such that g« o) < x < 1p(x,2) for small ¢ > 0, then it is,
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because of (16), natural to expect that forany f € F}¥ the truncated mapping g := f-x
is in the Favard space F ly associated with (¥;);>0, i.e.

sup sup ¢ EX(f - x)(¥) — (f - 0)(@)] < 0.
te(0,1) zeR4

Since, by Proposition 3.1, g € F IY cey (R?), and g = f in a neighbourhood of x,
this entails that f(-) is k-Holder continuous in a neighbourhood of x. Since k = Kk (x)
depends on the point x € R, which we fixed at the beginning, this localizing procedure
allows us to obtain local Holder estimates (14) for f.

Theorem 3.2 Let (X;);>0 be a Feller process with extended generator (A, D(A,))
and Favard space F 1X such that

Acf(@) = —q(z,D)f(2), feCPMRY), zeR,

for a continuous negative definite symbol q (cf. (7)). Let x € RY and § € 0, 1) be
such that there exists a Feller process (Y, t(x)),zo with the following properties:

(Cl) The infinitesimal generator (L™, D(LX)Y) of(Y,(x)),Zo restricted to CZ° (R9)
is a pseudo-differential operator with negative definite symbol p™®,

PV &) = —ib™W () - €
+f (1=e™ +iy-ELon (D) v dy). 2.6 € RY:
y#0

p®) has bounded coefficients, and
PV §) =q(z, &) foralls e R, |z — x| < 46. (17)
(C2) The (LW, C 20 (R%))-martingale problem is well-posed.
(C3) There exist constants M (x) > 0, k(x) € [0, 2] and B(x) € (0, 1) such that the

semigroup (Tl(x) )i>0 associated with (Y,(X)),Zo satisfies

1Tl g gay < MG oo

forallu € B,(RY), t € (0, 1).
If f € F{ and o(x) € [0, 1] are such that

< oo and  sup / [y y® (2 dy) < o0, (18)
lylI=1

A1 2% (B(x.48)) |z—x| <48

then
2 K (x)
18771 = CHI® (Ifllo + 14e Flloo + I et ) (19)
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forall |h| < §/2. The finite constant C > 0 depends continuously on M (x) € [0, 00),
B(x) €[0,1) and K (x) € [0, 00) with

K(x):= sup (|b(")(z)l+/

min{1, [y[*} v (z, dy))
zeRR4 y#0

+ sup min{|y[2®* 1} 0@ (2, dy).
|z=—x|<48 Jy#0

Remark 3.3 (i) The assumption f € Cf(x)(B(x, 44)) is an a priori estimate on the
regularity of f.If the semigroup (P;);>0 of (X;);>0 satisfies a regularity estimate
of form (13), then such an a priori estimate can be obtained from Proposition 3.1.
Note that, by (18), there is a trade-off between the required a priori regularity of
f and the roughness of the measures p®) (z,dy), z € B(x,46). If the measures
¥ (z, dy) only have a weak singularity at y = 0, in the sense that

sup f Iy v (z, dy) < o0,
[yI=1

|z—x|<46

then we can choose o(x) = 0, i.e. it suffices that f is continuous. In contrast, if
(at least) one of the measures has a strong singularity at y = 0, then we need a
higher regularity of f (in a neighbourhood of x).

(i1) It is not very restrictive to assume that (Y,(x)) >0 has bounded coefficients since
(Y,(x) )¢>0 is only supposed to mimic the behaviour of (X;);>0 in a neighbourhood
of x (cf. (17)). We are, essentially, free to choose the behaviour of the process far
away from x. In dimension d = 1, it is, for instance, a natural idea to consider

qx —45,8), z <x—44,
Pz, &) = {q(z &), |z — x| < 48,
q(x +46,8), z>x+46;

note that p® has bounded coefficients even if ¢ has unbounded coefficients.
(iii) Condition (C2) is automatically satisfied if C2° (R9) is a core for the infinitesimal
generator of (Yt(x)),zo; see e.g. [20, Proposition 3.9.3] or [22, Theorem 1.38].
(iv) It is possible to extend Theorem 3.2 to Feller processes with a non-vanishing
diffusion part. The idea of the proof is similar, but we need to impose stronger
assumptions on the regularity on f, e.g. that f|p(y 4s) is differentiable.

As a direct consequence of Theorem 3.2, we obtain the following corollary.

Corollary 3.4 Let (X;);>0 be a Feller process with extended generator (A., D(A.))
and symbol q. If there exist U € R? open, § > 0 and o : U — [0, 1] such that for
any x € U the assumptions of Theorem 3.2 hold, then the Favard space of order 1
satisfies

ceOw)ynF c eV ).
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If additionally

sup(M(x) + K(x)) < oo and supf(x) <1, (20)

xeU xeU

then ei(')(U) NF; C CZ(')(U) and there exists a constant C > 0 such that

£ty = € (IFllso + IAe flow + 1 £l otng) ) forall £ € €57 W) N Fi:
21

in particular, the domain D(A) of the (strong) infinitesimal generator A satisfies
2wy nD(A) < €V U) and (21) holds for any f € €27 (U) N D(A).

In many examples (see e.g. Sect. 4), it is possible to choose the mapping o in such
a way that F| C Gi<')(U); in this case, Corollary 3.4 shows that F; € C<“)(U) (resp.
F C GZ(‘)(U )) and the Schauder estimate (21) holds for any function f € Fi. In our
applications, we will even have || f|| e ) < c(| flloo+ 1l Ae flloo), and therefore (21)

becomes
IIfIIGKo(U) <C' (Iflloo + 1Ac flloo) forall f € Fy.
b

In Sect. 4, we will apply Corollary 3.4 to isotropic stable-like processes, i.e. Feller
processes with symbol of the form ¢ (x, &) = |£|*“). The study of the domain D(A)
of the infinitesimal generator A is particularly interesting since A is an operator of
variable order. We will show that any function f € D(A) satisfies the Holder estimate
of variable order

|AZF ()] < Celhl®7 ([ flloo + 1Af lloo)s  |h] < 1, x € R,

for ¢ > 0 (cf. Theorem 4.1) for the precise statement.

Our final result in this section is concerned with Schauder estimates for solu-
tions to the equation A, f = g for Holder continuous mappings g. To establish such
Schauder estimates, we need additional assumptions on the regularity of the symbol
and improved regularity estimates for the semigroup of the “localizing” Feller process

(x) :

(Y;"")¢=0 in Theorem 3.2.

Theorem 3.5 Let (X;);>0 be a Feller process with extended generator (A., D(A,))
and Favard space F 1X such that

Acf(2) =—q(z, D) f(2), feCPMRY, zeRY,

for a continuous negative definite symbol q. Assume that there exists § € (0, 1) such
that for any x € R there exists a Feller process (Yt(x)),zo with symbol
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PO B =—ib® () - £ + /

(1= +iy- 10 (D) VW@ dy), 22)
y#0

satisfying (C1)-(C3) in Theorem 3.2. Assume additionally that the following conditions
hold for absolute constants C1, Cy > 0:

(S1) Foranyx,z € R, there exists ™ (z) € (0, 2) such that
v (z,dy) < Cilyl 4@ dy on BO, 1)

and 0 < inf, _.ga ™ (z) < SUP, -cRd aW(z) < 2.
(S2) There exists 6 € (0, 1] such that

6% (z) — bW (z + h)| < Ca|h|®, x,z,h € RY, (23)

and the following statement holds for every r € (0, 1) and every x,z € R?: If
u : RY — R is a measurable mapping such that

. (x)
u(y)| < cu min{ly|” @ 1),y e RY,

for some c,, > O, then there exist C3, > 0 and H, > 0 (not depending on u,
X, z) such that

‘ / u(y) v (z,dy) — / u() vz +h,dy)| < Cseulhl”  (24)

forall |h| < H,.
(S3) There exists A > 0 such that the semigroup (T,(x))tzo of the Feller process
(Y,(x))tzo satisfies

17, ullgrvein gay < M@ POl gy ey, u € GER?, 1€ (0.1), (25)

forany x € RY and » € [0, A]; here M (x), k (x) and B(x) denote the constants
from (C3).

(S4) The mapping k : R — (0, 00) is uniformly continuous and bounded away
from zero, i.e. ko :=inf  cga k(x) > 0.

(S5) sup,cre M(x) < 00, sup,cre B(x) < 1, and

sup <|b(")(z)| —i—/ v“”(z,dy)) < 0.
[y[=1

x,zeR4

Let 0 : R? — [0, 2] be a uniformly continuous function satisfying

o= inf inf <1+Q(x)—(x(x)(z))>0. (26)

xeR4 [z—x|<48
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If fe le is such that f € @i(')(Rd) and
Acf =g € ChRY
for some A € [0, A, then f € GéK(')+min{0’)”’a})_(IRd), ie.

fe ﬂ eg(~)+min{6,k,o}—s(Rd). 27)

£€(0,k0)

Moreover, the Schauder estimate
£l gsrsminonr-e oy < Ce (14 lleganay + 11/l 000y (28)

holds for any ¢ € (0, ko) and some finite constant C, which does not depend on f, g.

Remark 3.6 (i) In our examples in Sect. 4, we will be able to choose o in such a
way that «™) (z) — o(z) is arbitrarily small for x € R? and z € B(x, 45), and
therefore the constant o in (26) will be close to 1. Noting that 6 < 1, it follows
that we can discard o in (27) and (28) i.e. we get

f e epmnttrze rdy g ¢ (0, ko). (29)

We would like to point out that it is, in general, not possible to improve this
estimate and to obtain that f € G’;(‘)H_S (R%), & € (0, ko). To see this, consider
a Feller process (X;);>0 with symbol g (x, §) = ib(x)&, x, § € R, for amapping

b € Cp(RY) with inf, b(x) > 0. If we define
£ / ! 4y, reRrd
X) = —_— , X S
0o b

then A, f = b f/ = 1 is smooth. However, the regularity of f clearly depends
on the regularity of b,

regularity of f ~ 1 + regularity of b,

which means that f is less regular than A, f.

(ii) It suffices to check (25) for A = A; for A € (0, A), the inequality then follows
from the interpolation theorem (see e.g. [52, Section 1.3.3] or [39, Theorem 1.6])
and the fact that GZ (R?) can be written as a real interpolation space (see [52,
Theorem 2.7.2.1] for details).

(iii) (24) is an assumption on the regularity of z — v®¥)(z, dy). If V™ (z, dy) has
a density, say m<x)(z, y), with respect to Lebesgue measure, then a sufficient
condition for (24) is

. (x)
f min(1, [y|*" @ m™ (z, y) —m™ (2 + h, y)|dy < C3,|h°.
y#0
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(iv) Condition (S1) is not strictly necessary for the proof of Theorem 3.5; essentially
we need suitable upper bounds for

/ Iy v®(z, dy) and/ Iy v (z, dy),
lyl<r

r<|y|=R

where0 <r <R < 1,x,ze R% and y € (0, 3).
(v) In (S2), we assume that 6 < 1; this assumption can be relaxed. To this end, we
have to replace in (23) and (24) the differences of first order,

b (z) — b™ (z + h)| and ' / u(y) v (z,dy) — / u(») v (z + h, dy)|,

by iterated differences of higher order (cf. (5)). This makes the proof more tech-
nical, but the idea of the proof stays the same.

The proofs of the results stated in this section will be presented in Sect. 5.

4 Applications

In this section, we apply the results from the previous section to various classes of Feller
processes. We will study processes of variable order (Theorem 4.1 and Corollary 4.3),
random time changes of Lévy processes (Proposition 4.5) and solutions to Lévy-driven
SDEs (Proposition 4.7). Our aim is to illustrate the range of applications, and therefore,
we do not strive for the greatest generality of the examples; we will, however, point the
reader to possible extensions of the results which we present. We remind the reader
of the notation

GZ(H'(Rd) = U GZ(.)—FE(Rd) eg()—(Rd) = m ernaX{Dl(')—&‘,O}(IRd)

e>0 e>0

introduced in Sect. 2.

The first part of this section is devoted to isotropic stable-like processes, i.e. Feller
processes (X;);>o with symbol of the form g(x, &) = & I“(x); they appeared first in
papers by Bass [3]. A sufficient condition for the existence of such a Feller process is
thate : R? — (0, 2] is Holder continuous and bounded from below (cf. [22, Theorem
5.2]). If a(R?) C (0, 2), then the infinitesimal generator A of (X;);>0 satisfies

Af(x) = cd,a(x)/

1
» (Fx 3 = f@) =y VS @OT0n D) Fregy 9.
forall f € C° (]Rd), which means that A is a fractional Laplacian of variable order,
ie. A= —(—A)"‘(‘)/ 2_This makes A—and hence the stable-like process (X;);>0—an
interesting object of study. To our knowledge, there are no Schauder estimates for the
Poisson equation Af = g available in the existing literature. Using the results from
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the previous section, we are able to derive Schauder estimates for functions f in the
Favard space F; (and, hence in particular, for f € D(A)) (cf. Theorem 4.1), as well
as Schauder estimates for solutions to Af = g (cf. Corollary 4.3).

Theorem 4.1 Let (X;);>0 be a Feller process with symbol q(x,§) = 1E19%) for a
Holder continuous function « : RY — (0, 2) such that

0 <oap:= inf a(x) < sup a(x) < 2.
xeR4 xeR4

The associated Favard space Fy of order 1 (cf. (6)) satisfies
Fi € 297 (RY).
For any ¢ € (0, ar), there exists a finite constant C = C (e, ) such that

I lgaer—e gay = CUflloo + 1 Ac flloo).  f € F1. (30)

where A, denotes the extended generator of (X;):>0. In particular, (30) holds for any
f in the domain D(A) of the (strong) generator of (X;)i=0, and D(A) C GZ(')_(]Rd).

Remark 4.2 (i) Theorem 4.1 allows us to obtain information on the regularity of
the transition density p(t, x, y) of (X;);>0. Since p(z,-,y) € D(A) for each
t >0andy € R4 (cf. [22, Corollary 3.6]), it follows from Theorem 4.1 that
pt,-,y) € Gz(')f(Rd); in particular, x — p(¢, x, y) is differentiable at x €
{a > 1}. Moreover, (3; — Ayx) p(¢, x, y) = 0 entails by [22, Theorem 3.8] that

1Pt Dl goors ey = €171 7%, 1€ (0,T), y € R,

for a finite constant C = C(¢, «, T'). Some related results on the regularity of
the transition density were recently obtained in [10].

(ii) Theorem 4.1 gives a necessary condition for a function f € Cy(RY) to be
in the domain D(A) of the infinitesimal generator; sufficient conditions were
established in [30, Example 5.5]. Combining both results, it should be possible
to show that D(A) is an algebra, i.e. f, g € D(A) implies f - g € D(A), and
that

A(f-g) = fAg+gAf+T(f,8), f.gecDA,

see [27, Proof of Theorem 4.3(iii)] for the idea of the proof; here

1
M0 = Gt | (U4 3) = F00) 66+ 9) = 800) T dy
y#£0 [yl
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is the so-called carré du champ operator (cf. [8,12]) and v(x,dy) = cg,a(x)
|y|~4=*™) dy is the family of Lévy measures associated with the symbol | ¢
via the Lévy—Khintchine representation.

