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Abstract
We study the structure of n×n randommatrices with centered i.i.d. entries having only
two finite moments. In the recent joint work with R. Vershynin, we have shown that the
operator norm of such matrix A can be reduced to the optimal order O(

√
n) with high

probability by zeroing out a small submatrix of A, but did not describe the structure
of this “bad” submatrix nor provide a constructive way to find it. In the current paper,
we give a very simple description of a small “bad” subset of entries. We show that it
is enough to zero out a small fraction of the rows and columns of A with largest L2
norms to bring the operator norm of A to the almost optimal order O(

√
n log log n),

under additional assumption that the matrix entries are symmetrically distributed. As
a corollary, we also obtain a constructive procedure to find a small submatrix of A
that one can zero out to achieve the same norm regularization. The main component
of the proof is the development of techniques extending constructive regularization
approaches known for the Bernoulli matrices (from the works of Feige and Ofek, and
Le, Levina and Vershynin) to the considerably broader class of heavy-tailed random
matrices.
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1 Introduction

1.1 Operator Norm Regularization for RandomMatrices

What should we call an optimal order of an operator norm of a random n × n matrix?
If we consider a matrix A with independent standard Gaussian entries, then by the
classical Bai–Yin law (see, for example, [16])

‖A‖/√n → 2 almost surely ,

as the dimension n → ∞. Moreover, the 2
√
n asymptotic holds for more general

classes of matrices. By [21], if the entries of A have zero mean and bounded fourth
moment, then

‖A‖ = (2 + o(1))
√
n

with high probability. If we are concerned to get an explicit (non-asymptotic) proba-
bility estimate for all large enough n, an application of Bernstein’s inequality (see, for
example, in [19]) gives

P{‖A‖ ≤ t
√
n} ≥ 1 − e−c0t2n for t ≥ C0

for the matrices with i.i.d. sub-Gaussian entries. Here, c0,C0 > 0 are absolute con-
stants. The non-asymptotic extensions to more general distributions are also available,
see [2,8,14,18].

Also, note that the order
√
n is the best we can generally hope for. Indeed, if the

entries of A have variance C , then the typical magnitude of the Euclidean norm of a
row of A is ∼ √

n, and the operator norm of A cannot be smaller than that. So, it is
natural to assume O(

√
n) as the “ideal order” of the operator norm of an n × n i.i.d.

random matrix.
However, if we do not assume that the matrix entries have four finite moments,

we do not have ideal order O(
√
n): The weak fourth moment is necessary for the

convergence in probability of ‖A‖/√n when n grows to infinity (see [15]). Moreover,
for the matrices with the entries having two finite moments, an explicit family of
examples, constructed in [11], shows that A can have ‖A‖ ∼ O(nα) for any α ≤ 1
with substantial probability.

This motivates the following questions: What are the obstructions in the structure
of A that make its operator norm too large? Under what conditions and how can
we regularize the matrix restoring the optimal O(

√
n) norm with high probability?

Clearly, interesting regularization would be the one that does not change A too much,
for example, that changes only a small fraction of the entries of A. We call such
regularization local.

The first question was answered in our previous work with Vershynin [13].We have
shown that one can enforce the norm bound ‖A‖ ∼ √

n by modifying the entries in a
small submatrix of A if and only if the i.i.d. entries of A have zero moment and finite
variance. The proof strategy was to construct a way to regularize ‖ · ‖∞→2 norm of A
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and to apply a form of Grothendieck–Pietsch theorem (see [10, Proposition 15.11]) to
claim that some additional small correction regularizes the operator norm ‖A‖. This
last step made it impossible to find the submatrix explicitly.

1.2 Main Results

In the current work, we give an (almost optimal) answer to the remaining construc-
tiveness question, namely when local regularization is possible, how to fix the norm
of A by a small change to the optimal order? The main result of the paper is

Theorem 1 (Constructive regularization) Let A be a random n × n matrix with
i.i.d. entries Ai j having symmetric distribution such that EA2

i j = 1. Then for any

ε ∈ (0, 1/6], r ≥ 1 with probability 1−n0.1−r the following holds: If we replace with
zeros at most εn rows and εn columns with largest L2-norms (as vectors in Rn), then
the resulting matrix Ã will have a well-bounded operator norm

‖ Ã‖ ≤ Cr
√
cεn · ln ln n. (1.1)

Here, cε = (ln ε−1)/ε and C > 0 is a sufficiently large absolute constant.

Remark 1 Typically, all the rows and columns of thematrix Ã have L2-norms bounded
by O(

√
cεn). One way to check this is via the non-constructive regularization result

proved in [13]. Indeed, with probability 1− 7 exp(−εn/12), removing some εn × εn
submatrix of A, we get a matrix Ā such that ‖ Ā‖ � √

cεn (see [13, Theorem 1]). It
implies that all the rows and columns of Ā have well-bounded L2-norms (of order
at most

√
cεn). Since all but εn rows and εn columns of A coincide with those of

Ā, there can be at most εn rows and columns in A having larger L2-norms. Thus,
regularization described in the statement of Theorem 1 zeros out them all.

Moreover, the proof Theorem 1 holds without changes if we define Ã as the result
of zeroing out of all rows and columns having L2-norm bigger thanC

√
cεn. As we just

discussed, this is an even more delicate change in the matrix A with high probability.

