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Abstract
Two hypotheses on the class L(γ ) in the class OS ∩ ID are discussed. Two weak
hypotheses on the class L(γ ) in the class OS ∩ ID are proved. A necessary and
sufficient condition in order that, for every t > 0, the t-th convolution power of
a distribution in the class OS ∩ ID belongs to the class L(γ ) is given. Sufficient
conditions are given for the validity of two hypotheses on the class L(γ ).
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1 Introduction and Results

In what follows, we denote by R the real line and by R+ the half line [0,∞). Denote
by N the totality of positive integers and by aN the set {a, 2a, 3a, . . . }. The symbol
δa(dx) stands for the delta measure at a ∈ R. Let η and ρ be probability distributions
on R. We denote by η ∗ ρ the convolution of η and ρ and by ρn∗ n-th convolution
power of ρ with the understanding that ρ0∗(dx) = δ0(dx). Denote by ξ̄ (x) the tail
ξ((x,∞)) of a measure ξ on R for x ∈ R. Let γ ≥ 0. We define the γ -exponential
moment̂ξ(γ ) as

̂ξ(γ ) :=
∫ ∞

−∞
eγ xξ(dx).
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If̂ξ(γ ) < ∞, we define the Fourier–Laplace transform̂ξ(γ + i z) for z ∈ R as

̂ξ(γ + i z) :=
∫ ∞

−∞
e(γ+i z)xξ(dx).

An integral
∫ b
a g(x)ρ(dx) means

∫ b+
a+ g(x)ρ(dx). For positive functions f1(x) and

g1(x) on [A,∞) for some A ∈ R, we define the relation f1(x) ∼ g1(x) by
limx→∞ f1(x)/g1(x) = 1 and the relation f1(x) 	 g1(x) by

0 < lim inf
x→∞ f1(x)/g1(x) ≤ lim sup

x→∞
f1(x)/g1(x) < ∞.

Let γ ≥ 0. A distribution ρ on R belongs to the class L(γ ) if ρ(x) > 0 for all x > 0
and, for every a ∈ R,

ρ(x + a) ∼ e−γ aρ(x).

A distribution ρ on R belongs to the class S(γ ) if ρ ∈ L(γ ), ρ̂(γ ) < ∞, and

ρ2∗(x) ∼ 2ρ̂(γ )ρ(x).

A distribution ρ on R belongs to the class OL if ρ(x) > 0 for x > 0 and, for all
a ≥ 0,

ρ(x − a) 	 ρ(x).

A distribution ρ on R belongs to the class OS if ρ(x) > 0 for all x > 0 and

ρ2∗(x) 	 ρ(x).

Note that the class OS is included in the class OL. A distribution ρ on R belongs to
the class S� if ρ ∈ OS and

lim sup
A→∞

lim sup
x→∞

ρ(x − A)ρ̄(A) + ∫ x−A
A ρ̄(x − u)ρ(du)

ρ̄(x)
= 0.

The class S� includes ∪γ≥0S(γ ), and it is closed under convolution powers. A finite
measure ξ satisfies the Wiener condition if̂ξ(i z) �= 0 for every z ∈ R. Denote by W
the totality of finite measures on R satisfying the Wiener condition. We denote by ID
the class of all infinitely divisible distributions on R. For μ ∈ ID, denote by ν its
Lévy measure. Under the assumption that ν̄(c) > 0 for every c > 0, define ν1(dx) :=
1(1,∞)(x)ν(dx)/ν̄(1). Let μ ∈ ID. We define a compound Poisson distribution μ1
with c = ν̄(1) as

μ1(dx) := e−c
∞
∑

k=0

ck

k! ν
k∗
1 (dx).
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Denote by μt∗ the t-th convolution power of μ ∈ ID for t > 0. Note that μt∗ is the
distribution of Xt for a certain Lévy process {Xt } on R. Let γ ≥ 0. Define T (μ, γ )

as

T (μ, γ ) := {t > 0 : μt∗ ∈ L(γ )}.
Since the class L(γ ) is closed under convolutions by Theorem 3 of Embrechts and
Goldie [2], T (μ, γ ) is empty or an additive semigroup in (0,∞). We see from
Lemma 2.2 that for μ ∈ OS ∩ ID, there are positive integers n such that νn∗

1 ∈ OS.
Let n0 be the positive integer defined by (2.1). Note that we do not yet know an example
of μ ∈ OS ∩ ID such that n0 ≥ 3.

A class C of distributions is called closed under convolution roots if ρn∗ ∈ C for
some n ∈ N implies ρ ∈ C. We see from Shimura andWatanabe [11] that the classOS
is not closed under convolution roots, but fromWatanabe and Yamamuro [15] that the
classOS∩ID is closed under convolution roots. Embrechts et al. [4] in the one-sided
case andWatanabe [13] in the two-sided case proved that the classS(0) is closed under
convolution roots, and Embrechts and Goldie [2] conjectured that the class L(γ ) with
γ ≥ 0 is closed under convolution roots, but Shimura and Watanabe [12] showed that
the class L(γ ) with γ ≥ 0 is not closed under convolution roots. Moreover, Watanabe
and Yamamuro [16] proved that the class Sac of all absolutely continuous distributions
on R with subexponential densities is not closed under convolution roots. Embrechts
and Goldie [3] conjectured that the class S(γ )with γ > 0 is closed under convolution
roots. Watanabe [13] proved that S(γ ) ∩ ID with γ ≥ 0 is closed under convolution
roots, but Watanabe [14] showed that the class S(γ ) with γ > 0 is not closed under
convolution roots. We add the following. Klüppelberg [5] showed that the class OS
is closed under convolutions. The class S(γ ) is closed under convolution powers for
γ ≥ 0, but Leslie [7], for γ = 0, and Klüppelberg and Villasenor [6], for γ > 0,
proved that the class S(γ ) is not closed under convolutions.

We consider the following two hypotheses on the classL(γ ) in the classOS ∩ID:

Hypothesis I Let γ ≥ 0. For every μ ∈ OS ∩ ID, if μn∗ ∈ L(γ ) for some n ∈ N,
then μ(n+1)∗ ∈ L(γ ).