(iii) Theorem 4.1 can be generalized to a larger class of “stable-like” Feller processes,
e.g. relativistic stable-like processes and tempered stable-like processes (cf. [22,
Section 5.1] or [25, Example 4.7]) for the existence of such processes. In order
to apply the results from Sect. 3, we need two key ingredients: general existence
results—which ensure the existence of a “nice” Feller process (Y;);>0 whose
symbol is “truncated” in a suitable way (cf. Step 1 in the proof of Theorem 4.1)—
and certain heat kernel estimates needed to establish Holder estimates for the
semigroup; in [22], both ingredients were established for a wide class of stable-
like processes.

As a corollary of Theorem 4.1 and Theorem 3.5, we will establish the following
Schauder estimates for the elliptic equation Af = g associated with the infinitesimal
generator A of the isotropic stable-like process.

Corollary 4.3 Let (X;):>0 be a Feller process with infinitesimal generator (A, D(A))
and symbol q(x, €) = |£|*Y) for a mapping a : RY — (0, 2) which satisfies

0<oap:= inf < sup a(x) <2 3D
xeR4 xeR4

and a € CZ(IRd)for somey € (0, 1). If f € D(A) is such that
Af = g € CL(RY)

for some A > 0, then f € Gza(')+min{)”’y})7(IRd). For any ¢ € (0, ar), there exists a
constant Cg > 0 (not depending on f, g) such that

11l ggrsmins1-< gy < Ce (IAF L gminint oy + 1 llc) - (32)

It is possible to extend Corollary 4.3 to a larger class of “stable-like” processes (see
also Remark 4.2(ii)). Let us give some remarks on the assumption that « € C ,); (R%)
fory € (0, 1).

Remark 4.4 (i) Leto : RY — (0,2)be Lipschitz continuous function satisfying (31).
Since o € G;_g(]Rd) for every ¢ € (0, 1), the Schauder estimate (32) holds with
y =1 —¢/2 and ¢ ~ ¢/2, and this entails that (32) holds with y = 1. This
means that Corollary 4.3 remains valid for Lipschitz continuous functions (with
y = 1in (32)).

() fx € CZ (R%) for y > 1, we can apply Corollary 4.3 with y = 1, but this
gives a weaker regularity estimate for f than we would expect; this is because we
lose some information on the regularity of «. The reason why we have to restrict
ourselves to y € (0, 1) is that two tools which we need for the proof (Theorem 3.5
and Proposition 6.2) are only available for y € (0, 1). However, we believe that
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both results are valid for y > 0, and hence that that the assumption y € (0, 1) in
Corollary 4.3 can be dropped.

Since the proofs of Theorem 4.1 and Corollary 4.3 are quite technical, we defer
them to Sect. 6. The idea is to apply Theorem 3.2 and Theorem 3.5. As “localizing”
process (Yt<x)),zo, we will use a Feller process with symbol

P9z 8) =151, 2 EeRY,
where
a®(z) = (@(x) — &) V) A (ax) + &), zeR?,

for fixed x € R? and small ¢ > 0. In order to apply the results from the previous
section, we need suitable regularity estimates for the semigroup (P;);>o associated
with an isotropic stable-like process (¥;);>0. We will study the regularity of x +—
P;u(x) using the parametrix construction of (the transition density of) (¥;);>o in [22];
the results are of independent interest, we refer the reader to Sect. 6.1.

Next we study Feller processes with symbols of the form ¢ (x, &) = m(x)|&]*.
They can be constructed as random time changes of isotropic «-stable Lévy processes
(see e.g. [6, Section 4.1] and [26] for further details). This class of Feller processes
includes, in particular, solutions to SDEs

dX; =o(X;-)dL;, Xo=x,
driven by a one-dimensional isotropic «-stable Lévy process (L;);>0, @ € (0, 2]; for
instance if ¢ > 0 is continuous and at most of linear growth, then there exists a
unique weak solution to the SDE, and the solution is a Feller process with symbol

g(x, &) = |o(x)|%|€|% (cf. [23, Example 5.4]).

Proposition 4.5 Let (X;);>0 be a Feller process with symbol q(x, §) = m(x)|&|* for
o € (0,2) and a Holder continuous function m : R? — (0, 00) such that

0 < inf m(x) < sup m(x) < oo.
erR”’ XERd

(i) The infinitesimal generator (A, D(A)) and the Favard space F) of order 1 satisfy
CLr(RY) € D(A) € Fy < €57 (RY),
where

CY(RY) N Cx(RY), a € (0, 1),

C*RYH NCLMRY, aell,2). (33)

Cer(RY) = e¢*(RY) Nl (RY) =
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For any k € (0, a) there exists a finite constant C1 > 0 such that

[fllesmay = C1lllflloo + 1Ac flloo) forall f € Fi; (34)

here A, denotes the extended infinitesimal generator.
(ii) Let 6 € (0, 1] be such that m € C§(RY). If f € D(A) is such that

Af = g € CL(RY)
el()a+min{k,9})—(Rd

for some A > 0, then f € ) and for any k € (0, o) there exists
a constant Cy > 0 (not depending on f, Af) such that

Lf 1l gsmintio) gy < C2 (”f”oo + ”AfHeZliﬂMﬂ)(Rd)> :

Proof 1t follows from [22, Theorem 3.3] that there exists a unique Feller process
(X¢)i=0 with symbol g(x,&) = m(x)|£]%, x,& € RY. As in the proof of Propo-
sition 6.1 and Proposition 6.2, it follows from the parametrix construction of the
transition density p in [22] that the semigroup (P;);>¢ satisfies

1Pl e ey < et ™ llulloo, u € By(RY, 1 € (0, 1),
and
I Praall g ray < €256t/ el gy, 4 € CHARD, 1€ (0, 1),

for any k € (0, @) and A € [0, 0]; for the particular case « € (0, 1] the first inequality
follows from [37]. Applying Proposition 3.1, we get (34); in particular F; € €, (RY).
The inclusion C%f (RY) € D(A) is a direct consequence of [30, Example 5.4]. The
Schauder estimate in (ii) follows Theorem 3.5 applied with Yt(x) = X, forall x € R¢
(using the regularity estimates for (P;);>(o from above). ]

Remark 4.6 (Possible extensions of Proposition 4.5)

(i) Proposition 4.5 can be extended to symbols g(x,&) = m(x)y(§) for “nice”
continuous negative definite functions ¥, e.g. the characteristic exponent of a
relativistic stable or tempered stable Lévy process (cf. [22, Table 5.2] for further
examples).

(i1) The family of Lévy kernels associated with the Feller process (X;);>0 is of the
formv(x, dy) = m(x)|y| —d-a g y. More generally, it is possible to consider Feller
processes with Lévy kernels v(x,dy) = m(x, y) v(dy), for instance [5,37,50]
establish existence results as well as Holder estimates under suitable assumptions
on m and v (in particular, x — m(x, y) needs to satisfy some Holder condition).
Combining the results with Proposition 3.1, we can obtain Schauder estimates for
functions in the domain of the infinitesimal generator of (X;);>¢. Let us mention
that for v(x, y) = m(x, y)|y|~¢~* dy Schauder estimates were studied in [4].
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We close this section with some results on solutions to Lévy-driven SDEs.

Proposition 4.7 Let (L;);>0 be a I-dimensional isotropic a-stable Lévy process for
some o € (0, 2). Consider the SDE

dX; = b(X,_)dt + o(X,_)dL,, Xo=x, (35)

for a bounded B-Holder continuous mapping b : R — R and a bounded Lipschitz
continuous mapping o : R — (0, 00). If

B+a>1 and op := inf o(x) >0, (36)
xeR

then there exists a unique weak solution (X;);>0 to (35), and it gives rise to a Feller
process with infinitesimal generator (A, D(A)). The associated Favard space Fy of
order 1 satisfies

D) C Frc (et m),
kelN

and there exists for any k € N a finite constant C > 0 such that
1f Wgminta-1611 gy = €Ul flloo + 1 Ae flloo) forall f € Fu, (37

where A, denotes the extended generator. In particular, (37) holds for any f € D(A)
with A, f = Af.

Proof 1t follows from (36) that SDE (35) has a unique weak solution (X;);>0 for any
x € R (cf. [33]). By [49] (see also [24]), (X;);>0 is a Feller process. Moreover, [36]
shows that for any k < « there exists a constant ¢ > 0 such that the semigroup (P;);>0
satisfies

| Praall ggnt gy < cllulloot ™/

forall t € (0, 1) and u € B, (R). Applying Proposition 3.1 proves the assertion. O
Before giving some remarks on possible extensions of Proposition 4.7, let us men-
tion that sufficient conditions for a function f to be in the domain D(A) were studied
in [30]. For instance, if the SDE has no drift part, i.e. b = 0, then it follows from
Proposition 4.7 and [30, Example 5.6] that
CFMR) S DA) C € (R) ife € (0,1] (38)
and

CLH(R) € D(A) € CL(R) ifa € (1,2); (39)
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see (33) for the definition of C%F (R). Intuitively, one would expect that (38) holds for
a € (0, 2). If we knew that the semigroup (P;);>0 of the solution to (35) satisfies

I Pruelles ry < ct ™ ulloo, u € Bp(R), 1 € (0, 1), k € (0, a) (40)
for some constant ¢ = c¢(x) > 0, this would immediately follow from Proposition 3.1.
We could not find (40) in the literature, but we strongly believe that the parametrix
construction of the transition density in [33] can be used to establish such an estimate;
this is also indicated by the proof of Theorem 4.1 (see in particular the proof of
Proposition 6.1). In fact, we believe that the parametrix construction in [33] entails
estimates of the form

) < oK/
|| Prtl| eytminifl () = ct

“u”e?i"“hﬂ}(R)’ ue eg(R), re (0’ 1)7

fork € (0, @), A > 0 (recall that g is the Holder exponent of the drift ), which would
then allow us to establish Schauder estimates to the equation Af = g for g € (3’2 R)
using Theorem 3.5.

Remark 4.8 (Possible extensions of Proposition 4.7)

(i) The gradient estimates in [36] were obtained under more general conditions, and
(the proof of) Proposition 4.7 extends naturally to this more general framework.
Firstly, Proposition 4.7 can be extended to higher dimensions; the assumption
or > 0in (36) is then replaced by the assumption that o is uniformly non-
degenerate in the sense that

Mg < inf min{jo(x)&], |o(x)" &[]}
xeR4

< sup max{lo (x)5]. lo(0) el < M|g|
xelR

for some absolute constant M > 0 which does not depend on & € R?. Secondly,
Proposition 4.7 holds for a larger class of driving Lévy processes; it suffices to
assume that the Lévy measure v satisfies v(dz) > c|z|7¢~%1;/<y for some
c,n > 0 and that SDE (35) has a unique weak solution. Under the stronger
balance condition 8 + «/2 > 1 this is automatically satisfied for a large class of
Lévy processes, e.g. if (L;);>0 is an relativistic stable or a tempered stable Lévy
process (cf. [11]).

(i) Recently, Kulczycki et al. [32] established Holder estimates for the semigroup
associated with the solution to the SDE

dXt = U(X[_) dL[
driven by a d-dimensional Lévy process (L;);>0, d > 2, whose components
are independent «-stable Lévy processes, o € (0, 1), under the assumption that

the coefficient o : R — R9*4 is bounded, Lipschitz continuous and satisfies
infy det(o (x)) > 0. Combining the estimates with Proposition 3.1, we find that
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the assertion of Proposition 4.7 remains valid in this framework, i.e. the Favard
space F associated with the unique solution (X;);>¢ satisfies F; C (?Z“(IR‘{)
and

IIflleZ—l/k(]Rd) < Gl flloo + 1Ae flloo),  f € F1.

(iii) Using coupling methods, Luo and Wang [41, Section 5.1] and Liang et. al [38]
recently studied the regularity of semigroups associated with solutions to SDEs
with additive noise

dX[ - b(X[_) dt + st
for a large class of driving Lévy processes (L;);>¢. The results from [38,41] and

Sect. 3 can be used to obtain Schauder estimates for functions in the domain of
the infinitesimal generator of (X;);>o.

5 Proofs of Results from Sect. 3

For the proof of Proposition 3.1, we use the following lemma which shows how Holder
estimates for a Feller semigroup translate to regularity properties of the A-potential
operator

Ryu := / e MPudt, uec Bb(]Rd), A > 0.
(0,00)

Lemma5.1 Let (X;):>0 be a Feller process with semigroup (P;);>0 and A-potential
operators (R;)) 0.

(i) Ifthere exist T > 0, M > 0, k > 0 and B > 0 such that
1P e ey < Mt~ |lulloo
forallt € (0, T) and u € By(RY), then
| Pruell es (may < Me™ 7P |lull oo (41)

forallt > 0andu € Byp(RY), where m := log(2)8/T.
(ii) Ifu € Bp(RY) is such that (41) holds for some B € [0, 1), then Ryu € C5(RY)
for any & > m and

1 1
IRt ey ey < lulloo (m + ﬂ) (M + 1),
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Proof (i) By the contraction property of (P;);>0, ||P1M”eg(Rd) < || P /2u||ez(]Rd) for
allt > 0, and so

-8
t
IPrulleyray < M (5) =M2Pt7F forallt € (0,2T).

Iterating the procedure, it follows easily that (41) holds.
(ii) Let u € By(R?) be such that (41) holds for some g < 1. If we choose K > «,
then (41) gives that the iterated difference operator A f (cf. (5)) satisfies

|AK Pu(x)| < Me™ 7P |ul oo ||

for any x € R? and |h| < 1. Since, by the linearity of the integral,

AK R u(x) =/ e M AK Pu(x)dt,
(0,00)

we find that

|AK Ryu(x)| < MIAI* [lulloo f e 4P dr,
(0,00)

On the other hand, we have || Ry.|loo < 2|1l oo, and therefore we getforallL > m

1 oo
IRyl ey ray < A" llulloo + M ulloa (/ r—ﬁdr+f e—'<*—'">dr>,
0 1

which proves the assertion. O
We are now ready to prove Proposition 3.1.
Proof of Proposition 3.1 By Lemma 5.1(i), (41) holds with m := log(2)8/T for any

u € By(RY). If weset A :=2m and u := Af — A, f for f € Fy, then f = Ryu.
Applying Lemma 5.1(ii), we find that

I les ey = IR ulles ray < Kllttlloo = 2K flloo + K[ A flloo
for K :=2m~ '+ (1 —-p)"L. o
For the proof of Theorem 3.2, we need two auxiliary results.

Lemma5.2 Let (X;);>0 and (Y;);>0 be Feller processes with infinitesimal generator
(A, D(A)) and (L, D(L)), respectively, such that

Af(2)=—q(z,D)f(z) and Lf(z)=—p(z, D)f(z) forall feC®(R?), zeR?
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(cf. (7)) and assume that the (A, C>° (RY))-martingale problem is well-posed. Let
U C RY be an open set such that

p(z,6) =q(z,&) forallzeU, & e R™.
If x € U andr > 0 are such that B(x,r) C U, then for the stopping times
X i=inf{r > 0; |X; —x| >r} ¥ :=inf{t > 0; Y, — x| > r} (42)

the random variables X, ,.x and Y, .,y are equal in distribution with respect to IP*
foranyt > 0.!