The regularization procedures discussed above (in Theorem 1 and Remark 1) are
local, as they change only a small fraction of the matrix entries. However, they still
change more than εn×εn submatrix as promised by [13, Theorem 1.1]. As a corollary
of Theorem 1, we also obtain a polynomial algorithm that regularizes the norm of A
with high probability by zeroing out its small submatrix.

This algorithm addresses separately subsets of matrix entries having similar magni-
tude. We define these subsets via order statistics of i.i.d. samples Ai j : Let Â1, . . . , Ân2

be the non-increasing rearrangement of the entries Ai j (in sense of absolute values,
namely | Â1| ≥ · · · ≥ | Ân2 |). Then,

Al := { Â
2l−1nε+1�, . . . , Â
2l nε�} for any l ∈ Z≥0. (1.2)

We are ready to state submatrix regularization algorithm:

123



Journal of Theoretical Probability (2020) 33:1768–1790 1771

Algorithm 1: Local norm regularization
Input: matrix A = (Ai j )

n
i, j=1, constants ε, cε > 0, positive integer lmax,

disjoint entry subsets Al defined by (1.2) for l ≤ lmax

Output: Ã - n × n matrix, regularized version of A
1. Zero out 
nε/2� entries Ai j with the largest absolute values;
2. For l = 0, . . . , lmax find column index subset Jl in the following way:
2a. For j ∈ [n] define erowj (Al) := |{i : Ai j ∈ Al}|;
2b. For every i, j ∈ [n] define the weight

Wl
i j :=

{
1, if erowj (Al) ≤ cεnpl or Ai j /∈ Al ,

cεnpl/erowj (Al), otherwise,
where we denoted pl = 2lε/n;

2c. Then, define Jl := { j : ∏n
i=1 W

l
i j ≤ 0.1};

3. Find subset Ĵ of nε/4 indices corresponding to the columns of A
with the largest L2-norms, define J := (∪l Jl) ∪ Ĵ ;

4. Repeat Steps 2-3 for AT to find row subset I := (∪l Il) ∪ Î ;
5. Zero out all the entries of A in the product subset I × J to get Ã.

If the matrix A is taken from the same model as in Theorem 1, the regularization
provided by Algorithm 1 finds εn × εn submatrix I × J that one can replace with
zeros to get a matrix Ã with well-bounded norm. This is proved in the following

Corollary 1 (Constructive regularization, submatrix version) Let A be a random n × n
matrix with i.i.d. entries Ai j having symmetric distribution such that EA2

i j = 1. Let

ε ∈ (0, 1/6], lmax = 
log2(ln n/ ln ε−4)� and cε = (ln ε−1)/ε. SubsetsAl are defined
by (1.2) for l = 0, . . . , lmax.

Suppose that matrix Ã is constructed from A by Algorithm 1. Then, with probability
1 − n0.1−r matrix, Ã differs from A on at most εn × εn submatrix, and

‖ Ã‖ ≤ Cr3/2
√
cεn · ln ln n,

where C > 0 is a sufficiently large absolute constant.

1.3 Proof Strategy

General idea of the proof of Theorem 1 is to split the entries of A into subsets with
similar absolute values and bound each of these “levels” by the properly scaled 0–
1 Bernoulli variables. Then, we can use known regularization results that hold for
Bernoulli random matrices (see Sect. 2.1 for their short exposition) for each “level”
separately, and sum the norms over the “levels”. However, this intuitive approach
conceals several difficulties to be resolved on the way.

First, we cannot directly substitute the entries of A by their absolute values: The
norm of |A|might have global obstructions to the regularization (consider an example
of ± 1 symmetric Rademacher entries). To approach the level splitting process more
delicately, we strengthen the following ideas (initially proposed by Friedman, Kahn
and Szemeredi for the regular graphs in [6] and modified by Feige and Ofek for more
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general Bernoulli case in [5]). In the standard approximation of the operator norm
‖A‖ by the supremum of a quadratic form on a discrete ε-net N on the unit sphere

sup
u,v∈N⊂Sn−1

∣∣
n∑

i, j=1

Ai j uiv j
∣∣,

for each fixed pair of unit vectors (u, v) = ((ui )ni=1, (v j )
n
j=1), one can split their

indices (i, j) ∈ [n] × [n] into light and heavy couples. Light couples correspond to
the sum members uiv j that are bounded well enough for the classical concentration
results to work, and heavy couples make a smaller set for which regularization does
not needmean zero assumption anymore (see Sect. 2.2 for more details). In the current
work, we define similar notions of the light and heavy members that additionally take
into account non-unit absolute values of Ai j (see Sect. 3).

The second difficulty is that a simple (based on L2 norms) regularization of the
matrix A does not imply proper regularization of all the “levels.” Even if we know that
the rows and columns of the matrix A are well bounded, some of the “levels” might
have too large row or column norms, if the others were small enough. To address
this issue without making regularization procedure more complex, we employ an
additional structural decomposition for Bernoulli random matrices, first shown in the
work of Le et al. [9]. Essentially, we split the entries on each “level” into three parts: a
part with bounded rows and columns, and two exceptional sparse parts. The sparsity
comes in handy for their separate norm estimation.

Finally, we would like to make the number of “levels” as small as possible (as
their quantity creates an additional factor in the resulting norm). We were able to keep
this number as small as double logarithm of the matrix size, using the matrix entries
truncations, similar to ones used in the preceding work [13].

The fact that the submatrix regularizationAlgorithm 1 ismore involved than the one
presented in Theorem 1 is somewhat natural. Zeroing out a small submatrix must still
bring the L2-norms of all rows and columns to the order O(

√
n). Since the majority

of rows and columns stays untouched in such regularization, essentially, one needs to
find the most “dense” part of the matrix.

