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Abstract
The so-called supOU processes, namely the superpositions of Ornstein–Uhlenbeck
type processes, are stationary processes for which one can specify separately the
marginal distribution and the temporal dependence structure. They can have finite or
infinite variance. We study the limit behavior of integrated infinite variance supOU
processes adequately normalized. Depending on the specific circumstances, the limit
can be fractional Brownian motion but it can also be a process with infinite variance,
a Lévy stable process with independent increments or a stable process with dependent
increments.We show that it is even possible to have infinite variance integrated supOU
processes converging to processeswhosemoments are all finite.A number of examples
are provided.
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1 Introduction

SupOU processes which are defined below are superpositions of stationary Ornstein–
Uhlenbeck processes driven by a Lévy process. They were studied extensively by
Barndorff-Nielsen and his collaborators [2,5–7]. An attractive feature of supOU
processes is that they allow the marginal distribution and the temporal dependence
structure to be modeled independently.

The supOU process is defined as follows: It is a strictly stationary process X =
{X(t), t ∈ R} represented by the stochastic integral [2]

X(t) =
∫
R+

∫
R

e−ξ t+s1[0,∞)(ξ t − s)Λ(dξ, ds). (1)

whereΛ is a homogeneous infinitely divisible randommeasure (Lévy basis) onR+×R,
with cumulant function for A ∈ B (R+ × R)

C {ζ ‡ Λ(A)} := logEeiζΛ(A) = m(A)κL(ζ ) = (π × Leb) (A)κL(ζ ). (2)

The control measure m = π × Leb is the product of a probability measure π on R+
and the Lebesgue measure on R. The probability measure π “randomizes” the rate
parameter ξ , and the Lebesguemeasure is associated with themoving average variable
s. Finally, κL in (2) is the cumulant function κL(ζ ) = logEeiζ L(1) of some infinitely
divisible random variable L(1) with Lévy–Khintchine triplet (a, b, μ), i.e.,

κL(ζ ) = iζa − ζ 2

2
b +

∫
R

(
eiζ x − 1 − iζ x1[−1,1](x)

)
μ(dx). (3)

The Lévy process L = {L(t), t ≥ 0} associated with the triplet (a, b, μ) is called the
background driving Lévy process, and the quadruple

(a, b, μ, π) (4)

is referred to as the characteristic quadruple.
Themarginal distribution of X is determined by L , while the dependence structure is

controlled by the probability measure π . Indeed, if EX(t)2 < ∞, then the correlation
function of X is the Laplace transform of π :

r(t) =
∫
R+

e−tξπ(dξ), t ≥ 0. (5)

More details about supOU processes can be found in [2–5,12].
Integrated supOU process X∗ = {X∗(t), t ≥ 0} defined by

X∗(t) =
∫ t

0
X(s)ds (6)
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has a complex asymptotic behavior. We have shown in Grahovac et al. [13] that when
the supOU process has a finite variance, then different types of limits of integrated
process can occur depending on the specific structure of the process. In this paper,
we study what happens when the supOU has infinite variance. We show that again
different limits can occur depending in particular on how heavy the tails of the supOU
process are.We show that it is possible to have an infinite variance process to converge
to a process with all moments finite.

Our results may be of particular interest in financial econometrics where supOU
processes are used as stochastic volatility models, and hence the integrated process
X∗ represents the integrated volatility (see, e.g., Barndorff-Nielsen and Stelzer [6]).
The limiting behavior is also important for statistical estimation (see Stelzer et al. [27]
and Curato and Stelzer [9]). In Grahovac et al. [13], it has been shown that integrated
supOU processes may exhibit an interesting phenomenon of intermittency which may
be relevant for applications in turbulence (see, e.g., Zel’dovich et al. [28]).

When the supOU process {X(t), t ∈ R} has finite variance, four different limiting
processes may be obtained depending on the elements of the characteristic quadruple,
namely

– Brownian motion,
– fractional Brownian motion,
– a stable Lévy process, and
– a stable process with dependent increments defined in (18) below.

The type of limit depends on whether Gaussian component is present in (4), on a
parameter α quantifying dependence and on a parameter β quantifying the growth of
the Lévy measure μ in (4) near origin.

We show in this paper that when the supOU process {X(t), t ∈ R} has infinite
variance, the limiting behavior depends additionally on the regular variation index γ

of the marginal distribution. As limiting process, one can obtain

– a stable Lévy process,
– a stable process with dependent increments defined in (18) below, and
– fractional Brownian motion.

We provide examples to illustrate the results.
The paper is organized as follows. In Sect. 2, we list the assumptions used for our

results. Section 3 contains the main results, and in Sect. 4 examples are provided. All
the proofs are contained in Sect. 5.

2 Basic Assumptions

Before stating the main results, we introduce some notation and basic assumptions.

2.1 Preliminaries

A random variable Z with an infinite variance stable distribution Sγ (σ, ρ, c) and
parameters 0 < γ < 2, σ > 0, −1 ≤ ρ ≤ 1 and c ∈ R has a cumulant function of
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the form

κSγ (σ,ρ,c)(ζ ) := C{ζ ‡ Z} = icζ − σγ |ζ |γ (1 − iρ sign(ζ )χ(ζ, γ )) , ζ ∈ R, (7)

where

χ(ζ, γ ) =
{
tan

(πγ
2

)
, γ �= 1,

π
2 log |ζ |, γ = 1.

For simplicity of the exposition, wherever it applies we will assume Z is symmetric
(ρ = 0) when γ = 1, and hence we can write

χ(ζ, γ ) = χ(γ ) =
{
tan

(πγ
2

)
, γ �= 1,

0, γ = 1.

We shall make a number of basic assumptions.

2.2 Domain of Attraction

We suppose that the marginal distribution of the supOU process {X(t), t ∈ R} in (1)
belongs to the domain of attraction of stable law, that is, X(1) has balanced regularly
varying tails:

P(X(1) > x) ∼ pk(x)x−γ and P(X(1) ≤ −x) ∼ qk(x)x−γ , as x → ∞, (8)

for some p, q ≥ 0, p + q > 0, 0 < γ < 2 and some slowly varying function k. If
γ = 1, we assume p = q. In particular, the variance is infinite. Moreover, when the
mean is finite, that is, when γ > 1, we assume EX(1) = 0. These assumptions imply
that X(1) is in the domain of attraction of Sγ (σ, ρ, 0) law with (Ibragimov and Linnik
[15, Theorem 2.6.1])

σ =
(

Γ (2 − γ )

1 − γ
(p + q) cos

(πγ

2

))1/γ

, ρ = p − q

p + q
. (9)

Now consider the Lévy process {L(t), t ≥ 0} introduced in Sect. 1. By Fasen and
Klüppelberg [11, Proposition 3.1], the tail of the distribution function of X(1) is
asymptotically equivalent to the tail of the background driving Lévy process L(t) at
t = 1. More precisely, as x → ∞

P(L(1) > x) ∼ γ P(X(1) > x) and P(L(1) ≤ −x) ∼ γ P(X(1) ≤ −x). (10)

Hence, (8) implies

P(L(1) > x) ∼ pγ k(x)x−γ and P(L(1) ≤ −x) ∼ qγ k(x)x−γ , asx → ∞,

(11)
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and L(1) is in the domain of attraction of stable distribution Sγ (γ 1/γ σ, ρ, 0). Note
that the scale parameter σ of X(1) yields a scale parameter γ 1/γ σ for L(1).

The normalizing sequence in some of the limit theorems below involves the de
Bruijn conjugate of a slowly varying function (Bingham et al. [8, Subsection 1.5.7]).
Recall that the de Bruijn conjugate of some slowly varying function h is a slowly
varying function h# such that

h(x)h# (xh(x)) → 1, h#(x)h(xh#(x)) → 1,

as x → ∞. By Bingham et al. [8, Theorem 1.5.13], such function always exists and
is unique up to asymptotic equivalence.