Hypothesis II Let γ ≥ 0. For every μ ∈ OS ∩ ID, if μn∗ ∈ L(γ ) for some n ∈ N,
then μ ∈ L(γ ).

We also consider the weak version of the above hypotheses:

Hypothesis I′ Let γ ≥ 0. For every μ ∈ OS ∩ID, if μn∗, μ(n+1)∗ ∈ L(γ ) for some
n ∈ N, then μ(n+2)∗ ∈ L(γ ).

Hypothesis II′ Let γ ≥ 0. For every μ ∈ OS ∩ ID, if μn∗, μ(n+1)∗ ∈ L(γ ) for
some n ∈ N, then μ ∈ L(γ ).

Let γ ≥ 0. Define

A(γ ) := {μ ∈ OS ∩ ID : T (μ, γ ) = (0,∞)};
B(γ ) := {μ ∈ OS ∩ ID : T (μ, γ ) = ∅};
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and

C(γ ) := {μ ∈ OS ∩ ID : T (μ, γ ) = a0N with some a0 > 0}.

Theorem 1.1 Let γ ≥ 0 and μ ∈ OS ∩ ID. We have the following:

(i) OS ∩ ID = A(γ ) ∪ B(γ ) ∪ C(γ ). Thus, Hypotheses I′ and II′ are true.
(ii) The relation μ ∈ A(γ ) holds if and only if, for all a ≥ 0,

lim
x→∞

e−γ aν1(x − a) − ν1(x)

ν
n0∗
1 (x)

= 0. (1.1)

If μ ∈ A(γ ), then νn∗
1 /∈ L(γ ) ∩ OS for 1 ≤ n ≤ n0 − 1 and νn∗

1 ∈ L(γ ) ∩ OS
for n ≥ n0.

Corollary 1.1 Let γ ≥ 0. Then the following are equivalent:

(1) Hypothesis I is true.
(2) Hypothesis II is true.
(3) C(γ ) is empty.
(4) For everyμ ∈ OS∩ID it holds that, for every 2t ∈ T (μ, γ ) and for every a ≥ 0,

lim sup
x→∞

lim sup
λ→∞

| ∫ λ−x
x (e−γ aμt∗

1 (λ − a − u) − μt∗
1 (λ − u))μt∗

1 (du)|
μt∗
1 (λ)

= 0. (1.2)

Remark 1.1 Let γ = 0. Then, C(0) is empty and Hypotheses I and II are true. The
relation μ ∈ A(0) holds if and only if

lim
x→∞

ν1((x, x + 1])
ν
n0∗
1 (x)

= 0.

If μ ∈ A(0), then νn∗
1 /∈ L(0) ∩ OS for 1 ≤ n ≤ n0 − 1 and νn∗

1 ∈ L(0) ∩ OS
for n ≥ n0. Xu et al. showed in Theorem 2.2 of [18] an example of μ ∈ A(0) with
n0 = 2.

For γ > 0, we cannot yet answer the question whether Hypotheses I and II are true.
However, under some additional assumptions in terms of Lévy measure, we establish
that C(γ ) is empty.

Proposition 1.1 Let γ > 0 and μ ∈ OS ∩ ID. Suppose that, for every a ≥ 0,

lim inf
x→∞ e−γ a ν̄1(x − a)/ν̄1(x) ≥ 1. (1.3)

Then, we have either T (μ, γ ) = (0,∞) or ∅.
Remark 1.2 Cui et al. [1] proved a result analogous to the above proposition under a
stronger assumption. Xu et al. showed in Theorem 1.1 of [19] an example of the case
where T (μ, γ ) �= ∅ in the above proposition.
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Proposition 1.2 Let γ > 0 and μ ∈ OS ∩ ID. Suppose that ν2∗1 ∈ L(γ ) and the real
part of ν̂1(γ + i z) is not zero for every z ∈ R. Then, either T (μ, γ ) = (0,∞) or ∅.
Proposition 1.3 Let γ > 0 and μ ∈ OS ∩ ID. Suppose that there exists n1 ∈ N such
that νn1∗1 ∈ S�. Then, either T (μ, γ ) = (0,∞) or ∅. The equality T (μ, γ ) = (0,∞)

holds if and only if ν1 ∈ S(γ ).

Remark 1.3 Watanabe made in Theorem 1.1 of [14] a distribution η ∈ S� such that
ηn∗ ∈ S(γ ) for every n ≥ 2 but η /∈ S(γ ). Thus, taking this η as ν1, then Proposi-
tion 1.3 holds with T (μ, γ ) = ∅.

2 Preliminaries

In this section, we give several basic results as preliminaries. Pakes [8] proved the
following.

Lemma 2.1 (Lemmas 2.1 and 2.5 of [8]) Let μ ∈ ID. Then we have μ ∈ L(γ ) if and
only if μ1 ∈ L(γ ).

Watanabe and Yamamuro [15] proved the following.

Lemma 2.2 (Proposition 3.1 of [15]) Suppose that μ ∈ ID. Then, we have μ ∈ OS
if and only if there is n ∈ N such that νn∗

1 ∈ OS and μt∗
1 (x) 	 νn∗

1 (x) for any t > 0.

For μ ∈ OS ∩ ID, define n0 ∈ N as

n0 := min{n ∈ N : νn∗
1 ∈ OS}. (2.1)

Lemma 2.3 Let μ ∈ OS ∩ ID.

(i) There exists C(a) > 0 such that, for all a ≥ 0 and all x > 0,

ν
n0∗
1 (x − a) ≤ C(a)ν

n0∗
1 (x).

(ii) There exists K > 1 such that, for all n ∈ N and all x > 0,

νn∗
1 (x) ≤ Knν

n0∗
1 (x).

Proof Assertion (i) is clear since ν
n0∗
1 ∈ OS ⊂ OL. We see from Proposition 2.4 of

Shimura and Watanabe [11] that there exists K1 > 1 such that, for all k ∈ N and all
x > 0,

ν
(kn0)∗
1 (x) ≤ Kk

1ν
n0∗
1 (x).

