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Abstract

Two hypotheses on the class £(y) in the class OS N ZD are discussed. Two weak
hypotheses on the class £(y) in the class OS N ID are proved. A necessary and
sufficient condition in order that, for every ¢+ > 0, the 7-th convolution power of
a distribution in the class OS N ID belongs to the class L(y) is given. Sufficient
conditions are given for the validity of two hypotheses on the class L£(y).
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1 Introduction and Results

In what follows, we denote by R the real line and by R the half line [0, co). Denote
by N the totality of positive integers and by aN the set {a, 2a, 3a, ...}. The symbol
84 (dx) stands for the delta measure at a € R. Let n and p be probability distributions
on R. We denote by 1 * p the convolution of 1 and p and by p** n-th convolution
power of p with the understanding that p%(dx) = 8o(dx). Denote by &(x) the tail
&((x, 00)) of a measure £ on R for x € R. Let y > 0. We define the y-exponential
moment g(y) as

Fy) = / e7XE(d).
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If E(y) < 00, we define the Fourier—Laplace transform E(y +iz) forz €e Ras

E(y +iz) ::[ Ve (dx).

—00

An integral [ub g(x)p(dx) means fab: g(x)p(dx). For positive functions fj(x) and

g1(x) on [A,00) for some A € R, we define the relation fi(x) ~ gi(x) by
limy_, o0 f1(x)/g1(x) = 1 and the relation f;(x) =< g|(x) by

0 <liminf f1(x)/g1(x) = limsup f1(x)/g1(x) < oo.

Let y > 0. A distribution p on R belongs to the class L(y) if p(x) > O forall x > 0
and, for every a € R,

px+a) ~ e " p(x).
A distribution p on R belongs to the class S(y) if p € L(y), p(y) < 0o, and
P2 (x) ~ 25(1)P(x).

A distribution p on R belongs to the class OL if p(x) > 0 for x > 0 and, for all
a Z 09

p(x —a) =< p(x).
A distribution p on R belongs to the class OS if p(x) > 0 for all x > 0 and
P (x) < P(x).

Note that the class OS is included in the class OL. A distribution p on R belongs to
the class Sy if p € OS and

0.

B = A + [T B — w)p(du)
lim sup lim sup =

A—o00 X—>00 p(x)

The class S; includes U, ~0S(y), and it is closed under convolution powers. A finite
measure & satisfies the Wiener condition if E(i z) # 0 for every z € R. Denote by W
the totality of finite measures on R satisfying the Wiener condition. We denote by ZD
the class of all infinitely divisible distributions on R. For u € ZD, denote by v its
Lévy measure. Under the assumption that v(c) > 0 for every ¢ > 0, define v (dx) :=
1(1,00)(x)v(dx)/v(1). Let u € ZD. We define a compound Poisson distribution ft
with ¢ = v(1) as

ok
. c

wi(dx) :==e” ¢ E va*(dx).
k=0
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Denote by u'* the ¢-th convolution power of u € ZD for t > 0. Note that u'* is the
distribution of X; for a certain Lévy process {X;} on R. Let y > 0. Define T (u, y)
as

T(u,y):={t>0:u"eLy)

Since the class L£(y) is closed under convolutions by Theorem 3 of Embrechts and
Goldie [2], T(u, y) is empty or an additive semigroup in (0, co). We see from
Lemma 2.2 that for © € OS N ID, there are positive integers n such that vi* € OS.
Letng be the positive integer defined by (2.1). Note that we do not yet know an example
of u € OS N ZID such that ng > 3.

A class C of distributions is called closed under convolution roots if p™* € C for
some n € Nimplies p € C. We see from Shimura and Watanabe [11] that the class OS
is not closed under convolution roots, but from Watanabe and Yamamuro [15] that the
class OS NZD is closed under convolution roots. Embrechts et al. [4] in the one-sided
case and Watanabe [13] in the two-sided case proved that the class S(0) is closed under
convolution roots, and Embrechts and Goldie [2] conjectured that the class £(y) with
y > 01is closed under convolution roots, but Shimura and Watanabe [12] showed that
the class L£(y) with y > 0 is not closed under convolution roots. Moreover, Watanabe
and Yamamuro [16] proved that the class S, of all absolutely continuous distributions
on R with subexponential densities is not closed under convolution roots. Embrechts
and Goldie [3] conjectured that the class S(y) with y > 0 is closed under convolution
roots. Watanabe [13] proved that S(y) N ZD with y > 0 is closed under convolution
roots, but Watanabe [14] showed that the class S(y) with y > 0 is not closed under
convolution roots. We add the following. Kliippelberg [5] showed that the class OS
is closed under convolutions. The class S(y) is closed under convolution powers for
y > 0, but Leslie [7], for y = 0, and Kliippelberg and Villasenor [6], for y > 0,
proved that the class S(y) is not closed under convolutions.