2.3 Dependence Structure

The second set of assumptions deals with the temporal dependence structure dictated
by the behavior near the origin of the probability measure π in the characteristic
quadruple (4). We will assume that the probability measure π is regularly varying at
zero, that is, for some α > 0 and some slowly varying function �

π ((0, x]) ∼ �(x−1)xα, asx → 0. (12)

To simplify the proofs of some of the results below, wewill assume thatπ has a density
p which is monotone on (0, x ′) for some x ′ > 0 so that (12) implies

p(x) ∼ α�(x−1)xα−1, asx → 0. (13)

To see how this affects dependence, note that if the variance is finite EX(t)2 < ∞,
then (5) and (12) imply that the correlation function satisfies (Fasen and Klüppelberg
[11, Proposition 2.6])

r(τ ) ∼ Γ (1 + α)�(τ)τ−α, asτ → ∞.

Hence, if α ∈ (0, 1), the correlation function is not integrable, and the finite variance
supOU process may be said to exhibit long-range dependence. On the other hand, note
that the behavior of π at infinity does not affect the decay of correlations as decay of
correlations depends on the asymptotics of π near zero. To simplify the presentation
of the results, we shall assume that

∫ ∞

0
ξπ(dξ) < ∞. (14)

2.4 Behavior of the LévyMeasure at the Origin

Unlike classical limit theorems, the limiting distribution of the integrated supOU
processes does not depend only on the tails of the marginal distribution and on the
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dependence structure. The third component affecting the limit is the growth of the
Lévy measure μ near origin. We will quantify this growth by assuming a power law
behavior of the Lévy measure near the origin. Let

M+(x) = μ ([x,∞)) , x > 0,

M−(x) = μ ((−∞,−x]) , x > 0,

denote the tails of μ. We will assume that there exist β ≥ 0, c+, c− ≥ 0, c+ + c− > 0
such that

M+(x) ∼ c+x−β and M−(x) ∼ c−x−β as x → 0. (15)

Since μ is the Lévy measure, we must have β < 2. If (15) holds, then β is the
Blumenthal–Getoor index of the Lévy measure μ defined by (see Grahovac et al.
[13])

βBG = inf

{
γ ≥ 0 :

∫
|x |≤1

|x |γ μ(dx) < ∞
}
. (16)

Note that by [20, Lemma7.15] M+(x) ∼ P(L(1) > x) and M−(x) ∼ P(L(1) ≤ −x)

as x → ∞, hence we can express (11) equivalently as

M+(x) ∼ pγ k(x)x−γ and M−(x) ∼ qγ k(x)x−γ , as x → ∞.

In general, making assumptions on the value of the Blumenthal–Getoor index βBG

is more general than assuming (15). For example, in the geometric stable example
in Sect. 4.4 below, the mass of the Lévy measure near the origin increases at the
logarithmic rate, and hence (15) does not hold but βBG = 0. Certain parts of our main
results below require only assumptions on the value of the Blumenthal–Getoor index
and not (15) (see Remark 1).

The condition (15) may be equivalently stated in terms of the Lévy measure of
X(1). Indeed, if ν is the Lévy measure of X(1), then (15) is equivalent to

ν ([x,∞)) ∼ β−1c+x−β and ν ((−∞,−x]) ∼ β−1c−x−β asx → 0. (17)

See Grahovac et al. [13] for details.

3 Main Results

Before stating the main theorems, let us review the parameters introduced in the
previous section:

– γ ∈ (0, 2) defined in (8) is the regular variation index of the marginal distribution,
– α ∈ (0,∞) defined in (13) quantifies the strength of dependence, and
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– β ∈ [0, 2) defined in (15) is the power law exponent of the Lévy measure μ near
origin.

The resulting limiting process depends on the interplay between the parameters α, β,
and γ . In the next theorem, the process {X(t), t ∈ R} has no Gaussian component.

Here and in what follows, {·} f dd→ {·} denotes the convergence of finite dimensional
distributions.

Theorem 1 Suppose that the supOU process {X(t), t ∈ R} is such that

– b = 0 and thus has no Gaussian component,
– the marginal distribution satisfies (8) with 0 < γ < 2,
– the behavior at the origin of the Lévy measure μ is given by (15) with 0 ≤ β < 2,

and
– π has a density p satisfying (13) with α > 0 and some slowly varying function �

and (14) holds.

Then the following holds:

(I) If γ < 1 + α, then as T → ∞
{

1

T 1/γ k#(T )1/γ
X∗(T t)

}
f dd→ {

Lγ (t)
}
,

where k is the slowly varying function in (8), k# is the de Bruijn conjugate of

1/k
(
x1/γ

)
and the limit {Lγ } is a γ -stable Lévy process such that Lγ (1)

d=
Sγ (̃σ1,γ , ρ, 0) with

σ̃1,γ = σ

(
γ

∫ ∞

0
ξ1−γ π(dξ)

)1/γ

,

and σ and ρ are given by (9).
(II) If γ > 1 + α, then the limit depends on the value of β, as follows.

(II.a) If β < 1 + α, then as T → ∞
{

1

T 1/(1+α)�# (T )1/(1+α)
X∗(T t)

}
f dd→ {L1+α(t)},

where the limit {L1+α} is a (1 + α)-stable Lévy process such that L1+α(1)
d=

S1+α(̃σ , ρ̃, 0) with

σ̃ =
(
σ̃ 1+α
1,β + σ̃ 1+α

2,α

)1/(1+α)

, ρ̃ = ρ̃1,β σ̃ 1+α
1,β + ρ̃2,ασ̃ 1+α

2,α

σ̃ 1+α
1,β + σ̃ 1+α

2,α

,

with σ̃1,β and ρ̃1,β defined in Lemma 2 and σ̃2,α and ρ̃2,α defined in Lemma 4
below.
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(II.b) If 1 + α < β, then as T → ∞
{

1

T 1−α/β�(T )1/β
X∗(T t)

}
f dd→ {

Zα,β(t)
}
,

where {Zα,β} is a process with the stochastic integral representation

Zα,β(t) =
∫
R+

∫
R

(f(ξ, t − s) − f(ξ,−s)) K (dξ, ds), (18)

f is given by

f(x, u) =
{
1 − e−xu, if x > 0 and u > 0,

0, otherwise,
(19)

and K is a β-stable Lévy basis on R+ ×R with control measure αξαdξds such
that C {ζ ‡ K (A)} = κSβ (̃σ2,β ,ρ̃2,β ,0)(ζ ) with

σ̃2,β =
(

Γ (2 − β)

1 − β
(c− + c+) cos

(
πβ

2

))1/β

, ρ̃2,β = c− − c+

c− + c+ ,

and c−, c+ as in (15). The limit process {Zα,β} has stationary increments and
is self-similar with index H = 1 − α/β ∈ (1/β, 1).

Remark 1 We note that for the proof of Theorem 1(I) when γ < 1, one could replace
(14) with the assumption that there exists ε > 0 such that

∫ ∞

0
ξ1−γ+επ(dξ) < ∞.

Also, for the proof of Theorem 1(II.a) instead of assuming (15) with β < 1 + α, it is
enough to assume that the Blumenthal–Getoor index (16) satisfies βBG < 1 + α.

The first boundary between different limit types in Theorem 1 is given by γ =
1 + α. By choosing formally γ = 2, we obtain α = 1 which corresponds to the
boundary between short-range and long-range dependence in the finite variance case
(see Grahovac et al. [13]).

In the infinite variance case, the regular variation index γ of the marginal tails
seems to play an important role in the limit only when γ < 1 + α. One could say
that in this scenario the tails dominate the dependence structure. In the opposite case
γ > 1+ α, two classes of stable processes may arise as a limit, either with dependent
or independent increments. This depends on the value of parameter β.

Note also that if β < 1+α < γ , the limiting process L1+α has heavier tails than the
supOU process whose tails are characterized by γ . On the other hand, when 1+α < γ

and 1+ α < β, the limiting process has β-stable marginals, and hence, depending on
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whether β > γ or β < γ , the tails of the limit can be lighter or heavier than the tails
of the underlying supOU process.