The procedure of assigning weights to the matrix entries row-wise, multiplying
them to set column weights and then thresholding columns with the low weights is a
delicate way to do so. This weight construction was originally used in [12,13] for the
matrices with i.i.d. scaled Bernoulli entries. Here, we employ the same construction
to regularize the entries at every “level” independently. (Here, kth “level” contains
the entries of A that belong to 2−k-quantile of the distribution of A2

i j .) Additionally,
to make the algorithm distribution oblivious, we estimate quantiles by order statistics
of the matrix entries (since a random matrix naturally contains n2 samples of the
distribution ξ ∼ Ai j ). The idea to estimate quantiles of some distribution by the order
statistics of a set of samples is both natural and well known in the statistics literature
(see, e.g., [4,22]).
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1.4 Notations and Structure of the Paper

We use the following standard notations throughout the paper. Positive absolute con-
stants are denoted C,C1, c, c1, etc. Their values may be different from line to line.
We often write a � b to indicate that a ≤ Cb for some absolute constant C .

The discrete interval {1, 2, . . . , n} is denoted by [n]. Given a finite set S, by |S|,
we denote its cardinality. The standard inner product in R

n shall be denoted by 〈·, ·〉.
Given p ∈ [1,∞], ‖·‖p is the standard �np-norm inRn . Given a matrix A, ‖·‖ denotes
the operator l2 → l2 norm of the matrix:

‖A‖ := max
x∈Sn−1

‖Ax‖2.

We write row1(A), . . . , rown(A) ∈ R
m to denote the rows of any m × n matrix A

and col1(A), . . . , colm(A) ∈ R
n to denote its columns. We are going to use sparsity

of the matrices in the proof. We denote by erowi (A) the number of nonzero entries in
the i th row of the matrix A, and also ecoli (A) denotes the number of nonzero entries
in the i th column of A.

The rest of the paper is structured as follows. InSect. 2,we list auxiliary results (from
the works of Feige and Ofek [5], and Le et al. [9]) specific to the Bernoulli matrices.
In Sect. 3, we show how to extend the Bernoulli techniques to more general class of
matrices and prove central Proposition 2. In Sect. 4, we combine these techniques to
conclude the proof of Theorem 1. In Sect. 5, we prove Corollary 1, and the last Sect. 6
contains discussion of the results and related open questions.

2 Auxiliary Results for Bernoulli RandomMatrices

In this section, we review several useful results related to the regularization of the
norms of Bernoulli matrices.

2.1 Regularization of the Norms of Bernoulli RandomMatrices

Consider a n × n Bernoulli matrix B with independent 0–1 entries such that P{Bi j =
1} = p. Since the second moment of its entries EB2

i j ∼ p, from the facts discussed in
the beginning of Sect. 1, one would expect an ideal operator norm ‖B‖ ∼ √

np.
This is exactly what happens with high probability when success probability p is

large enough (p �
√
ln n, see, e.g., [5]). If p � √

ln n, the norm can stay larger
than optimal [7]. However, it is known that the regularization procedure described
in Theorem 1 works in the case of Bernoulli matrices, and moreover, results in the
optimal norm order ‖B̃‖ ∼ √

np. Since all nonzero entries in B have the same size,
the L2 norm description can be simplified in terms of the number of nonzero entries
in each row or column.

Namely, Feige an Ofek proved in [5] that if we zero out all rows and columns that
containmore thanCnp nonzero entries, then the resultingmatrix satisfies ‖B̃‖ ∼ √

np.
This result was improved by Le, Levina and Vershynin. In [9], the authors demonstrate
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that it is enough to zero out any part of the rows and columns with too many nonzeros
or reweigh them in any way, to satisfy erowi ≤ Cnp and ecoli ≤ Cnp for any i ∈ [n] to
obtain the resulting matrix ‖B̃‖ ∼ √

np.

2.2 Regularization and the Quadratic Form

So, zeroing out all rows and columns that contain more than Cnp nonzero entries
regularizes the quadratic form

‖B‖ = sup
u,v∈Sn−1

|
∑

i j

Bi j uiv j | (2.1)

to the optimal order
√
np.

We will need the following Lemma 1, addressing the part of the sum (2.1) (over the
indices i, j such that {|uiv j | ≥ √

p/n}). It was first proved by Feige and Ofek in [5]
and later appears in [3]. For completeness, we give a short sketch of its proof below.
Let us also emphasize that even though for the regularization procedure introduced
in [5] it is crucial to zero out a product subset of the entries, in the framework of
Lemma 1 it is possible to zero out any subset of the entries.

Lemma 1 Let B be a n × n Bernoulli matrix with independent 0–1 entries such that
P{Bi j = 1} = p. Let r ≥ 1. Let B ⊂ [n] × [n] be an index subset, such that if we
zero out all Bi j with (i, j) /∈ B, then every row and column of B has at most C0rpn
nonzero entries. Then, with probability 1 − n−r

sup
u,v∈Sn−1

∑

(i, j)∈B:
|uiv j |≥√

p/n

Bi j |uiv j | ≤ Cr
√
np,

where C is a large enough absolute constant.

The proof of Lemma 1 is based on a technical Lemma 2 stated below. The proof of
Lemma 2 is completely deterministic and can be found in [3,5].

