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Abstract
In this article, we study the large time asymptotic behavior of the stochastic heat
equation.
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1 Introduction andMain Results

Suppose that W = {W (t, x), t ≥ 0, x ∈ R} is a two-parameter Wiener process. That
is, W is a zero-mean Gaussian process with covariance function given by

E(W (t, x)W (s, y)) = (s ∧ t)(|x | ∧ |y|)1{xy>0}.

Consider the stochastic heat equation

∂u

∂t
= 1

2

∂2u

∂x2
+ ϕ(W (t, x))

∂2W

∂t∂x
, x ∈ R, t ≥ 0, (1.1)
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where ϕ : R → R is a given Borel measurable function such that for each t ≥ 0 and
x ∈ R, ∫ t

0

∫
R2

p2t−s(x − y)ϕ2(z)ps|y|(z)dydzds < ∞. (1.2)

Along the paper, pt (x) denotes the one-dimensional heat kernel, that is, pt (x) =
(2π t)−1/2e−x2/2t for t > 0 and x ∈ R. The mild solution to Eq. (1.1) with initial
condition u(0, x) = 0 is given by

u(t, x) =
∫ t

0

∫
R

pt−s(x − y)ϕ(W (s, y))W (ds, dy),

where the stochastic integral is well defined in view of condition (1.2).
We are interested in the asymptotic behavior as t → ∞ of u(t, x) for x ∈ R fixed.

Notice first that in the particular case where ϕ(x) ≡ c, then, u(t, x) is a centered
Gaussian random variable with variance

E(u(t, x)2) = c2
∫ t

0

∫
R

p2t−s(x − y)dyds = c2
∫ t

0
p2(t−s)(0)ds = c2√

π

√
t .

Therefore, t− 1
4 u(t, x) has the law N (0, c2/

√
π). In the general case, using the change

of variables s → ts and y → √
t y, we can write

u(t, x) =
∫ 1

0

∫
R

pt(1−s)(x − y)ϕ(W (ts, y))W (tds, dy)

= 1√
t

∫ 1

0

∫
R

p1−s

(
x − y√

t

)
ϕ(W (ts, y))W (tds, dy)

= 1√
t

∫ 1

0

∫
R

p1−s

(
x√
t

− y

)
ϕ(W (ts,

√
t y))W (tds,

√
tdy). (1.3)

By the scaling properties of the two-parameter Wiener process, it follows that u(t, x)
has the same law as

ũ(t, x) = t1/4
∫ 1

0

∫
R

p1−s

(
x√
t

− y

)
ϕ(t3/4W (s, y))W (ds, dy). (1.4)

The asymptotic behavior of u(t, x)will depend on the properties of the function ϕ. We
will consider three classes of functions for which different behaviors appear. We are
going to use the following notion of convergence, which is stronger than convergence
in distribution (see, for instance, [6, Chapter VIII]).

Definition 1.1 Let {Fn} be a sequence of X -valued random variables defined on a
probability space (�,F ,P), X being a complete separable metric space. Let F be an
X -valued random variable defined on some extended probability space (�′,F ′,P′).
We say that Fn converges stably to F , written Fn

stably−→ F , if for every bounded F–
measurable random variable G, (G, Fn) converges in law to (G, F).
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When X = R, Fn
stably−→ F is equivalent to saying that

lim
n→∞E

[
GeiλFn

]
= E

′ [GeiλF
]
, (1.5)

for every λ ∈ R and every bounded F–measurable random variable G.
The first theorem deals with the case where ϕ is an homogeneous-type function.

Theorem 1.2 Suppose that ϕ : R → R is a measurable and bounded on compacts
function such that1 limx→±∞ |x |−αϕ(x) = c± for some constants c+, c− and α ≥ 0.
Then, as t → ∞,

t−
3α+1
4 u(t, x)

stably−→ c−
∫ 1

0

∫
R

p1−s(y)|Ŵ (s, y)|α1{Ŵ (s,y)<0}Ŵ (ds, dy)

+ c+
∫ 1

0

∫
R

p1−s(y)|Ŵ (s, y)|α1{Ŵ (s,y)>0}Ŵ (ds, dy) =: X .

Here, Ŵ is a two-parameter Wiener process independent of W .

Note that in the case that c+ = c− and α = 0; then, the limit is Gaussian. Note
that one may also consider the case 2 limx→±∞ |x |−α±ϕ(x) = c± for some constants

c+, c−, α+, α− ≥ 0. In this case, the renormalization factor is t−
3(α+∨α−)+1

4 and the
limit will only have contributions from the largest α = α+ ∨ α−.

In the second theorem, we consider the case where ϕ satisfies some integrability
properties with respect to the Lebesgue measure on R. The limit involves a weighted
local time of the two-parameter Wiener process, and the proof has been inspired by
the work of Nualart and Xu [7] on the central limit theorem for an additive functional
of the fractional Brownian motion.

Theorem 1.3 Suppose that ϕ ∈ L2(R) ∩ L p(R) for some p < 2. Then, as t → ∞,

t
1
8 u(t, x)

stably−→ Z

(∫ 1

0

∫
R

p21−s(y)δ0(Ŵ (s, y))dyds

) 1
2

‖ϕ‖L2(R),

where Ŵ is a two-parameter Wiener process, Z is a N (0, 1) random variable and Ŵ ,
and W and Z are independent.

In Theorem 1.3, L0,1 := ∫ 1
0

∫
R
p21−s(y)δ0(Ŵ (s, y))dyds is a weighted local time

of the random field Ŵ that can be defined (see Lemma 2.1) as the limit in L2(�) of

Lε
0,1 :=

∫ 1

0

∫
R

p21−s(y)pε(Ŵ (s, y))dyds,

as ε tends to zero.