We consider the following two hypotheses on the class £(y) in the class OS NID:

HYPOTHESIS ILety > 0. Forevery u € OS NZID, if u™ € L(y) for some n € N,
then u+* e L(y).

HYPOTHESIS Il Let y > 0. Forevery u € OS NID, if u"™* € L(y) forsomen € N,
then u € L(y).
We also consider the weak version of the above hypotheses:

HYPOTHESIS I' Let y > 0. Forevery u € OSNID,if ™, u™+tV* e L(y) for some
n € N, then " +2* € L(y).

HyPOTHESIS II' Let y > 0. For every u € OS NID, if u™*, n"+Y* e L(y) for
some n € N, then u € L(y).
Let y > 0. Define

Ay) :={n € OSNID : T (1, y) = (0,00)};
B(y) :=={n e OSNID:T(ny) =9}
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and
Cly) ={ueOSNID:T(u,y)=aN with some ag > 0}.

Theorem 1.1 Let y > 0 and u € OS NID. We have the following:

(1) OSNID = A(y)U B(y) UC(y). Thus, Hypotheses I' and II' are true.
(i) The relation u € A(y) holds if and only if, for all a > 0,

. e V(x —a) —vi(x)
lim — =0
X—00 v;lo*(x)

(1.1

If u € A(y), then vi* ¢ L(y)NOS for1 <n <ng—1land vi* € L(y) N OS
forn > ny.
Corollary 1.1 Let y > 0. Then the following are equivalent:

(1) Hypothesis I is true.
(2) Hypothesis Il is true.

(3) C(y) is empty.
(4) Forevery u € OSNID itholds that, for every 2t € T (u, y) and foreverya > 0,

A—X, —va % J—
e Va l*)“_a_u_ t*)\‘_u t*dld
lim sup lim sup e i )~y ( Ny (du)|

X—>00 A—00 H_ll*()h)

=0. (1.2)
Remark 1.1 Let y = 0. Then, C(0) is empty and Hypotheses I and II are true. The
relation o € A(0) holds if and only if

.ovi((x, x +10)
lim —— =
X—>00 vl() (X)

0.

If u € A(0), then vi* ¢ L(O0)NOS for 1 < n < ng—1and vi* € LO) N OS
for n > ng. Xu et al. showed in Theorem 2.2 of [18] an example of © € A(0) with
no = 2.

For y > 0, we cannot yet answer the question whether Hypotheses I and II are true.
However, under some additional assumptions in terms of Lévy measure, we establish
that C(y) is empty.

Proposition 1.1 Let y > 0 and u € OS NI D. Suppose that, for every a > 0,
liminfe 7901 (x —a)/v1(x) > 1. (1.3)
X—>00

Then, we have either T (i, y) = (0, 00) or @.

Remark 1.2 Cui et al. [1] proved a result analogous to the above proposition under a
stronger assumption. Xu et al. showed in Theorem 1.1 of [19] an example of the case
where T'(, y) # ¥ in the above proposition.

@ Springer



856 Journal of Theoretical Probability (2021) 34:852-873

Proposition 1.2 Let y > 0 and u € OS NID. Suppose that v%* € L(y) and the real
part of Vi (y + iz) is not zero for every z € R. Then, either T (i, y) = (0, 00) or @.

Proposition 1.3 Let y > 0 and u € OS NID. Suppose that there exists n; € N such
that vnl* € S;. Then, either T (i, y) = (0, 00) or . The equality T (v, y) = (0, 00)
holds lfand only if vy € S(y).

Remark 1.3 Watanabe made in Theorem 1.1 of [14] a distribution n € Sy such that
* e S(y) for every n > 2 but n ¢ S(y). Thus, taking this n as vy, then Proposi-
tion 1.3 holds with T'(u, y) = @.

2 Preliminaries

In this section, we give several basic results as preliminaries. Pakes [8] proved the
following.

Lemma 2.1 (Lemmas 2.1 and 2.5 of [8]) Let u € ZD. Then we have u € L(y) if and
only if uy € L(y).

Watanabe and Yamamuro [15] proved the following.

Lemma 2.2 (Proposition 3.1 of [15]) Suppose that i € ID. Then, we have u € OS
if and only if there is n € N such that vi* € OS and p/*(x) < v} V™ (x) for any t > 0.

For u € OS NID, define ng € N as
no :=minf{n € N: v* € OS}. 2.1

Lemma23 Letu € OSNID.

(1) There exists C(a) > 0 such that, for all a > 0 and all x > 0,

v (x —a) < C(a)vno*(x).
(i) There exists K > 1 such that, for alln € N and all x > 0,

W(x) < K"V (x).