Lemma 2 [3, Lemma 21] Let B be an n × n matrix with 0–1 elements. Let p > 0,
such that every row and column of B contains at most C0np ones. For index subsets
S, T ⊂ [n] define

e(S, T ) :=
∑

i∈S, j∈T
Bi j

(i.e., number of nonzero elements in the submatrix spanned by S × T ). Suppose that
for any S, T ⊂ [n] one of the following conditions holds:
(A) e(S, T ) ≤ C1|S||T |p, or
(B) e(S, T ) · log

(
e(S,T )
|S||T |p

)
≤ C2|T | log

(
n

|T |
)

,
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with some constants C1 and C2 independent from S, T and n. Then, for any u, v ∈
Sn−1

∑

i, j :|uiv j |≥√
p/n

Bi j |uiv j | ≤ C
√
np,

where the constant C = max{16, 3C0, 32C1, 32C3}.
Proof (of Lemma 1) In view of Lemma 2, it is enough to show that with probability
1 − n−r for every S, T ⊂ [n] and

eB(S, T ) =
∑

(i, j)∈B∩(S×T )

Bi j

one of the conditions (A) and (B) holds. Without loss of generality, let us assume that
|T | ≥ |S|.

If |T | ≥ n/e, we have

eB(S, T ) ≤ |S| · C0rpn ≤ C0rpe|T ||S|.

Hence, condition (A) holds with C1 = C0re.
If both |S|, |T | < n/e, then P{E} ≤ n−r for the event

E := {∃S, T : |S|, |T | < n/e, eB(S, T ) > lS,T p|S||T |}

and lS,T being a number such that

lS,T ln lS,T := ln
n

|T | · 3(r + 6)|T |
p|S||T | .

Indeed, the probability estimate for E follows from the Chernoff’s inequality applied
to the sum of independent variables e(S, T ) ≥ eB(S, T ), combined with the Stirling
formula estimating the number of proper sets S and T , and the fact that the function
f (x) = (x/n)x is monotonically increasing on [1, n/e] (see [5, Section 2.2.5] for the
computation details).

Thus, with probability 1 − n−r , for any S, T , such that |S|, |T | < n/e, condition
(B) holds:

eB(S, T ) · ln
(
eB(S, T )

|S||T |p
)

≤ lS,T p|S||T | · ln lS,T

≤ 3(r + 6)|T | ln n

|T | .

This concludes Lemma 1 with C = max{32C0re, 100(r + 6)}.
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2.3 Decomposition of Bernoulli Matrices

As we mentioned above, the idea is to apply an approach developed for Bernoulli
matrices for the truncations of the entries of A, having absolute values on the same
“level,” and then to sum over these “levels.”

However, even if we know that the rows and columns of the general matrix A are
well bounded, there is no direct way to see which “levels” are well bounded: Some of
them might be too large if the others are small enough. To address this issue, we are
going to use additional structural decomposition for Bernoulli random matrices. The
next proposition is a direct corollary of [9, Theorem 2.6]:

Proposition 1 (Decomposition lemma) Let B be a n × n Bernoulli matrix with inde-
pendent 0–1 entries such that P{Bi j = 1} = p. Then, for any n ≥ 4, p ≥ 0 and r ≥ 1,
with probability at least 1 − 3n−r , all entries of B can be divided into three disjoint
classes [n] × [n] = B1 � B2 � B3, such that

1. erowi (B1) ≤ C1r3np and ecoli (B1) ≤ C1r3np
2. erowi (B2) ≤ C2r
3. ecoli (B3) ≤ C2r ,

where ecol/rowi (B) is the number of nonzero elements in i th row or column of B belong-
ing to the class B and C1, C2 are absolute constants.

Remark 2 Following the same methods as was employed in the proof of [9, Theo-
rem 2.6], one can check that Proposition 1 actually holds with linear (instead of cubic)
dependence on r , namely erowi (B1) ≤ C1rnp and ecoli (B1) ≤ C1rnp.

3 From Bernoulli to General Matrices

The goal of this section is to prove Proposition 2 that provides a way to generalize the
regularization results known for Bernoulli random matrices to the general case:

Proposition 2 Suppose A is a random n × n matrix with i.i.d. symmetric entries Ai j

withEA2
i j = 1. Let Ã be the resulting matrix after we have zeroed out row and column

subsets of A in any way, such that

‖rowi ( Ã)‖22 ≤ cεn and ‖coli ( Ã)‖22 ≤ cεn (3.1)

for all i = 1, . . . , n. Let

M̃ := Ã · 1{| Ãi j |∈(2k0 ,2k1 ]}, and k1 − k0 =: κ.

Then, with probability at least 1 − 10κn−r , we have

‖M̃‖ ≤ Cr
√
cεnκ.

Here, cε is any positive ε-dependence and C > 0 is an absolute constant.
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Let us first collect several auxiliary lemmas that will be used in the proof of Propo-
sition 2.

Lemma 3 Consider a n×n randommatrix M with independent symmetric entries and
EM2

i j ≤ 1. Consider two vectors u = (ui )ni=1 and v = (v j )
n
j=1 such that u, v ∈ Sn−1.

Denote the event

Mlight
i j = {|Mi j ||uiv j | ≤ 2/

√
n}

and let Q ⊂ [n] × [n] be an index subset. Then, for any constant C ≥ 3

|
∑

i j

ui Mi j1{(i, j)∈Q}1Mlight
i j

v j | ≤ C
√
n

with probability at least 1 − 2 exp(−Cn/2).