We now consider the case when the Gaussian component is present in the char-
acteristic quadruple, that is, b �= 0. This is the main difference between Theorems 1
and 2.

Theorem 2 Suppose that the supOU process {X(t), t ∈ R} is such that

– b �= 0 and thus has a Gaussian component,
– the marginal distribution satisfies (8) with 0 < γ < 2,
– the behavior at the origin of the Lévy measure μ is given by (15) with 0 ≤ β < 2,
– π has a density p satisfying (13) with α > 0 and some slowly varying function �

and (14) holds.

(I) If α > 1 or if α < 1 and γ < 2
2−α

, then as T → ∞
{

1

T 1/γ k#(T )1/γ
X∗(T t)

}
f dd→ {

Lγ (t)
}
,

where the limit {Lγ } is a γ -stable Lévy process defined as in Theorem 1(I).
(II) If α < 1 and γ > 2

2−α
, then as T → ∞

{
1

T 1−α/2�(T )1/2
X∗(T t)

}
f dd→ {

σ̃3,α BH (t)
}
,

where {BH (t)} is standard fractional Brownian motion with H = 1 − α/2 and
σ̃3,α = b2/2 Γ (1+α)

(2−α)(1−α)
.

When theGaussian component is present in the characteristic quadruple, the param-
eter β is irrelevant for the type of the limit process, and there are only two possible
limits. One is the Lévy stable motion {Lγ (t), t ≥ 0} that would have been a limit if
{X∗(t), t ≥ 0} had independent increments. The second is the Gaussian fractional
Brownianmotion. In the first case, the limit has independent but infinite variance incre-
ments, and in the second case the limit has dependent increments but their distribution
is Gaussian.

Theorem 2 also provides an example of a limit theorem where the aggregated
process has infinite variance, but the limiting process is fractional Brownian motion
which has all the moments finite.

Figures 1 and 2 illustrate the limiting behavior graphically.

4 Examples

In this section, we list several examples of supOU process and show how Theorems 1
and 2 apply. In each example, we will fix the distribution of the background driving
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Fig. 1 Classification of limits of X∗ when b = 0

stable Lévy
process Lγ

0 1

1

2

α

γ

fractional Brownian motion

Fig. 2 Classification of limits of X∗ when b �= 0

Lévy processwhileπ maybe any absolutely continuous probabilitymeasure satisfying
(13). For example, π can be Gamma distribution with density

f (x) = 1

Γ (α)
xα−1e−x1(0,∞)(x),
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where α > 0. Then

π((0, x]) ∼ 1

Γ (α + 1)
xα, as x → 0.

Other examples can be found in Grahovac et al. [12].
In each of the examples below, we choose a background driving Lévy process such

that L(1) is a heavy-tailed distribution satisfying (11) with 0 < γ < 2 and (15) holds,
or the Blumenthal–Getoor index (16) is known.

Note that by appropriately choosing the background driving Lévy process L , one
can obtain any self-decomposable distribution as a marginal distribution of X . Recall
that an infinitely divisible random variable X is self-decomposable if its characteristic
function φ(θ) = Eeiθ X , θ ∈ R, has the property that for every c ∈ (0, 1) there exists
a characteristic function φc such that φ(θ) = φ(cθ)φc(θ) for all θ ∈ R (see, e.g., Sato
[26]). Equivalently, for every c ∈ (0, 1), there is a random variable Yc such that the
random variable X has the same distribution as cX + Yc.

Each of distributions given in examples below may be imposed as a distribution
of X(t). Indeed, every distribution considered in the following examples is self-
decomposable (see references cited below), and hence there exists a background
driving Lévy process generating a supOU process with such marginal distribution.
Furthermore, if (8) holds, then L(1) satisfies (11) by (10). If (17) holds for the Lévy
measure of X(1), then this implies (15) for the Lévy measure of L(1). Hence, Theo-
rems 1 and 2 may still be applied as the conditions on the background driving Lévy
process are easily translated to the corresponding conditions on the marginals of the
supOU process.

4.1 Compound Poisson Background Driving Lévy Process

Let L be a compound Poisson process with rate λ > 0 and infinite variance jump
distribution F regularly varying at infinity. More precisely, F satisfies

F((x,∞)) ∼ pγ k(x)x−γ and F((−∞,−x]) ∼ qγ k(x)x−γ , as x → ∞,

for some 0 < γ < 2 and k slowly varying at infinity. If F has a finite mean, then
we assume it is zero. Suppose X is a supOU process with the background driving
Lévy process L and π absolutely continuous probability measure satisfying (13). The
characteristic quadruple (4) is then (a, 0, μ, π) where

a = λ

∫
|x |≤1

x F(dx), μ(dx) = λF(dx).

Since the Lévy measure is finite, this case corresponds to β = 0 in (15). Hence,
Theorem1applies to show that the limit is stableLévyprocesswith indexγ ifγ < 1+α

or with index 1 + α if γ > 1 + α.
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4.2 Stable Background Driving Lévy Process

Let L be a γ -stable Lévy process generating supOU process X with characteristic
quadruple (4) given by (a, 0, μ, π) where

μ(dx) =
{

c1x−γ−1dx, x ∈ (0,∞),

c2|x |−γ−1dx, x ∈ (−∞, 0),

with c1, c2 ≥ 0, c1 + c2 > 0 if γ �= 1 and c1 = c2 if γ = 1. If α > 1, we
additionally assume EX(1) = 0. The Lévy measure satisfies (15) with β = γ , and
from Theorem 1 we conclude that if γ < 1 + α, the limit is γ -stable Lévy process
and if γ > 1 + α, then the limit is stable process Zα,γ defined in Theorem 1 (II.b).
This type of limiting behavior was obtained by Puplinskaitė and Surgailis [23] for
aggregated AR(1) processes with stable marginals.

4.3 Student’s Background Driving Lévy Process

Let L be aLévy process such that L(1) has Student’s t-distribution given by the density

f (x) =
Γ

(
γ+1
2

)

δΓ
( 1
2

)
Γ

( γ
2

)
(
1 +

(
x − c

δ

)2
)− γ+1

2

, x ∈ R,

where c ∈ R is a location parameter, δ > 0 is a scale parameter and the degrees of
freedom 0 < γ < 2 correspond to the tail index of the distribution of L(1) as in (11).
If γ > 1, we assume c = 0, and hence EL(1) = 0. The Lévy–Khintchine triplet in
(3) is (c, 0, μ) with Lévy measure μ absolutely continuous with density

g(x) = 1

|x |
∫ ∞

0

e−|x |√2y

π2y(J 2
γ /2(δ

√
2y) + Y 2

γ /2(δ
√
2y))

dy,

where Jγ /2 and Yγ /2 denote the Bessel functions of the first and the second kind,
respectively (see, e.g., Heyde and Leonenko [14]). By Eberlein and Hammerstein [10,
Eq. (7.14)] we have

g(x) ∼ δ

π
x−2, as x → 0,

and by using Karamata’s theorem [8, Theorem 1.5.11] it follows that

μ ([x,∞)) ∼ μ ((−∞,−x]) ∼ δ

π
x−1, as x → 0.

Hence,β = 1 in (15). Letπ be an absolutely continuous probabilitymeasure satisfying
(13). Then the characteristic quadruple (4) is (c, 0, μ, π). By Theorem 1, the limits
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are as in the compound Poisson case, namely stable Lévy process with index γ if
γ < 1 + α or with index 1 + α if γ > 1 + α.

4.4 Geometric Stable Background Driving Lévy Process

A random variable Y has a geometric stable distribution if its characteristic function
has the form

EeiζY = 1

1 − κSγ (σ,ρ,c)(ζ )
, ζ ∈ R,

where κSγ (σ,ρ,c) is the cumulant function (7) of some stable distribution Sγ (σ, ρ, c).
The case ρ = c = 0 yields the so-called Linnik distribution with characteristic
function [1,16]

EeiζY = 1

1 + σγ |ζ |γ , ζ ∈ R.