Note that, for m ≤ n,

νm∗
1 (x) ≤ νn∗

1 (x).
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Hence, we have, for 0 ≤ j ≤ n0 − 1 and for all k ∈ N, with K = K 2/n0
1 > 1

ν
(kn0+ j)∗
1 (x) ≤ K (kn0+ j)ν

n0∗
1 (x).

This inequality holds for k = 0 too. Thus, assertion (ii) is true. ��
Under the assumption that ζ ∈ OS ⊂ OL, we define the following. Let

d∗ := lim sup
x→∞

ζ 2∗(x)
ζ (x)

< ∞.

Let � be the totality of increasing sequences {λn}∞n=1 with limn→∞ λn = ∞ such
that, for every x ∈ R, the following limit exists and is finite:

m(x; {λn}) := lim
n→∞

ζ̄ (λn − x)

ζ̄ (λn)
. (2.2)

Define, for each sequence {xn}∞n=1 with limn→∞ xn = ∞, Tn(y) as

Tn(y) := ζ̄ (xn − y)

ζ̄ (xn)
.

Since {Tn(y)}∞n=1 is a sequence of increasing functions, uniformly bounded on every
finite interval, by Helly’s selection principle, there exists an increasing subsequence
{λn} of {xn} with limn→∞ λn = ∞ such that everywhere on R (2.2) holds. The limit
functionm(x; {λn}) is increasing and is finite. That is, {λn} ∈ �. It follows that, under
the assumption that ζ ∈ OS, there exists an increasing subsequence {λn} ∈ � of {xn}
for each sequence {xn}∞n=1 with limn→∞ xn = ∞.

Lemma 2.4 Suppose that ζ ∈ OS. Then, we have the following.
(i) If {λn} ∈ �, then {λn − a} ∈ � for every a ∈ R.
(ii) For {λn} ∈ �,

∫ ∞

−∞
m(x; {λn})ζ(dx) < ∞

and

lim
a→∞m(a; {λn})ζ̄ (a) = 0.

In particular, if ζ ∈ OS ∩ L(γ ), then m(x; {λn}) = eγ x and̂ζ (γ ) < ∞.

Proof We prove (i). Suppose that {λn} ∈ �. We have, for x, a ∈ R,

lim
n→∞

ζ̄ (λn − a − x)

ζ̄ (λn − a)
= m(x + a; {λn})

m(a; {λn}) .
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Thus, {λn − a} ∈ �. Next, we prove (ii). Let ρ be a distribution on R. Note that, for
x > 2A,

ρ2∗(x) = 2
∫ A+

−∞
ρ̄(x − u)ρ(du) + ρ(x − A)ρ̄(A) +

∫ x−A

A
ρ̄(x − u)ρ(du).

(2.3)

We see from (2.3) that, for {λn} ∈ � and s > 0,

d∗ ≥ lim sup
n→∞

ζ 2∗(λn)
ζ (λn)

≥ 2 lim sup
n→∞

∫ s+

−∞
ζ̄ (λn − x)

ζ̄ (λn)
ζ(dx)

≥ 2
∫ s+

−∞
m(x; {λn})ζ(dx).

As s → ∞, we have

∫ ∞

−∞
m(x; {λn})ζ(dx) < ∞.

Since m(x; {λn}) is increasing in x , we have

lim
a→∞m(a; {λn})ζ̄ (a)

≤ lim
a→∞

∫ ∞

a+
m(x; {λn})ζ(dx) = 0.

Hence, if ζ ∈ OS ∩ L(γ ), then m(x; {λn}) = eγ x and ̂ζ (γ ) < ∞. Thus, we have
proved the lemma. ��

Pakes [8,9] asserted and Watanabe [13] finally proved the following.

Lemma 2.5 (Theorem 1.1 of [13]) Let γ ≥ 0. Then μ ∈ ID ∩ S(γ ) if and only if
ν1 ∈ S(γ ).

Lemma 2.6 Let γ ≥ 0. Suppose that ρ ∈ S�.

(i) If η̄(x) 	 ρ̄(x), then η ∈ S�.
(ii) ρ ∈ S(γ ) if and only if ρ ∈ L(γ ).

Proof Suppose that ρ ∈ S�. We prove (i). If η̄(x) 	 ρ̄(x), then there is C > 0 such
that η̄(x) ≤ C ρ̄(x) for x ∈ R. By using integration by parts in the second inequality,
we obtain that
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η̄(x − A)η̄(A) +
∫ x−A

A
η̄(x − u)η(du)

≤ C2ρ̄(x − A)ρ̄(A) + C
∫ x−A

A
ρ̄(x − u)η(du)

≤ 2C2ρ̄(x − A)ρ̄(A) + C2
∫ x−A

A
ρ̄(x − u)ρ(du).

Thus, we see that

lim sup
A→∞

lim sup
x→∞

(η(x − A)η̄(A) + ∫ x−A
A η̄(x − u)η(du))

η̄(x)
= 0.

That is, η ∈ S�. Next we prove (ii). If ρ ∈ S(γ ), then clearly ρ ∈ L(γ ). Note that, for
x > 2A, (2.3) holds. If ρ ∈ S� ∩ L(γ ), then we have

lim
x→∞

ρ2∗(x)
ρ̄(x)

= lim
A→∞ 2

∫ A+

−∞
lim
x→∞

ρ̄(x − u)

ρ̄(x)
ρ(du)

= 2ρ̂(γ ) < ∞.

Thus, we see that ρ ∈ S(γ ). ��
Watanabe [14] extended Wiener’s approximation theorem in [17] as follows.

Lemma 2.7 (Lemma 2.6 of Watanabe [14]) Let ξ be a finite measure on R. The fol-
lowing are equivalent:

(1) ξ ∈ W.

(2) If, for a bounded measurable function g(x) on R,
∫ ∞

−∞
g(x − t)ξ(dt) = 0 for a.e. x ∈ R,

then g(x) = 0 for a.e. x ∈ R.

3 Convolution Lemmas

In this section, we give important lemmas on convolutions.