Proof Let Ri j := Mi j1{(i, j)∈Q}1Mlight
i j

. Note that Ri j are centered due to the sym-

metric distribution of Mi j , and they are independent as Mi j are. So we can apply
Bernstein’s inequality for bounded distributions (see, for example, [20, Theorem
2.8.4]) to bound the sum:

P{|
∑

i j

ui Ri jv j | ≥ t} ≤ 2 exp

(
− t2/2

σ 2 + Kt/3

)
,

where

K = max
i, j

|ui Ri jv j | ≤ 2/
√
n and σ 2 =

∑

i j

E(ui Ri jv j )
2.

Note that ER2
i j ≤ EM2

i j , as R
2
i j ≤ M2

i j almost surely, and EM2
i j ≤ 1. So,

σ 2 =
∑

i j

u2i ER
2
i jv

2
j ≤

∑

i, j

u2i v
2
j = 1,

as
∑

i u
2
i = ∑

j v
2
j = 1. So, taking t = C

√
n, we obtain

P{|
∑

(i, j)

ui Mi j1{(i, j)∈Q}1Mlight
i j

v j | ≥ C
√
n} ≤ 2 exp(−Cn/2)

for any C ≥ 3. This concludes the statement of the lemma. ��
The following lemma is a version of [9, Lemma 3.3].

Lemma 4 For any matrix Q and vectors u, v ∈ Sn−1, we have

∑

i j

Qi j uiv j ≤ max
j

‖col j (Q)‖2 · (max
i

erowi (Q))1/2.
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Proof Indeed,

∑

i j

Qi j uiv j ≤
∑

j

v j

⎛

⎝
∑

i :Qi j �=0

Qi jui

⎞

⎠

≤
∑

j

v j

⎛

⎝
∑

i :Qi j �=0

Q2
i j

⎞

⎠

1/2⎛

⎝
∑

i :Qi j �=0

u2i

⎞

⎠

1/2

(∗)

≤ max
j

‖col j (Q) ‖2
∑

j

v j

⎛

⎝
∑

i :Qi j �=0

u2i

⎞

⎠

1/2

≤ max
j

‖col j (Q) ‖2
⎛

⎝
∑

j

v2j

⎞

⎠

1/2⎛

⎝
∑

j

∑

i :Qi j �=0

u2i

⎞

⎠

1/2

(∗)

≤ max
j

‖col j (Q) ‖2 · 1 ·
⎛

⎝
∑

i

u2i
∑

j :Qi j �=0

1

⎞

⎠

1/2

(since‖v‖2 = 1)

≤ max
j

‖col j (Q) ‖2
(
∑

i

u2i e
row
i (Q)

)1/2

≤ max
j

‖col j (Q) ‖2 ·
(
max
i

erowi (Q)

)1/2

. (since‖u‖2 = 1)

Steps (*) hold by the Cauchy–Schwarz inequality. Lemma 4 is proved. ��
In the proof of Proposition 2, we are going to use a standard splitting “by size”

of a nonnegative random variable. Let X = 0 or X ∈ (2k0 , 2k1 ] almost surely. Then,
clearly,

X ≤
k1∑

k=k0+1

2k1{X∈(2k−1,2k ]}.

If additionally EX2 ≤ 1 and we denote

pk := P{|Mi j | ∈ (2k−1, 2k]}, (3.2)

the following estimates hold for pk . First, the sum

∑
pk2

2k ≤ 4
∑

pk2
2(k−1) ≤ 4EX2 ≤ 4. (3.3)

Now, we are ready to prove Proposition 2.
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3.1 Proof of Proposition 2

Step 1. Net approximation
LetN be a 1/2-net on Sn−1 with cardinality |N | ≤ 5n . (The existence of such net is

a standard fact that can be found, e.g., in [20].)We will use a simple net approximation
of the norm (see, e.g., [20, Lemma 4.4.1]), namely

‖M̃‖ ≤ 4 max
u,v∈N

〈M̃u, v〉 = 4 max
u,v∈N

|
∑

i j

M̃i j uiv j |.

We will split the sum into two parts and bound each of them separately, based on the
absolute value of the element.

Let M := A · 1{|Ai j |∈(2k0 ,2k1 ]}. For any fixed u, v ∈ N and every i, j ∈ [n], we
define an event

Mlight
i j = {|Mi j ||uiv j | ≤ 2/

√
n}.

A random set of indices

1Mlight
i j

= {(i, j) : |Mi j ||uiv j | ≤ 2/
√
n}

is an analogue of the non-random set of “light couples” (i, j) used by Feige and Ofek
in [5]. The difference appears since in the non-Bernoulli setting we have to take into
account additional random scaling by absolute values of the corresponding matrix
entries |Mi j |.

Then,

max
u,v∈N

|
∑

i, j

M̃i j uiv j |

≤ max
u,v∈N

|
∑

i, j

M̃i j (1Mlight
i j

+ 1
(Mlight

i j )c
)uiv j |

≤ max
u,v∈N

|
∑

i, j

M̃i j1Mlight
i j

uiv j | + max
u,v∈N

|
∑

i j

M̃i j1(Mlight
i j )c

uiv j |.