1 From here onward, we use this notation to indicate that limx→+∞ |x |−αϕ(x) = c+ and
limx→−∞ |x |−αϕ(x) = c−.
2 Here, this means limx→+∞ |x |−α+ϕ(x) = c+ and limx→−∞ |x |−α−ϕ(x) = c−.
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The present study originates from a nonlinear stochastic heat equation which is
described in Sect. 4. Although we have not been able to obtain explicit results in this
general situation, the results presented here provide a range of techniques and results
related to this problem.

The paper is organized as follows. Section 2 contains the proofs of the above
theorems, and in Sect. 3, we discuss an extension of these results in the case where we
consider also space averages on an interval [−R, R] and both R and t tend to infinity.
A brief discussion of the case of nonlinear equations is provided in Sect. 4.

2 Proofs

Proof of Theorem 1.2 We know that t− 3α+1
4 u(t, x) has the same law as

v(t, x) := t−
3α
4

∫ 1

0

∫
R

p1−s

(
x√
t

− y

)
ϕ(t3/4W (s, y))W (ds, dy).

We divide the study of v into two parts according to the boundedness on compacts
property for ϕ. In fact, for any compact K consider ϕK (x) = ϕ(x)1x∈K . Then, we
will prove that vK (x) → 0 in L2(�) where

vK (t, x) := t−
3α
4

∫ 1

0

∫
R

p1−s

(
x√
t

− y

)
ϕK (t3/4W (s, y))W (ds, dy).

In fact, as ϕK is bounded by a constant, say M , we have

E[v2K (t, x)] ≤ M2t−
3α
2

∫ 1

0

1√
2π(1 − s)

∫
R

p1−s

(
x√
t

− y

)
P(t3/4W (s, y) ∈ K )dsdy.

The above quantity clearly converges to zero as t → ∞, if one considers separately
the cases α > 0 and α = 0.

Given the above result, we can assume without loss of generality that ϕ(x) =
f (x)|x |α with a bounded measurable function f such that limx→±∞ f (x) = c±.
For this, we fix t0 > 0 and compute the conditional characteristic function of

t− 3α+1
4 u(t, x) given Ft0 , where t > t0 and {Ft , t ≥ 0} denotes the natural filtration of

the two-parameter Wiener process W used in the definition of u3 . For any λ ∈ R, we
have

E

[
eiλt

− 3α+1
4 u(t,x)|Ft0

]
= eiλt

− 3α+1
4

∫ t0
0

∫
R
pt−s (x−y)ϕ(W (s,y))W (ds,dy)

× E

[
e
iλt−

3α+1
4

∫ t
t0

∫
R
pt−s (x−y)ϕ(W (s,y))W (ds,dy)|Ft0

]

=: eiλAt × Bt .

3 That is, Ft is generated by W (s, x), s ≤ t, x ∈ R.
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It is easy to show that limt→∞ At = 0 in L2(�) as t → ∞. In fact, using the rescaling
properties we obtain that as t → ∞

t−
3α+1
2 E

[∫ t0

0

∫
R

pt−s(x − y)2ϕ(W (s, y))2dsdy

]

≤ ‖ f ‖2∞E

[∫ t0/t

0

∫
R

p1−s

(
x√
t

− y

)2

|W (s, y)|2αdsdy
]

→ 0.

Now, we continue with the term Bt for which we will use the decomposition

W (s, y) = W (s, y) − W (t0, y) + W (t0, y),

=: Ŵ (s − t0, y) + W (t0, y).

Then, we can write

Bt = Ê

[
exp

(
iλt−

3α+1
4

∫ t−t0

0

∫
R

pt−t0−s(x − y)ϕ(Ŵ (s, y) + W (t0, y))Ŵ (ds, dy)

)]
,

where Ê denotes the mathematical expectation with respect to the two-parameter
Wiener process Ŵ . By the same renormalization arguments as in (1.3) leading to
(1.4), this gives

Bt = Ê

[
exp

(
iλ

(
t − t0
t

) 3α+1
4

∫ 1

0

∫
R

p1−s

(
x√
t − t0

− y

)
F(t, s, y)Ŵ (ds, dy)

)]
.

Here,

F(t, s, y) := f ((t − t0)
3/4(Ŵ (s, y) + (t − t0)

− 3
4W (t0,

√
t − t0y)))

× |Ŵ (s, y) + (t − t0)
− 3

4W (t0,
√
t − t0y)|α.

As t → ∞ and limx→±∞ |x |−αϕ(x) = c±, then Bt converges almost surely to

Ê

[
exp

(
iλ

∫ 1

0

∫
R

p1−s(y)Fα(Ŵ (s, y))Ŵ (ds, dy)

)]
,

where Fα(x) = c+1x>0 + c−1x<0. Then, the above formula is the characteristic
function of X . As a consequence, for every bounded Ft0 measurable random variable
G, we obtain

lim
t→∞E

[
Geiλt

− 3α+1
4 u(t,x)

]
= E[G]E[eiλX ].

This can be extended to any bounded random variableG measurable with respect to
the two-parameterWiener processW , and this provides the desired stable convergence
in the sense of Definition 1.1. ��
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For the proof of Theorem 1.3, we need the following lemma on the existence of the
weighted local time L0,r .

Lemma 2.1 For any r ∈ [0, 1], the limit in L2(�), as ε tends to zero, of

Lε
0,r :=

∫ r

0

∫
R

p21−s(y)pε(W (s, y))dyds,

exists and the limit random variable will be denoted by L0,r := ∫ r
0

∫
R
p21−s(y)δ0(W (s,

y))dyds.