Lemma 3.1 Let γ ≥ 0. Suppose that ζ ∈ OS . For j = 1, 2, let ρ j be distributions on
R+ satisfying

ρ̄ j (x) ≤ C j ζ̄ (x) with some C j > 0 for all x > 0. (3.1)

Let {λn} ∈ �.

(i) Let λn > a + x and x > 0. We have, for every a ≥ 0,
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e−γ aρ1 ∗ ρ2(λn − a) − ρ1 ∗ ρ2(λn) =:
4

∑

j=1

I j , (3.2)

where

I1 := −
∫ λn−x

λn−a−x
ρ1(λn − y)ρ2(dy),

I2 := ρ1(x)(e
−γ aρ2(λn − a − x) − ρ2(λn − x)),

I3 :=
∫ (λn−a−x)+

0−
(e−γ aρ1(λn − a − y) − ρ1(λn − y))ρ2(dy),

and

I4 :=
∫ x+

0−
(e−γ aρ2(λn − a − y) − ρ2(λn − y))ρ1(dy).

(ii) We have for j = 1, 2

lim sup
x→∞

lim sup
n→∞

|I j |
ζ̄ (λn)

= 0. (3.3)

Proof By using integration by parts, we have

ρ1 ∗ ρ2(λn − a)

=
∫ (λn−a−x)+

0−
ρ1(λn − a − y)ρ2(dy)

+
∫ λn−a

λn−a−x
ρ1(λn − a − y)ρ2(dy) + ρ2(λn − a)

=
∫ (λn−a−x)+

0−
ρ1(λn − a − y)ρ2(dy) +

∫ x+

0−
ρ2(λn − a − y)ρ1(dy)

+ ρ1(x)ρ2(λn − a − x),

and

ρ1 ∗ ρ2(λn)

=
∫ (λn−a−x)+

0−
ρ1(λn − y)ρ2(dy) +

∫ λn−x

λn−a−x
ρ1(λn − y)ρ2(dy)

+
∫ λn

λn−x
ρ1(λn − y)ρ2(dy) + ρ2(λn)

=
∫ (λn−a−x)+

0−
ρ1(λn − y)ρ2(dy) +

∫ λn−x

λn−a−x
ρ1(λn − y)ρ2(dy)

+
∫ x+

0−
ρ2(λn − y)ρ1(dy) + ρ1(x)ρ2(λn − x).
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Thus, assertion (i) is valid. We have by Lemma 2.4 for j = 1, 2

lim sup
x→∞

lim sup
n→∞

|I j |
ζ̄ (λn)

≤ lim sup
x→∞

ρ1(x) lim sup
n→∞

ρ2(λn − a − x)

ζ̄ (λn)

≤ C1C2 lim sup
x→∞

ζ̄ (x)m(x; {λn − a})m(a; {λn}) = 0.

Lemma 3.2 Let γ ≥ 0. Suppose that ζ ∈ OS . For j = 1, 2, let ρ j be distributions on
R+ satisfying (3.1). Suppose further that for j = 1, 2 and every a ≥ 0,

lim
x→∞

e−γ a ρ̄ j (x − a) − ρ̄ j (x)

ζ̄ (x)
= 0.

Then, for every a ≥ 0,

lim
x→∞

e−γ aρ1 ∗ ρ2(x − a) − ρ1 ∗ ρ2(x)

ζ̄ (x)
= 0. (3.4)

Proof. Let {λn} ∈ �. By the assumption for j = 1, there is ε(x) > 0 such that
ε(x) → 0 as x → ∞ and

|e−γ aρ1(λn − a − y) − ρ1(λn − y)| ≤ ε(x)ζ(λn − y)

for 0 ≤ y ≤ λn − a − x . Thus, we have

lim sup
x→∞

lim sup
n→∞

|I3|
ζ̄ (λn)

≤ lim sup
x→∞

ε(x) lim sup
n→∞

∫ (λn−a−x)+
0− ζ̄ (λn − y)ρ2(dy)

ζ̄ (λn)

≤ lim sup
x→∞

ε(x) lim sup
n→∞

ζ̄ (λn) + ∫ λn
a+x ρ2(λn − y)ζ(dy)

ζ̄ (λn)

≤ lim sup
x→∞

ε(x) lim sup
n→∞

ζ̄ (λn) + C2ζ 2∗(λn)
ζ̄ (λn)

= 0.

(3.5)

As in the above argument, we have

lim sup
x→∞

lim sup
n→∞

|I4|
ζ̄ (λn)

= 0.

Thus, by (3.2) and (3.3) of Lemma 3.1, we have proved (3.4). ��
Lemma 3.3 Let γ ≥ 0. Suppose that ζ ∈ OS . For j = 1, 2, let ρ j be distributions on
R+ satisfying (3.1). Suppose further that, for j = 1, 2, and for every a ≥ 0,
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lim inf
x→∞

e−γ a ρ̄ j (x − a) − ρ̄ j (x)

ζ̄ (x)
≥ 0.

Then, we have, for every a ≥ 0,

lim inf
x→∞

e−γ aρ1 ∗ ρ2(x − a) − ρ1 ∗ ρ2(x)

ζ̄ (x)
≥ 0. (3.6)

Proof Let {λn} ∈ �.Let ε > 0 anda ≥ 0be arbitrary, and letn ∈ N and x ∈ (0, λn−a)

be sufficiently large such that

e−γ aρ1(λn − a − y) − ρ1(λn − y) ≥ −εζ̄ (λn − y)

for 0 ≤ y ≤ λn − a − x and

e−γ aρ2(λn − a − y) − ρ2(λn − y) ≥ −εζ̄ (λn − y)

for 0 ≤ y ≤ x . By (3.2) and (3.3) of Lemma 3.1, we have only to prove that

4
∑

j=3

lim inf
x→∞ lim inf

n→∞
I j

ζ̄ (λn)
≥ 0.