Step 2. Light members
By Lemma 3, for any fixed u, v ∈ Sn−1 and a fixed subset of indices Q (assuming

that Qc is a set of rows and columns to delete),

|
∑

i, j

ui Mi j1{(i, j)∈Q}1Mlight
i j

v j | ≤ 12
√
n (3.4)

with probability at most 2 exp(−6n). Now, taking union bound over 5n choices for
u ∈ N , as many choices for v ∈ N , and 22n choices for the row and column subset
Qc, we obtain that
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P{|
∑

i, j

ui M̃i j1Mlight
i j

v j | ≤ 12
√
n} ≥ 1 − 2 exp(−n). (3.5)

Step 3. Other members
The second sum can be roughly bounded by the sum of absolute values of its

members:

|
∑

i, j

M̃i j1(Mlight
i j )c

uiv j | ≤
∑

i, j

|M̃i j |1(Mlight
i j )c

|uiv j |

≤
∑

i, j

⎡

⎣
k1∑

k=k0+1

2k1{|M̃i j |∈(2k−1,2k ]}

⎤

⎦1{|Mi j ||uiv j |≥2/
√
n}|uiv j |

Note that as long as 1{|M̃i j |∈(2k−1,2k ]} = 1, we also have that |Mi j | ≤ 2k . Indeed,

|Mi j | > 2k implies either |M̃i j | > 2k or |M̃i j | = 0. In any case, |M̃i j | /∈ (2k−1, 2k].
So, the last expression is bounded above by

∑

i, j

k1∑

k=k0+1

2k1{|M̃i j |∈(2k−1,2k ]}1{2k |uiv j |≥2/
√
n}|uiv j |

Since EM2
i j ≤ EA2

i j = 1, from (3.3), we have 21−k ≥ √
pk for any k, where pk is

probability of the kth level (defined in (3.2)). As a result, in Step 3, we got

|
∑

i, j

M̃i j1(Mlight
i j )c

uiv j |

≤
k1∑

k=k0+1

2k
∑

i, j :|uiv j |≥√
pk/n

1{|M̃i j |∈(2k−1,2k ]}|uiv j |. (3.6)

Step 4. Bernoulli matrices
For each “size” k = k0+1, . . . , k1, let us define a n×nmatrix Bk with independent

Bernoulli entries

Bk
i j := 1{|Mi j |∈(2k−1,2k ]}, EBk

i j = pk .

By Decomposition Lemma 1 (and Remark 2), with probability 1 − 3n−r , the entries
of every Bk can be assigned to one of three disjoint classes: Bk

1, where all rows and
columns have at mostC1rpkn nonzero entries;Bk

2, where all the columns have at most
C2r nonzero entries; and Bk

3, where all the rows have at most C2r nonzero entries. We
are going to further split the sum (3.6) into three sums containing elements of these
three classes and estimate each of them separately.
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• B1 : The part with the entries from Bk
1 satisfies the conditions of Lemma 1. For

any k = k0 + 1, . . . , k1

∑

(i, j)∈Bk
1 :

|uiv j |≥√
pk/n

1{|M̃i j |∈(2k−1,2k ]}|uiv j | ≤
∑

(i, j)∈Bk
1 :

|uiv j |≥√
pk/n

Bk
i j |uiv j |.

By Lemma 1, this sum is bounded by Cr
√
pkn with probability at least 1 − n−r .

So, for any u, v ∈ Sn−1

k1∑

k=k0+1

2k
∑

(i, j)∈Bk
1 :

|uiv j |≥√
pk/n

Bk
i j |uiv j | ≤ Cr

√
n

k1∑

k=k0+1

2k
√
pk .

Then, by the Cauchy–Schwarz inequality and estimate (3.3),

k1∑

k=k0+1

2k
√
pk ≤

√∑k1

k=k0+1
22k pk

√∑k1

k=k0+1
1 ≤ 2

√
κ.

• B2 : The part with the entries from Bk
2 can be estimated by Lemma 4. We have

that

k1∑

k=k0+1

2k
∑

(i, j)∈Bk
2 :

|uiv j |≥√
pk/n

1{|M̃i j |∈(2k−1,2k ]}|uiv j | ≤
∑

i, j

Qi j |uiv j |,

where

Qi j :=
k1∑

k=k0+1

2k1{(i, j)∈B2}1{|M̃i j |∈(2k−1,2k ]}

Note that for every fixed i = 1, . . . , n, number of nonzero entries Qi j in the row
i is at most C2rκ . Also, |Qi j | ≤ 2|M̃i j | ≤ 2| Ãi j | almost surely, so maximum
L2-norm of the column of Q is

√
cεn. By Lemma 4, this implies that for any

u, v ∈ Sn−1

∑

i, j

Qi j |uiv j | ≤ √
C2rκcεn

• B3 : The part with the entries from Bk
3 can be estimated in the same way as Bk

2,
repeating the argument for AT .
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Step 5. Conclusion
Now, we can combine the estimates obtained for the light members (3.5) and all

three parts of the non-light sum, to get that

‖M̃‖ ≤ 12
√
n + Cr

√
κn + 2

√
C2rκcεn � r

√
cεκn

with probability at least 1 − 2e−n − 3κn−r − 6n−r ≥ 1 − 10n−rκ for all n large
enough. Proposition 2 is proved.