Proof Set
oX :=inf{t >0; X, ¢ U or X,_ ¢ U}, of :==inf{r>0;Y, ¢ U or Y,_ ¢ U}.

It follows from the well-posedness of the (A, Cfo(IRd))—martingale problem that
the local martingale problem for U is well-posed (cf. [15, Theorem 4.6.1] or [18]
for details). On the other hand, Dynkin’s formula shows that both (X;,,x):>0 and
(Y, ns¥)r=0 are solutions to the local martingale problem, and therefore (X, ,x):>0
equals in distribution (Y;,,v);>0 with respect to P* for any x € U.If x € U and
r > 0 are such that B(x, r) C U, then it follows from the definition of t* and t¥ that

X <ogXand¥ < 05; in particular,

Xipex = Xppexpox and Y, ov =Y, 0 5ov.

Approximating 7% and t¥ from above by sequences of discrete-valued stopping times,

d d
we conclude from (X, ,,x)r>0 = (Y;rsv)r>0 that X, ., x =Y, ,,v. O

Lemma 5.3 Let (Y;);>0 be a Feller process with infinitesimal generator (A, D(A))
and symbol

p(x,&) = —ib(x)~s+/

(1= iy £101n(yD) ver.dy), 2.6 € RY.
y#0

Ifa > 1and U € B(RY) are such that

sup (Ib(z)l +/ min{l, IyI“}V(z,dy)> < 00,
y#0

zeU

! Here and below we are a bit sloppy in our notation. The Feller processes (X;);>(0 and (¥;);>0 each
come with a family of probability measures, i.e. their semigroups are of the form [ f(X;) P*(dy) and
f f(Yp) P (dy), respectively, for families of probability measures (IP*) eRd and (]?’x )y cR- To keep the
notation simple, we will not distinguish these two families. Formally written, the assertion of Lemma 3.5
reads P¥ (X, x € ) =DP¥(Y,, .y €).
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then there exists an absolute constant ¢ > 0 such that the stopped process (Yiaz,)i>0,
where

y:=inf{t > 0;Y; ¢ U},

satisfies

E*(IYiary —xI% A1) < ct sup <|b(z)| +/ min{1, |y|*} v(z, dy)) (43)
zelU y#0

forallx e U, t > 0.
Note that (43) implies, by Jensen’s inequality, that the moment estimate
Bl
EX(|Yine, —xIP A1) < tP/% sup <Ib(z)| +f min{1, [y|*} v(z, dy)) (44)
zelU y#0

holds for any B € [0,a], x € U and t > 0. If (¥;);>0 has a compensated drift, in

the sense that b(z) = f|y|<1 yv(z,dy) forall z € U, then Lemma 5.3 holds also for

a € (0, 1]. Let us mention that estimates for fractional moments of Feller processes
were studied in [21]; it is, however, not immediate how Lemma 5.3 can be derived
from the results in [21].

Proof of Lemma 5.3 Let (fi)rew < Cj (RN C.(R?) be a sequence such that f; > 0,
fx(z) = min{1, |z]|*} for |z| < k and M := sup, ||fk||eg < 00. Pick x € Cfo(]Rd),

x = 0, such that [, x(x)dx = 1 and set x,(z) := &' x (¢~ '2). If we define for
fixedx e U

fre(@) = (fr(- — x) % xe)(2) i= /R e —x =y dy, ze€ RY,

then fi . — fi(- — x) uniformly as ¢ — 0 and ”fk’g”eZ(Rd) < M forall k € N. As
fr.e € CP(RY) C D(A), an application of Dynkin’s formula shows that

E* fio(Viney) — fro(x) = EX ( /(

O,t/\fu)

Afk,s(Ys) ds)

for all £ > 0. Since o > 1, there exists an absolute constant C > 0 such that

Ve @] < Cllfrelleymey = CM

and

| fee@+Y) = fie @ =V fie(@Lo,1)(YD] = Cll fiell ez (ray min{1, [y}
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for all z € R?. This implies

|Afi,e (D] < 1DV fre (2]

+ f#o | fre@@+3) = fie@ — - Vfie@LonyD| v(z, dy)
y
=CM (Ib(Z)I +/ min{l, IyI“}V(z,dy)>
y#0
for any z € U. Hence,

E* fi,e (Yipzy) < fiee(x) +2CMt sup (Ib(Z)l + /#0 min{1, [y|“} v(z, dy))
y

zeU

for x € U. Applying Fatou’s lemma twice, we conclude that

E* min{l, |Y;nr, — x|%} < liminf liminf E* fi ¢ (Yiaz,)
k—oo e—0

< 2CMt sup <|b(z)| —G—/ min{l, |y|*} v(z, dy)) .
zeU y#£0

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2 Since x € R? is fixed throughout this proof, we will omit the
superscript x in the notation which we used in the statement of Theorem 3.2, e.g. we
will write (¥;);>0 instead of (Yt(x))lzo, L instead of L™ etc.

Denote by (L., D(L,)) the extended generator of (¥;);>0, and fix a truncation
function x € C°(R?) such that 155 < x < Iz and | Xl e2gay < 1062 To
prove the assertion, it suffices by (C3) and Proposition 3.1 to show that v := f - x is
in D(L,) and

IZevloo = € (14 Flloo + 1 Flloo + 1l goto gz ) (45)

for a suitable constant C > 0. The first- and main- step is to estimate

1
sup — sup [E°v(Y,,.5) — v(2)] (46)
te0.1) I zeRrd

for the stopping time
5 :=inf{r > 0; |Y; — z| > 8}.

We consider separately the cases z € B(x,3§) and z € Rd\B(x, 34). For fixed
z € RY\B(x, 38) it follows from supp x € B(x, 26) that v = 0 on B(z, §), and so

V(Yipez (@) —v(2) =0 forallw € {tf > 1}.
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Hence,
IE 0 (Y pr2) = v(@)] = 2[vllooP (75 < 1).

Applying the maximal inequality (9) for Feller processes, we find that there exists an
absolute constant ¢; > 0 such that

E*v(Yirr2) —v@)| = it flloo sup  sup [p(y,§)
yeR4 |§|<5~!

for all z € RY\B(x, 38); the right-hand side is finite since p has, by assumption,
bounded coefficients.
For z € B(x, 38) we write

Evipgp) —v@I=h + L+ 13
for

It = X @QE(f (Yirr2) = fI,
L= f@E (X Yipgs) — x (@)1,

1= [B [ (f Fine) = F@)(xHin) = 2 @)
We estimate the terms separately. By (17) and (C2), it follows from Lemma 5.2 that
Ezf(er;(X)) = Ezf(YmT;) forallt > 0,
where 74 (X) is the exit time of (X;);>0 from B(z,8). As0 < x < 1 we thus find
It < B (f (Xynez ) = f)I-
Since f € F 1X , an application of Dynkin’s formula (11) shows that
I < Ae fllooEX (8 A T5(X)) < 1 Ae flloot-

Weturnto Ip. As x € C° (R¥) € D(L) we find from the (classical) Dynkin formula

that
I / Lyx(Ys)ds
(0,1A75)

=tlflleo sup [Lx(2)I.

|z—x|<45

1] < (1 oo (X (Vrpgz) — X @] = [1flloo
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A straightforward application of Taylor’s formula shows that
ILx @1 = 2lx N c2 ey (Ib(z)l + /#0 min{1, [y*} v(z, dy)) .
y

Since 0 < o(x) < 1 and y is chosen such that || x ”C,f(]Rd) < 1082, we thus get

L <2087t flls sup (|b<z)|+ f#omin{l,|y|1+@“‘>}v(z,dy>).
y

z—x| <46

It remains to estimate /3. Because of the assumptions on the Holder regularity of f
on B(x, 46), we have

I3 < 1657201 f 1l ot sy + 1 ool gy BF (i = 21724 A D).

It follows from Lemma 5.3 that there exists an absolute constant ¢, > 0 such that I3
is bounded above by

26~ (If g0 gy, + 1/ 1) sup (|b(z>|+ /#Ominﬂylgm“,1}v(z,dy)>.
y

|z—x|<46

Combining the estimates and applying Corollary 2.2, we find thatv = x - f € D(L,)
and

/
IZevlioe = € (IAe flloe + 1 oo + 1 et )
where

C':=c3sup sup |p(z,&)]

zeR4 |g|<s!
+¢387% sup <|b(z)|+/ min{|y|]+g(x),1}v(z,dy)>
|z—x|<48 y#£0

for some absolute constant ¢3 > 0. Since there exists an absolute constant ¢4 > 0
such that

sup sup |p(z,d8)| <ca sup (Ib(z)l —i—/ min{1, |y|2}v(z,dy)> 5§72
zeR9 |g|<57! zeR4 y#0

for § € (0, 1) (cf. [49, Lemma 6.2] and [6, Theorem 2.31]), we obtain, in particular,
that

IZevlloo = € (14 Flloc + 1 1o + 1 L oo ers77)
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for

C" =58 sup (|b(z)| +/ min{1, |y|2}v(z,dy)>
y#0

zeR4

+es8™* sup / min{|y|'""™ 1} v(z, dy).
[yI=1

|[z—x|<4

This finishes the proof of (45). The continuous dependence of the constant C > 0
in (19) on the parameters B(x) € [0, 1), M(x) € [0, 00), K(x) € [0, oo) follows
from the fact that each of the constants in this proof depends continuously on these
parameters; see also Lemma 5.1. O

The remaining part of this section is devoted to the proof of Theorem 3.5. We need
the following auxiliary result.

Lemma 5.4 Let (Y;);>0 be a Feller process with infinitesimal generator (L, D(L)),
symbol p and characteristics (b(x), Q(x), v(x,dy)). For x € RY and r > 0 denote
by

¥ =inf{r > 0; |Y; — x| > r}

the exit time from the closed ball B(x, r). For any fixed x € R¢ and r > 0, the family
of measures

1
Hi(x, B) 1= —P*(Yper —x € B), 1>0, B & BRN\D),

converges vaguely to v(x, dy), i.e.
.1
thH(l) ;Exf(yt/\rr" —Xx) = f fO)v(x.dy) forall f e C.(R\(O}).
- y#0

The main ingredient for the proof of Lemma 5.4 is [30, Theorem 4.2], which states
that the family of measures p;(x, B) := ~1PY(Y,—x € B),r > 0, converges vaguely
tov(x,dy)ast — 0.

Proof of Lemma 5.4 By the Portmanteau theorem, it suffices to show that

lim sup p; (x, K) <v(x, K) a7

t—0

for any compact set K € R?\{0}. For given K € R4\{0} compact, there exists by
Urysohn’s lemma a sequence (x,)new S C2° (]Rd ) and a constant § > 0 such that
supp xn» € B(0, )¢ foralln € N and 1x = inf, ey x,. It follows from [30, Theorem
4.2] that

. E (Y —x)
111’1’1 _—
t—0 t

= / xn () v(x,dy)
y#0
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for all n € N. On the other hand, an application of Dynkin’s formula yields that

IE* X0 (Yiney —x) — E* %0 (Yr — x)| < L xullool8* (t — min{z, 7,7})
< tILxnllocP* (7 < 1).

Since (Y;);>0 has right-continuous sample paths, we have P*(zf <t) — Oast — O,
and therefore we obtain that

E* xn (Yiary — X)

lim ——— =/ Xn (V) v(x, dy).
=0 4 y#0

Hence,

. _ 1
lim sup 4, (x, K) < limsup —IE* y, (Yrazx — x) =/ Xn (V) v(x, dy).
t—0 -0 I y#0

As 1g = inf,eN xn, the monotone convergence theorem gives (47). O

Proof of Theorem 3.5 For fixed x € R let ( Yt(x) )i=0 be the Feller process from Theo-
rem3.5.Let xo € C*° (R%) be a truncation function such that ]lm < x0 < ]lm,
and set x ¥ (z) := xo(z — x), z € R¥. Since x € R is fixed throughout Step 1-3
of this proof, we will often omit the superscript x in our notation, i.e. we will write
(Y10 instead of (¥),=0, x (2) instead of x @ (2), etc.

Step 1 Show that v := x - f is in the domain D(L,) of the extended generator of
(Y1)r>0 and determine L, (v).

First of all, we note that (X;);>0, (¥;);>0 and f satisfy the assumptions of The-
orem 3.2. Since we have seen in the proof of Theorem 3.2 that v = x - f is in the
Favard space F’ ly of order 1 associated with (¥;);>0, it follows that v € D(L,) and
[Le(v)|loo < 00. Applying Corollary 2.2, we find that

IE)ZU(YMT;) —v(2)
1

Lev(z) = tlgl(l)
(up to a set of potential zero), where
ty = inf{r > 0; |Y; — z| > 8}.
On the other hand, the proof of Theorem 3.2 shows that

IE)ZU(YM,Bz) —v(2)
t

=1L+ L)+ (1),
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where

L) =17 F@E XY nr) = X (),
L) =17 X @ E fXipix) — @),
L) =t B [(f (Vprd) = F@) X Yiped) = X @)];
here 75 (X) denotes the exit time of (X;);>0 from B(z, §). Since x € Cé’o(Rd) is in

the domain of the (strong) infinitesimal generator L of (¥;);>0 and f is the Favard
space F 1X associated with (X;);>0, another application of Corollary 2.2 shows that

lim I1(t) = f(z)Lx(z) and lim I»(¢) = x(2)A.f(2)
t—0 t—0
for all z € R¥. We claim that

lim 150 = T(f, 02 :=/

7éO(f(z +¥) = f@)xz+y) — x@) vz, dy)
y

(48)

for all z € RY, where v(z,dy) = V¥ (z, dy) denotes the family of Lévy measures

associated with (¥;);>0 = (Yl(x)),zo (cf. (22)). Once we have shown this, it follows
that

Lev=fLx+ xAcf +T(f. x)- (49)

To prove (48), we fix a function ¢ € Cfo(]Rd) such that 10,1y < ¢ < 1p(0,2) and
set g.(y) 1= (e 'y) fore > 0,y € R? Since y +— (1 — @.(y)) is zero in a
neighbourhood of 0, we find from Lemma 5.4 that

B [(1 = ¢ (Vs = D) Fynes) = F@IUYypr) = x(@D)]
t

=0 #Ou — o MfO+2) — F@IXE+Y) — x@) vz dy).
y

If 7 € RY \B(x, 38), then x = 0 on B(z, §), and therefore the integrand on the right
hand side equals zero for |y| < §. By dominated convergence, the right-hand side
converges to I'(f, x)(z), defined in (48), as ¢ — 0. For z € B(x, 35) we note that
X € Cé (R%) and f e Gi(')(le) for o satisfying (26); it now follows from (S1) and
dominated convergence that the right-hand side converges to I'(f, x)(z) as ¢ — O.
To prove (48), it remains to show that

T 1,2) = B0 Vynes = D(F Yot = F@I A Vine) = 2@
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satisfies

1
lim sup lim sup ;J(s, t,z) =0 forallz € R4,

e—0 t—0
By (26) and (S1), there exists some constant y > 0 such that
1 + min{o(z2), 1} > a(z) + 2y forall z € B(x, 36). (50)

Indeed: On {o > 1} this inequality holds since « is bounded away from 2 (cf. (S1)),
and on {p < 1} this is a direct consequence of (26). Now fix some z € B(x, 35). As

supp ¢  B(0, 2¢), it follows from f € €2 (R) and x € C}(RY) that
J(e.1.2) = 18”1 F 1l oo gy 1 gy B min1Yy o = 297 1)

with y from (50) and some constant c¢; > 0 (not depending on f, x, z). An application
of Lemma 5.3 now yields

J(e,t,2) < ce’t sup <|b(z)| +

|z—x|<48

min{|y[*@*7, 1}z, dy)) :
y#0

which is finite because of (S1) and (S5). Hence,

1
limsuplimsup —J (e, t,z) =0 forall |z — x| < 38.
t—0 e—>0 I

Ifz e Rd\B(x, 38), then it follows from x|p(,,s) = 0 and supp¢ C B(0, 2¢) that
J(e,1,2) < 4ell flloollx llc) rayP* (75 < 1).
Applying the maximal inequality (9) for Feller processes, we conclude that

lim sup lim sup t_lj(s, t,z) =0 forallz € Rd\B(x, 36).

e—0 t—0

Step 2 If o : R? — [0, 2] is a uniformly continuous function satisfying (26) and
oo = inf, o(z) > 0, then

fe FXnelY Y, Af = g € C4(RY
= Ve>0: L.(fx) € G;QOAMGM)_E(RGI)

for any A € [0, A] where x = x ) is the truncation function chosen at the beginning
of the proof; see (S2), (S3) and (26) for the definition of , A and o.