Proof Assertion (i) is clear since v{** € OS C OL. We see from Proposition 2.4 of
Shimura and Watanabe [11] that there exists K| > 1 such that, for all k¥ € N and all
x >0,

l)](km))*(x) < Kk no*( )
Note that, form < n,

*(x) < vn*(x)
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Hence, we have, for0 < j <ng— 1and forall k € N, with K = Klz/"0 > 1
vfknO"‘./.)*(x) < K(kn0+j)vil0*(.x).
This inequality holds for k = 0 too. Thus, assertion (ii) is true. O

Under the assumption that { € OS C OL, we define the following. Let

2%
d* :=lim sup >= x)
x—oo  (x)

Let A be the totality of increasing sequences {)\n}fjozl with lim,, .o A, = 00 such
that, for every x € R, the following limit exists and is finite:

£ —x)

= 2.2
¢ (An) 22

m(x; {An}) = 11{20

Define, for each sequence {x,}7° ; with lim,_, o, x,, = 00, T,(y) as

§(xn —y)

T, =
o) ¢ (xn)

Since {7, (y)};2 , is a sequence of increasing functions, uniformly bounded on every
finite interval, by Helly’s selection principle, there exists an increasing subsequence
{An} of {x;;} with lim,_, 5 A;, = 00 such that everywhere on R (2.2) holds. The limit
function m(x; {X\,}) is increasing and is finite. That is, {A,} € A. It follows that, under
the assumption that { € OS, there exists an increasing subsequence {A,} € A of {x,}

for each sequence {x,};° ; with lim,_, o X, = c0.
Lemma 2.4 Suppose that ¢ € OS. Then, we have the following.

) If {rn} € A, then {\, — a} € A for everya € R.
(ii) For {\,} € A,

/Oo m(x; {An})¢(dx) < 00

—00

and
131;0 m(a; {A}))¢ (@) = 0.

In particular, if ¢ € OS N L(y), then m(x; {A,}) = V¥ and?(y) < 00.

Proof We prove (i). Suppose that {A,} € A. We have, for x, a € R,

O —a—x)  mx+a; {h))

lim —
n—=00  r(Ay —a) m(a; {An})

@ Springer



858 Journal of Theoretical Probability (2021) 34:852-873

Thus, {X, —a} € A. Next, we prove (ii). Let p be a distribution on R. Note that, for
x > 2A,

. A+ x—A
P (x) = 2[ plx —u)p(du) +p(x — A)p(A) +/A px —u)p(du).
(2.3)

We see from (2.3) that, for {,} € A ands > 0,

00
d* > lim sup {_ ()
n—oo ¢(Ay)

S+ _
z2limsup/ %

¢(dx)
s+
=2 [ e e,
As s — 00, we have
/ m(x; {Ap})¢(dx) < oo.
Since m(x; {X,}) is increasing in x, we have
Jim m(a (1) (@)

e¢]

< lim m(x; {An})¢(dx) = 0.

a— o0 a+

Hence, if ¢ € OS N L(y), then m(x; {A,}) = V¥ and E(y) < 00. Thus, we have
proved the lemma. O

Pakes [8,9] asserted and Watanabe [13] finally proved the following.

Lemma 2.5 (Theorem 1.1 of [13]) Let y > 0. Then u € ZD N S(y) if and only if
vp € S(y).

Lemma 2.6 Lety > 0. Suppose that p € S;.

() Ifn(x) < p(x), thenn € Sj.
(ii) p € S(y) ifand only if p € L(y).

Proof Suppose that p € Sy. We prove (i). If 7(x) =< p(x), then there is C > 0 such
that 7(x) < Cp(x) for x € R. By using integration by parts in the second inequality,
we obtain that
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x—A
ﬁu—AmmwyA 7Gx — u)n(du)
x—A
sC%u—mmm+C/ p(x — u)n(du)
A
x—A
szﬁmx—AmmrHﬂ/ B — w)p(du).
A

Thus, we see that

- ~ x—A =
lim sup lim sup ((x = Ai(A) + [ i —wn(du)) _

A—soo X—>00 n(x)

0.

That is, n € Sy. Next we prove (ii). If p € S(y), then clearly p € L(y). Note that, for
x >2A, (2.3) holds. If p € S3 N L(y), then we have

PP (x)
¥=00 p(x)

A+ 500 —
= lim 2/ im 2=

A—oo  J_oo ¥x—00  p(x)
=2p(y) < oo.
Thus, we see that p € S(y). O

Watanabe [14] extended Wiener’s approximation theorem in [17] as follows.