4 Conclusions: Proof of Theorem 1 and Further Directions

In this section, we conclude the proof of Theorem 1. As we have seen in the previous
section, splitting the entries of the matrix A into κ “levels” with the similar absolute
value produces an extra

√
κ factor in the norm estimate. Hence, we care to make the

number of levels as small as possible. We are going to show that this number can be
as small as C ln ln n, where n is the size of the matrix. The reason is that we need
only to consider the “average” entries of the matrix, those with the absolute values
between O(

√
n/ ln n) and O(

√
n). The “large” entries will be all replaced by zeros in

regularization, and restriction to the “small” entries creates a matrix with the optimal
norm (no regularization is needed). One way to check this is by applying the following
result of Bandeira and Van Handel:

Theorem 2 [2, Lemma 21]Let X be an n×n matrix whose entries Xi j are independent
centered random variables. For any ε ∈ (0, 1/2], there exists a constant cε such that
for every t ≥ 0,

P{‖X‖ ≥ (1 + ε)6σ + t} ≤ n exp(−t2/cεσ
2∗ ),

where σ is a maxium expected row and column norm:

σ 2 := max(σ 2
1 , σ 2

2 ), where σ 2
1 = max

i

∑

j

E(X2
i j ), σ 2

2 = max
j

∑

i

E(X2
i j );

and σ∗ is a maximum absolute value of an entry:

σ∗ := max
i j

‖Xi j‖∞.

Lemma 5 Suppose S is a random n × n matrix with i.i.d. mean zero entries Si j , such
that ES2i j ≤ 1 and |Si j | < c̄

√
n/

√
ln n. Let r ≥ 1. If c̄ < c, then with probability at

least 1 − n−r

‖S‖ ≤ 13r
√
n.

Here, c is a small enough absolute constant.
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Proof The proof follows directly from Theorem 2 with t = r
√
n and ε = 1. It is

enough to take c = 1/11c1, where c1 is a constant from the statement of Theorem 2.
��

Now, we are ready to prove Theorem 1.

4.1 Proof of Theorem 1

Let us decompose A into a sum of three n × n matrices

A := S + M + L, (4.1)

where S contains the entries of A that satisfy |Ai j | ≤ 2k0 , the matrix M contains
the entries for which 2k0 < |Ai j | ≤ 2k1 , and L contains large entries, satisfying
|Ai j | > 2k1 . Here,

k0 :=
⌊
1

2
log2

c1n

ln n

⌋
, k1 :=

⌈
1

2
log2(C2cεn)

⌉
, where cε = (ln ε−1)/ε

and c1,C2 > 0 are absolute constants.
Note that S, M and L inherit essential properties of the matrix A. First, they also

have i.i.d. entries (since they are obtained by independent individual truncations from
the i.i.d. elements Ai j ). Due to the symmetric distribution of the entries of A, the
entries of S, M and L have mean zero. Also, their second moment is bounded from
above by EA2

i j = 1.

Note that all the entries in S satisfy |Ai j | ≤ √
c1n/ ln n. Thus, as long as we choose

constant c1 small enough to satisfy the condition in Lemma 5, the norm of S can be
estimated as

P{‖S‖ > 13
√
n} < n−r . (4.2)

Clearly, replacing by zeros some rows and column subset can only decrease the norm
of S.

By Remark 1, with probability at least 1 − 7 exp(εn/12), all rows and columns of
Ã have bounded norms: for i = 1, . . . , n

‖rowi ( Ã)‖2 ≤ C
√
cεn and ‖coli ( Ã)‖2 ≤ C

√
cεn.

In particular, it implies that all the entries of Ã have absolute values bound by C
√
cεn.

So, by taking constant C2 ≥ C2, we achieve that L will be empty after the regulariza-
tion.

Proposition 2 estimates the norm of M after the regularization (zeroing out row and
columns with large norms):

P{‖ Ã · 1{| Ãi j |∈(2k0 ,2k1 ]}‖ > Ccεr
√
nκ} ≤ 10n−rκ. (4.3)
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By definition,

κ := k1 − k0 ≤ 1

2

[
log2(C2cεn) − log2

c1n

ln n
+ 2

]
≤ log2 ln n

for all large enough n.
Using triangle inequality to combine norm estimates (4.2) and (4.3), we get ‖ Ã‖ �

cεr
√
n · ln ln n with probability at least

1 − n−r − 7e−εn/12 − 10n−r ln ln n ≥ 1 − n−r+0.1

for all n large enough. This concludes the proof of Theorem 1.

Remark 3 Note that the only place in the argument where it matters what entry subset
we replace by zeros is Step 2 of the proof of Proposition 2. To have a manageable
union bound estimate, we need to be sure that the number of options for the potential
subset to be deleted is of order exp(n). (So, exp(ln 2 · n2) options for a general entry
subset would be too much.)

Hence, also recalling Remark 1, we emphasize that the norm estimate (1.1) holds
with the probability 1−n0.1−r as long as we achieve L2-norm of all rows and columns
bounded by C

√
cεn by zeroing out any product subset of the entries of A.

5 Proof of Corollary 1

General idea of the proof of Corollary 1 is to show that after the regularization proce-
dure, all rows and columns of the matrix have well-bounded L2-norms and then apply
Theorem 1.

Originally, the core part of the algorithm (Step 2) was presented for Bernoulli
random matrices in [12,13]. We will use the following version of [13, Lemma 5.1]
(based on the ideas developed in [12, Proposition 2.1]):

Lemma 6 Let B be a n × n matrix with independent 0–1 valued entries, EBi j ≤ p.
Then, for any L ≥ 10 with probability 1− exp(−n exp(−Lpn)), the following holds.
If we define

Wi j :=
{
1, if erowj (B) ≤ Lnp or Bi j = 0,

Lnp/erowj (B), otherwise.

and Vj := ∏n
i=1 Wi j , and J := { j : Vj < 0.1}, then

|J | ≤ n exp(−Lnp) and
∑

j∈J c
Bi j ≤ 10Lnp, for any i ∈ [n].