@ Springer



1538 Journal of Theoretical Probability (2021) 34:1506-1578

Indeed: We know from Step 1 that
Le(fx)=fLx+ xAef +T(f, x)="h+ L+ L.
As 6 <1 wehave go A A A B Ao <1,and therefore it suffices to estimate

sup [Ix(2)|+ sup |Ix(z+h) — Ik (2)]
zeRd z,heR4

fork =1,2,3.

Estimate of /1 = f L y: First we estimate the Holder norm of Lx. As x € C*° (R9)
a straight-forward application of Taylor’s formula shows that

ILxNloe = 2lx Nl c2 ey SUP (Ib(Z)I +/ min{1, [y*} v(z, dy)) .
zeR4 y#0

If we set Dy (z) := x(z+y) — x(2) — x" (@ yLo,1(|y]), then

[Lx(z) — Lx(z+ h)|
<1b@IIVx(z+h) = Vx@|+b(z+h) —b@)||Vx(z+ h)

+/ IDyx @+ 1) — Dyx ()] v(z. dy)
y#0

+

/ Dyx(z+h) (v(z+ h,dy) —v(z,dy))
y#0

for all z, h € RY. To estimate the first two terms on the right-hand side we use the
Holder continuity of b (cf. (S2)) and the fact that x € C,f (R%). For the third term, we
use

Dy + 1) = Dyx @] < X llca g 1 minfly 2, 1;
cf. [4, Theorem 5.1] for details, and noting that
IDyx @+ M) < 2lxllc2gay min{L, [y}

we can estimate the fourth term for small / by applying (S2). Hence,

LX) — Lx G+ W] < Al s ey <|b<z>| + /#0 min{1, [y*) v(z, dy))
y
0
+2C1 17 x| 2

for small 4 > 0. Hence,
IILxlleg(Rd) < Clllxllcg(Rd) sup (1 + [b(2)| +/ min{1, Iylz}V(z,dy)>
zeR4 y#0
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for some absolute constant ¢; > 0. Since f € Gi(') (R c Gio (R9), this entails that

17 LX) gnen g

= il e 1 hegane Sup (1 +1b(2)| + / min(1, |y[%} v(z, dy)) :
zZ€

y#0

Estimate of I, = y A, f: By assumption, A, f = g € C;(R?) and x € CZ(RY).
Thus,

IxAe fllgs = 2l Ae flig < oo

Estimate of I; = T'(f, x): As f € C2V(RY) and x € C}(R?), it follows from the
definition of I'(f, x) (cf. (48)) that

IC(f. 0@

< 41 F 1l g0 g 1 3 ety /y L, minlly AL 1 (e dy) < o0
forall |z — x| <38.Ifz € ]Rd\B(x, 38), then Ay x(z) = Oforall [y| <, and so

P0G s4||f||oo/ vz, dy)

[y[>6/2

forall z € R4\ B(x, 38). Combining both estimates and using (26), (S1) and (S5), we
get

ITCE 30l = e2llf o g

for some constant ¢, > 0 not depending on x, z and f. To study the regularity of
I'(f, x) we consider separately the cases [|0|loc < 1 and ||@||cc > 1. We start with the

case ||o]loo < 1; see the end of this step for the other case. To estimate A, T'(f, x),

we note that

AT (f 0@ =100, 0@+ =T(f. )@=+ 2+ 3, OD

where
1) = /#O Ay f G+ h) — Ay F Ay Xz + B v(z. dy),
y
h(D) = /7&0 1Ay F D 1Ay x (2 4+ h) — Ay x ()] v(z, dy),
y

J3(2) =

f Ayfz+h)Ayx(z+h)(v(z,dy) —v(z+ h,dy))|.
y#0
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We estimate the terms separately, and start with J;. Fix ¢ € (0, min{gg, 0}/2) (cf. (26)
for the definition of o). Since g is uniformly continuous, there exists » € (0, 1) such
that

lo(z) —o(z+h)| <e forallz e R?, || <r.
For |h| < r and |y| < r it then follows from f € €2 (R) that

Ay @4 = By f@] = 20 f ] oo g, min{ly[€EAEEH, a0 Fne()

= 2”f”Gi(')(1Rd) min{|y[2@ ¢, |h|0@ ¢},

(Here we use ||o]lco < 1; otherwise we would need to replace o(z) by 0(z) A 1 etc.)
On the other hand, we also have

Ay fz+h) — Ay f2)] = 2||f||ei(»>(Rd)|h|Q° (52)
for all y € R?. Combining both estimates yields

J12) = 211 f N ge0 oy 1% e} ety

-(/’ xnmﬂyPQ*thP&*nyhmady>+|m@{/
lyl<r

[yl>r

v(z, dy))

for || < r. It is now not difficult to see from (S1) and (S5) that there exists a constant
c3 > 0 (not depending on x, z, f) such that

N12) = 311f | goor a, (1120 + [R1EOTIZXETE) forall |h] < 7.z € B(x, 38).
b

By the very definition of o (cf. (26)), this implies that

sup J1(2) < €311 f [l oo gy AI™™MENE for all [h] < 7.
zeB(x,38) b

If z € RY\B(x, 38), then Ayx(z + h) = 0 for |h| < §/2 and |y| < /2. Using (52),
we get

h@szwwvhwﬁhf v dy) forall bl <5/2.
y

ly|=8/

Invoking once more (S1) and (S5), we obtain that

sup  J1(2) < calhl® | f oo a1 < 8/2,
zeR4\ B(x,38) b
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for some constant ¢4 not depending on x, z and f. In summary, we have shown that

sup J1(2) < es| A" £1] o0 -
zeR4 b

To estimate J;, consider again separately the cases z € B(x, 3§) andz € R4 \B(x, 36).

Ifz Rd\B(x, 38),then Ayx(z+h) =0= A, x(z)forall|y| < §/2and |h| < §/2.
Since we also have

1Ay x (@ +h) = Ay x (@] = 2l Nl c2ray mindlyl, 171}, (53)

we find that

12 = 4 fllsollxll 2 ey 1] v(z, dy)
ly|=8/2

for || < §/2. Because of (S1) and (S5), this gives the existence of a constant cg > 0
(not depending on f, x and z) such that

sup  J2(2) < coll flloolhl-
zeR4\ B(x,38)

For z € B(x, 35), we combine
1Ay f(2)] = 2||f||€§<«>(Rd) min{|y|?@, 1}

with (53) to get
12 = 4 f Nl g0 gy 1 Xl cz ey / » min{|y[¢@, 1} min{|y|, [a[} v(z, dy),
y

which implies, by (S1), (S5) and (26), that

1
sup 2 < 7l fll per pay 1RI77
z€B(x,38) ¢, (RO

We conclude that

sup J2(2) < cslh|” M f oo -
zeR4 b

It remains to estimate J3. By the uniform continuity of o there exists r € (0, 1) such
that |Ano(2)| < /2 for all |h| < r. Since f € €2 (R?) we have

Ay f @+ B Ay x @+ ] < 4o g I Xy ay mind |y EF T, 1),
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and thus, by (26) and our choice of r € (0, 1),
Ay f @+ B Ay x @+ )] < 41 e0 gy 1K g ey mindy 12917772, 1)

= 4||f||@i(')(Rd)”X”Cé(R") min{|y|a/2+a(2)’ 1}

for all |z — x| < 3§ and |k| < r. On the other hand, if z € IRd\B(x, 3§),then x =0
on B(z, $) and so

[Ayf(z+h)Ayx(z+h)| =0 forall |h] <8§/2, |y| < §/2.
Consequently, there exists a constant c9 = c9(3, r) > 0 such that
Ay f @+ WAy x @+ W] = ol fll o0 gy 1 Xy ay mind [y 177, 1)
forall z € R, y € R and || < min{r, §}/2. Applying (S2), we thus find

sup J3(2) < c10lhl”[1f 1l go0 gy
zeRd b

Combining the above estimates, we conclude that
ITCf, X)lleiWAa—e(]Rd) <cri ||f”e§<‘)(1Rd)’

provided that ||o|lc < 1. In the other case, i.e. if ¢ takes values strictly larger than
one, then we need to consider second differences A%F( f» x)(2) in order to capture
the full information on the regularity of f. The calculations are very similar to the
above ones but quite lengthy (it is necessary to consider nine terms separately) and so
we do not present the details here.

Conclusion of Step 2 For any small ¢ > 0 there exists a finite constant K; . > 0 such
that
1L 0 lgmateorsor-e o) < Kve (14 Nejarn, + 1/ legrmay) - (54)

The constant K . does not depend on x, z and f.
Step 3Ifu € D(L,) is such thatu € €3(R?) and L.u € €}(R?) for some » < A (cf.
(S3)), then

”u”GZ(““(R") < KZ(”“”(QIX)(]Rd) + ||Leu||(32(]Rd))

for some constant K, > 0 which does notdepend on x, z and f. (Recall that L, = Léx)
is the extended generator of the Feller process (Y;);>0 = (Y,(x))lzo; this explains the

x-dependence of the regularity on the left-hand side of the inequality.)
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Indeed The i-potential operators (R;,),~0 associated with (¥;);>0 = (Yt(x))tzo sat-
isfies

IRVl gy gy < K llegay v € CHRD. 2 < A (55)

for u sufficiently large and some constant K = K (u) > 0. Thisis a direct consequence
of (S3)and Lemma 5.1. Now ifu € D(L,)issuchthatu € C;(R%)and L.u € C}(R?),
thenwehaveu = R, vforv := pu—L.u € Gé (R%). Applying (55) proves the desired
estimate.

Conclusion of the proof Let f € Gi(')(Rd ) N F{¥ for o satisfying (26) be such that
Aof € Gﬁ(le) for some A < A. Without loss of generality, we may assume that

0o := infy o(x) > 0. Indeed: 1t follows from Corollary 3.4 that f € @Z(')_E(Rd) for
€ :=ko/2 :=inf, k(x)/2 > 0, and therefore we may replace o by

0(2) == max{o(2), k(z) — &},
which is clearly bounded away from zero and satisfies the assumptions of Theorem 3.5.
For fixed x € RY, denote by x = x“ the truncation function chosen at the

beginning of the proof, and fix ¢ € (0, min{oo, ko}/2). It follows from Step 2 and
Step 3 that there exists a constant ¢; > 0 such that

172 grorsmian ssi-e gy < €1 (A Fllegaen, + 11 o0 )
forall x € R?. As X(x) = 1 on B(x, §), we obtain that
1 grcrsmansi-e guay < €4 (1Aefllegme + 1/l eg0 o)

1
Since, by assumption, f € Gi(')(Rd), this implies f € Gg ) (R%) for
o' (x) = max{o(x), k(x) — & + min{go, 0,0, A}, x € R’

and we have

I£1 < (€ + ) (14 Fllepans + 1/l o0 ) -

1
ef V(md)

As o' satisfies (26) (with o replaced by o), we each apply Step 2 with o replaced by
o' to obtain

(x)
XN ot sminanir—e g = €2 (14 S egqreny = 1/ 00 )

b

where Qé := inf e 0'(x). Repeating the argument, i.e. using that x* = 1 on
2.
B(x, 8), we obtain f € €2 ' (RY) for
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Qz(x) = max{o(x), k(x) — e + min{g(l), o,0,A}}
and

1 gg20 gy = € (14e S egansy + 1 g ) -
We proceed iteratively, i.e. we set

0" (x) := max{o(x), k (x) — & + min{of ', 0,0, 1}},n > 2,

where Q(’)‘_l :=inf, 0"~ (x). By Steps 2 and 3, we then have
11 gm0 gy < €0 (14 Neparen, + 11l ego ) (56)

for some constant ¢,, > 0. Since kg = inf, k(x) > 0 and ¢ < k¢/2, it is not difficult
to see that we can choose n € N sufficiently large such that g;; > min{o, 0, A}, and so

0"H(x) = k(x) — & + min{o, 6, A}.

Using (56) (with n replaced by n + 1), we conclude that

1 ggrsmintosa— gty < Cnrt (14 F learey + 1/ otr gy ) -

6 Proof of Schauder Estimates for Isotropic Stable-Like Processes

In this section we present the proof of the Schauder estimates for isotropic stable-like
processes which we stated in Theorem 4.1 and Corollary 4.3. Throughout this section,
(X:)r>0 is an isotropic stable-like process, i.e. a Feller process with symbol of the
form g(x, £) = |£]*™, x, £ € R?, for a mapping « : R — (0, 2]. We remind the
reader that such a Feller process exists if « is Holder continuous and bounded away
from zero.

We will apply the results from Sect. 3 to establish the Schauder estimates. To this
end, we need regularity estimates for the semigroup (P;);>0 associated with (X;);>0.
The results, which we obtain, are of independent interest and we present them in
Sect. 6.1. Once we have established another auxiliary statement in Sect. 6.2, we will
present the proof of Theorem 4.1 and Corollary 4.3 in Sect. 6.3.