We have

I3 ≥ −ε

∫ (λn−a−x)+

0−
ζ̄ (λn − y)ρ2(dy)

≥ −ε

(

ζ̄ (λn) +
∫ λn

a+x
ρ2(λn − y)ζ(dy)

)

≥ −ε
(

ζ̄ (λn) + C2ζ 2∗(λn)
)

,

and

I4 ≥ −ε

∫ x+

0−
ζ̄ (λn − y)ρ1(dy)

≥ −ε

(

ζ̄ (λn) +
∫ λn

λn−x
ρ1(λn − y)ζ(dy)

)

≥ −ε
(

ζ̄ (λn) + C1ζ 2∗(λn)
)

.

Thus, we see that

lim inf
n→∞

I3
ζ̄ (λn)

≥ −ε(1 + C2d
∗),
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and

lim inf
n→∞

I4
ζ̄ (λn)

≥ −ε(1 + C1d
∗).

Since ε > 0 is arbitrary, we established, for j = 3, 4,

lim inf
x→∞ lim inf

n→∞
I j

ζ̄ (λn)
≥ 0.

Thus, we have proved (3.6). ��

Lemma 3.4 Let γ ≥ 0. Suppose that ζ ∈ OS ∩ L(γ ). For j = 1, 2, let ρ j be
distributions on R+ satisfying (3.1). Suppose further that, for every a ≥ 0,

lim
x→∞

e−γ a ρ̄1(x − a) − ρ̄1(x)

ζ̄ (x)
= 0

and, for every a ≥ 0,

lim
x→∞

e−γ aρ1 ∗ ρ2(x − a) − ρ1 ∗ ρ2(x)

ζ̄ (x)
= 0 (3.7)

and that eγ xρ1(dx) ∈ W . Then, we have, for every a ≥ 0,

lim
x→∞

e−γ a ρ̄2(x − a) − ρ̄2(x)

ζ̄ (x)
= 0. (3.8)

Proof Let �2 be the totality of increasing sequences {λn}∞n=1 with limn→∞ λn = ∞
such that, for every x ∈ R, the following limit exists and is finite:

m2(x; {λn}) := lim
n→∞

ρ̄2(λn − x)

ζ̄ (λn)
.

We have �2 ⊂ �. As for �, it follows that, under the assumption that ζ ∈ OS and
ρ2(x) ≤ C2ζ̄ (x), there exists an increasing subsequence {λn} ∈ �2 of {xn} for each
sequence {xn}∞n=1 with limn→∞ xn = ∞. Let {λn} ∈ �2. Recall from Lemma 2.4 that
m(x; {λn}) = eγ x and̂ζ (γ ) < ∞. As in the proof of Lemma 3.2, we have (3.5). We
find that, for every a ∈ R,

l(x) := lim
n→∞

I4
ζ̄ (λn)

=
∫ x+

0−
(e−γ am2(a + y; {λn}) − m2(y; {λn}))ρ1(dy).
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Define M2(y; {λn}) := e−γ ym2(y; {λn}). Then M2(y; {λn}) ≤ C2 on R. Note that

l(x) =
∫ x+

0−
(M2(a + y; {λn}) − M2(y; {λn}))eγ yρ1(dy).

We see from (3.2), (3.3) of Lemma 3.1, (3.5), and (3.7) that, for every a ∈ R,

lim
x→∞ l(x) =

∫ ∞

0−
(M2(a + y; {λn}) − M2(y; {λn}))eγ yρ1(dy) = 0.

Thus, we obtain that, for every a, b ∈ R,

∫ ∞

0−
(M2(a + b + y; {λn}) − M2(b + y; {λn}))eγ yρ1(dy) = 0.

Since eγ yρ1(dy) ∈ W , we find from Lemma 2.7 that, for every a ∈ R,

M2(a + b; {λn}) = M2(b; {λn}) for a.e. b ∈ R.

Since the function m2(x; {λn}) is increasing, the functions M2(x+; {λn}) and
M2(x−; {λn}) exist for all x ∈ R. Taking bn = bn(a) ↓ 0 and bn = bn(a) ↑ 0,
we have

M2(a+; {λn}) = M2(0+; {λn}) and M2(a−; {λn}) = M2(0−; {λn}).

As a ↑ 0 in the first equality, we see that

M2(0−; {λn}) = M2(0+; {λn})

and hence, for every a ∈ R,

M2(a; {λn}) = M2(0; {λn}).

Since {λn} ∈ �2 is arbitrary, we have (3.8). ��
Lemma 3.5 Let γ ≥ 0. Suppose that ζ ∈ OS . For j = 1, 2, let ρ j be distributions on
R+ satisfying (3.1). Suppose further that, for j = 1, 2, and for every a ≥ 0,

lim inf
x→∞

e−γ a ρ̄ j (x − a) − ρ̄ j (x)

ζ̄ (x)
≥ 0.

If we have, for every a ≥ 0,

lim
x→∞

e−γ aρ1 ∗ ρ2(x − a) − ρ1 ∗ ρ2(x)

ζ̄ (x)
= 0,
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then, for j = 1, 2, and for every a ≥ 0,

lim
x→∞

e−γ a ρ̄ j (x − a) − ρ̄ j (x)

ζ̄ (x)
= 0.

Proof Suppose that, for some a > 0,

lim sup
x→∞

e−γ aρ2(x − a) − ρ2(x)

ζ̄ (x)
> 0.

Then there is {λn} ∈ � such that, for some a > 0,

lim
n→∞

e−γ aρ2(λn − a) − ρ2(λn)

ζ̄ (λn)
=: δ0 > 0.

So there is δ1 > 0 such that, for some a > 0,

lim inf
n→∞

e−γ (a+δ1)ρ2(λn − a) − ρ2(λn)

ζ̄ (λn)
=: δ2 > 0.

Take y0 such that x > y0 > δ1 and ρ1((y0 − δ1, y0]) > 0. Let λ′
n := λn + y0 and

a′ := a + δ1. Then we have

∫ y0

y0−δ1

(e−γ a′
ρ2(λ

′
n − a′ − y) − ρ2(λ

′
n − y))ρ1(dy)

≥ ρ1((y0 − δ1, y0])(e−γ a′
ρ2(λn − a) − ρ2(λn)).

(3.9)

Let λ′
n > a′ + x and x > 0. Define J as

J := e−γ a′
ρ1 ∗ ρ2(λ

′
n − a′) − ρ1 ∗ ρ2(λ

′
n).