Lemma 2.7 (Lemma 2.6 of Watanabe [14]) Let & be a finite measure on R. The fol-
lowing are equivalent:

(1) £ eW.
(2) If; for a bounded measurable function g(x) on R,

/OO gx —1)E(dt) =0 forae x €R,

then g(x) =0 fora.e. x € R.

3 Convolution Lemmas

In this section, we give important lemmas on convolutions.

Lemma3.1 Lety > 0. Suppose that { € OS. For j = 1,2, let p; be distributions on
Ry satisfying

pjx) < ij(x) with some C; > 0 forall x > 0. 3.1

Let {)\,} € A.
(i) Let Ay, > a + x and x > 0. We have, for every a > 0,
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4
eV PTE O — @) — PTE IO = 3 1, (32)
j=l1
where
An—Xx
I = _/ P1(hn — y)p2(dy),
Ap—a—x
I = ﬁ(x)(fyaﬁ(?»n —a—x)— p2(ky — X)),
(n—a—x)+

I = / (€7D0 — @ — ) = BT0m — Y))P2(dy),

and

X+
Iy = /0 € 7D2(kn —a—y) —02(kn — ¥))p1(dy).

(ii)) We have for j = 1,2

. . 7l
lim sup lim sup = =0. 3.3)

x—o0o n—ooo C(Ay)

Proof By using integration by parts, we have

o1 % p2(Ay — @)

(An—a—x)+
= / P1(Ap —a — y)p2(dy)

An—a
+ / P1(hy —a — y)p2(dy) + p2(rn — a)
A

n—a—x

()"n*a*x)‘l’ x4+
= / P1(Ap —a — y)p2(dy) + f P2(kn —a — y)p1(dy)
0—

+ o1(x)p2(Ay —a — x),
and

o1 % p2(An)
An—Xx

(Ap—a—x)+
= / 01(Ap — y)p2(dy) + / P1(An — y)p2(dy)

Ap—a—x

o
+/A P1(An — y)p2(dy) + 02(An)

n—X
(Ap—a—x)+ An—Xx
= f 01k — y)p2(dy) + / P1(An — y)p2(dy)

An—a—x

x4+
+/0 02(An — y)p1(dy) + p1(x)p2(Ap — X).
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Thus, assertion (i) is valid. We have by Lemma 2.4 for j = 1, 2

I . 171
im sup lim sup =
r—oo n—oo C(Ay)
SO0 —
< lim sup pp (x) lim sup M
X—>00 n—00 (An)
< C1Calimsup £ (x)m (x; {n — aPm(a; {h,}) = 0.
X—> 00

Lemma3.2 Let y > 0. Suppose that ¢ € OS. For j = 1,2, let p; be distributions on
Ry satisfying (3.1). Suppose further that for j = 1,2 and every a > 0,

T = @) = ()

= =0.
X—00 g(x)

Then, for every a > 0,

lim e o1 % p2(x —a) — p1 * p2(x)

= =0. 3.4
X—00 g'(x) ( )

Proof. Let {X,} € A. By the assumption for j = 1, there is €(x) > 0 such that
€(x) > 0asx — oo and

le " “Pr(An —a —y) = p1(kn — Y)| < €(X)Z(An — y)
for0 <y < A, —a — x. Thus, we have

|13]

lim sup lim sup =
x—)oop n—>oop§' An)

(Ap—a—x)+ 2
An — d
< lim sup € (x) lim sup fo_ £ Ver(dy)

X—>00 n—00 ()\. )

d
< lim sup € (x) lim sup £0m) + fa+x P2(An — ¥)¢(dy)

X—>00 n—00 {()\n)

C () + C20% (0
flimsupe(x)limsup“ )—i__ 287 ):

(3.5)

As in the above argument, we have

I
lim sup lim sup = 4
x—o0o n—oo C(Ap)

Thus, by (3.2) and (3.3) of Lemma 3.1, we have proved (3.4). O

Lemma3.3 Let y > 0. Suppose that ¢ € OS. For j = 1,2, let p; be distributions on
Ry satisfying (3.1). Suppose further that, for j = 1,2, and for every a > 0,
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eV —a) = () _

0.

lim inf =
X—00 é‘(x)

Then, we have, for every a > 0,

N —
liminf & p1* p2(x — a) ,01*,02(16)Z

= 0. 3.6
xX—00 é'(x) ( )

Proof Let{),} € A.Lete > Oanda > Obearbitrary,andletn € Nandx € (0, A,,—a)
be sufficiently large such that

e VBT —a =) = P10y = ¥) = —€S(hy = ¥)
forO0 <y <A, —a—xand
e300 —a—y) =020 — ¥) = —€L(hn — ¥)
for0 <y < x.By (3.2) and (3.3) of Lemma 3.1, we have only to prove that

4

I.
lim inf lim inf —Z— > 0
— X—>00 n—>00 ;()tn)
j=3
We have
(hp—a—x)+ _
I3 > —6/0 ¢ (A — ¥)p2(dy)
- )Ln
> —€ (§ (An) +/ p2(An — y)((dy)>
a+x
> — (£0u) + G227 0)
and

x+ _
> —e /O E(h — y)pr(dy)

v

An
—€ (g: (An) 4—/A P1(hn — y)é“(dy)>

n—X

v

—e (c0m + T ).