6.1 Regularity Estimates for the Semigroup of Stable-Like Processes

Let (P;);>0 be the semigroup of an isotropic stable-like process (X;);>o with symbol
q(x, &) = &Y In this subsection, we study the regularity of the mapping x >
Pyu(x). We will see that there are several parameters which influence the regularity
of Pu:
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e the regularity of x — u(x),

e the regularity of x —~ «(x),

o oy :=inf _paoa(x);
the larger these quantities are, the higher the regularity of P;u. The regularity estimates
we present rely on the parametrix construction of (the transition density of) (X;);>0
in [22]. We mention that there are other approaches to obtain regularity estimates
for the semigroup. Using coupling methods, Luo and Wang [40] showed that for any
k € (0, ar) there exists ¢ > 0 such that

1Pl g gy < cllulloot = "D/ forallu € Bp(RY), t € (0, T].
For a; > 1, this estimate is not good enough for our purpose; we need a higher

regularity of Pu.

Proposition 6.1 Let (X;);~0 be a Feller process with symbol q(x,&) = |E|¢™),
x,& € R4 for a mapping « : R? — (0,2) bounded away from zero, i.e.
ay, :=1inf, cge a(x) > 0, and y-Holder continuous fory € (0, 1). Forany T > 0 and
k € (0, ar) there exists a constant C > 0 such that the semigroup (P;);>0 satisfies

||P[M||@Z(Rd) < Cllulloot /%L forallu € Bp(RY), t € (0, T]. (57
In particular, (P;);>0 has the strong Feller property. The constant C > 0 depends
continuously onay € (0,2), ap —k € (0, ap), ”aHGZ(IRd) € [0,00)and T € [0, 00).

For the proof of Proposition 6.1, we use a representation for the transition density
p which was obtained in [22] using a parametrix construction; see also [25]. For
o € (0,2), denote by p@(t, x) the transition density of an isotropic o-stable Lévy
process and set

po(t,x,y) = p“(y)(t,x —-y), t>0,x,y¢€ R,
The transition density p of (X;);>0 has the representation
p(t,x,y) = pot.x, ) + (po ® ®)(1,x,y), 1>0,x,y R, (58)
where ® is the time-space convolution and & is a suitable function satisfying
supf |®@t, x, y|dy < Cit " 1 e(0,T), (59)
xeRd /R

for some constant A > 0 and C; = C{(T) > 0. For further details, we refer the reader
to “Appendix B” where we collect the material from [22] which we need in this article.

Proof of Proposition 6.1 Fix T > 0, u € Byp(RY) and k € (0, ap). By contractivity
| Prt]l oo < |lu]loo, it suffices to show that the iterated differences of order 2 (cf. (5))
satisfy

sup |AZPu(x)| < Ct /L ||u|lo forallz € (0, T], |h] < 1.
xeR4
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By (58),
A2 Pu(x)| < 1A POux)| + 187 PP ux))|

forany x, h € R4 andt € (0, T, where
POu(z):= /R L u()po(t.z,y)dy and P u(z):= /R L u()(po ® ®)(1,2,y)dy.

We estimate the terms separately; we start with P(©), The transition density p@(z, x)
of an isotropic g-stable Lévy process is twice differentiable, and there exists a constant
c1 > 0 such that

|pe(t, x)| <c1S(x, 0, 1),
18y, PO (t, x)| < c1t™ /8 S(x, 0, 1),

18y, 0, 2 (1, )| < c117 228 (x, 0.1), (60)
where
. _ t
S(x,0,1) ::mln{t dje |x|d+a}’ (61)

and ¢ € [ar, |allocl, 7 € (0,T),x € R and i, j € {1,...,d)} (cf. Lemma B.1). For
the parametrix po(z, x, y) = p”‘(y) (t, x — y) this implies, by Taylor’s formula, that
there exists is ¢co > 0 such that

Ipo(t, x +2h,y) —2po(t, x + h,y) + po(t, x, y)|
< et N RZS((x, h) — v, a(y), 1), x,heR?

for some intermediate value n(x, h) € B(x, 2h). Ast < T, we find that

Ipo(t,x +2h,y) —2po(t,x +h,y) + po(t, x, )]
< 3t L RS (n(x, ) — v, a(y), 1), x,heR?

for a suitable constant ¢c3 = ¢3(T, ar, |||l ). On the other hand, (60) gives

|p0(tv-x +2h, )’) —2p()([,x +h7 y) +p0(tﬂ-xv )’)|
<caSx+2h -y, a(y), ) +25x+h—y,a(y), 1) + Sk =y, a(y),1)).

Combining both estimates, we obtain that there exists aconstantcs = ca (T, ar, |||l o)
such that

|po(t, x +2h, y) — 2po(t, x + h, y) + po(t, x, y)| < calh|“t™/“LU (t, x, y, h)
(62)
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for

U, x,y,h) =8, h) —y,a(y),t) +S&x+h—y, a(y), 1)

cf. Lemma C.1 with r := #1/9. Hence,

|Pl(0)u(x +2h) — 2Pt(0)u(x +h) + P[(O)u(x)|

SC4|Iu||oof’(/aL|h|"/ U, x,y, h)ydy
]Rd
for any x, h € R¥ andt € (0, T). Since

cr := sup sup / S(z—y,a(y),t)dy < oo, (63)
te(0,T) zeRR4 /R

(cf. Appendix B), we have

sup sup / Ul(t,z,y,h)dy <dcr < 00, (64)
te(0,T) zeRd JRY

and so we conclude that
1PPutx +20) = 2PQux + hy + POu)| < deserlulloot <1 |hIE.
It remains to establish the Holder estimate for P,(l). By (62),

[(po ® @) (t, x +2h,y) —2(po ® ©)(t, x + h,y) + (po ® P)(#, x, y)|

t
5C4|h|K//d(t—s)_K/“LU(t—s,x,z,h)|<b(s,z,y)|dzds.
0 JIR

Integrating with respect to y € R?, it follows from (59) and (64) that

1P e +2m) = 2Pt + ) + PVu)|
t
S C6|h|K”u”OO/ (t _ S)*K/O(Ls*]‘l’)» dS
0

< e7lh 7 ]| oo
for suitable constants cg and ¢7. Combining the estimates, (57) holds for some finite
constant C > 0. The continous dependence of C on the parameters a; —k € (0, ry),

ar, € (0,2), |la ”C},’ > 0and T > 0 follows from the fact that each of the constants in
this proof depends continuously on these parameters. O
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In Proposition 6.1, we studied the regularity of x — P,;u(x) for measurable func-
tions u. The next result is concerned with the regularity of P;u(-) for Holder continuous
functions u. It is natural to expect that P;u “inherits” some regularity from u.

Proposition 6.2 Let (X;);>0 be a Feller process with symbol q(x, §) = |& |60 x & €
R, for a mapping « : RY — (0, 2) such that ay := inf | cgra e (x) is strictly positive
and o € C}; (RY) for some y € (0, 1) satisfying

v >y = lallcoc —ar.

Forany T > 0, k € (0,ar) and ¢ € (yy, min{y, ar}), there exists a constant C > 0
such that the semigroup (P;)i>0 of (X;)>0 satisfies

Jgaye U € CHRY, (65)

| Prtl] gemini == gy < 1+ [Tog e~ /% ] s
forall§ > Oandt € (0, T). The constant C > 0 depends continuously on oy, € (0, 2),
kK —ap €(0,2), (¢ — llalle)/arL € (1, 00), leell ey may € [0,00) and T € [0, 00).

For the proof of the Schauder estimates, Corollary 4.3, we will apply Proposi-
tion 6.2 for an isotropic stable-like process (X;);>o with symbol g (x, &) = |& |2 for
a “truncated” function « of the form

a(x) == (0(x0) = 8) Vo(x) A (0(x0) +8), x € R,

where xp € R is fixed and § > 0 is a constant which we can choose as small as we
like; in particular yp := ||o¢||oo — oz, < 26 is small, and so the assumptions ¢ > yp and
y > Yo in Proposition 6.2 are not a restriction. Let us mention that both assumptions,
i.e. & > yp and y > yp, come into play when estimating one particular term in the
proof of Proposition 6.2; see (76); a more careful analysis of this term would probably
allow us to relax these two conditions.

Proof of Proposition 6.2 Fix € € (yo, ¥y Aar),k € (0, ) and T > 0. First of all, we
note that it clearly suffices to show (65) for u € Gg (RY) with§ <y < 1. Throughout
the first part of this proof, we will assume that

Kk <1. (66)

Under (66), the assertion follows if we can show that

IA%PIM(XN < CHMHG‘;}(]Rd)(l + |10g(t)|)t—K/aL|h|K+5—8’

for all x € RY, |h| < 1andt € (0, T], where Ai denotes as usual the iterated differ-
ence operator (cf. (5)). For the proof of this inequality, we use again the parametrix
construction of the transition density p of (X;);>0,

pt,x,y) = po(t,x,y) + (po ® ®)(t,x,y), t>0,utx,yeR?, (67
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where
po(t, x,y) = p*I(t,x —y), t>0,x,yeR, (68)

see Appendix B for details. Since

Aumum::/ Apu() (e, x. y) dy
Rd
—AWWU+hWUJJ0—MWP@X+hJDdY
=f Apu(y)p(t, x,y)dy
IR‘]

—A;u@+hﬂﬂhky%—ﬂhx+hy+hbwu

we find that A% P f(x) = J; — Jp, where

Ji = /Rd Apu(y) (p(t,x +h,y) — p(t, x,y)) dy,
Jy = /4 u(y —|—h)<p(t,x +h,y)— p(t,x +2h,y+h)
R

—plt,x,y)+pt,x+h,y+ h)) dy.

We estimate the terms separately. For fixed & € R4, |h] < 1, define an auxiliary
function v by v(y) := Anu(y). Proposition 6.1 gives

1] < [hI€ I Prolles ey < Crlhl*[lloct /L, 1 € (0, T,
and so, by the definition of v and the Holder continuity of u,
K+ —K/a
1] = CrIR S Jull gy gayt ™/, 1 € 0, T1.

It remains to establish the corresponding estimate for J», and to this end we use
representation (67) for the transition density p.

Step 1 There exists a constant ¢; > 0 such that

qt,x,y) = po(t,x +h,y) — po(t,x +2h,y +h) — po(t, x,y)
+pot,x +h,y+h) (69)

satisfies
/ lg(t, x, )| dy < e1|h|<TY (1 + [log(r))t /L forallx,h € R?, t € (0, T].
]Rd

@ Springer



1550 Journal of Theoretical Probability (2021) 34:1506-1578

Indeed: 1f we denote by p?@ the transition density of the d-dimensional isotropic o-
stable Lévy process, o € (0, 2), then there is a constant ¢, > 0 such that

a
/ —p°(t,x)| dx < ca(1 + [log(r)])
Re |90

———p°(t, x)| dx < c2(1 + [log(r)])t~ /" (70)
Re |0xj 00

forallt € (0,T],j €{l,...,d}and g € [ar, ||@]lcc] € (0, 2] (cf. Lemma B.1). To
shorten the notation, we fix x, h € RYandt € (0, T], and write g (y) for the function
defined in (69). By definition of pg (cf. (68)), we have

lg)| = [p*(t, x +h—y) — p*OT (¢ x + h —y)

—p* Ot x —y) + pO (1 x — y)

’

and so, by the fundamental theorem of calculus and the mean-value theorem,

a(y+h)
g = f) (3002t x +h — y) — 0,p°(t.x — v)) do
ay
a(y+h)
< |h| o |Vdop2(t, no(x, ) — )| do (71)
aly

for some intermediate value n,(x, ) € B(x, h). Integrating with respect to y and
using (70), we obtain that

| a(z+h)
f lg()1dy < e3(1+ [log(®)))e ™" |h| sup f do (72)
RY zeRd Ja(2)
< csllll ey ggay (1 + [ Tog() e~/ L | F7. (73)

On the other hand, it follows from (71) and the Holder continuity of « that

/ lgIdy < [hl"leller gay ~ sup  sup f [8pp°(t,n — y)|dy.
R4 P77 oelar, o] neRd IR
Hence, by (70),
/Rd lg()|dy < calh]” (1 + [log(1)]). (74)
Combining (73) and (74), we find that

/]Rd lg(Idy < eslh[“F (14 [log))e ™/, € [0, ar];
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the reasoning is very similar to the proof of Lemma C.1. Alternatively, we can use an
interpolation theorem.

Step 2 There exists a constant ¢ > 0 such that
|2l <l ull gy qgay (1 +[ log (D)) ~/#+ forallt € (0, T1, |h| <1, xeRY;

recall that ¢ € (yp, o A y) has been fixed at the beginning of the proof.

Indeed: Because of decomposition (67), we have J, = Ja1 + J2 2 for

o1 = / u(y +h)q(, x, y)dy,
R4
Jop = fle u(y +h) ((po® ®)(t, x +h,y) = (po ® ®)(t, x +2h, y + h)) dy
+ /Rd u(y +h) ((po ® ®)(t,x +h,y+h) — (po ® ®)(7, x, y)) dy,
with g defined in (69). It follows from Step 1 that
/2,11 < etllull gy gay (1 + [TogDe /%1 12, 1 € (0, T1.
It remains to estimate J ». By the definition of the time-space convolution,

(po®®)(t,x+h,y)—(po®@P)(t,x +2h,y+h)—(po® P)(t,x,y)
+ (po® ®)(t,x +h,y+h)

t
=ffd(po(r—s,x+h,z>—po(t—s,x,z»cb(s,z,y)dzds
0 JIR
t
—//d(po(t—s,x+2h,z)—po(t—S,X+h,z))d>(s,z,y+h)dzds
0 JRR

t
// qt —s,x,2)P(s,z,y)dzds
0 JR4

t
—f/(l?o(l—S,x+2h,z+h)—po(t—s,x—i—h,z—i—h))
0

(®(s,z+h,y+h)— P(s,z,y))dzds
= H\(t,y) — Ha(t, y).

Integrating with respect to y and applying Tonelli’s theorem,

U u(y +h)H(z, y)dy‘
]Rd

t
snunoo/ (sup/ |d><s,n,y>|dy) (/ |q<z—s,x,z>|dz) ds.
0 \;erd JRY R
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Thus, by (59) and Step 1,

'/ u(y+h>H1<r,y>dy‘
]Rd
t
< c6|h|“+y||u||oof sTIRA 4 log(t — )Yt — )</ ds  (75)
0

for a suitable constant ¢cg > 0 and A; > 0. It remains to estimate H,. We claim that
there exist constants ¢7 > 0 and A, > 0 such that

sup / |t 2+ h,y+h) — (. 2. y)|dy < e ~F17 12 (76)
R4

zeR4

forall t € (0, 7] and || < 1; here ¢ € (y, ar A y) is as above. We postpone the
proof of (76) to the end of this subsection (see Lemma 6.3). Using (76) and the fact
that

/d |po(t — s, x +2h,z+h) — po(t —s,x +h, z+ h)|dz < cg|t — 5|7/ |n|*
R

for some constant cg > 0 (which follows by a similar reasoning to that in the first part
of the proof of Proposition 6.1), we obtain

‘/ u(y +h)Hy(t, y)dy
]Rd

t
< crcslulloo ]+ / 712 — gy re gy,
0
Combining this estimate with (75) gives
t
|J2.2] < (¢ + c7¢8) lulloo || T+ / s — )7L (1 + | Tog(r — 5)]) ds.
0
Hence,
1
|J22] < c9||u||oo|h|y+“€r—“/”/ rm R = )T+ Tog(1 - 1)) dr
0

forall # € (0, T] where A := min{A, A>}. This finishes the proof of Step 2 and hence
of Proposition 6.2 for the case k < 1. If x > 1, we need to estimate the iterated
differences of third order A;: P;u(x); the calculations then become more technical and
lengthy, but the idea of the proof does not change. We refer the reader to the arXiv
version [28] of this paper for full details. O

Lemma 6.3 Let (X;);>0 be a Feller process with symbol q(x, &) = |E19C) satisfying
the assumptions of Proposition 6.2, and denote by

p(t, x,y) = po(t,x,y) + (po ® P)(t, x,y)
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the parametrix representation of the transition density p of (X;):>o (cf. Appendix C).
Forany T > 0and any ¢ € (yp, y Aar), there exist finite constants C > Qand . > 0
such that

/ |®(t, x +h,y+h)— D@, x,y)|dy < Clh|? T
]Rd

forallx e R, |h| < 1andt € (0, T). The constant C > 0 depends continuously on
ar € (0,2), «k —ap € (0,2), (¢ — |lalloo) /L € (1, 00), ”“”C,f(Rd) € [0, o0) and
T € [0, 00). The constant ). > O depends continuously on (¢ — ||¢|lc0) /L € (1, 00)
and (y — lalleo)/ar € (1, 00).