On the other hand, geometric stable distribution with 0 < γ < 1, σ = cos(πγ /2)1/γ ,
ρ = 1, and c = 0 is known as the Mittag–Leffler distribution (see Kozubowski [17]).

Let L be a Lévy process such that L(1) has geometric stable distribution. For
0 < γ < 2, geometric stable distributions have regularly varying tails with index γ

(see, e.g., Kozubowski and Panorska [18]), and hence (11) holds. On the other hand,
the mass of the Lévy measure near origin increases at the logarithmic rate, and hence
the Blumenthal–Getoor index (16) is 0 (see Kozubowski et al. [19] for details). Since
the characteristic quadruple has noGaussian component, we conclude fromTheorem1
and Remark 1 that the limit is stable Lévy process with index γ if γ < 1 + α or with
index 1 + α if γ > 1 + α.

5 Proofs

The proofs of Theorems 1 and 2 are based on the Lévy–Itô decomposition of the back-
ground driving Lévy process L and the corresponding decomposition of the integrated
process X∗. Let μ1(dx) = μ(dx)1|x |>1(dx) and μ2(dx) = μ(dx)1|x |≤1(dx) where
μ is the Lévy measure of the Lévy process L . Then there exists a modification of
the Lévy basis Λ for which we can make a decomposition into Λ1 with character-
istic quadruple (a, 0, μ1, π), Λ2 with characteristic quadruple (0, 0, μ2, π), and Λ3
with characteristic quadruple (0, b, 0, π) (see Pedersen [22], Barndorff-Nielsen and
Stelzer [5, Theorem 2.2] and Moser and Stelzer [21]). We assume in the following Λ

is already a modification with Lévy–Itô decomposition. Let L1(t), L2(t), and L3(t),
t ∈ R, denote the corresponding background driving Lévy processes which have the
following cumulant functions:
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C {ζ ‡ L1(1)} = iζa +
∫
R

(
eiζ x − 1

)
μ1(dx) = iζa +

∫
|x |>1

(
eiζ x − 1

)
μ(dx),

C {ζ ‡ L2(1)} =
∫
R

(
eiζ x − 1 − iζ1[−1,1](x)

)
μ2(dx)

=
∫

|x |≤1

(
eiζ x − 1 − iζ1[−1,1](x)

)
μ(dx),

C {ζ ‡ L3(1)} = −ζ 2

2
b. (20)

Note that L1 is a compoundPoisson process and L3 isBrownianmotion.Consequently,
we can represent X(t) as

X(t) =
∫ ∞

0

∫ ξ t

−∞
e−ξ t+sΛ1(dξ, ds) +

∫ ∞

0

∫ ξ t

−∞
e−ξ t+sΛ2(dξ, ds)

+
∫ ∞

0

∫ ξ t

−∞
e−ξ t+sΛ3(dξ, ds)

=: X1(t) + X2(t) + X3(t),

(21)

with X1, X2, and X3 independent. Let X∗
1 , X∗

2 , and X∗
3 denote the corresponding

integrated processes which are independent. To obtain the limiting behavior of the
integrated process X∗, we first establish limit theorems for each process X∗

1 , X∗
2 and

X∗
3 , respectively.

5.1 The Process X∗
1

When the supOU process has finite variance, then

∫ ∞

0
ξ−1π(dξ) < ∞ (22)

if andonly if the correlation function is integrable (seeGrahovac et al. [13]). If this is the
case, then the integrated process after suitable normalization converges to Brownian
motion. When the variance is infinite, then, assuming (8), one may expect γ -stable
Lévy process in the limit.

We first prove this for the compound Poisson component X∗
1 . In this setting, the

critical condition turns out to be

∫ ∞

0
ξ1−γ π(dξ) < ∞. (23)

Note that choosing formally γ = 2 corresponds to the critical condition (22) in the
finite variance case.
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Lemma 1 Suppose that there exists an ε > 0 such that

∫ ∞

0
ξ1−γ+επ(dξ) < ∞ ifγ ∈ (0, 1), (24)

or
∫ ∞

0
ξ1−γ−επ(dξ) < ∞ ifγ ∈ [1, 2). (25)

Then as T → ∞
{

1

T 1/γ k#(T )1/γ
X∗
1(T t)

}
f dd→ {

Lγ (t)
}
,

where the limit {Lγ } is a γ -stable Lévy process with the notation as in Theorem 1(I).

Proof Let 0 = t0 < t1 < · · · < tm , ζ1, . . . , ζm ∈ R and AT = T 1/γ k#(T )1/γ . By the
Cramér–Wold device, it will be enough to prove that

m∑
i=1

ζi A−1
T X∗

1(T ti )
d→

m∑
i=1

ζi Lγ (ti ).

We can rewrite the left-hand side as

m∑
i=1

ζi

i∑
j=1

A−1
T

(
X∗
1(T t j ) − X∗

1(T t j−1)
)

=
m∑

i=1

(m − i + 1)ζi A−1
T

(
X∗
1(T ti ) − X∗

1(T ti−1)
)
,

and the same can be done for the right-hand side. Hence, it is enough to prove that for
arbitrary ζ1, . . . , ζm ∈ R

m∑
i=1

ζi A−1
T

(
X∗
1(T ti ) − X∗

1(T ti−1)
) d→

m∑
i=1

ζi
(
Lγ (ti ) − Lγ (ti−1)

)
. (26)

By using (1) we have that

X∗
1(T ti ) − X∗

1(T ti−1) =
∫ T ti

T ti−1

∫ ∞

0

∫ ξu

−∞
e−ξu+sΛ1(dξ, ds)du

=
∫ ∞

0

∫ ξT ti−1

−∞

∫ T ti

T ti−1

e−ξu+sduΛ1(dξ, ds)
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+
∫ ∞

0

∫ ξT ti

ξT ti−1

∫ T ti

s/ξ
e−ξu+sduΛ1(dξ, ds)

=: ΔX∗
1,1(T ti ) + ΔX∗

1,2(T ti ) (27)

with ΔX∗
1,1(T ti ) and ΔX∗

1,2(T ti ) independent. Moreover, ΔX∗
1,2(T ti ), i = 1, . . . , m

are independent, and hence, to prove (26), it will be enough to prove that

A−1
T ΔX∗

1,1(T ti )
d→ 0, (28)

A−1
T ΔX∗

1,2(T ti )
d→ Lγ (ti ) − Lγ (ti−1). (29)

Due to stationary increments, it is enough to consider ti = t1 = t so that ti−1 = 0.
We start with the proof of (28). For any Λ-integrable function f on R+ × R, one

has (see Rajput and Rosinski [24])

C

{
ζ ‡

∫
R+×R

f dΛ

}
=

∫
R+×R

κL(ζ f (ξ, s))dsπ(dξ). (30)

Using this and the change of variables, we get that

C
{
ζ ‡ A−1

T ΔX∗
1,1(T t)

}
=

∫ ∞

0

∫ 0

−∞
κL1

(
ζ A−1

T

∫ T t

0
e−ξu+sdu

)
dsπ(dξ)

=
∫ ∞

0

∫ 0

−∞
κL1

(
ζ A−1

T esξ−1
(
1 − e−ξT t

))
dsπ(dξ).

(31)

By Ibragimov and Linnik [15, Theorem 2.6.4], the assumption (11) implies that

κL1(ζ ) ∼ k(1/|ζ |)κSγ (γ 1/γ σ,ρ,0)(ζ ), as ζ → 0. (32)

Hence, for arbitrary δ > 0, in some neighborhood of the origin one has

|κL1(ζ )| ≤ C1|ζ |γ−δ, |ζ | ≤ ε.

On the other hand, since
∣∣eiζ x − 1

∣∣ ≤ 2, we have from (20) that

|κL1(ζ )| ≤ |a||ζ | + 2
∫
R

1{|x |>1}(x)μ(dx) ≤ |a||ζ | + C2.