Then we have as in assertion (i) of Lemma 3.1

J =
4

∑

j=1

I ′
j ,

where

I ′
1 := −

∫ λ′
n−x

λ′
n−a′−x

ρ1(λ
′
n − y)ρ2(dy),

I ′
2 := ρ1(x)(e

−γ a′
ρ2(λ

′
n − a′ − x) − ρ2(λ

′
n − x)),

I ′
3 :=

∫ (λ′
n−a′−x)+

0−
(e−γ a′

ρ1(λ
′
n − a′ − y) − ρ1(λ

′
n − y))ρ2(dy),
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and

I ′
4 :=

∫ x+

0−
(e−γ a′

ρ2(λ
′
n − a′ − y) − ρ2(λ

′
n − y))ρ1(dy).

For 1 ≤ j ≤ 3, let

J j := I ′
j ,

and let

I ′
4 =

6
∑

j=4

J j ,

where

J4 :=
∫ (y0−δ1)+

0−
(e−γ a′

ρ2(λ
′
n − a′ − y) − ρ2(λ

′
n − y))ρ1(dy),

J5 :=
∫ x

y0
(e−γ a′

ρ2(λ
′
n − a′ − y) − ρ2(λ

′
n − y))ρ1(dy),

and

J6 :=
∫ y0

y0−δ1

(e−γ a′
ρ2(λ

′
n − a′ − y) − ρ2(λ

′
n − y))ρ1(dy).

Then we have

J =
6

∑

j=1

J j .

As in the proof of Lemma 3.3, we see from the assumption and (3.9) that

0 = lim
n→∞

J

ζ̄ (λ′
n)

≥
6

∑

j=1

lim inf
x→∞ lim inf

n→∞
J j

ζ̄ (λ′
n)

≥ lim inf
n→∞

J6
ζ̄ (λ′

n)

≥ lim inf
n→∞ ρ1((y0 − δ1, y0]) (e

−γ a′
ρ2(λn − a) − ρ2(λn))

ζ̄ (λ′
n)

= ρ1((y0 − δ1, y0]) δ2

m(−y0; {λn}) > 0.
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This is a contradiction. Thus, we have, for every a ≥ 0,

lim
x→∞

e−γ a ρ̄2(x − a) − ρ̄2(x)

ζ̄ (x)
= 0.

By the analogous argument, we have for every a ≥ 0,

lim
x→∞

e−γ a ρ̄1(x − a) − ρ̄1(x)

ζ̄ (x)
= 0.

Thus, we have proved the lemma. ��
Lemma 3.6 Let γ ≥ 0. Let ρ be a distribution on R+. Suppose that ρ ∈ OS and, for
every a ≥ 0,

lim inf
x→∞ e−γ a ρ̄(x − a)/ρ̄(x) ≥ 1. (3.10)

Then, for some positive integer n ≥ 2, ρn∗ ∈ L(γ ) implies that ρ ∈ L(γ ).

Proof Let ζ := ρ. Then we see from Lemma 3.3 that, for every k ∈ N and every
a ≥ 0,

lim inf
x→∞

e−γ aρk∗(x − a) − ρk∗(x)
ρ̄(x)

≥ 0.

Thus, we find that ρ1 := ρ and ρ2 := ρ(n−1)∗ satisfy the assumptions of Lemma 3.5.
Hence, we have by Lemma 3.5, for every a ≥ 0,

lim
x→∞

e−γ a ρ̄(x − a) − ρ̄(x)

ρ̄(x)
= 0.

That is, ρ ∈ L(γ ). ��
Remark 3.1 For γ = 0, the assumption (3.10) necessarily holds, but for γ > 0,without
the assumption (3.10) the lemma does not hold. For γ > 0, Watanabe [14] made a
distribution η ∈ OS such that ηn∗ ∈ L(γ ) for every n ≥ 2 but η /∈ L(γ ).

4 Proof of Results

In this section, we prove the results stated in Sect. 1.

Lemma 4.1 Let γ ≥ 0 and μ ∈ OS ∩ ID. If, for every a ≥ 0, (1.1) holds, then, for
all n ∈ N and every a ≥ 0,

lim
x→∞

e−γ aνn∗
1 (x − a) − νn∗

1 (x)

ν
n0∗
1 (x)

= 0, (4.1)
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and we have T (μ, γ ) = (0,∞).

Proof By induction, we see from Lemma 3.2 that if (1.1) holds for every a ≥ 0, then,
for all n ∈ N and every a ≥ 0, we have (4.1). We have with c := ν̄(1), for t > 0,

μt∗
1 := e−ct

∞
∑

k=0

(ct)k

k! νk∗1 .

Suppose that, for all n ∈ N and every a ≥ 0, (4.1) holds. Let ε > 0 be arbitrary. By
Lemma 2.3, we can choose sufficiently large N ∈ N such that, for ε > 0,

e−ct
∞
∑

k=N+1

(ct)k

k!
|e−γ aνk∗1 (x − a) − νk∗1 (x)|

ν
n0∗
1 (x)

< ε.

We find from (4.1) that, for every a ≥ 0,

lim
x→∞ e−ct

N
∑

k=1

(ct)k

k!
e−γ aνk∗1 (x − a) − νk∗1 (x)

ν
n0∗
1 (x)

= 0.

Thus, we see that, for every a ≥ 0 and for every t > 0,

lim
x→∞

e−γ aμt∗
1 (x − a) − μt∗

1 (x)

ν
n0∗
1 (x)

= 0.

Since μt∗
1 (x) 	 ν

n0∗
1 (x) for every t > 0, we have T (μ, γ ) = (0,∞). ��

Lemma 4.2 Let γ ≥ 0 and μ ∈ OS ∩ ID. If 0 is a limit point of T (μ, γ ), then, for
every a ≥ 0, (1.1) holds.

Proof. Suppose that 0 is a limit point of T (μ, γ ). Then, there exists a strictly decreasing
sequence {tn}∞n=1 in T (μ, γ ) converging to 0 as n → ∞. We have with c := ν̄(1)

μ
tn∗
1 := e−ctn

∞
∑

k=0

(ctn)k

k! νk∗1 .