Proof Fix e € (yp, ap Ay). To keep the calculations as simple as possible, we consider
T := 1. To prove the assertion, we will use that

oo
Ot x,y) =Y F®(t.x,y), t>0 xyeR (77)

i=1

where F® := F ® F®(~D denotes the ith convolution power of

Fryyi= @od [ (I = g1 e 006 g,
R

cf. Appendix C.

Step 1 There exist constants C > 0 and A > 0 such that
/Rd [F(tx+h,y+h) = Ft,x, y)ldy < Claf" =5~ (78)

forallx e RY, |n| <1, 1 € (0, 1).

Indeed: For fixed |h| < 1, we write
F(t,x+h,y+h)—F(t,x,y) = 2n)" (Di(t,x, y) + Da(t, x, y))

where

Di(t,x,y) := '/]Rd ((|E|a()’+h) _ |%-|<x(y)) _ (|€|a(x+h) _ |%-|a(x)>)

ei6 00 1IEY ge

Da(t, x, y) == / (161707 — @) @i 070 (HEFCT el g,
]Rd
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We estimate the terms separately. As o € C) (R?), it follows thatx > r*®) € €7 (R9)
for any fixed r > 0 and

1Oy oy < (1l gy log(r)] + 1) max(re, ey,
By Lemma C.2, there exists a constant ¢; > 0 such that

‘(ra(y-i-h) _ ra(y)) _ (roz(x+h) _ roz(x))‘
< ctlhl" = 1x =y Ir* gy ray

< cjhl"Ex — yIE ([ log(r)] + 1) max{ret, pleley,

forallr > 0,x,y € R4 and |h| < 1. By [22, (proof of) Theorem 4.7], this implies
that there is a constant ¢, > 0 such that

ID1(t, x, )| < el Al F|x — yI°

. {<1+| log(t)r—@+Hel)/es 5 1+ log(x — yD)| } |

min{|x — y|4FeL, [x —y|dFliloo}

forall x,y € R%, t € (0, 1) and |h| < 1. Splitting up the domain of integration into
three parts

yeRy |x—yl <t} {yeRG Ve <jx—y| <1} {yeR|x—yl > 1}

we find that fRd |D1(¢, x, y)| dy is bounded by

cal WV ¢ ((1 + log(t) |y~ @Hello—e)/er f dz
\

Z|<l‘l/OtL

1+ ]log(|z 1+ |log(|z
+f dl g(lj)l dz—l—/ Id g(lﬁ DI dz)
/eL <|z|<1 z| Hllelloo—e 2= 1 |z|d+oL—e

<RI (1 + [og(n) e~ e/

As e > vy = |la|looc — @, there exists A; > 0 such that
[ 115 1dy < et AL re 0,1, x € R,
R4

To estimate the second term, note that

a(y+h) pa(y) . 0
Da(t,x, y) = —t / / / (log(1€ )2 ]“e 0D 4z du do.
a(y) a(x) JRY
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From [22, Theorem 4.7] and the Holder continuity of «, there exists a constant c4 > 0
such that

IDa (2, x, y)| < catlh]”|x — y|”

1+1 — 2
,I(l + Tog()[2)r—@ el /o + [log(lx — yD| }

min{|x — y|@rer, |x — yldtieleo)

Now we can proceed exactly as in the first part of this step to conclude that
/ |Da(t.x, )| dy < es|h]” (1 + [log(n)[?)r~Ielmta < cgppp =142
R4

for all x € RY, |h] < 1 and ¢ € (0, 1) and suitable constants cs, cg, Ao > 0; for the
second estimate, we used that y > yy = ||a]lc0 — @L.

Step 2 For any ¢ € ()9, min{y, «}) there exist constants C > 0 and A > 0 such that

T

7]+i)» y—¢
G /\) Al (79

/ |FO(t,x + h,y+h) — F®(r, x, y)|dy < 2'C' ———
]Rd

foralli e N,x e R, |h| < landt € (0, 1).

Indeed Fix € € (yp, min{y, a}). There exist constants C > 0 and A > 0 such that

/ |F®i(, x, y)ldy < C'FE A)) g (80)

forall x € RY,i > land ¢ € (0, 1) (cf. Appendix C). Without loss of generality, we
may assume that C > 0 and A > 0 are such that (78) holds (otherwise increase C > 0
and decrease A > 0). We claim that (79) holds for this choice of C > O and A > 0, and
prove this by induction. For i = 1 the estimate is a direct consequence of (78). Now
assume that (79) holds for some i > 1. By the definition of the time-space convolution,

(F® F®)t,x+h,y+h)

t
=// F(t—s,x+h,z)F®’(s,z,y~l—h)dzds
0 JR4
t
=ff F(t—s,x+h,z+h)F® (s, z+h,y+h)dzds,
0 JR4
SO

I(F® FO)(t,x +h,y+h) — (F® F®)(t,x, y)| < Li(t,x,y) + L(t, x, y)
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for

t
Ii(t, x,y) :=//
0 JRY

t . .
L(t, x,y) :=/ /d‘(F®’(s,z+h,y+h)—F®’(s,z,y))F(t—s,x,z) dz ds.
0 JRR

—F(t—s,x,2)F®(s,z+h, y+ h)| dzds,

From first (80) and then (78),

. )\_l
/ [11(t, x, y)|dy < Cl-‘rlFE ;)Ihv 8/ (t —s)~ 1+A —1+1Ads
R4

forall x € R, |h| < 1 and ¢ € (0, 1). To estimate the second term, we use (80) with
i = 1 and our induction hypothesis to find that

o 1)
/ |I(1, x, y)|dy < ZlClH]“E ;)|h|y sf (t — 5)~ g1+ gy
R4

forallx € R?, |h| < 1andt € (0, 1). Combining these, F®(+D = F® F® satisfies

/ IFEHD @, x4,y 4+ h) — FED (@, x, y)|dy
R4

t
< (2c)l+l ;‘E)\;) |h|y 8/ (t _ S)—l-‘r)»s—l-’rl')n dS.

By a change of variables s ~» #r and Euler’s formula for the Beta function, B(u, v) =
')/ '+ v),

(i + Dr)

Plugging this identity in the previous estimate shows that (79) holds for i 4 1, and this
finishes the proof of Step 2.

Conclusion of the proof Fix ¢ € (yy, ¥ A ar). Since, by (77),

o
D x +h,y+h) =@, x, )| < Y NF¥(t,x+h,y+h) — F¥ @, x, ),
i=1
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the monotone convergence theorem gives
/d | @@, x +h,y+h) = O, x, y)ldy
R

o
<Y | IF® @ x+hy+h) — FO(t, x, y)|dy.
iz1 /R?

So, by Step 2,

;T

O, x +h,y+h)— O, x,y)|dy < [p]Y 7Y "2ic :
[ 190+ y ) = 0l dy < IELeEvEr

i>1

forall x € RY, |h] < 1and t € (0, 1) and suitable constants C > 0 and A > 0 (not
depending on x, &, t). It is not difficult to see that the series on the right-hand side
converges, and consequently, we have proved the desired estimate. O

6.2 Auxiliary Result for the Proof of Theorem 4.1

Let (X;):>0 be an isotropic stable-like process with symbol g(x, &) = |§|"‘(") for
a Holder continuous mapping o : RY — (0,2) with o7, := inf, x(x) > 0. By
Proposition 6.1 and Proposition 3.1, any function f in the Favard space F associated
with (X;);>0 satisfies the a priori estimate

I lesmay = cUlAeflloo + 11 flloo) (81)

fork € (0, ap); in particular, F; C GZL_ (R%). For the proof of Theorem 4.1, we need
the following auxiliary result, which will give us an improved a priori estimate once
we have shown that f € Fj is sufficiently regular on {x € R, a(x) < 1}.

Lemma 6.4 Let (X;);>0 be a Feller process with extended infinitesimal generator
(Ae, D(AL)), Favard space Fy and symbol q(x, &) = |£|*Y) for a Holder continuous
mapping o : R¢ — (0, 2) such that

0 <oap:= inf a(x) < sup a(x) <2.
xeRd xelRd

Let f € F1 be such that for any ¢ € (0, ar) there exists a constant M () > 0 such
that

AR f)] =1 f(x +h) — ()] < M(@e)|R|“7¢, |h] <1, (82)

for any x € {a < 1}. Then there exists for any 0 € (0, 1) a constant C = C(«, 0)
such that
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1AL F O] < CI  UAe flloo + 11 flloo + M (6/12)), |h] <1,
forany x € {a > 1}.
Proof The idea of the proof is similar to the proof of Theorem 3.2. For fixed 0 <
0 < min{ay, 1/4}, define @(x) := max{l — 360, a(x)}. By [22, Theorem 5.2], there
exists a Feller process (¥;);>0 with symbol p(x, §) := |§ |40 "and the (L, Cé’o(]Rd))-

martingale problem for the generator L of (Y;);>0 is well-posed. Since « is Holder
continuous, there exists § > 0 such that

x —z| <20 = |a(x) —a(z)| <6. (83)
As usual, we denote by
7y = inf{r > 0; |Y; — x| > §}
the exit time from the closed ball m Pick k € C ,‘;o (IRd ), 0 < k < 1, such that

k(x) =0foranyx € {o¢ < 1—20}andx(x) = 1forx € {& > 1 —0};see LemmaD.1
for the existence of such a mapping.

Step 1 We show that for any f € F] the product v := f - k is in the domain D(L,)
of the extended generator of (¥;);>0; we will use a similar reasoning as in the proof
of Theorem 3.2, i.e. we will estimate

1
= sup [E 0(Ypg) = v(0)l.
xeR4

Clearly,
IE* v(Yiarp) — v < L) + D(x) + B3(x),
where

Li(x) = [k OE(f Viagp) = FOI
L(x) = | fO)E (k Yipgp) — k()]

100 = [BY ((f ineg) = FON K Vypp) — £ GD)|

We estimate the terms separately; we start with /1. If x € {« > 1 —260}, then it follows
from (83) that B(x, 26) C {« > 1 — 36} and therefore

gz, &) = |£]%®) = |£]%@) = p(z,£) forallz € B(x,28), € e R, (84)
Applying Lemma 5.2,

I1(x) = [k OE" (f Xencpx) — O],
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with 7§ (X) the exit time of (X,),;>0 from B(x, §). As f € F, Dynkin’s formula (11)
gives

Ii(x) < tAe flloo-

If x € {@ < 1 — 260}, then k(x) = 0 by the very definition of «, and so I1(x) = 0.
Hence,

sup 11(x) < tl[Aeflloc-

xeR4

For I, we note that « € C}° (R?) € D(L), and so the (classical) Dynkin formula
gives

sup Io(x) < 1|l flloollLK || oo-
xeRd

To estimate /3, we consider two cases separately. If x € {« < 1}, then from our
assumption on the regularity of f, cf. (82), and the Lipschitz continuity of «,

1f Yines) = O] e (Yipgs) — ()]
< 4(| flloo + M ©O/3) licll ¢ ey min{|Yypgy — x| * 70 1,

By Lemma 5.3, there exists a constant ¢ = c2(«p, [|@|ls) > 0 such that

1) < e2(ll £l + M@/t *)

sup min{1, |y|*®) =03+

|z—x|<8 J y#0

|y|d+&(z) dy.

For x € R? with a(x) < 1 — 26 we note that it follows from the definition of & that
a(z) >1—36forall z € R4, and so

sup I3(x)
xe{a<1-20}

= a2l flleo +M(©/3)) </| |yt dy +/
y

|y|—d—l+30 dy) < oo,
[yl>1

=1

If1 —20 <a(x) <1,then a(z) = a(z) for all |z — x| < §; using (83), we find from
(*) that

sup I3(x)
xe{l—20<a<l}

<a(lflleo+M©/3)) (/ |y|7d+1749/3dy+/
ly

|y|7d7°‘L dy) < 00.
[y[>1

<1
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Finally, if x € {o > 1}, then B(x,d) C {o > 1 — 0}, and therefore x(z) = 1 for any
|z — x| < 8; hence,

1 Wine) = FOOL - e (iner) =GO < 201 f oo L=y,
which implies
L(x) <2/ flloeP*(r5 < 1).
By the maximal inequality (9),

I3(x) < 3 fllof sup sup [p(z,8)l,

lz=x]<8 |§]<s-!
for some absolute constant c3 > 0. As | p(z, £)| < |£|* forall £ € R, this shows that

sup  I3(x) < c3ll fllootd 2
xefa>1}

Combining the estimates,

1
sup — sup [E*v(¥irx) —v(0)| < calll flloo + [1Ae flloo + M(6/3))

1>0 I yeRd

for some constant ¢4 = ¢c4(0, §, ar, |¢]lcos |1 LK l0o)-

Step 2 Applying Corollary 2.2 we find that v = f - « is in the Favard space F ]Y of
order 1 associated with (Y;);>0 and

[Le(f - Koo < sl flloo + 1Ae flloo + M(6/3)).

Since Proposition 6.1 shows that the semigroup (7;);>0 associated with (¥;);>¢ satis-
fies the Holder estimate

ITiull g1 oy < collullont ™1 7407391 € (0,1], u € By(RY,

for ¢ = c¢(a, 0) > 0, Proposition 3.1 gives

I - kllei-4 gay = €7(ll flloo + Il Ae flloo + M(6/3))

for some constant ¢; > 0 which does not depend on f. Finally, we note that for any
x € {a > 1} we have k(z) = 1 for z € B(x, §), and so for all |h| < §/2

|f(x +2h) —2f(x +h) + f(x)]
=lk(x+2h)f(x +2h) —2k(x +h)f(x +h)+x(x)+ f(x)]
< 7m0 (Ul flloo + 1 Ae flloo + M (6/3)).
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6.3 Proof of Theorem 4.1 and Corollary 4.3

Proof of Theorem 4.1 Fix ¢ € (0, «y). Since « is Holder continuous, there exists § > 0
such that

for all [x — y| < 48. ™)

| ™

la(x) —a(y)] =

Moreover, as ||| < 2, we can choose 6 € (0, ar) such that a(x) < 2 — 6 for
all x € R?; without loss of generality, we may assume that ¢ < 6. We divide the
proof in two steps. First, we will establish the Holder regularity of functions f € Fj
at points x € R4 such that a(x) <14 ar — 6. In the second part, we will consider
the remaining points.