We can take C3 large enough so that |κL1(ζ )| ≤ C3|ζ | for |ζ | > ε, and then

|κL1(ζ )| ≤ C1|ζ |γ−δ1{|ζ |≤ε}(ζ ) + C3|ζ |1{|ζ |>ε}(ζ ). (33)
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Now we have by using (31)

∣∣∣C
{
ζ ‡ A−1

T ΔX∗
1,1(T t)

}∣∣∣
≤ C1

∫ ∞

0

∫ 0

−∞

∣∣∣ζ A−1
T esξ−1

(
1 − e−ξT t

)∣∣∣γ−δ

1{|ζ A−1
T esξ−1(1−e−ξT t)|≤ε}(ζ )dsπ(dξ)

+ C3

∫ ∞

0

∫ 0

−∞

∣∣∣ζ A−1
T esξ−1

(
1 − e−ξT t

)∣∣∣ 1{|ζ A−1
T esξ−1(1−e−ξT t)|>ε}(ζ )dsπ(dξ)

≤ C1|ζ |γ−δ A−γ+δ

T

∫ ∞

0

∫ 0

−∞
e(γ−δ)s

(
ξ−1

(
1 − e−ξT t

))γ−δ

dsπ(dξ)

+ C3|ζ |t A−1
T T

∫ ∞

0

∫ 0

−∞
es(ξT t)−1

(
1 − e−ξT t

)
1{|ζ A−1

T ξ−1(1−e−ξT t)|>ε}(ζ )dsπ(dξ)

≤ C1
1

γ − δ
|ζ |γ−δtγ−δ A−γ+δ

T T γ−δ

∫ ∞

0

(
(ξT t)−1

(
1 − e−ξT t

))γ−δ

π(dξ)

+ C3|ζ |t A−1
T T

∫ ∞

0
(ξT t)−1

(
1 − e−ξT t

)
1{|ζ A−1

T ξ−1(1−e−ξT t)|>ε}(ζ )π(dξ)

≤ C1
1

γ − δ
|ζ |γ−δtγ−δT γ−δ−1+δ/γ k#(T )(−γ+δ)/γ

∫ ∞

0

(
(ξT t)−1

(
1 − e−ξT t

))γ−δ

π(dξ)

+ C3|ζ |tT 1−1/γ k#(T )−1/γ
∫ ∞

0
(ξT t)−1

(
1 − e−ξT t

)

1{|ζ A−1
T ξ−1(1−e−ξT t)|>ε}(ζ )π(dξ).

Now if γ ∈ (0, 1), then by using the inequality x−1(1 − e−x ) ≤ 1, x > 0, and the
fact that π is a probability measure we have

∣∣∣C
{
ζ ‡ A−1

T ΔX∗
1,1(T t)

}∣∣∣
≤ C1

1

γ − δ
|ζ |γ−δ tγ−δT γ−δ−1+δ/γ k#(T )(−γ+δ)/γ + C3|ζ |tT 1−1/γ k#(T )−1/γ → 0,

as T → ∞, since γ − δ − 1 + δ/γ < 0 and 1 − 1/γ < 0.
If γ ∈ (1, 2), then from the inequality x−1(1 − e−x ) ≤ x−a valid for x > 0 and

a ∈ [0, 1], we get by taking a = a1 := −(1 − γ )/(γ − δ) ∈ (0, 1) for the first term
and a = a2 := γ /2 − 1/(2γ ) ∈ (0, 1) for the second term that

∣∣∣C
{
ζ ‡ A−1

T ΔX∗
1,1(T t)

}∣∣∣
≤ C1

1

γ − δ
|ζ |γ−δtγ−δT γ−δ−1+δ/γ k#(T )(−γ+δ)/γ

∫ ∞

0
(ξT t)−a1(γ−δ)π(dξ)

+ C3|ζ |tT 1−1/γ k#(T )−1/γ
∫ ∞

0
(ξT t)−a2π(dξ)
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≤ C1
1

γ − δ
|ζ |γ−δt1−δT δ/γ−δk#(T )(−γ+δ)/γ

∫ ∞

0
ξ1−γ π(dξ)

+ C3|ζ |t1−a2T 1−1/γ−a2k#(T )−1/γ
∫ ∞

0
ξ−a2π(dξ).

This tends to zero as T → ∞ since δ/γ − γ < 0, 1 − 1/γ − a2 < 0, and∫ ∞
0 ξ−a2π(dξ) < ∞ due to −a2 > 1 − γ .
If γ = 1, then we can similarly take a = a1 = ε/(γ − δ) ∈ (0, 1) for the first term

and a = a2 := ε ∈ (0, 1) for the second term to obtain

∣∣∣C
{
ζ ‡ A−1

T ΔX∗
1,1(T t)

}∣∣∣
≤ C1

1

γ − δ
|ζ |γ−δt1−δ−εT −εk#(T )(−γ+δ)/γ

∫ ∞

0
ξ−επ(dξ)

+ C3
1

2
|ζ |t1−εT −εk#(T )−1/γ

∫ ∞

0
ξ−επ(dξ) → 0, asT → ∞.

This completes the proof of (28).
To prove (29), note that because of (32) we can write

κL1(ζ ) = k(ζ )κSγ (γ 1/γ σ,ρ,0)(ζ ),

with k slowly varying at zero such that k(ζ ) ∼ k(1/ζ ) as ζ → 0. From (30) we have

C
{
ζ ‡ A−1

T ΔX∗
1,2(T t)

}

=
∫ ∞

0

∫ ξT t

0
κL1

(
ζ A−1

T

∫ T t

s/ξ
e−ξu+sdu

)
dsπ(dξ)

=
∫ ∞

0

∫ ξT t

0
κL1

(
ζ A−1

T ξ−1
(
1 − e−ξT t+s

))
dsπ(dξ)

=
∫ ∞

0

∫ t

0
κL1

(
ζ A−1

T ξ−1
(
1 − e−ξT (t−s)

))
ξT dsπ(dξ)

=
∫ ∞

0

∫ t

0
k

(
ζ A−1

T ξ−1
(
1 − e−ξT (t−s)

))

× κSγ (γ 1/γ σ,ρ,0)

(
ζ A−1

T ξ−1
(
1 − e−ξT (t−s)

))
ξT dsπ(dξ)

= κSγ (γ 1/γ σ,ρ,0) (ζ )

∫ ∞

0

∫ t

0
A−γ

T

(
ξ−1

(
1 − e−ξT (t−s)

))γ

× k
(
ζ A−1

T ξ−1
(
1 − e−ξT (t−s)

))
ξT dsπ(dξ)

= κSγ (γ 1/γ σ,ρ,0) (ζ )

∫ ∞

0

∫ t

0
ξ1−γ

(
1 − e−ξT (t−s)

)γ

×
k

((
T k#(T )

)−1/γ
ζ ξ−1

(
1 − e−ξT (t−s)

))

k#(T )
dsπ(dξ). (34)
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By the definition of k#, one has (Bingham et al. [8, Theorem 1.5.13])

k#(T )

k
((

T k#(T )
)−1/γ

) ∼ k#(T )

k
((

T k#(T )
)1/γ ) → 1, asT → ∞,

and due to slow variation of k, for any ζ ∈ R, ξ > 0 and s ∈ (0, t), as T → ∞

k#(T )

k
((

T k#(T )
)−1/γ

ζ ξ−1
(
1 − e−ξT (t−s)

))

=
k

((
T k#(T )

)−1/γ
)

k
((

T k#(T )
)−1/γ

ζ ξ−1
(
1 − e−ξT (t−s)

)) k#(T )

k
((

T k#(T )
)−1/γ

) → 1.