Thus, we see that

I
liminf =—— > —e(1 + Cod*),
n—>00 ¢ (Ay)
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and

.. Iy «
lim inf = > —e(1 4+ C1d™).

n=>00 £ (An)

Since € > 0 is arbitrary, we established, for j = 3,4,

I.
lim inf lim inf —X— > 0.
X—>00 n—>00 {()\n

Thus, we have proved (3.6). O

Lemma3.4 Let y > 0. Suppose that ¢ € OS N L(y). For j = 1,2, let p; be
distributions on R satisfying (3.1). Suppose further that, for every a > 0,

lim eV p1(x —a) — p1(x) _

= 0
xX—00 é‘(x)

and, for every a > 0,

e TUPIFpA(x — @) = PIEHCY) _

lim = 0 3.7
X—> 00 é’(x)
and that eV py(dx) € W. Then, we have, for every a > 0,
—ya= o N =
lim & pz(X_ a) — p2(x) _0 (.8)
X—00 é'(x)

Proof Let A; be the totality of increasing sequences {A,}°2 ; with lim, 4 A, = 00
such that, for every x € R, the following limit exists and is finite:

52 s —
mo(x; {An}) := lim %.

We have A2_C A. As for A, it follows that, under the assumption that { € OS and
2(x) < Cy¢(x), there exists an increasing subsequence {A,} € A» of {x,} for each
sequence {)c,,},‘z‘;1 with lim,,_, o x,, = 00. Let {A,} € A3. Recall from Lemma 2.4 that

m(x; {,,}) = e¥* and E(y) < 00. As in the proof of Lemma 3.2, we have (3.5). We
find that, for every a € R,

. 4
/ =1 -
® = A T

x4+
= / (e 7" maa + y; {An}) — ma(y; {An})p1(dy).

@ Springer



864 Journal of Theoretical Probability (2021) 34:852-873

Define M3 (y; {Ay}) := e 7" ma(y; {An}). Then M3 (y; {A,}) < C, on R. Note that
X+ i
I(x) = /0 (Ma(a + y: {An}) — Ma(y: {An}))e”” p1(dy).
We see from (3.2), (3.3) of Lemma 3.1, (3.5), and (3.7) that, for every a € R,
o0
Jim 1(x) = /0 (Ma(a + y; {An}) — Ma(y; {An}))e”? p1(dy) = 0.
Thus, we obtain that, for every a, b € R,
o0
/0 (M(a+ b+ y: () — Ma(b+ y: [a}))e? p1 (dy) = 0.

Since e p1(dy) € W, we find from Lemma 2.7 that, for every a € R,
My(a + b; {A,}) = Ma(b; {A,}) forae. b eR.
Since the function m(x; {A,}) is increasing, the functions M>(x-+; {A,}) and
M>(x—; {1, }) exist for all x € R. Taking b, = b,(a) | 0 and b, = b,(a) 1 O,
we have
Ma(a+; {An}) = M2(0+4; {A,}) and Ma(a—; {An}) = M2(0—; {An}).
As a 71 0 1in the first equality, we see that
Mz (0—; {1n}) = M2(0+; {2, })
and hence, for every a € R,
My (a; {xn}) = M2(0; {An}).
Since {1} € Aj is arbitrary, we have (3.8). O

Lemma3.5 Let y > 0. Suppose that ¢ € OS. For j = 1,2, let p; be distributions on
Ry satisfying (3.1). Suppose further that, for j = 1,2, and for every a > 0,

eV (x — @) = p(x) _

lim inf 0.

X—00 E(x)

If we have, for every a > 0,

lim e T prEpp(x —a) = prEp(x)

_ 0,
X— 00 {(X)
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then, for j = 1, 2, and for every a > 0,

€D —a) = i)

= 0.
X—00 é‘(x)

Proof Suppose that, for some a > 0,

. e 7p(x —a) — pa(x)
lim sup

= > 0.
X—00 Z(x)

Then there is {A,} € A such that, for some a > 0,

li e V(Mg —a) — p2(Ay)
m = =
n—00 ¢(An)

180 > 0.