Proof Using the inverse Fourier transform formula for a Gaussian law, we have

Lε
0,r = 1

2π

∫ r

0

∫
R2

p21−s(y)e
iξW (s,y)− ε2

2 ξ2dξdyds.

Note that in order to prove the statement in the lemma is enough to prove that
E(Lε

0,r L
ε′
0,r ) converges as ε, ε′ → 0. Therefore, consider

E(Lε
0,r L

ε′
0,r ) = (2π)−2

∫ r

0

∫ r

0

∫
R4

p21−s(y)p
2
1−s′(y

′)

× E

(
eiξW (s,y)− ε2

2 ξ ′2−iξ ′W (s′,y′)− ε′2
2 ξ ′2

)
dξdydξ ′dy′ ds′ds

= (2π)−2
∫ r

0

∫ r

0

∫
R4

p21−s(y)p
2
1−s′(y

′)e− ε2
2 ξ2− ε′2

2 ξ ′2

× e− 1
2E(|ξW (s,y)−ξ ′W (s′,y′)|2)dξdydξ ′dy′ ds′ds.

As ε and ε′ tend to zero, we obtain the limit

I :=
∫ 1

0

∫ 1

0

∫
R2

p21−s(y)p
2
1−s′(y

′) f (s, y, s′, y′)dydy′ ds′ds,

where f (s, y, s′, y′) is the density at (0, 0) of the random vector (W (s, y),W (s′, y′)).
We claim that I < ∞. Indeed, first notice that f (s, y, s′, y′) is bounded by

(2π)−1 (
ss′|y||y′| − (s ∧ s′)2(|y| ∧ |y′|)21{yy′>0}

)− 1
2

= (2π)−1 [
(s ∧ s′)(|y| ∧ |y′|) (

(s ∨ s′)(|y| ∨ |y′|) − (s ∧ s′)(|y| ∧ |y′|)1{yy′>0}
)]− 1

2 .

To show that I < ∞, it suffices to consider the integral over the set {yy′ > 0}, because
the integral over {yy′ ≤ 0} is clearly finite. By symmetry, we only need to show that
the integral

J :=
∫
0<s<s′<1

∫
0<y<y′<∞

(1 − s)−1(1 − s′)−1(sy(s′y′ − sy))−
1
2 e− y2

1−s − y′2
1−s′ dydy′dsds′
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is finite. With the change of variables sy = z and s′y′ = z′, we obtain

J ≤
∫
0<s<s′<1

∫
0<z<z′<∞

[(1 − s)(1 − s′)ss′]−1(z(z′ − z))−
1
2 e

− z2

s2(1−s)
− z′2

s′2(1−s′) dzdz′dsds′.

Fix δ > 0 and let Kδ = sups∈[0,1],z>0

(
z2

s2(1−s)

)δ

e
− z2

s2(1−s) . Then,

J ≤ Kδ

∫
0<s<s′<1

∫
0<z<z′<∞

(1 − s)−1+δ(1 − s′)−1s−1+2δ(s′)−1z−
1
2−2δ(z′ − z)−

1
2

× e
− z′2

s′2(1−s′) dzdz′dsds′.

Integrating first in z and later in z′, it is easy to show that the above integral is finite if
δ < 1

4 . This allows us to conclude the proof of the lemma. ��
Proof of Theorem 1.3 Consider the random variable ũ(t, x) defined in (1.4). We can
put ũ(t, x) = t− 3

8 Mt (1, x), where for r ∈ R+,

Mt (r , x) := t
3
8

∫ r∧1

0

∫
R

p1−s

(
x√
t

− y

)
ϕ(t3/4W (s, y))W (ds, dy) + Z(r∨1)−1,

where {Zt , t ≥ 0} is a standard Brownian motion independent of W , defined, if
necessary, on an enlarged probability space. Then, {Mt (·, x), t ≥ 0} is a family of
continuous martingales in the time interval [0,∞). We note that the important part of
the definition ofMt (r , x) corresponds to r ∈ [0, 1]. For this reason,wewill concentrate
on this interval leaving the calculations and corresponding modifications for r ∈
[1,∞) to the reader.

We will find the limit as t → ∞ of the quadratic variation of these martingales.
We have for r ∈ [0, 1]

〈Mt (·, x)〉r = t
3
4

∫ r

0

∫
R

p21−s

(
x√
t

− y

)
ϕ2(t

3
4W (s, y))dsdy.

The proof of the theorem will be done in several steps.

Step 1 In this step, we prove that 〈Mt (·, x)〉r converges in L1(�) to the weighted
local time L0,r , for r ∈ [0, 1]. First, we claim that

lim
t→∞E

(∣∣∣∣〈Mt (·, x)〉r − t
3
4

∫ r

0

∫
R

p21−s(y)ϕ
2(t

3
4W (s, y))dsdy

∣∣∣∣
)

= 0. (2.1)

This follows from the fact that

E

(
t
3
4 ϕ2(t

3
4W (s, y))

)
≤ ‖ϕ‖2L2(R)

(2πs|y|)− 1
2 (2.2)
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and for fixed r ∈ [0, 1]

lim
t→∞

∫ r

0

∫
R

∣∣∣∣p21−s

(
x√
t

− y

)
− p21−s(y)

∣∣∣∣ 1√
s|y|dyds = 0.