Since {tn}∞n=1 in T (μ, γ ) and μ
tn∗
1 (x) 	 ν

n0∗
1 (x) from Lemma 2.2, we see that, for

every a ≥ 0,

lim
x→∞

e−γ aμ
tn∗
1 (x − a) − μ

tn∗
1 (x)

ν
n0∗
1 (x)

= lim
x→∞

e−γ aμ
tn∗
1 (x − a) − μ

tn∗
1 (x)

μ
tn∗
1 (x)

μ
tn∗
1 (x)

ν
n0∗
1 (x)

= 0.
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Thus, we obtain from Lemma 2.3 that, for every a ≥ 0,

lim sup
x→∞

|e
−γ aν1(x − a) − ν1(x)

ν
n0∗
1 (x)

|

= lim sup
n→∞

lim sup
x→∞

|e
ctn

ctn

e−γ aμ
tn∗
1 (x − a) − μ

tn∗
1 (x)

ν
n0∗
1 (x)

− e−γ aν1(x − a) − ν1(x)

ν
n0∗
1 (x)

|

≤ lim sup
n→∞

lim sup
x→∞

∞
∑

k=2

(ctn)(k−1)

k!
e−γ aνk∗1 (x − a) + νk∗1 (x)

ν
n0∗
1 (x)

= 0.

Thus, we have (1.1) for every a ≥ 0. �

Lemma 4.3 Let γ ≥ 0 and μ ∈ OS ∩ ID. If t0, t1 ∈ T (μ, γ ) with t1 > t0, then
t1 − t0 ∈ T (μ, γ ). If T (μ, γ ) has a limit point, then T (μ, γ ) = (0,∞). If T (μ, γ )

has the minimum a0 > 0, then T (μ, γ ) = a0N.

Proof Suppose that t0, t1 ∈ T (μ, γ ) with t1 > t0. Let ζ := ρ1 := μt0∗ and
ρ2 := μ(t1−t0)∗. The distribution eγ xρ1(dx)/ρ̂1(γ ) is an exponentially tilted infinitely
divisible distribution andhence itself is infinitely divisible, thus having a non-vanishing
characteristic function. That is, eγ xρ1(dx) ∈ W . See (iii) of Theorem 25.17 of Sato
[10]. Thus, we see from Lemma 3.4 that μ(t1−t0)∗ ∈ L(γ ). Thus, if T (μ, γ ) has a
limit point, then 0 is a limit point of T (μ, γ ), and hence, by Lemmas 4.1 and 4.2,
T (μ, γ ) = (0,∞). If T (μ, γ ) has the minimum a0 > 0, then clearly a0N ⊂ T (μ, γ )

and T (μ, γ )\a0N = ∅. ��

Proof of Theorem 1.1 Assertion (i) is clear from Lemmas 4.1, 4.2, and 4.3. The first
part of assertion (ii) is due to Lemmas 4.1 and 4.2. Suppose that μ ∈ A(γ ). If n < n0,
then νn∗

1 /∈ OS simply because of the definition of n0. If n ≥ n0 and x is large, then

νn∗
1 (x) ≥ ν

n0∗
1 (x), and hence, (4.1) implies that νn∗

1 ∈ L(γ ). ��

Proof of Corollary 1.1 Suppose that C(γ ) is not empty. Then there is the minimum
a0 > 0 in T (μ, γ ) for μ ∈ C(γ ). Since a0 > 0 is a period of T (μ, γ ), for n = 2,
μa0∗ = (μ(a0/n)∗)n∗ ∈ L(γ ) but (μ(a0/n)∗)(n+1)∗ /∈ L(γ ) and μ(a0/n)∗ /∈ L(γ ).
Thus, Hypotheses I and II are not true. Suppose that C(γ ) is empty. Then, obviously,
Hypotheses I and II are true. Thus, (1), (2), and (3) are equivalent. We prove the
equivalence of (3) and (4). Suppose that C(γ ) is empty. Then for every μ ∈ OS ∩ID
it holds that, for every 2t ∈ T (μ, γ ), μt∗

1 ∈ L(γ ), and hence, for all a ≥ 0, (1.2)
holds. Conversely, suppose that C(γ ) is not empty and, for a0 = 2t ∈ T (μ, γ ) with
μ ∈ C(γ ) and for all a ≥ 0, (1.2) holds. Letting ρ1 := ρ2 := μt∗

1 , ζ := μ2t∗
1 , define

�2 as in Lemma 3.4 and let {λn} ∈ �2 ⊂ �.We have (3.3) by Lemma 3.1 for j = 1, 2.
We have I3 + I4 = 2I4 + I5, where

I5 :=
∫ λn−a−x

x
(e−γ aρ1(λn − a − y) − ρ1(λn − y))ρ2(dy),
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We have by the assumption (1.2) for every a ≥ 0

lim sup
x→∞

lim sup
n→∞

|I5|
ζ̄ (λn)

= 0.

Define M2(y; {λn}) := e−γ ym2(y; {λn}). Thus, we find from (3.2), (3.3), and 2t ∈
T (μ, γ ) that, for every a ≥ 0,

lim
x→∞ lim

n→∞
I4

ζ̄ (λn)

=
∫ ∞

0−
(e−γ am2(a + y; {λn}) − m2(y; {λn}))ρ1(dy)

=
∫ ∞

0−
(M2(a + y; {λn}) − M2(y; {λn}))eγ yρ1(dy) = 0.

The distribution eγ xρ1(dx)/ρ̂1(γ ) is an exponentially tilted infinitely divisible distri-
bution and hence itself is infinitely divisible, thus having a non-vanishing characteristic
function. That is,

eγ yρ1(dy) = eγ yμt∗
1 (dy) ∈ W.

As in the proof of Lemma 3.4, we have ρ2 = μt∗
1 ∈ L(γ ). This is a contradiction.