So there is §; > 0 such that, for some a > 0,

—v@+55(n, — a) — (A
lim inf < P20 =) =p20) _ sy
n—00 ¢ (Ay)

Take yp such that x > yo > &1 and p; ((yo — 31, yol) > 0. Let A/, := A, + yo and
a’ == a + 8. Then we have

o ,
/ (€T, —d = y) — 7300 — y)pi (dy)
Y0—3i (3.9)
> p1((yo — 81, yoD (e 7" p2(hn — @) — P2(Xp)).
Let A, > a’ + x and x > 0. Define J as

Ji=e " prepa(h, —a') —pr* p2(hy).

Then we have as in assertion (i) of Lemma 3.1

4
J = ZI/.,
j=1

where

My —x
I = —f P1(hy, = Y)p2(dy),
Ap—a'—x

Iy = o) (e " pa(hy — a’ — x) — pa(k, — X)),

O —a —x)+ ,
I3 = f (e 7 pr(h, —a' —y) —pi(x, — y)p2(dy),
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and
x+ ,
Iy = /o (e"";a(n, —a' —y) —D2(n, — y)p1(dy).

For1 <j <3, let

Jj = I},
and let
6
Ii = Z Jj,
j=4
where
Go=d+ , , ,
Ji = / (e pa(hy, —d —y) —p2(h, — ¥)p1(dy),
X ’
Js = / (€7 B0L —d — y) — T — YD1 (dy),
Y0
and

30 ,
Jo = / (B304 — ' — y) — B0 — y)pr(dy).
n

0—31

Then we have

6
J = ZJ,-.
j=1

As in the proof of Lemma 3.3, we see from the assumption and (3.9) that

0= lim =
n—o0 C()‘;z)
6 7.
> Y liminf lim inf =~
e X—>00 n—>00 ;‘()Ln)
> liminf =
n—o00 é‘()\;l)

(e 530 — a) — P2 (hn))
c(A)

> liminf p;((yo — 41, yol)
n—>oo

b))

- N ) P I——)
p1((yo =1 yO])m(—yo;{)»n}) >
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This is a contradiction. Thus, we have, for every a > 0,

e 7o (x —a) — pa(x) _

lim = 0.
X—>00 e (x)
By the analogous argument, we have for every a > 0,
. e Vpi(x —a) — p1(x)
lim = =0.
xX—>00 ¢ (X)
Thus, we have proved the lemma. O

Lemma3.6 Lety > 0. Let p be a distribution on R . Suppose that p € OS and, for
everya > (),

liminf e "“5(x —a)/p(x) > 1. (3.10)
X—>00

Then, for some positive integer n > 2, p"* € L(y) implies that p € L(y).

Proof Let { := p. Then we see from Lemma 3.3 that, for every k € N and every
a>0,

liminf &P~ @) = P )
R A0

> 0.

Thus, we find that p; := p and p; := p"~D* satisfy the assumptions of Lemma 3.5.
Hence, we have by Lemma 3.5, for every a > 0,

o TP — ) — )
1m — =
xo00 p(0)

0.

Thatis, p € L(y). m]

Remark 3.1 Fory = 0, the assumption (3.10) necessarily holds, butfor y > 0, without
the assumption (3.10) the lemma does not hold. For y > 0, Watanabe [14] made a
distribution n € OS such that n** € L(y) foreveryn > 2butn ¢ L(y).

4 Proof of Results

In this section, we prove the results stated in Sect. 1.

Lemma4.1 Lety > 0and u € OS NID. If, for every a > 0, (1.1) holds, then, for
alln € Nand everya > 0,

lim T — @) — V@) _

“nox
e Vlo (x)

0, 4.1
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and we have T (i, y) = (0, 00).

Proof By induction, we see from Lemma 3.2 that if (1.1) holds for every a > 0, then,
for all n € N and every a > 0, we have (4.1). We have with ¢ := v(1), fort > 0,

_ (ct)*
tk . ct 2 : k*
l/l/l -— e k! 1 .

k=0

Suppose that, for all # € N and every a > 0, (4.1) holds. Let € > 0 be arbitrary. By
Lemma 2.3, we can choose sufficiently large N € N such that, for € > 0,

0 —ya k¥ ke
et (c)F le 7 * (x — a) — 1™ (%))
¢ Z k! no* <€
k=N+1 : (x)

We find from (4.1) that, for every a > 0,

N k e~ Vay k* kv
t X —a X
l1me_“z(c) ( )~ 1()=0.
xX— 00 - k! "0*(x)
Thus, we see that, for every a > 0 and for every ¢ > 0,
e_V’ZW x —a) — u*(x
. u(n*> W
xX—>00 0 ()C)
Since ,u_’l*(x) = v?o*(x) for every t > 0, we have T'(u, y) = (0, 00). O

Lemmad4.2 Lety > 0and u € OS NID. If 0 is a limit point of T (1, y), then, for
everya > 0, (1.1) holds.