Note that the bound in (2.2) also shows that themartingaleMt (·, x) is square integrable.
On the other hand, for any fixed t , we have

lim
ε→0

Jε,t = 0, (2.3)

where

Jε,t = E

(∣∣∣t 34
∫ r

0

∫
R

p21−s(y)ϕ
2
(
t
3
4W (s, y)

)
dsdy

−
∫ r

0

∫
R

p21−s(y)
∫
R

ϕ2(ξ)p
εt−

3
2

(
W (s, y) − t−

3
4 ξ

)
dξdsdy

∣∣∣
)
.

To show (2.3), notice first that

∫ r

0

∫
R

p21−s(y)
∫
R

ϕ2(ξ)p
εt−

3
2

(
W (s, y) − t−

3
4 ξ

)
dξdsdy

= t
3
4

∫ r

0

∫
R

p21−s(y)
∫
R

ϕ2(ξ)pε

(
t
3
4W (s, y) − ξ

)
dξdsdy

= t
3
4

∫ r

0

∫
R

p21−s(y)(ϕ
2 ∗ pε)

(
t
3
4W (s, y)

)
dsdy.

Therefore,

Jε,t = E

(∣∣∣∣t 34
∫ r

0

∫
R

p21−s(y)(ϕ
2 − ϕ2 ∗ pε)

(
t
3
4W (s, y)

)
dsdy

∣∣∣∣
)

≤ t
3
4

∫ r

0

∫
R

p21−s(y)E
(
|(ϕ2 − ϕ2 ∗ pε)

(
t
3
4W (s, y)

)
|
)
dsdy

≤ ‖ϕ2 − ϕ2 ∗ pε‖L1(R)

∫ r

0

∫
R

p21−s(y)(2πs|y|)−
1
2 dyds,

which converges to zero as ε tends to zero because
∫ r
0

∫
R
p21−s(y)(2πs|y|)−

1
2 dyds <

∞ and ϕ ∈ L2(R).
We also claim that

lim
t→∞ sup

ε>0
Iε,t = 0, (2.4)
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where

Iε,t = E

(∣∣∣
∫ r

0

∫
R2

p21−s(y)ϕ
2(ξ)p

εt−
3
2

(
W (s, y) − t−

3
4 ξ

)
dξdyds

− ‖ϕ‖2L2(R)

∫ r

0

∫
R

p21−s(y)pεt−3/2(W (s, y))dyds
∣∣∣2

)
.

To show (2.4), we write

Iε,t = (2π)−2
E

(∣∣∣∣
∫ r

0

∫
R2

p21−s(y)ϕ
2(ξ)

∫
R

eiηW (s,y)− ε2 t−3
2 η2

(
eiηt

− 3
4 ξ − 1

)
dηdξdyds

∣∣∣∣
2
)

= (2π)−2
∫

[0,r ]2

∫
R4

p21−s(y)p
2
1−s′(y

′)ϕ2(ξ)ϕ2(ξ ′)

×
∫
R2

e− 1
2E(|ηW (s,y)−η′W (s′,y′)|2)e− ε2 t−3

2 (η2+η′2)

× (eiηt
− 3
4 ξ − 1)(e−iη′t−

3
4 ξ ′ − 1)dηdη′dξdξ ′dydy′dsds′,

which leads to the estimate

sup
ε>0

Iε,t ≤ (2π)−2
∫

[0,r ]2

∫
R4

p21−s(y)p
2
1−s′(y

′)ϕ2(ξ)ϕ2(ξ ′)

×
∫
R2

e− 1
2E(|ηW (s,y)−η′W (s′,y′)|2) (

|ηξη′ξ ′|β t− 3
4 β ∧ 4

)
dηdη′dξdξ ′dydy′dsds′,

for any β ∈ [0, 1]. Then, by the dominated convergence theorem, the limit (2.4)
follows from

∫
[0,r ]2

∫
R4

p21−s(y)p
2
1−s′(y

′)
∫
R2

e− 1
2E(|ηW (s,y)−η′W (s′,y′)|2)dηdη′dydy′dsds′ < ∞,

which follows from the fact that (2π)−2
∫
R2 e− 1

2E(|ηW (s,y)−η′W (s′,y′)|2)dηdη′ is the
density at (0, 0) of the random vector (W (s, y),W (s′, y′)) (see the proof of Lemma
2.1).

By Lemma 2.1,
∫ r
0

∫
R
p21−s(y)pε(W (s, y))dyds converges in L2(�) as t → ∞ to

theweighted local time L0,r . As a consequence, from (2.1), (2.3), (2.4) andLemma2.1,
we deduce that 〈Mt (·, x)〉r converges as t → ∞ in L1(�) to the weighted local time
L0,r = ∫ r

0

∫
R
p21−s(y)δ0(W (s, y))dyds.

Step 2 Fix an orthonormal basis {ei , i ≥ 1} of L2(R) formed by bounded functions
and consider the martingales for r ∈ R+

Mi (r) =
∫ r

0

∫
R

ei (y)W (ds, dy).

123
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We claim that the total variation of the joint quadratic variation 〈Mt (·, x), Mi 〉r con-
verges to zero in L1(�) as t → ∞. Indeed,

〈Mt (·, x), Mi 〉r = t
3
8

∫ r∧1

0

∫
R

p1−s

(
x√
t

− y

)
ei (y)ϕ

(
t
3
4W (s, y)

)
dyds.