(35)

Hence, if the limit could be passed under the integral in (34), we would get that

C
{
ζ ‡ A−1

T ΔX∗
1,2(T t)

}
→ tκSγ (γ 1/γ σ,ρ,0)

∫ ∞

0
ξ1−γ π(dξ), as T → ∞,

which proves (29). To justify taking the limit under the integral, note that by Potter’s
bounds [8, Theorem 1.5.6] we have from (35) that for any δ > 0

k
((

T k#(T )
)−1/γ

ζ ξ−1
(
1 − e−ξT (t−s)

))

k#(T )

≤ C5 max

{
ζ δξ−δ

(
1 − e−ξT (t−s)

)δ

, ζ−δξ δ
(
1 − e−ξT (t−s)

)−δ
}

≤ C6

(
1 − e−ξT (t−s)

)−δ

max
{
ξ−δ, ξ δ

}
,

for T large enough. By taking δ < min{γ, ε}, we get

ξ1−γ
(
1 − e−ξT (t−s)

)γ k
((

T k#(T )
)−1/γ

ζ ξ−1
(
1 − e−ξT (t−s)

))

k#(T )

≤ C6ξ
1−γ

(
1 − e−ξT (t−s)

)γ−δ

max
{
ξ−δ, ξ δ

}
≤ C6ξ

1−γ max
{
ξ−δ, ξ δ

}
,
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and by the assumptions (24) and (25)

∫ ∞

0

∫ t

0
ξ1−γ max

{
ξ−δ, ξ δ

}
dsπ(dξ)

= t
∫ 1

0
ξ1−γ−δπ(dξ) + t

∫ ∞

1
ξ1−γ+δπ(dξ) < ∞.

Hence, the dominated convergence theorem can be applied in (34). �
We next consider a scenario where (13) holds. If γ ∈ (1, 2), then this implies that

(23) does not hold.

Lemma 2 Suppose that π has a density p satisfying (13) with α ∈ (0, 1) and some
slowly varying function �. If

1 + α < γ,

then as T → ∞
{

1

T 1/(1+α)�# (T )1/(1+α)
X∗
1(T t)

}
f dd→ {L1+α(t)} , (36)

where �# is de Bruijn conjugate of 1/�
(
x1/(1+α)

)
and the limit {L1+α} is the (1+ α)-

stable Lévy process such that L1+α(1)
d= Sγ (̃σ1,α, ρ̃1, 0) with

σ̃1,α =
(

Γ (1 − α)

α
(c−

1 + c+
1 ) cos

(
π(1 + α)

2

))1/(1+α)

, ρ̃1 = c−
1 − c+

1

c−
1 + c+

1

, (37)

and c−
1 andc+

1 are given by

c−
1 = α

1 + α

∫ −1

−∞
|y|1+αμ(dy), c+

1 = α

1 + α

∫ ∞

1
y1+αμ(dy). (38)

Proof The proof is similar to the proof of Grahovac et al. [13, Theorem 2.2]. As in the
proof of Lemma 1, it will be enough to prove that as T → ∞

A−1
T ΔX∗

1,1(T t)
d→ 0, (39)

A−1
T ΔX∗

1,2(T t)
d→ L1+α(t), (40)

with AT = T 1/(1+α)�# (T )1/(1+α). Note that the de Bruijn conjugate �# exists by
Bingham et al. [8, Theorem 1.5.13] and satisfies

�# (T )

�
((

T �# (T )
)1/(1+α)

) ∼ 1, asT → ∞. (41)
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To prove (39), note that we can write p(x) = α�̃(x−1)xα−1 where �̃(t) ∼ �(t) as
t → ∞. Now from (31) we have

C
{
ζ ‡ A−1

T ΔX∗
1,1(T t)

}

=
∫ ∞

0

∫ 0

−∞
κL1

(
ζ A−1

T T esξ−1 (
1 − e−ξ t)) dsπ(T −1dξ)

=
∫ ∞

0

∫ 0

−∞
κL1

(
ζ A−1

T T esξ−1 (
1 − e−ξ t)) dsπ(T −1dξ)

=
∫ ∞

0

∫ 0

−∞
κL1

(
ζ A−1

T T esξ−1 (
1 − e−ξ t)) α�̃(T ξ−1)ξα−1T −αdsdξ.

We have assumed 1 + α < γ , hence γ > 1, and from (33) we get the bound

|κL1(ζ )| ≤ C1|ζ |, ζ ∈ R. (42)

By using Potter’s bounds [8, Theorem 1.5.6], we have for 0 < δ < α2/(1 + α)

�̃(T ξ−1) = �̃(T ξ−1)

�̃(ξ−1)
�̃(ξ−1) ≤ C2 max

{
T −δ, T δ

}
�̃(ξ−1).

Now we get that

∣∣∣C
{
ζ ‡ A−1

T ΔX∗
1,1(T t)

}∣∣∣
≤ αC3|ζ |T −α2/(1+α)+δ�# (T )−1/(1+α)

∫ ∞

0

∫ 0

−∞
esξ−1 (

1 − e−ξ t) �̃(ξ−1)ξα−1dsdξ

≤ C4|ζ |T −α2/(1+α)+δ�# (T )−1/(1+α)

∫ ∞

0
�̃(ξ−1)ξα−1dξ → 0,

as T → ∞.
We now turn to (40). As in the proof of Lemma 1, we have

C
{
ζ ‡ A−1

T ΔX∗
1,2(T t)

}

=
∫ ∞

0

∫ t

0
κL1

(
ζ A−1

T ξ−1
(
1 − e−ξT (t−s)

))
ξT dsπ(dξ)

=
∫ ∞

0

∫ t

0
κL1

(
ζ A−1

T ξ−1
(
1 − e−ξT (t−s)

))
α�̃(ξ−1)ξαT dsdξ. (43)

Suppose that ζ > 0. The proof is analogous if ζ < 0. Making change of variables
x = ζ A−1

T ξ−1 in (43), we get
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C
{
ζ ‡ A−1

T ΔX∗
1,2(T t)

}

= ζ 1+α

∫ ∞

0

∫ t

0
κL1

(
x

(
1 − e

−x−1 ζ T
AT

(t−s)
))

A−(1+α)
T T �̃

(
AT xζ−1) αx−α−2dsdx

= ζ 1+α

∫ ∞

0

∫ t

0
κL1

(
x

(
1 − e

−x−1 ζ T
AT

(t−s)
))

× �̃
(
T 1/(1+α)�# (T )1/(1+α) xζ−1

)
�# (T )

αx−α−2dsdx, (44)

and T /AT → ∞ as T → ∞ implies that

κL1

(
x

(
1 − e

−x−1 ζ T
AT

(t−s)
))

→ κL1(x).

Since � is slowly varying, � ∼ �̃ and (41) holds, we have

�̃
(
T 1/(1+α)�# (T )1/(1+α) xζ−1

)
�# (T )

�
(
T 1/(1+α)�# (T )1/(1+α)

)
�
(
T 1/(1+α)�# (T )1/(1+α)

)

∼
�
((

T �# (T )
)1/(1+α)

)

�# (T )
→ 1,

as T → ∞. Hence, if the limit could be passed under the integral, we would get that

C
{
ζ ‡ A−1

T ΔX∗
1,2(T t)

}
→ tζ 1+α

∫ ∞

0
κL1(x)αx−α−2dx . (45)

Let us assume momentarily that (45) holds. Since γ > 1, we have assumed that the
mean is 0, namely EX1(1) = EL1(1) = a + ∫

|x |>1 xμ(dx) = 0, and hence from (20)
we can write κL1 in the form

κL1(ζ ) =
∫

|x |>1

(
eiζ x − 1 − iζ x

)
μ(dx) =

∫
R

(
eiζ x − 1 − iζ x

)
μ1(dx). (46)

By using the relation

∫ ∞

0

(
e∓iu − 1 ± iu

)
u−λ−1du = exp

{
∓1

2
iπλ

}
Γ (2 − λ)

λ(λ − 1)

valid for 1 < λ < 2 (see, e.g., Ibragimov and Linnik [15, Theorem 2.2.2]), we obtain
by taking λ = 1 + α that

α

∫ ∞

0
κL1(x)x−α−2dx = α

∫ ∞

−∞

∫ ∞

0

(
eixy − 1 − i xy

)
x−α−2dxμ1(dy)