Proof. Suppose that 0 is a limit point of 7' (i, y). Then, there exists a strictly decreasing
sequence {t,}7° ; in T (i, ) converging to 0 as n — 0o. We have with ¢ := v(1)

0 k
[ —ct } : (Ctn) k
[Lln =e Cln —k‘ Ul*.

k=0

Since {1,}°2 "O*(x) from Lemma 2.2, we see that, for

every a > 0,

L in T, y) and 7™ (x) =<

e (o —a) = ()

lim
X—>00 no*(x)
e (o —a) — 1) )
= lim n — =0.
xX—>00 /-’Ll ()C) 0 (X)
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Thus, we obtain from Lemma 2.3 that, for every a > 0,

. e 7 Vi(x —a) —vi(x)
lim sup | |
X—>00 no*(x)

. . et e VA (x — @) — i (x) _eTV(x —a) = Vi(x)
= lim sup lim sup |

n—oo x—o0 Cly ”0*(x) "0*(x)

=0.

(k=1) p=va,, k* _ ke
1,
< lim sup lim sup Z (ctn ) ¢ G—a) +v)

"ok
n—oo  x—00 ;— 10()

Thus, we have (1.1) for every a > 0. O

Lemma4d3 Lety > 0and pu € OSNID. Ifty,t; € T(w,y) with ty > ty, then
n—to € T(w, y) If T(, y) has a limit point, then T (i, y) = (0, 00). If T (i, y)
has the minimum ag > 0, then T (., y) = agN.

Proof Suppose that f9,t; € T(w,y) with t; > 1. Let { := p; = u* and
p2 = p1=0)* The distribution e”* p1 (dx)/p1 () is an exponentially tilted infinitely
divisible distribution and hence itself is infinitely divisible, thus having a non-vanishing
characteristic function. That is, e”* p1(dx) € W. See (iii) of Theorem 25.17 of Sato
[10]. Thus, we see from Lemma 3.4 that 1=0* e £(y). Thus, if T(u, y) has a
limit point, then O is a limit point of T (u, y), and hence, by Lemmas 4.1 and 4.2,
T(w,y) = (0,00).If T (i, y) has the minimum ag > 0, then clearly agN C T (u, y)
and T (u, y)\aoN = 4. O

Proof of Theorem 1.1 Assertion (i) is clear from Lemmas 4.1, 4.2, and 4.3. The first
part of assertion (ii) is due to Lemmas 4.1 and 4.2. Suppose that u € A(y).If n < ny,
then v{'* ¢ OS simply because of the definition of ng. If n > ng and x is large, then

*(x) > v""*(x) and hence, (4.1) implies that v} € L(y). |
Proof of Corollary 1.1 Suppose that C(y) is not empty. Then there is the minimum
ap > 0in T(p, y) for u € C(y). Since agp > 0 is a period of T (u, y), forn = 2,
pnaox = (,u(ag/n)*)n* € L(y) but (M(ao/n)*)(nJrl)* ¢ L(y) and M(ao/n)* ¢ L(y).
Thus, Hypotheses I and II are not true. Suppose that C(y) is empty. Then, obviously,
Hypotheses I and II are true. Thus, (1), (2), and (3) are equivalent. We prove the
equivalence of (3) and (4). Suppose that C(y) is empty. Then for every u € OSNID
it holds that, for every 2t € T (u, y), ,u’l* € L(y), and hence, for all a > 0, (1.2)
holds. Conversely, suppose that C(y) is not empty and, for ag = 2t € T (u, y) with
w € C(y) and for all @ > 0, (1.2) holds. Letting p; := pp 1= u{*, ¢ := u%’*, define
AsasinLemma3.4andlet{A,} € Ao C A.Wehave (3.3)by Lemma3.1forj =1, 2.
We have I3 + Iy = 214 + Is, where

Ap—a—x
Is = / (€ VBT 0m — @ — y) — 510w — Y)Pa(dy),
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We have by the assumption (1.2) for every a > 0

I . 75|
im sup lim sup =
x—>o00 n—oo C(Ap)

Define M) (y; {M,}) := e VYma(y; {Ay}). Thus, we find from (3.2), (3.3), and 2¢ €
T (u, y) that, for every a > 0,

) . Iy
Iim lim =
X—>00n—00 ;()Ln)

= fo (e 7" maa+ y; {(A})) — ma(y; {Aa ) p1(dy)

/0 (Ma(a + y; {An}) — Ma(y; {Aa})e”” p1(dy) = 0.