Then, using the fact that ϕ ∈ L p(R) for some p < 2, we can write for r ∈ [0, 1]

E(|〈Mt (·, x), Mi 〉|r ) ≤ t
3
8

∫ r

0

∫
R

p1−s

(
x√
t

− y

)
|ei (y)|E

(∣∣∣ϕ
(
t
3
4 W (s, y)

)∣∣∣
)
dyds

≤ t
3
8

∫ r

0

∫
R

p1−s

(
x√
t

− y

)
|ei (y)|

∫
R

|ϕ(z)| 1√
2π t

3
2 s|y|

exp

(
− z2

2t
3
2 s|y|

)
dzdyds

≤ t
3
8− 3

4p ‖ei‖∞‖ϕ‖L p(R)

∫ r

0

∫
R

p1−s

(
x√
t

− y

)
(s|y|)− 1

2p dyds,

where 1
p + 1

q = 1. Then, the claim follows because 3
8 − 3

4p < 0 for p ∈ (1, 2) and

∫ r

0

∫
R

p1−s

(
x√
t

− y

)
(s|y|)− 1

2p dyds < ∞.

Step 3 Given a sequence tn ↑ ∞, set Mn
0,r = Mtn (r , x) and Mn

i,r = Mi (r) for i ≥ 1.
These martingales possess Dambis-Dubins-Schwarz Brownian motions βn

i , such that

Mn
0,r = βn

0,〈Mn
0 〉r

and

Mn
i,r = βn

i,r , i ≥ 1.

We have proved in Step 2 that supr∈R+ |〈Mn
i , Mn

0 〉|r → 0 in probability as n → ∞.
Moreover, it is clear that for any 1 ≤ i < j , 〈Mn

i , Mn
j 〉r = 0. Then, by the asymptotic

Ray-Knight theorem (see Theorem 5.1 in Appendix), we conclude that the Brownian
motions {βn

i,y, y ≥ 0}, i ≥ 0, converge in law to a family of independent Brownian
motions {βi,y, y ≥ 0}, i ≥ 0. As a consequence, we deduce in particular, the stable
convergence in the sense of Definition 1.1, of the sequence of Brownian motions βn

0
to a Brownian motion β0 with F being the σ -field generated by the white noise W on
R+ × R which is independent of β0.

We are going to show using Step 1 that Mtn (1, x) converges stably to β0,L0,1‖ϕ‖2
L2(R)

as n → ∞, where β0 is independent of W . Indeed, for any λ ∈ R, ε, K > 0, with
the notation c = ‖ϕ‖2

L2(R)
, and for any W -measurable random variable G such that

|G| ≤ 1, we can write
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∣∣∣E
(
G(eiλMtn (1,x) − eiλβ0,cL0,1 )

)∣∣∣ ≤
∣∣∣∣E

(
G(e

iλβn
0,〈Mn

0 〉1 − e
iλβn

0,cL0,1 )

)∣∣∣∣
+

∣∣∣E
(
G(e

iλβn
0,cL0,1 − eiλβ0,cL0,1 )

)∣∣∣
≤ P(|〈Mn

0 〉1 − cL0,1| > ε) + P(cL0,1 > K )

+ E

(
sup

|t−s|<ε,t≤K
|eiλβn

0,t − eiλβ
n
0,s |

)
+

∣∣∣E
(
G(e

iλβn
0,cL0,1 − eiλβ0,cL0,1 )

)∣∣∣
:= A1

n,ε + A2
K + A3

n,ε,L + A4
n .

By Step 1, limn→∞ A1
n,ε = 0 and the stable convergence of βn

0 to β0 implies
limn→∞ A4

n = 0. Finally, for fixed K , A3
n,ε,K does not depend on n and con-

verges to zero as ε → 0 and, finally, A2
K tends to zero as K ↑ ∞. Thus, we

have proved the stable convergence t
3
8 ũ(t, x))

stably−→ β0,L0,1‖ϕ‖2
L2(R)

as t → ∞, where

L0,1 = ∫ 1
0

∫
R
p21−s(y)δ0(W (s, y))dyds and β0 is independent of W .

Step 4 Fix λ ∈ R and t0 ≥ 0. To complete the proof, we follow a similar argument as
in the proof of Theorem 1.2 based on the method of characteristic functions. In fact,
we can write

E

[
eiλt

1
8 u(t,x)|Ft0

]
= eiλt

1
8

∫ t0
0

∫
R
pt−s (x−y)ϕ(W (s,y))W (ds,dy)

× E

[
e
iλt

1
8

∫ t
t0

∫
R
pt−s (x−y)ϕ(W (s,y))W (ds,dy)|Ft0

]

=: eiλAt × Bt .

As in the proof of Theorem 1.2, it is easy to show that limt→∞ At = 0 in L2(�). On
the other hand, with the decomposition

W (s, y) = W (s, y) − W (t0, t) + W (t0, y),

for the term Bt , we can write

Bt = Ê

[
exp

(
iλt

1
8

∫ t−t0

0

∫
R

pt−t0−s(x − y)ϕ(Ŵ (s, y) + W (t0, y))Ŵ (ds, dy)

)]
,

where Ê denotes the mathematical expectation with respect to the two-parameter
Wiener process Ŵ defined by Ŵ (s, y) = W (s + t0, y) − W (t0, y). By the same
arguments as before, this leads to

Bt = Ê

[
exp

(
(iλt

1
8 (t − t0)

1
4

∫ 1

0

∫
R

p1−s

(
x√
t − t0

− y

)

× ϕ((t − t0)
3
4 Ŵ (s, y) + �t,y)Ŵ (ds, dy)

)]
.
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Here, we have used the notation �t,y = (t − t0)−
3
4W (t0,

√
t − t0y). Rather than

considering the limit of the above expression, we would like to consider instead the
limit of

B(1)
t := Ê

[
exp

(
(iλt

1
8 (t − t0)

1
4

∫ 1

0

∫
R

p1−s

(
x√
t − t0

− y

)

× ϕ((t − t0)
3
4 Ŵ (s, y))Ŵ (ds, dy)

)]
.