Thus, (3) and (4) are equivalent. ��
Proof of Remark 1.1 Let γ = 0. Then we see from Lemma 3.6 that Hypothesis II is
true. Thus, C(0) is empty, and hence, Remark 1.1 follows from Theorem 1.1. ��
Proof of Proposition 1.1 Let γ > 0 and μ ∈ OS ∩ ID. Suppose that (1.3) holds for
every a ≥ 0. Let ζ := ν

n0∗
1 . Then, by induction, we see from (1.3) and Lemma 3.3

that, for every n ∈ N and every a ≥ 0,

lim inf
x→∞

e−γ aνn∗
1 (x − a) − νn∗

1 (x)

ν
n0∗
1 (x)

≥ 0.

Let ε > 0 be arbitrary. Thus, letting N ∈ N sufficiently large, we have, for every t > 0
and for every a ≥ 0,

lim inf
x→∞

e−γ aμt∗
1 (x − a) − μt∗

1 (x)

ν
n0∗
1 (x)

= lim inf
x→∞ e−ct

N
∑

k=1

(ct)k

k!
e−γ aνk∗1 (x − a) − νk∗1 (x)

ν
n0∗
1 (x)

− lim sup
x→∞

e−ct
∞
∑

k=N+1

(ct)k

k!
e−γ aνk∗1 (x − a) + νk∗1 (x)

ν
n0∗
1 (x)

≥ −ε.
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Since ε > 0 is arbitrary and ν
n0∗
1 (x) 	 μ

(t/n)∗
1 (x) for every n ∈ N, we obtain that

ρ := μ
(t/n)∗
1 satisfies ρ ∈ OS and (3.10) holds. Hence, we find from Lemma 3.6 that

if t ∈ T (μ, γ ), then t/n ∈ T (μ, γ ) for every n ∈ N. Thus, by Lemmas 4.1 and 4.2,
either T (μ, γ ) = (0,∞) or ∅. ��
Proof of Proposition 1.2 Suppose that ν2∗1 ∈ L(γ ) and the real part of ν̂1(γ + i z) is not
0 for every z ∈ R. If t ∈ T (μ, γ ), then

μt∗
1 = e−ct

∞
∑

k=0

(ct)k

k! νk∗1 ∈ L(γ ) ∩ OS. (4.2)

Define distributions η1 and η2 on R+ as

η1 := (cosh(ct))−1
∞
∑

k=0

(ct)2k

(2k)! ν
(2k)∗
1

and

η2 := (sinh(ct))−1
∞
∑

k=0

(ct)2k+1

(2k + 1)!ν
(2k+1)∗
1 .

We see fromProposition 3.1 of Shimura andWatanabe [11] that η j ∈ OS and η j (x) 	
ν
n0∗
1 (x) for j = 1, 2. Let ε > 0 be arbitrary. We obtain from Lemma 2.3 that there is
a positive integer N = N (a, ε, t) such that

lim sup
x→∞

(cosh(ct))−1
∞
∑

k=N+1

(ct)2k

(2k)!
e−γ aν

(2k)∗
1 (x − a) + ν

(2k)∗
1 (x)

ν
n0∗
1 (x)

< ε.

Since ν
(2k)∗
1 ∈ L(γ ) for every k ≥ 0, we have, for every a ≥ 0 and every t > 0,

lim sup
x→∞

(cosh(ct))−1
N

∑

k=0

(ct)2k

(2k)!
|e−γ aν

(2k)∗
1 (x − a) − ν

(2k)∗
1 (x)|

ν
n0∗
1 (x)

= 0.

Thus, with some C = C(t) > 0 we have, for every a ≥ 0 and every t > 0,

lim sup
x→∞

|e−γ aη1(x − a) − η1(x)|
η1(x)

≤ lim sup
x→∞

(cosh(ct))−1
N

∑

k=0

(ct)2k

(2k)!
|e−γ aν

(2k)∗
1 (x − a) − ν

(2k)∗
1 (x)|

Cν
n0∗
1 (x)

+ lim sup
x→∞

(cosh(ct))−1
∞
∑

k=N+1

(ct)2k

(2k)!
e−γ aν

(2k)∗
1 (x − a) + ν

(2k)∗
1 (x)

Cν
n0∗
1 (x)

≤ ε/C .
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Since ε > 0 is arbitrary, we have

η1 ∈ L(γ ) ∩ OS. (4.3)

Since

sinh(ct)η2 = ectμt∗
1 − cosh(ct)η1,

we have by (4.2) and (4.3)

η2 ∈ L(γ ) ∩ OS.

Let ζ := ρ1 := η2 and ρ2 := ν1. Then, by argument similar to the proof of (4.3),

ρ1 ∗ ρ2 = (sinh(ct))−1
∞
∑

k=0

(ct)2k+1

(2k + 1)!ν
(2k+2)∗
1 ∈ L(γ ) ∩ OS.

Since the real part of ν̂1(γ + i z) is not 0 for every z ∈ R,

2 sinh(ct)ρ̂1(γ + i z) = exp(ct ν̂1(γ + i z)) − exp(−ct ν̂1(γ + i z)) �= 0

for every z ∈ R, that is, eγ xρ1(dx) ∈ W . Thus, we see from Lemma 3.4 that

lim
x→∞

e−γ a ν̄1(x − a) − ν̄1(x)

ζ̄ (x)
= 0.

Since ζ̄ (x) 	 ν
n0∗
1 (x), we see from Theorem 1.1 that T (μ, γ ) = (0,∞). Thus, we

have proved the proposition. ��
Proof of Proposition 1.3 Let γ > 0 and μ ∈ OS ∩ ID. Suppose that νn1∗1 ∈ S�. Since

μt∗(x) 	 ν
n1∗
1 (x), we have μt∗ ∈ S� for every t > 0. Thus, we see from Lemmas

2.5 and 2.6 that if T (μ, γ ) �= ∅, then ν1 ∈ S(γ ) and hence T (μ, γ ) = (0,∞). That
is, either T (μ, γ ) = (0,∞) or ∅. Moreover, T (μ, γ ) = (0,∞) if and only if ν1 ∈
S(γ ). ��
Acknowledgements The author is grateful to the referee for his careful reading the manuscript and helpful
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