The distribution e¥* p; (dx)/p1 (v) is an exponentially tilted infinitely divisible distri-
bution and hence itself is infinitely divisible, thus having a non-vanishing characteristic
function. That is,

e’ pi(dy) = e ¥ (dy) e W.

As in the proof of Lemma 3.4, we have pp = utl* € L(y). This is a contradiction.
Thus, (3) and (4) are equivalent. O

Proof of Remark 1.1 Let y = 0. Then we see from Lemma 3.6 that Hypothesis II is
true. Thus, C(0) is empty, and hence, Remark 1.1 follows from Theorem 1.1. O

Proof of Proposition 1.1 Let y > 0 and © € OS N ZD. Suppose that (1.3) holds for
every a > 0. Let ¢ := v?o*. Then, by induction, we see from (1.3) and Lemma 3.3

that, for every n € N and every a > 0,

iminf K Z O Z T
X—>00 v;lo*(x)

Lete > 0be arbitrary. Thus, letting N € N sufficiently large, we have, for every t > 0
and for every a > 0,

e (x — @) — il (x)

lim inf —
i Vo (x)
N —va kx “x
= liminfe ' Y (et €77 VI*(x — @) = vi*(x)
T x5 k! no*
k=1 Vi (-x)

o k ,—ya,k* kx
. _ (ct)* e VN (x —a) + vi*(x)
ct 1 1
— limsupe E I = > —
k=N+1 " v (x)

X—> 00
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/myx

Since € > 0 is arbitrary and v"o*(x) =y (x) for every n € N, we obtain that

p = Y/ m* satisfies o € OS and (3.10) holds. Hence, we find from Lemma 3.6 that

ift € T(u,y),thent/n € T(u, y) for every n € N. Thus, by Lemmas 4.1 and 4.2,
either T (i, ) = (0, co) or @. O

Proof of Proposition 1.2 Suppose that v12* € L(y) and the real part of D1 (y +iz) is not
Oforevery z e R.Ift € T(w, y), then

v a3 D ke o, 4.2
s - ») (42
k=0

Define distributions 17 and 1, on R as

(ct)* S

n = (cosh(ct))*1 Z
k

— (26! 1
and
00 2k+1
n2 := (sinh(ct))~ ZO T p2erD,

We see from Proposition 3.1 of Shimura and Watanabe [11] thatn; € OS and 7, (x) =

v?o*(x) for j = 1,2. Let € > 0 be arbitrary. We obtain from Lemma 2.3 that there is
a positive integer N = N (a, €, t) such that

0 (Ct)2k e,yav?k)*(x a) + v(2k)>k( )

lim sup(cosh(ct)f1 <e.
X—>00 k:%;i-l (2k)! v’fO*(x)
Since v(2k)* € L(y) for every k > 0, we have, for every a > 0 and every t > 0,

(Ct)zk |e—yav;2k)*(x —a)— (2k)*( )|

lim sup(cosh(ct))™ IZ 20! To*( ) =0.
X—> 00 . \}l X

Thus, with some C = C(r) > 0 we have, for every a > 0 and every ¢ > 0,

. e (x —a) — 1 (x)]
lim sup
X—>00 n1(x)

(e Je v (o — a) = v )

<1li h(ct))™! M
N
00 (ct)zk e—yav§2k)*( )+v(2k>*( )

+ lim sup(cosh(ct))_1
200 o

<e¢€/C.
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Since € > 0 is arbitrary, we have
n € L(y)NOS. “4.3)
Since
sinh(ct)ny = e u* — cosh(ct)n,
we have by (4.2) and (4.3)
nm € L(y)NOS.

Let ¢ := p1 := 12 and p> := v;. Then, by argument similar to the proof of (4.3),

2t 1
(ct)*+ L (2k+D)x

T € L(y)NOS.

o0
pi*py = (sinh(cr) ™)
k=0

Since the real part of Vi (y + iz) is not O for every z € R,
2 sinh(ct)py(y + iz) = exp(ctvi(y +iz)) — exp(—civi(y +iz)) #0

for every z € R, that is, eV p;(dx) € W. Thus, we see from Lemma 3.4 that

e —a) — b ()
lim - =
X—00 ;‘(x)

Since E(x) = v'fo*(x), we see from Theorem 1.1 that T (i, y) = (0, 0o). Thus, we
have proved the proposition. O

Proof of Proposition 1.3 Let y > 0 and u € OS NZD. Suppose that uf'* € ;. Since

W(x) = ;”*(x), we have u'* € S; for every t > 0. Thus, we see from Lemmas

2.5 and 2.6 that if T' (i, y) # @, then vi € S(y) and hence T (i, y) = (0, 00). That
is, either T'(u, y) = (0, 00) or @. Moreover, T (, y) = (0, 00) if and only if v| €
S(y). O
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