In order to be able to do this, consider the residual term

Rt := λt
1
8 (t − t0)

1
4

∫ 1

0

∫
R

p1−s

(
x√
t − t0

− y

)

× (ϕ((t − t0)
3
4 Ŵ (s, y) + �t,y) − ϕ((t − t0)

3
4 Ŵ (s, y)))Ŵ (ds, dy).

We claim that
lim
t→∞ Rt = 0 (2.5)

in L2(�). Indeed, using bounds for the density of Ŵ (s, y), we obtain

E[R2
t ] ≤ λ2t

1
4 (t − t0)

1
2

∫ 1

0

∫
R

p21−s

(
x√
t − t0

− y

)

× E

[∣∣∣ϕ
(
(t − t0)

3
4 Ŵ (s, y) + �t,y

)
− ϕ

(
(t − t0)

3
4 Ŵ (s, y)

)∣∣∣2
]
dyds

≤ λ2
(

t

t − t0

) 1
4
∫ 1

0

∫
R

p21−s

(
x√
t − t0

− y

)
1√

2πs|y|
× E

[∫
R

∣∣ϕ(z + �t,y) − ϕ(z)
∣∣2 dz

]
dyds.

Taking into account that
∫
R

∣∣ϕ(z + �t,y) − ϕ(z)
∣∣2 dz ≤ 2‖ϕ‖2

L2(R)
, and using that

lim
t→∞

∫
R

∣∣ϕ(z + �t,y) − ϕ(z)
∣∣2 dz = 0

almost surely, for any y ∈ R, we conclude the proof of (2.5) by the dominated
convergence theorem.

Furthermore, proceeding as in Steps 1–3, we can show that, as t → ∞, B(1)
t

converges to

Ê

[
exp

(
iλβ0,L0,1‖ϕ‖2

L2(R)

)]
,
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where L0,1 = ∫ 1
0

∫
R
p21−s(y)δ0(Ŵ (s, y))dyds and β0 is independent of Ŵ . As a

consequence, for every bounded and Ft0 -measurable random variable G, we obtain

lim
t→∞E[G exp

(
iλt

1
8 u(t, x)

)
] = E[G]E

[
exp

(
iλβ0,L0,1‖ϕ‖2

L2(R)

)]
.

This completes the proof. ��

3 Large Times and Space Averages

The asymptotic behavior of the spatial averages
∫ R
−R u(t, x)dx as R → ∞ has been

recently studied in References [3–5]. In these articles, u(t, x) is the solution to a
stochastic partial differential equation with initial condition u(0, x) = 1 and a Lips-
chitz nonlinear coefficient function σ(u). The solution process is stationary in x ∈ R,
and the limit is Gaussian after a proper normalization of the solution process. In the
case considered here, the lack of stationarity creates different limit behaviors. In order
to achieve a limit, we will consider the case where both R and t tend to infinity.

Set

uR(t) =
∫ R

−R

∫ t

0

∫
R

pt−s(x − y)ϕ(W (s, y))W (ds, dy)dx .

As before, uR(t) has the same law as

ũ R(t) = t
1
4

∫ R

−R

∫ 1

0

∫
R

p1−s

(
x√
t

− y

)
ϕ

(
t
3
4W (s, y)

)
W (ds, dy)dx .

Consider first the case where ϕ is an homogeneous function.

Theorem 3.1 Suppose that ϕ(x) = |x |α for some α > 0. Suppose that tR → ∞ as
R → ∞. Then, if we let Ŵ be a two-parameter Wiener process independent of W ,
the following stable convergences hold true:

(i) If R√
tR

→ c, with c ∈ (0,∞),

t
− 3

4 (α+1)
R u(tR)

stably−→
∫ c

−c

∫ 1

0

∫
R

p1−s(x − y)|Ŵ (s, y))|αŴ (ds, dy)dx .

(ii) If R√
tR

→ 0,

R−1t
− 3α+1

4
R u(tR)

stably−→ 2
∫ 1

0

∫
R

p1−s(y)|Ŵ (s, y))|αŴ (ds, dy)dx .
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(iii) If R√
tR

→ ∞,

R− α+1
2 t

− α+1
2

R u(tR)
stably−→

∫ 1

−1

∫ 1

0
|Ŵ (s, y)|αŴ (ds, dy).

Proof We have, with the change of variable x√
tR

→ x ,

ũ R(tR) = t
3α+1
4 + 1

2
R

∫ R/
√
tR

−R/
√
tR

∫ 1

0

∫
R

p1−s(x − y)|W (s, y)|αW (ds, dy)dx,

and therefore, (i) follows by letting R → ∞.
If R√

tR
→ 0, with the change of variable x → Rx , we can write

ũ R(tR) = Rt
3α+1
4

R

∫ 1

−1

∫ 1

0

∫
R

p1−s

(
x

R√
tR

− y

)
|W (s, y)|αW (ds, dy)dx, (3.1)

which implies (ii).
The proof of (iii) is more involved. Making the change of variable y → y R√

tR
in

(3.1) yields

ũ R(tR) = R
α+3
2 t

α
2
R

∫ 1

−1

∫ 1

0

∫
R

p1−s

(
R√
tR

(x − y)

)
|W (s, y)|αW (ds, dy)dx

= R
α+1
2 t

α+1
2

R

∫ 1

−1

∫ 1

0

∫
R

p tR
R2

(1−s)(x − y)|W (s, y)|αW (ds, dy)dx .

Finally, the stochastic integral

∫ 1

−1

∫ 1

0

∫
R

p tR
R2

(1−s)(x − y)|W (s, y)|αW (ds, dy)dx

converges in L2(�) as R → ∞ to

∫ 1

−1

∫ 1

0
|W (s, y)|αW (ds, dy).