= α

∫ ∞

0

∫ ∞

0

(
eiu − 1 − iu

)
u−α−2duy1+αμ1(dy)
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+ α

∫ 0

−∞

∫ ∞

0

(
e−iu − 1 + iu

)
u−α−2du(−y)1+αμ1(dy)

= αΓ (1 − α)

(1 + α)α

(
ei(1+α)π/2

∫ ∞

0
y1+αμ1(dy) + e−i(1+α)π/2

∫ 0

−∞
|y|1+αμ1(dy)

)

= Γ (1 − α)

α

(
cos

(
π(1 + α)

2

)(
α

1 + α

∫ −1

−∞
|y|1+αμ(dy) + α

1 + α

∫ ∞

1
y1+αμ(dy)

)

− i sin

(
π(1 + α)

2

)(
α

1 + α

∫ −1

−∞
|y|1+αμ(dy) − α

1 + α

∫ ∞

1
y1+αμ(dy)

))

= −Γ (1 − α)

−α

(
cos

(
π(1 + α)

2

) (
c−
1 + c+

1

) − i sin

(
π(1 + α)

2

) (
c−
1 − c+

1

))

= −Γ (1 − α)

−α

(
c−
1 + c+

1

)
cos

(
π(1 + α)

2

) (
1 − i

c−
1 − c+

1

c−
1 + c+

1

tan

(
π(1 + α)

2

))

= κSγ (̃σ1,α,ρ̃1,0),

where σ̃1,α and ρ̃1 are given by (37) and c−
1 , c

+
1 by (38). In the last equality sign(ζ ) = 1

since we suppose ζ > 0.
To complete the proof, we need to justify taking the limit under the integral in (44).

We denote gT (ζ, x, s) = e
−x−1 ζ T

AT
(t−s)

and split C
{
ζ ‡ A−1

T ΔX∗
1,2(T t)

}
into two

parts:

C
{
ζ ‡ A−1

T ΔX∗
1,2(T t)

}
= I (1)

T + I (2)
T , (47)

where

I (1)
T = ζ 1+α

∫ ∞

0

∫ t

0
κL ! (x (1 − gT (ζ, x, s)))

�̃
(
T 1/(1+α)�# (T )1/(1+α) xζ−1

)
�# (T )

× αx−α−21[0,1/2](gT (ζ, x, s))dsdx, (48)

I (2)
T = ζ 1+α

∫ ∞

0

∫ t

0
κL1 (x (1 − gT (ζ, x, s)))

�̃
(
T 1/(1+α)�# (T )1/(1+α) xζ−1

)
�# (T )

× αx−α−21[1/2,1](gT (ζ, x, s))dsdx . (49)

From Potter’s bounds [8, Theorem 1.5.6], for 0 < δ < min {γ − 1 − α, α, 1 − α}
there is C1 such that

�̃
(
T 1/(1+α)�# (T )1/(1+α) xζ−1

)
�
(
T 1/(1+α)�# (T )1/(1+α)

) ≤ C1 max
{

x−δζ δ, xδζ−δ
}
.

Now from (41) we have that for T large enough

�̃
(
T 1/(1+α)�# (T )1/(1+α) xζ−1

)
�# (T )

≤ C2 max
{

x−δζ δ, xδζ−δ
}
,
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and hence

∣∣∣I (1)
T

∣∣∣ ≤ C3

∫ ∞

0

∫ t

0

∣∣κL1 (x (1 − gT (ζ, x, s)))
∣∣max

{
x−δ, xδ

}

× αx−α−21[0,1/2](gT (ζ, x, s))dsdx,∣∣∣I (2)
T

∣∣∣ ≤ C4

∫ ∞

0

∫ t

0

∣∣κL1 (x (1 − gT (ζ, x, s)))
∣∣max

{
x−δ, xδ

}

× αx−α−21[1/2,1](gT (ζ, x, s))dsdx .

We will first show that the dominated convergence theorem may be applied to I (1)
T

showing that I (1)
T converges to the limit in (45). From (46) by using the inequality

∣∣∣∣∣eix −
n∑

k=0

(i x)k

k!

∣∣∣∣∣ ≤ min

{ |x |n+1

(n + 1)! ,
2|x |n

n!
}

,

we get that for any x ∈ R,

|κL1(x)| ≤
∫
R

∣∣∣eixy − 1 − i xy
∣∣∣ μ1(dy) ≤

∫
|xy|≤1

|xy|2μ1(dy) + 2
∫

|xy|>1
|xy|μ1(dy).

Moreover, we have

sup
1/2≤c≤1

κL1(cx) ≤ x2
∫

|y|≤2/|x |
y2μ1(dy) + 2

∫
|xy|>1

|xy|μ1(dy).

=: K (1)(x) + K (2)(x),

and hence

∣∣κL1 (x (1 − gT (ζ, x, s))) 1[0,1/2](gT (ζ, x, s))
∣∣ ≤ K (1)(x) + K (2)(x).

Now

∣∣∣I (1)
T

∣∣∣ ≤ C3

∫ ∞

0

∫ t

0

(
K (1)(x) + K (2)(x)

)
max

{
x−δ, xδ

}
αx−α−2dsdx,

and it remains to show this integral is finite. Indeed, we have

∫ ∞

0

∫ t

0
K (1)(x)max

{
x−δ, xδ

}
αx−α−2dsdx

= αt
∫ 1

0

∫
|y|≤2/|x |

y2μ1(dy)x−α−δdx + αt
∫ ∞

1

∫
|y|≤2/|x |

y2μ1(dy)x−α+δdx

= 21−α−δαt
∫ 1

0

∫
|y|≤1/|x |

y2μ1(dy)x−α−δdx
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+ 21−α+δαt
∫ ∞

1

∫
|y|≤1/|x |

y2μ1(dy)x−α+δdx

= 21−α−δαt
∫

|y|≤1
y2μ1(dy)

∫ 1

0
x−α−δdx

+ 21−α+δαt
∫

|y|>1
y2μ1(dy)

∫ 1/|y|

0
x−α−δdx

+ 21−α−δαt
∫

|y|≤1
y2μ1(dy)

∫ 1/|y|

1
x−α+δdx

= 21−α+δαt

1 − α − δ

∫
|y|>1

|y|1+α+δμ1(dy) < ∞

and

∫ ∞

0

∫ t

0
K (2)(x)max

{
x−δ, xδ

}
αx−α−2dsdx

= 2αt
∫ 1

0

∫
|y|>1/|x |

|y|μ1(dy)x−α−1−δdx

+ 2αt
∫ ∞

1

∫
|y|>1/|x |

|y|μ1(dy)x−α−1+δdx

= 2αt
∫

|y|>1
|y|μ1(dy)

∫ 1

1/|y|
x−α−1−δdx

+ 2αt
∫

|y|>1
|y|μ1(dy)

∫ ∞

1
x−α−1+δdx

+ 2αt
∫

|y|≤1
|y|μ1(dy)

∫ ∞

1/|y|
x−α−1+δdx

= 2αt

−α − δ

∫
|y|>1

|y| (1 − |y|α+δ
)
μ1(dy) − 2αt

−α − δ

∫
|y|>1

|y|μ1(dy)

= 2αt

α + δ

∫
|y|>1

|y|1+α+δμ1(dy) < ∞

since 1 + α + δ < γ and E|L(1)1+α+δ| < ∞ ⇔ ∫
|y|>1 |y|1+α+δμ1(dy) < ∞.