Step 1 There exists a constant C; > 0 such that

|AZ £ ()] < CrIR* 7 (| Ae flloo + 1l £1lo0) (85)
forall f € Fi, |h| <6, x e {a <ap +1—106}.
Indeed: Fix x € R? such that ¢(x) < az + 1 — 6, and define

a*(2) := max{a(z), a(x) — &/2}, z e R

It is not difficult to see that |jo” || e (Rd) < x|l el (RY) and, moreover,

€
ar = inf a®(z) > a(x) — = > 0.
L= 10, (2) (x) >

It follows from [22, Theorem 5.2] that there exists a Feller process with symbol

p(z,&) =& |‘)‘)c () and that the (L, C 20 (]Rd))—martingale problem for the generator L
of (Y);>0 is well-posed. Note that, by (*), & (z) = a(z) for |z — x| < 44, and so

q(z,6) = [£]°D = || @ = pW(z, &) forall & € RY, |z — x| < 4.

Moreover, an application of Lemma 6.4 shows that there exists a constantc; = ¢ (¢, «)
such that the semigroup (7;);>¢ associated with (¥;);>0 satisfies

ITstell gotor-= (ay < €1 lufloot ™ (¥ =/ =/ (86)

for any u € B, (R4 and ¢ € (0, 1]. So the conditions (C1)-(C3) in Theorem 3.2 are
satisfied. By (81), it follows from Theorem 3.2 (with o(x) := oy — 6/4) that there
exists a constant ¢» = ¢» (g, o) such that

AL F O] < K@ (1A flloo + 11 flloc),  f € Fi, [h] <38,
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where

1
K (x) := sup / min{1, |y|*}———dy
40 |y|d+a (2)

zeR4
1
+ sup min{1, [y|" =% —— dy;
|z—x|<48 Jy#0 |y|d+et@

if we can show that K := sup,¢(q<q, +1-9) K (x) < 00 this gives (85). To this end,
we note that ¢ < 6 and (*) imply

. € 0 0
o (Z):‘X(Z)Sa(x)+§5(“L+1_9)+§=(XL+1_§
for all |z — x| < 46, and so
K<  sup min{1, |y|*} ! d
< u SV T Ay
Belor.llalloo] Jy£0 |y|d+h
1
+ sup min{1, |y|! T =074} p dy < oo.
Belar,ar+1-072] Jy#£0 |y]

Step 2 There exists C > 0 such that

|A7 £ O] < Calh* 7 (| Ae flloo =+ 1l £llo0)

forall f € Fi, |h| <6, x e{a>ar +1—106}.

Indeed: It follows from Lemma 6.4 and Step 1 that there exists a constant ¢3 > 0 such
that

|AZ £ O] < e3lh" (1 Ae flloo + I flloo)s  1h] < 1, (87)

for any f € Fj and x € {«¢ > 1}. Thanks to this improved a priori estimate for
f € Fi, we can use a very similar reasoning to that in the first part of the proof
to deduce the desired estimate. If we set o (z) := max{w(z), ¢(x) — /2} for fixed
x € {& > 14az —06}, thenitfollows exactly as in Step 1 that the Feller process (¥;);>0
with symbol p(z, &) := | |*" @) gatisfies (C1)-(C3) in Theorem 3.2; in particular, (86)
holds for the associated semigroup (7;);>0. By (87), we may apply Theorem 3.2 with
o(x) :=1—6/2 to obtain

A (0] < eaK @R (|Ae flloo + 11 flloo),  f € FA,
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for some constant ¢4 (not depending on f and x) and

K (x) := sup min{1, |y|*}——— dy
zeR4 Jy#0 |y|d+et @
-+ sup min{1, |y]*%?}—— dy.
lz—x|<46 Jy£0 |y|d+e* @

By our choice of 6, we have a; < a*(z) < ||@|loc < 2 — 6, and so

1
sup  K(x) <2 sup min(1, |y*} =7 dy
refuz1+ar—6) Belar.latlloo] J y£0 Il
+/ Y72 dy < oo, 0
lyl=1

Proof of Corollary 4.3 We are going to apply Theorem 3.5 to prove the assertion. To
this end, we first need to construct for each x € R¢ a Feller process (¥, ,(x))tzo which
satisfies (C1)-(C3) from Theorem 3.2, as well as (S1)-(S5) from Theorem 3.5. Recall
that o7 = inf, a(x) > 0 and that y € (0, 1) is the Holder exponent of «.

Fix ¢ € (0,az A y) and x € RY. Since « is Holder continuous, there exists § > 0
such that

la(z +y) —a(z)| < = forallz e RY, |n| <38. *)

)

If we define
a®(z) == (a(x) —&/4) Va(z) A (a(x) + &/4), zeR,

then it follows from [22, Theorem 5.2] that there exists a Feller process (Y, l(x)),zo with
symbol p™(z, &) = |& |*@) such that the martingale problem for its generator is
well-posed. Moreover, by our choice of §,

q(z, &) = [§]99 = [£]7"@ = pW (g, &) forall § € RY, |z — x| < 43,

and so (C1) and (C2) from Theorem 3.2 hold. By Proposition 6.1 and Proposition 6.2,
the semigroup (Tt(x)),zo associated with (Yt(x))tzo satisfies

7" < cillulloot PP, u e BpRY), 1 € (0, 1),

)
ull ge ga
and

||TI(X)M||6Z(X)+)~(R(1) < Cl”“”eg(]}{d)t_ﬂ(x), u e CHRY), 1 €(0,1),
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for any A < A := y, where c; > 0 is some constant (not depending on u, ¢, x) and

a(x) —2¢

K(x) =ax)—e, BK):= a(x) —e/4"

Consequently, we have established (C3) and (S3). Since « is clearly uniformly contin-
uous and bounded away from zero, we get immediately that (S4) holds. Moreover, as
« is bounded away from zero and from two, it follows easily that (S1) and (S5) hold
with ™ (z) := o (2). Finally, we note that the Holder condition (S2) on the symbol
p™ is a consequence of the Holder continuity of «; see Lemma 6.5 for details.

We are ready to apply Theorem 3.5. Let f € D(A) besuchthat Af = g € 62 (RY)
for some A > 0. Without loss of generality, we may assume that A < y. Since
(Xt)r>0 satisfies the assumptions of Theorem 4.1, it follows that f € Gi(')(Rd) for
o(x) := a(x) — ¢/4 and, moreover,

I|f||e§<«>(]Rd) < Ce(lAS lloo + 1f lloo)- (88)
Furthermore, by our choice of § (cf. (*)), we find that

o:= inf inf (1+o(x)—a*(2))
xeRd |z—x|<48

satisfies 0 > 1 — ¢/4. Applying Theorem 3.5, we conclude that

f c G’;(‘)ﬂ-min{%)‘ﬂ1_5/4}_8/4(Rd) g eZ(‘)'ﬁ‘mil’l{%)‘}_zg(Rd)

and
1 gecrsminrir-2e gy < CLANAS Nz ey + 110 )
=< C;/g/(”Af”ez(Rd) + ||f||oo)»
where we used (88) for the last inequality. O

Lemma 6.5 For fixed @ € (0,2), denote by v, the Lévy measure of the isotropic
a-stable Lévy process, i. e.

|W=/ (1= cos(y - £)) va(dy), & e R, (89)
y#0

Let B : RY — (0, 2) be such that B e CZ (IRd)for some y € (0, 1] and

0 < B := inf B(z) < sup B(z) < 2.
zeR4

zeR4
Ifu : R? — R is a measurable mapping such that

lu(y)] < Mmin{]y|P@* 1}, yeRY, (90)

@ Springer



Journal of Theoretical Probability (2021) 34:1506-1578 1565

for some z € R, r > 0and M > 0, then there exist constants K > 0 and H > 0
(not depending on u or z) such that

< MKI|h|" forall|h| < H.

‘ / u(y) Vs (dy) — / U (y) Vp(esm (dy)

Proof 1t is well known that v, (dy) = c(a)|y|~?~% with c(a) a normalizing constant
such that (89) holds. Noting that, by the rotational invariance of & — |£|%,

1 1

el =c(@) [ (1= costnleD) g dy=lfct@) [ (1—eostun) gz d

V#£0 |y|d+e y#£0 |y|d+e
forall &£ € R4, we find that c(«) = 1/h(a), where

he) / (1 - cos(y)—r— d
a) = —cos(y1))—— dy.
V#£0 |y|d+e

From

1 — 1 = 1 |rd+6¢ _ rd+a|

rd+o rd+a 72d+a+p
< |10g(r)|r_d max{r % r “Ye —a&|, r>0, 9D

anda,@ € I :=[BL, |Bllec] € (0, 2), it follows that
|h(e) —h(@)| < Cila —al, a,acl

for some constant C; > 0. As infyecy h(e) > 0, this implies that c(@) = 1/h(x)
satisfies

le(a) —c(@)] < Cola —al, a,ael, (92)
for some constant Cp > 0.

Now let u : RY — R be a measurable mapping such that (90) holds for some
ze R4 M > 0andr > 0. Since vy (dy) = c(a)|y| 4% dy,

<L+,

l/u(y) Vg(z)(dy) —/M(y) Vg (z+h) (dy)

where

1
. |M(y)||y|dw dy,

eR

Iy = [c(B(2)) — c(B(z +h))|f
y

1 1

dy.
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By the first part of the proof (cf. (92)) and by (90),

1

I = CaMIB@) = B+ M| | min{ly/P@F, Vo

yeR

dy,
and so

It < M 1Bl 7 gy sup/ min{[y[**7, 1|y dy = CsM[h[",
b ael Jy#0

for all 1 € R?. To estimate I, we choose H > 0 such that

1B(x) — B(x + h)| < M forallx € RY, |h| < H.

By (90) and (91),

I < M|B(z) — B(z + h)|sup c(a)

ael

. max{|y| 7A@, |y|~AEH)
min{[y[P@ 1} log(|y))|

ys
y#0 |Y|d
for all |h| < H. By our choice of H,
z
_‘3( ) < B(z )_’B_L < B(z+h) <,3(Z)+§ forall |h| < H,
and so
I, < M|B(z) — B(z+ h)|sup c(a)
ael
: ( / Iy~ log(IyD dy + / |y| 4P log<|y|>dy)
lyl=1 [yI>1

< C4M|n|”,
for all |h| < H and

Cy = ”:3”(3,’,/(1&4) sup c(a)
ael

(/ |y|*‘”’/2|log(|y|)|dy+sup/ |y|d“/2log(|y|)dy><oo
[y|<1 [y|>1

ael

O
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Appendix A: Extended Generator

In this section, we collect some material on the extended generator of a Feller process;
in particular, we present the proofs of Theorem 2.1 and Corollary 2.2. The extended
infinitesimal generator was originally introduced by Kunita [34] and was studied quite
intensively in the 1980s, e.g. by Airault and Follmer [1], Bouleau [7], Hirsch [17],
Meyer [44] and Mokobodzki [45]. Recall the following definition (cf. Sect. 2).

Definition A.1 Let (X,),>0 be a Feller process with p-potential operators (Ry)~0. A
function f is in the domain D(A,) of the extended generator and g = A, f if

(i) f € Bp(RY) and g is a measurable function such that || Ry (|g|)||cc < o0 for some
(al) » > 0,
(i) f=Ri(f —g) foral x> 0.

Condition A.1(ii) may be replaced by

i) M;:= f(Xy) — f(Xo) — f(; g(Xy)ds, t > 0, is a local P*-martingale for any
x € RY;

cf. Meyer [44] or Bouleau [7]. Moreover, it was shown in [ 1] that the extended generator
can also be defined in terms of pointwise limits

lim TV E (X)) — f(0), (93)

see also Corollary A.4. The domain D(A,) is, in general, quite large; an indication is
that it is possible to show, under relatively weak assumptions (e.g. C° (R%) € D(A.))
that D(A,) is closed under multiplication (cf. [44, pp. 144] or [8, Theorem 4.3.6]).
There is a close connection between the extended generator and the carré du champ
operator (cf. [8, Section 4.3] or [12]). The following statement is essentially due to
Airault and Follmer [1].

Theorem A.2 Let (X;)r>0 be a Feller process with semigroup (Py);>0 and extended
generator (A., D(Ae)). The associated Favard space F of order 1 (cf. (6)) satisfies

Fi ={f € D(Ae); | Ae flloo < 00}

If f € Fy, then

1
K(f):= sup 1P f — flloo = lAc fllco>
re(0,1) f
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and, moreover, Dynkin’s formula
E*f(Xo) — f(x) = B ( /0 Acf(X,) ds) 94)

holds for any x € R? and any stopping time t such that Bt < oc.
Proof Denote by (R,),~0 the A-potential operators of (X;);>0, and set
D :={f € By(R; 1 Ac fllo < 00},
First we prove F; C D. Let f € Fy. Airault and Follmer [1, p. 320-322] showed that

the limit g(x) = lim,_o ™' (P; f(x) — f(x)) exists outside a set of potential zero,
and that

t
M; 3=f(Xt)_f(X0)_/0 g(Xs)ds, =0,

is a P*-martingale for any x € R?; we set g = 0 on the set of potential zero where the
limit does not exist. Clearly, ||gllcc < K(f) < 00, and so it is obvious that R, (|g|) is

bounded for any A > 0. It remains to check A.1(ii). Since the martingale (M;);>o has
constant expectation, we have P, f = f + fot P;g ds, and thus

t
,\f e MP, f(x)ds =x/ e M (f(x)+/ Pyg(x) ds) dr
(0,00) (0,00) 0

d t
= f(x) —/(0 )(d—te‘“> </0 Psg(x)ds> dr.

Integrating by parts,

A/ e MP, f(x)dt = f(x) +f e M Prg(x)dt,
(0,00)

(0,00)

i.e. ARy f = f + R, g. This proves f € D(A,), Ao f = g and ||A, flloo < K(f).
If f € D, then the local martingale

t

M; = f(X:) — f(Xo) —/0 Ao f(Xs) ds
satisfies

EX (M) < Qllflloo + 1A flloo)*(1+1), =0, x € RY,

for any stopping time t. By Doob’s maximal inequality, sup ., |[M;| is square-
integrable, and hence (M,);>o is a martingale. In particular, E* (M;) = E* (M),
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i.e.

t

E*f (X)) — f(x) = E* (/O Aef(Xs)ds> .

and so K(f) < ||[A¢flloo < 00 and f € F). Finally, we note that Dynkin’s for-
mula (94) was shown in [1, Corollary 5.11] for any function f € B,(R?) satisfying
K(f) < oo. O

Remark A.3 (i) Airault and Follmer [1] show Dynkin’s formula (94), more generally,
for Markov processes (not necessarily having the Feller property). If (X;);>0 is
a time-homogeneous Markov process with semigroup (P;);>¢ and Favard space
F1, then Dynkin’s formula (94) holds for all f € Fy, where A, f is defined by

Prfx) — f®)
t

Aef(x)=tligg) , feF,xeR%

this limit exists up to a set of potenti~al zero (cf. [1]).