The stable character of the convergence can be proved by the same arguments, based
on the conditional characteristic function, as in the proof of Theorem 1.2. ��
For a function which satisfies integrability conditions with respect to the Lebesgue
measure, we have the following result.

Theorem 3.2 Suppose that ϕ ∈ L2(R) and that tR → ∞ as R → ∞. Then, with Z a
N (0, 1) random variable and Ŵ an independent two-parameter Wiener process such
that (Z , Ŵ ) are independent of W , the following stable convergences hold true:
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(i) If R√
tR

→ c, with c ∈ (0,∞),

t
− 3

8
R u(tR)

stably−→ Z

(
‖ϕ‖2L2(R)

∫ 1

0

∫
R

(∫ c

−c
p1−s(x − y)dx

)2

δ0(W (s, y))dyds

) 1
2

.

(ii) If R√
tR

→ 0,

R−1t
1
2
R u(tR)

stably−→ Z

(
2‖ϕ‖2L2(R)

∫ 1

0

∫
R

p21−s(y)δ0(W (s, y))dyds

) 1
2

.

(iii) If R√
tR

→ ∞,

R− 1
2 t

1
4
R u(tR)

stably−→ Z

(
2‖ϕ‖2L2(R)

∫ 1

0

∫ 1

−1
p21−s(y)δ0(W (s, y))dyds

) 1
2

.

Proof Let us prove first the case (i). We have, with the change of variable x√
tR

→ x ,

ũ R(tR) = t
3
4
R

∫ R/
√
tR

−R/
√
tR

∫ 1

0

∫
R

p1−s(x − y)ϕ

(
t
3
4
RW (s, y)

)
W (ds, dy)dx .

Consider the family of martingales

MR(·, x) = t
3
8
R

∫ R/
√
tR

−R/
√
tR

∫ ·

0

∫
R

p1−s(x − y)ϕ

(
t
3
4
RW (s, y)

)
W (ds, dy)dx,

r ∈ [0, 1]. We can write

〈MR(·, x)〉r = t
3
4
R

∫
[
− R√

tR
, R√

tR

]2
∫ r

0

∫
R

p1−s(x − y)p1−s(x
′ − y)ϕ2

(
t
3
4
R W (s, y)

)
dydsdxdx ′.

Then, as in the proof of Theorem 1.3, we can show that 〈MR(·, x)〉r converges in
L1(�) as R → ∞ to the weighted local time

‖ϕ‖2L2(R)

∫ r

0

∫
R

(∫ c

−c
p1−s(x − y)dx

)2

δ0(W (s, y))dyds.

This completes the proof of (i).
If R√

tR
→ 0, with the change of variable x → Rx , we can write

ũ R(tR) = Rt
1
4
R

∫ 1

−1

∫ 1

0

∫
R

p1−s

(
x

R√
tR

− y

)
ϕ

(
t
3
4
RW (s, y)

)
W (ds, dy)dx . (3.2)
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As before, the stochastic integral

t
3
4
R

∫ 1

−1

∫ 1

0

∫
R

p1−s

(
x

R√
tR

− y

)
ϕ

(
t
3
4
RW (s, y)

)
W (ds, dy)dx

converges in law to

Z

(
2‖ϕ‖2L2(R)

∫ 1

0

∫
R

p21−s(y)δ0(W (s, y))dyds

) 1
2

,

which implies (ii). To show (iii), we make the change of variable y → y R√
tR

in (3.2)
to get

ũ R(tR) = R
3
2

∫ 1

−1

∫ 1

0

∫
R

p1−s

(
R√
tR

(x − y)

)
ϕ

(
t
3
4
RW (s, y)

)
W (ds, dy)dx

= R
1
2 t

1
2
R

∫ 1

−1

∫ 1

0

∫
R

p tR
R2

(1−s)(x − y)ϕ

(
t
3
4
RW (s, y)

)
W (ds, dy)dx .

Finally, the stochastic integral

t
3
4
R

∫ 1

−1

∫ 1

0

∫
R

p tR
R2

(1−s)(x − y)ϕ

(
t
3
4
RW (s, y)

)
W (ds, dy)dx

converges in law as R → ∞ to

Z

(
2‖ϕ‖2L2(R)

∫ 1

0

∫ 1

−1
p21−s(y)δ0(W (s, y))dyds

) 1
2

.

The stable character of the convergence can be proved by the same arguments, based
on the conditional characteristic function, as in the proof of Theorem 1.3. ��

4 Case of a Nonlinear Coefficient �

In this section, we discuss the case of a nonlinear stochastic heat equation

∂u

∂t
= 1

2

∂2u

∂x2
+ σ(u)

∂2W

∂t∂x
, x ∈ R, t ≥ 0, (4.1)

with initial condition u(0, z) = 1, where σ : R → R is a Lipschitz function. The mild
solution to equation (4.1) is given by

u(t, x) = 1 +
∫ t

0

∫
R

pt−s(x − y)σ (u(s, y))W (ds, dy).