We next show that I (2)
T → 0 in (49) as T → ∞. Since 1[1/2,1](gT (ζ, x, s)) =

1[
ζ(t−s)T
AT log 2 ,∞

)(x), we have by using (42)

∣∣IT ,2
∣∣ ≤ C5

∫ ∞

0

∫ t

0
x−α−1 max

{
x−δ, xδ

}
1[

ζ(t−s)T
AT log 2 ,∞

)(x)dsdx

= C5

∫ 1

0

∫ t

0
x−α−1−δ1[

ζuT
AT log 2 ,∞

)(x)dxdu
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Fig. 3 Classification of limits of X∗
1

+ C5

∫ ∞

1

∫ t

0
x−α−1+δ1[

ζuT
AT log 2 ,∞

)(x)dxdu

= C5

∫ t

0
1(

0, AT log 2
ζ T

](u)

∫ 1

ζuT
AT log 2

x−α−1−δdxdu

+ C5

∫ t

0
1(

0, AT log 2
ζ T

](u)

∫ ∞

1
x−α−1+δdxdu

+ C5

∫ t

0
1[

AT log 2
ζ T ,∞

)(u)

∫ ∞
ζuT

AT log 2

x−α−1+δdxdu

= C6

∫ t

0
1(

0, AT log 2
ζ T

](u)du − C7

(
T

AT

)−α−δ ∫ t

0
u−α−δ1(

0, AT log 2
ζ T

](u)du

+ C8

(
T

AT

)−α+δ ∫ t

0
u−α+δ1[

AT log 2
ζ T ,∞

)(u)du → 0,

as T → ∞, which completes the proof of (40). �
To summarize the results of this subsection, let us assume that (14) (hence (24)

holds) and that π has a density p satisfying (13) with α > 0 and some slowly varying
function �. Then the limiting behavior is illustrated in Fig. 3.

5.2 The Process X∗
2

The background driving Lévy process of X2 consists only of jumps of magnitude less
than or equal to one. The limiting behavior of X∗

2 may depend on the growth of the
Lévy measure near the origin.

Note that E|X2(t)|q < ∞ for any q > 0. In particular, the variance is finite and
EX2(t) = 0. Hence, we obtain the following results as a corollary of Grahovac et
al. [13, Theorems 2.4, 2.2 and 2.3], respectively.
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Lemma 3 If
∫ ∞

0
ξ−1π(dξ) < ∞,

then as T → ∞ {
1

T 1/2 X∗
2(T t)

}
f dd→ {̃σ2B(t)} ,

where {B(t)} is standard Brownian motion and

σ̃ 2
2 = 2σ 2

2

∫ ∞

0
ξ−1π(dξ), with σ 2

2 = Var X2(1) = 1

2

∫
|x |≤1

x2μ2(dx).

Lemma 4 Suppose that π has a density p satisfying (13) with α ∈ (0, 1) and some
slowly varying function �, and suppose (15) holds with 0 ≤ β < 2.

(i) If

β < 1 + α,

then as T → ∞
{

1

T 1/(1+α)�# (T )1/(1+α)
X∗
2(T t)

}
f dd→ {L1+α(t)} ,

where �# is de Bruijn conjugate of 1/�
(
x1/(1+α)

)
and {L1+α} is (1 + α)-stable

Lévy process such that L1+α(1)
d= S1+α(̃σ2,α, ρ̃2,α, 0) with

σ̃2,α =
(

Γ (1 − α)

α
(c−

2 + c+
2 ) cos

(
π(1 + α)

2

))1/(1+α)

, ρ̃2,α = c−
2 − c+

2

c−
2 + c+

2

,

and c−
2 andc+

2 are given by

c−
2 = α

1 + α

∫ 0

−1
|y|1+αμ(dy), c+

2 = α

1 + α

∫ 1

0
y1+αμ(dy).

(ii) If

1 + α < β < 2,

then as T → ∞
{

1

T 1−α/β�(T )1/β
X∗
2(T t)

}
f dd→ {

Zα,β(t)
}
,

where the limit {Zα,β} is a process defined as in Theorem 1(I).
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Fig. 4 Classification of limits of X∗
2

Assuming that (13) and (15) hold, we can summarize the limiting behavior of X∗
2

in Fig. 4. The value α = 1 is a boundary between Gaussian and infinite variance stable
limit.

5.3 The Process X∗
3

Since X∗
3 is a Gaussian process, the limiting behavior is simple (see Grahovac et al.

[13, Theorems 2.1 and 2.4]).

Lemma 5 (i) If

∫ ∞

0
ξ−1π(dξ) < ∞,

then as T → ∞
{

1

T 1/2 X∗
3(T t)

}
f dd→ {̃σ3B(t)} ,

where {B(t)} is standard Brownian motion and σ̃ 2
3 = 2σ 2

3

∫ ∞
0 ξ−1π(dξ) with

σ 2
3 = Var X3(1) = b/2.

(ii) Suppose that π has a density p satisfying (13) with α ∈ (0, 1) and some slowly
varying function �. Then as T → ∞

{
1

T 1−α/2�(T )1/2
X∗
3(T t)

}
f dd→ {

σ̃3,α BH (t)
}
,

where {BH (t)} is standard fractional Brownian motion with H = 1 − α/2 and
σ̃3,α = 2σ 2

3
Γ (1+α)

(2−α)(1−α)
with σ 2

3 = Var X3(1) = b/2.

123



Journal of Theoretical Probability (2020) 33:1801–1831 1829

5.4 Proofs of Theorems 1 and 2

The limiting behavior of the integrated process X∗ follows by combining the limit
theorems of the three components in the decomposition (21). If X∗ consists of at least
two nonzero components, then each of these may be suitably normalized to obtain
a nontrivial limiting process. However, to obtain the limit of the sum of the three
components, namely the joint process X∗, one has to take the fastest growing among
the three normalizations suitable for the components. Hence, the limiting process will
depend on the orders of normalizing sequences of the component processes. Namely,
an interplay between the parameters α, β, and γ will determine the limit.

Proof (Proof of Theorem 1) The proof is based on comparing the orders of normalizing
sequences. Let E1 and E2 denote the exponents of the normalizing sequences for the
processes X∗

1(T t) and X∗
2(T t), respectively.

(I) If γ < 1 + α, then E1 = 1/γ by Lemma 1. It is enough to show that

T −1/γ X∗
2(T t)

P→ 0 by showing that 1/γ > E2.

– If α > 1, then E2 = 1/2 by Lemma 3. Since γ < 2, 1/γ > 1/2.
– If α < 1 and β < 1+α, then E2 = 1/(1+α) by Lemma 4(i). Since γ < 1+α,
we have 1/γ > 1/(1 + α).

– If α < 1 and 1 + α < β, then E2 = 1 − α/β by Lemma 4(ii). We have
1 − α/β < 1 + (1 − γ )/β < 1 + (1 − γ )/γ = 1/γ .

(II) If 1 + α < γ , then E1 = 1/(1 + α) by Lemma 2. Note that implicitly we must
have α < 1.

(II.a) If β < 1 + α, then E2 = 1/(1 + α) by Lemma 4(i). We have E1 = E2 and
the same normalization, and hence the limit is a sum of independent limits
obtained in Lemma 2 and Lemma 4(i). We additionally use (Samorodnitsky
and Taqqu [25, Property 1.2.1]).

(II.b) If 1 + α < β, then E2 = 1 − α/β by Lemma 4(ii). We have 1 − α/β >

1 − α/(1 + α) = 1/(1 + α) < since 1 + α < β.

�
Proof (Proof of Theorem 2) The proof follows the same arguments as the proof of The-
orem 1.
(I) follows easily from Theorem 1 and Lemma 5. For α > 1 we conclude the statement
from the fact that 1/γ > 1/2. If α < 1 and γ < 2/(2 − α), then γ < 1 + α, and
hence we need to compare 1/γ and 1 − α/2. But this follows easily since 1/γ >

1− α/2 ⇔ γ < 2/(2− α). (II) follows similarly. Indeed, if 2/(2− α) < γ < 1+ α,
then 1/γ < 1 − α/2. If γ > 1 + α, the rate of growth of the normalizing sequence
depends on β. If β < 1+ α, the order of normalizing sequence for X∗

1(T t) + X∗
2(T t)

is 1/(1 + α) and 1/(1 + α) = 1 − α/(1 + α) < 1 − α/2. If 1 + α < β, the order of
the normalizing sequence for X∗

1(T t) + X∗
2(T t) is 1 − α/β < 1 − α/2. �
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