(i) The weak infinitesimal generator A in the sense of Dynkin [13] is the linear
operator A : D(A) — Bj(RY),

D(A) = {f € Fi;3g € Bp(RHVx e RY : g(x) = lim
—

Pif) = f)
t

P f(x)— f(X)}
[
Af(x) = thg(l)

By (the proof of) Theorem A.2, the extended generator (A, D(A,)) is an exten-
sion of the weak generator (A, D(A)). In view of the previous remark, this is not
only true for Feller processes but also for general Markov processes.

Corollary A4 Let (X;);>0 be a Feller process with semigroup (Py);>0, extended gen-
erator (A., D(A.)) and symbol q. Denote by

7 =inf{r > 0; | X; — x| > r}

the exit time of (X;);>0 from the closed ball B(x,r). If the symbol q has bounded
coefficients, then the following statements are equivalent for any f € Bp(RY).

(i) f € Fiie feD(Ae)andsupeq 1yt 1P f = flloo = | Ac flloc < 00
(ii) There exists r > 0 such that

KD(f) = sup sup

———— B f(Xiaey) — f(X)] < o0.
1e0.1) xerd E¥ (1 A TY) i

(iii) There exists r > 0 such that

1
K@ (f) = sup ~ sup [E*f(Xinex) — f(X)] < 00.
1€0,1) I xeRrd
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If one (hence all) of the conditions is satisfied, then

E*f(Xingy) — f(x) fim E* f(Xiarx) — f(x)
t T =0 EX(t A T¥)

Aef(x) = lim . 09

up to a set of potential zero for any r € (0, oo]. In particular, ||Ae f|lco < K,(i) (f) for
i €{l,2}andr € (0, co].

The proof of Corollary A.4 shows that the implications (i) = (ii), (i) = (iii)
and (i) = (95) remain valid if the symbol ¢ has unbounded coefficients.

Proof of Corollary A.4 (i) — (ii): If f € F1, then it follows from Dynkin’s for-
mula (94) that

KD(f) < |Aefllos < 00 forall r > 0.

(i) == (iii): This is obvious because E* (r A 7/¥) < 1.
(ili) = (i): Fixr € (0, 1). Clearly,

IE* f(X0) — fOI < B f(Xenz) — fOI + B (f Xiagp) — FXD)I.

By assumption, the first term on the right-hand side is bounded by K r(z) (f)t. For the
second term, we note that

IE* (f Xinz) = FX)] <20 fllocP* (7 < 1),

The maximal inequality (9) for Feller processes shows that there exists an absolute
constant ¢ > 0 such that

IE*(f Xing) = (X)) = 2¢t[ flloo sup  sup g (y,§)]

[y—x|=r |g|<r—!

< 2ct| flloo sup sup |g(y,&)l;
yeR4 [g]<r~!

note that the right-hand side is finite because g has bounded coefficients. Combining
both estimates gives (i).

Proof of (95): For r = oo, this follows from [1]; see the proof of Theorem A.2. Fix
r € (0, 00). By Dynkin’s formula (94), we find

E'f(X) — f()  E'f(Xingy) = f(x)
t t

IA

1 X s X
Tl Ae fllooTE" (7 — min{z’, 1})

IA

[Ae fllocP* (70 < 1).

The right-continuity of the sample paths of (X;);>¢ gives P*(r} <t) - Oast — O,
and so

i EYf(Xiney) = f0) L B (X)) — f(x)
1m =lim ———=,

t—0 t t—0 t
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Since the right-hand side equals A, f (x) up to a set of potential zero (see the proof of
Theorem A.2), this proves the first equality in (95). Similarly, it follows from Dynkin’s
formula that

E*f(Xiarx) — f(x)  E* f(Xearr) — f(x)
t B ExX(t At¥)

1 1

t Bt AtTY)

S A flloeEX (77 A 1)

S A fllocPH (7 < 1).

As P*(rf < t) — 0 we find that the right-hand side converges to 0 as t — 0, and
this proves the second equality in (95). O

Appendix B: Parametrix Construction of the Transition Density

Let (X;)r>0 be a Feller process with symbol g (x, §) = |§ | for a Holder continuous
mapping « : RY — (0,2) withay, := infy a(x) > 0. For the proof of Proposition 6.1,
the parametrix construction of the transition density of (X;)>o from [22] plays a crucial
role (see also [25]). In this section, we collect some results from [22] needed for our
proofs. Throughout, p€(¢, x) denotes the transition density of an isotropic o-stable
Lévy process, o € (0, 2],

pO(t, x) / e¥EeEl s x e RY, 1> 0, (96)
]Rd

~ @2n)

and ® is the time-space convolution, i.e.

t
(f®g)t, x,y) :=//df(t—s,x,z)g(s,z,y)dzds, t>0,x,yeR’
0 JRR

By [22, Theorem 5.2, Theorem 4.25], the transition density p of (X;);>0 has the
representation

pt,x.y) = polt,x. ) + (po® D), x,y), 1>0,x,yeR!, (97
where pg is the zero-order approximation of p, defined by,
pot, x,y) = p*P(t,x —y), t>0,x,yeR, (98)

and & is a suitable function; see (99) for the precise definition. There exists for any
T > 0 aconstant C; > 0 such that

Ipo(t, x, )| < C1S(x — y,a(y),1), t€(0,T), x,y e R,
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where

t
e —d/a .
S(x,a,t) .—mln{t , |x|d+°‘}’

cf. [22, Section 4.1]. A straightforward computation yields

VO<a<b<2: sup sup sup / S(z—y,0,1)dy < o0;
1€(0,T) zeR4 ¢€la.b] JR?

cf. [22, Lemma 4.16] for details. The function ® in (97) has the representation

o
O, x, )=y F®(t,x,y), t>0 xyeR, (99)
i=1

where F® := F ® F®(~D denotes the ith convolution power of

F(t,x,y):=Qm)™4 / (|g|“<y) —|e|“<X>) & 00eEY gz 150, x, yeRY
R4

It is possible to show that

SUP/ |®(, x, y)|dy < Cot 71 1 €(0,T),
xeRd J R4

for some constant A > 0 and C, = Co(T) > 0 (cf. [22, Theorem 4.25(iii), Lemma
A.8]). Moreover, by [22, Lemma4.21 and 4.24], there exist constants C3 = C3(T") > 0
and A > 0 such that

TG i

— ., xeRY te,T).
)

[ asiay <<
R

Because of representation (98), the following estimates are a useful tool to derive
estimates for the transition density p.

LemmaB.1 LetI = [a,b] C (0,2). Forall T > 0andk € Wy, there exists a constant
C > 0 such that the following estimates hold for any ¢ € [a, b], x € RY ¢t e 0, 7),
and any multiindex f € ]Ng with |B| = k:

Jo

Proof We only prove (101); for the pointwise estimate (100), see [22, Theorem 4.12].
Denote by p¢ = p@¢ the transition density of the d-dimensional isotropic o-stable

198 pe(t, x)| < Ct71BVeS(x, 0, 1), (100)

LA
—pe(t, x)

— dx < C(1 + |log(t)t~1Pl/e, (101)
xP do
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Lévy process, o € (0, 2). It follows from the Fourier representation (96) of p€ that
o p%?(t,x) and x — p2<(r, x) are infinitely often differentiable, and

3,08 p2d (1, x) =

(Zn)d / (i&)Pei el 210 log(|E]) d,

forall o € [a, b], x € Re,t > 0and B e ]Ng. In particular,

—p2(t, x) = —t
an (7, x) @yl

/];{d e EeE g2 10g(1E) dE, 1> 0, x € RY,
(102)

and, by [22, Theorem 4.7], there exists a constant ¢; > 0 such that

0
‘—p“(t, x)
do

< cymin {(1 + |log(r)r~%/°, (1+ |log(|x)|>} , (103)

| |d+g

forallt € (0,71, x € R? and o € [a,b] C (0,2). By (102), 3, p%¢ is the Fourier
transform of a rotationally invariant function, and so it follows from the dimension-
walk formula for the Fourier transform that

0o 0 0
g P 0 = ~2m g ),
for j =1,...,d,t > 0, x € RY and o € (0,2); the dimension-walk formula

goes back to Matheron [42, pp. 31-37] (see also [43]), and has been subsequently
“rediscovered” by several authors (see the article [29] and the references therein).
Using (103) for dimension d + 2, there is a constant ¢3 > 0 such that

Jo

forallt € (0,T],j €{l,...,d}and o € [a, b] C (0, 2). By iteration, we get (101).
m}

d 0
W@Wo x)| dx < e3(1+ | log(r)e /7L, (104)
J

Appendix C: Inequalities for Holder Continuous Functions

We present two inequalities for Holder continuous functions which we used in Sect. 6.

Lemma C.1 Let f : RY — R be a function. If x € R and My, My > 0 are such that
|ALFOI < Mi[h* and |ALf(x)| < My
forall h € R?, then

| AR £ @) < |hIF max{Mr>~%, Mar—*}
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foranyr >0, h € R¢ and k € [0, 2].

Proof Fix k € [0,2]andr > 0.If h € R is such that |h| > r, then

|K

|h
AR f )] < Mo < Ma— .
If |h| < r then

|A% £ ()] < Mi|h|* < My|h|“r?*. o

LemmaC.2 Ler f € GZ (RY) for some y € (0, 1). There exists a constant C =
C(y) > 0 such that

|ARf () = Anf D] < Cllfller ey ¥ — yI¥ AT (105)

forallo € [0, y]land x,y, h € R4,

If f:R?Y — R is Lipschitz continuous and bounded, then (105) holds for y = 1;
the norm || f|| C (Rd) needs to be replaced by the sum of the supremum norm and the
Lipschitz constant of f.

Proof By definition of the Holder—Zygmund space GZ (RY),
[f(x+h)— f)] < ||f||eZ(Rd)|h|y]l{|h\§l} + 2 fllooLyn>1y < 2||f||@’1:(]Rd)|]’l|y,
for any x, h € R4, Hence,

|ARf () = Ap O] < [ Fx +h) = FOI+ 15 +h) — fO)]
< 41 f ey gy 1117 (106)

and

AR = Apf D] < 1F@) = FOI + 1 G +h) = f(y+ D)l
< 4l flley raylx = ¥V, (107)

forall x, y,h € R4, i.e.(105) holds fora = 0 and o = y. Next we show that (105)
holds for ¢ = y /2, for which we use interpolation theory. Let f = u + v for u €
Cp(R?) and v € CZ(RY). Clearly,

[Apu(x) — Apu(y)| < 4lullco,
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and, by the gradient theorem,

[Apv(x) — Apv(y)| = ‘h /Ol(Vv(x +rh) — Vu(y +rh))dr
< 1kl = Y1l 2 oy,
forall x, y,h € R4. Hence,
[ARf () = Ap fODII < 4llulloo +1A1 X = YV 2Ry, X, ¥, P € RY.

Since (“Z'Z (RY) is the real interpolation space2 (Cp(RY), Cg (R4 )y /2,00 (cf. [52, Section
2.7.2]), this implies that there exists a constant C > 0 such that

|Anf@) = AnfO] = CAPx = 31" fller oy (108)
which shows (105) foro = y /2. Now leta € (0, y/2). For |h| < |x —y], (106) gives
AR @) = A O = 4 f ey gy 117 < 41F e ey ol = y17 72

If |h] > |x — y|, then (108) gives

|Anf@) = AnfOI = Clf lley qaylx — yI7 21017
< Cliflley raylx = | |72,

where we used o < y /2 for the second estimate. For & € (y/2, y), a very similar
reasoning shows that (105) follows from (107) and (108). O

Appendix D: A Separation Theorem for Closed Subsets

In Sect. 6, we used the following result on the smooth separation of closed subsets of
R4,

LemmaD.1 Let F, G C RY be closed sets. If
d(F,G)=inf{lx —yl;x € F,ye G} >0, (109)
then there exists a function [ € C;O(Rd), 0 < f <1, such that

oy = F and (1) =G. (110)

2 More precisely, the norm on the interpolation space (Cb(le), Cg(le ))y /2,00 18 equivalent to the norm
on GZ (RY).
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It is well known (see e.g. [35]) that for closed sets F, G C R4 satisfying (109),
there exists f € C°°(]Rd), 0 < f < 1, satisfying (110); however, we could not
find a reference for the fact that (109) implies boundedness of the derivatives of f. It
is not difficult to see that boundedness of the derivatives fails, in general, to hold if
d(F, G) = 0; consider for instance F := R x (—o0, 0] and G := {(x, y); y > e*}.

Proofof LemmaD.1 As d(F, G) > 0, we can choose & > 0 such that the sets
F. =F+ B0,¢), G.,:=G+ B(0,¢)
are disjoint. It is known (see e.g. [35, Problem 2—14]) that there exists & € C®(RY),

0 < h < 1, such that A~ ({0}) = F, and h=!({1}) = G,. Pick ¢ € C*(R?), ¢ > 0,
such that supp¢ = B(0, ¢) and f]Rd @(y)dy =1, and set

£ = (h % 9)(x) = /Rdh(y)w(x ~y)dy. xeRe

Since f is the convolution of a bounded continuous function with a smooth function
with compact support, it follows that f is smooth and its derivatives are given by

Y f(x) = /Rd h()oyp(x —y)dy, x¢€ R,

for any multi-index o € Ng (see e.g. [48]). In particular, |[0% f|loc < [[0%p]I;1 < 00,
andso f € C,;’o (R9). Moreover, as suppe € B(0, ¢), it is obvious that f(x) = O for
any x € F and f(x) = 1 for x € G. It remains to check that 0 < f(x) < 1 for any
x € (FUG)“.

Case 1: x € R?\(F, UG,). Then 0 < h(x) < 1, and so we can choose r € (0, &)
such that

0< inf A(y) < sup h(y) <1

ly—xl=<r ly—x|<r

Since supp ¢ = B(0, ¢) 2 B(0, r), this implies

Fo) < / o —ydy+ sup h() [ pGx—y)dy
]Rd\B(x,r) |y—x|<r B(x,r)

</ px —y)dy =1
R4

A very similar estimate shows f(x) > 0.
Case 2: x € F,\F. We have B(x, &) N F¢ # (4, and so there exist y € R? and
r > 0 such that

B(y,r) € F°N B(x, ¢).
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In particular,

0< inf h(z) < sup h(z) <.
zeB(y,r) z€B(y.r)

As supp ¢ = B(0, ¢), it follows much as in the first case that 0 < f(x) < 1.

Case 3: x € G.\G. Analogous to Case 2. O
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