We are interested in the asymptotic behavior of u(t, x) as t tends to infinity. As before,
we consider different cases:
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Case 1. Suppose that σ(u) = u. In this case, the solution has a Wiener chaos
expansion given by

u(t, x) = 1 +
∑
n≥1

∫
Rn

∫
�n(t)

n−1∏
i=0

psi−si+1(xi − xi+1) W (ds1, dx1) · · ·W (dsn, dxn)

=: 1 +
∑
n≥1

In( ft,x,n) ,

with

ft,x,n(s1, . . . , sn, x1, . . . , xn) = 1�n(t)(s1, . . . , sn)
n−1∏
i=0

psi−si+1(xi − xi+1)

and �n(t) = {(s1, . . . , sn) : 0 < s1 < · · · < sn < t}. Here, In denotes the multiple
stochastic integral of order n with respect to the noiseW . If we consider the projection
of u(t, x) on a fixedWiener chaos, we can write with the change of variables si → tsi
and xi → √

t yi ,

In( ft,x,n) =
∫

�n(1)

∫
Rn

pt(1−s1)

(
x√
t

− x1

)

×
n−1∏
i=1

pt(si−si+1)(xi − xi+1)W (tds1,
√
tdx1) · · ·W (tdsn,

√
tdxn)

= t−
n
2

∫
�n(1)

∫
Rn

p1−s1

(
x√
t

− x1

)

×
n−1∏
i=1

psi−si+1(xi − xi+1)W (tds1,
√
tdx1) · · ·W (tdsn,

√
tdxn).

By the scaling properties of the two-parameterWiener process, it follows that In( ft,x,n)
has the same law as

Ĩn( ft,x,n) := t
3n
4

∫
�n(1)

∫
Rn

p1−s1

(
x√
t

− x1

)

×
n−1∏
i=1

psi−si+1(xi − xi+1)W (ds1, dx1) · · ·W (dsn, dxn).

As a consequence, t− 3
4 n In( ft,x,n) converges stably to

∫
�n(1)

∫
Rn

n−1∏
i=0

psi−si+1(xi − xi+1)Ŵ (ds1, dx1) · · · Ŵ (dsn, dxn),

where Ŵ is a two-parameterWiener process independent ofW andwith the convention
s0 = 1 and x0 = 0.
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Notice that the rate of convergence depends polynomially with respect to the order
of the Wiener chaos. This property gives a hint toward a possible exponential type
behavior of u(t, x). This is consistent with the asymptotic behavior of log u(t, x),
when u(0, x) = δ0(x), obtained by Amir, Corwin and Quastel in [1].
Case 2. When σ is a Lipschitz function that belongs to L2(R), the problem is much
more involved and we will give here just some ideas on how to proceed. We can write

u(t, x) = 1 + 1√
t

∫ 1

0

∫
R

p1−s

(
x√
t

− y

)
σ(u(ts,

√
t y))W (tds,

√
tdy).

Furthermore,

u(ts,
√
t y) = 1 +

∫ ts

0

∫
R

pts−r (
√
t y − z)σ (u(r , z))W (dr , dz)

= 1 + 1√
t

∫ s

0

∫
R

ps−r (y − z)σ (u(tr ,
√
t z))W (tdr ,

√
tdz).

By the scaling properties of the two-parameter Wiener process, as a function of Ŵ ,
u(ts,

√
t y) has the same law as

vt (s, y) = 1 + t
1
4

∫ s

0

∫
R

ps−r (y − z)σ (vt (r , z)))Ŵ (dr , dz).

Therefore, u(t, x) has the same law as

ũ(t, x) = 1 + t
1
4

∫ 1

0

∫
R

p1−s

(
x√
t

− y

)
σ(vt (s, y))Ŵ (ds, dy).

Then,

t−
1
6 ũ(t, x) = t−

1
6 + t

1
12

∫ 1

0

∫
R

p1−s

(
x√
t

− y

)
σ(vt (s, y))Ŵ (ds, dy).

The quadratic variation of the martingale part of the above stochastic integral is

t
1
6

∫ 1

0

∫
R

p21−s

(
x√
t

− y

)
σ 2(1 + t

1
6 Zt (s, y))dsdy

=
∫ 1

0

∫
R

p21−s

(
x√
t

− y

) ∫
R

σ 2(ξ)δ0(Z
t (s, y) + t−

1
6 − ξ t−

1
6 )dξdsdy

where Zt (s, y) satisfies

Zt (s, y) = t−
1
6 + t

1
12

∫ s

0

∫
R

ps−r (y − z)σ (1 + t
1
6 Zt (r , z)))Ŵ (dr , dz).

From these computations, we conjecture that t− 1
6 is the right normalization and the

limit would satisfy an equation involving a weighted local time of the solution. How-
ever, proving these facts is a challenging problem not to be treated in this paper.
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5 Appendix: The Asymptotic Ray–Knight Theorem

The following version has been adapted from [2] (see also [8]). Here, H2
0,loc denotes

the space of locally square integrable martingales.

Theorem 5.1 For k ≥ 2 and n ≥ 1, define a sequence (Mn
1,r , M

n
2,r , . . . , M

n
k,r ) of

k-tuples of continuous local martingales (Mn
j,r )r≥0 ∈ H2

0,loc such that for fixed j =
1, . . . , k the limit

〈
Mn

j , M
n
j

〉
∞ is either infinite for all n, or finite for all n. After

possibly enlarging the underlying probability space, each Mn
j possesses a Dambis–

Dubins–Schwarz Brownian motion βn
j and an associated time change T n

j (y), such
that

Mn
j,T n

j (r) = βn
j,r (5.1)

for r ≥ 0 and 1 ≤ j ≤ k (for a proof, see, for example, [9, Ch. V, Thm. 1.7]). If for
a ≥ 0 and 1 ≤ i, j ≤ k with i �= j

sup
r∈[0,a]

|〈Mn
i , Mn

j 〉r | → 0, (n → ∞) (5.2)

in probability, then the k-dimensional process βn
r = (βn

1,r , β
n
2,r , . . . , β

n
k,r )r≥0 con-

verges in distribution to a k-dimensional Brownian motion (βr )r≥0.
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