In order to pass from Bernoulli case to the general distribution case, we are going
to use some version of “level truncation” idea once again. Note that here we need
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the probabilities of the levels pl to be both not too large (for the joint cardinality
estimate) and not too small (for the probability estimate union bound). This motivates
the idea to group “similar size” entries Ai j not by absolute value |Ai j |, but by common
2−l -quantiles of the distribution of ξ ∼ A2

i j .

Remark 4 A version of Corollary 1 can be proved, when one would define the setsAl

to contain all Ai j such that A2
i j ∈ (qk−1, ql ], where ql is 2l th quantile of the distribution

of A2
i j , namely

ql := inf{t : P{A2
i j > t} ≤ 2−l}. (5.1)

The proof of this version is actually almost identical to the one presented below
and gives smaller absolute constants. However, an additional requirement to know
quantiles of the distribution of the entries in order to regularize the norm of the matrix
seems undesirable. So, we are going to prove the distribution oblivious version as
presented by Algorithm 1.

The next lemma shows that the order statistics used in the statement of Corollary 1
approximate quantiles of the distribution of A2

i j .

Lemma 7 (Order statistics as approximate quantiles) Let Â1, . . . Ân2 be all the entries
of n×n randommatrix A in an non-increasing order, and qk be 2−k quantiles of the dis-
tribution of A2

i j defined by (5.1). Then, with probability at least 1−4 exp(−n22−k1−2)

for all k = 1, . . . , k1
qk−2 ≤ Â2


n221−k� ≤ qk . (5.2)

Proof A direct application of Chernoff’s inequality shows that for any k

P{ν1 > 
n221−k�} ≤ exp(−n22−k/4),

where ν1 is a number of entries Ai j such that A2
i j > qk . Another application of

Chernoff’s inequality lower bound shows that

P{ν2 < 
n221−k�} ≤ exp(−n22−k/4),

where ν2 is a number of entries Ai j such that A2
i j > qk−2.

Then, with probability at least 1 − 2 exp(−n22−k), the order statistics Â2
n222−k is

at least qk−2 and at most qk . Taking union bound, Eq. (5.2) holds with probability
1 − 4 exp(−n22−k1/4) for all k = 1, . . . , k1. ��
Remark 5 We will use k1 = 
log2(8n/ε)�. An easy computation using (5.2) shows
that

qk1−l−3 ≤ Â2

24+l−k1n2� ≤ Â2


2l nε� ≤ Â2

23+l−k1n2� ≤ qk1−l−2

for all l = 0, . . . , lmax with probability 1 − 4 exp(−nε/4). Then, for Al as defined in
(1.2) and all l ≤ lmax,

P{Ai j ∈ Al} ≤ 23+l−k1 ≤ 2lε/n. (5.3)

Now, we are ready to prove Corollary 1.
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5.1 Proof of Corollary 1

Let k1 = 
log2(8n/ε)�, and qk1 is a corresponding 2−k1 quantile of the distribution
of A2

i j (as defined by (5.1)). It is easy to check by Chernoff’s inequality that the

total number of entries in A such that A2
i j ≥ qk1 is at most εn/2 with probability at

least 1 − e−εn/4. So, all these “large” entries will be replaced by zeros at Step 1 of
regularization Algorithm 1.

To prove Corollary 1, it is enough to show that:

1. Algorithm 1makes all rows and columns of the truncatedmatrix A·1{A2
i j<qk1 } have

norms bounded by C
√
cεn. Then, in view of Remark 3, we can apply Theorem 1

to conclude the desired norm estimate.
2. the cardinalities of the exceptional index subsets |I |, |J | ≤ εn/2 with high prob-

ability. Then, the regularization procedure is indeed local.

The matrix Ā := A ·1{A2
i j<qk1 } is naturally decomposed into the union of lmax “levels”

with the entries coming from sets Al and “the leftover” part that contains Ai j such
that A2

i j < Â2

nε2lmax �. So,

Āi j = Ai j1{Ai j∈∪Al } + Ai j1{|Ai j |< Â
nε2lmax �} =: ALarge + ASmall.

All the rows and columns of ASmall have L2-norms at most C
√
nrcε with proba-

bility at least 1 − n−r (without any regularization). This follows from an application
of Bernstein’s inequality (e.g., [20, Theorem 2.8.4]) for a sum of independent cen-
tered entries bounded by

√
Cn/ ln n. Indeed, we just need to check the boundedness

condition. Recall that lmax = 
log2(ln n/ ln ε−4)�. By definition of quantiles qk and
Markov’s inequality

P{A2
i j ≥ qk1−2−lmax} ≥ 2−k1+1 ln n

ln ε−4 ≥ P

{
A2
i j ≥ 32cεn

ln n

}
.

Hence, the entries of ASmall can be estimated from above by

Â2

nε2lmax � ≤ qk1−2−lmax � 32cεn

ln n
.

For the part ALarge, we use Lemma 6 applied to n × n matrices with i.i.d. entries
Bl
i j = 1{Ai j∈Al } for each l = 0, . . . , lmax with L = 2cε and pl = 2lε/n (which is a

valid choice by Remark 5). From the union bound estimate, we can conclude that the
statement of Lemma 6 holds for all l ≤ lmax with high probability

1 −
∑

l≤lmax

exp(−n exp(−2cεn2
lε/n)) ≥ 1 − exp(−n0.5).
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Recall that J̄ = ∪l Jl is the union of all exceptional column index subsets found for
all matrices A ·1{Ai j∈Al } with l = 0, . . . , lmax. Note that by the definition of quantiles
and second moment condition,

∞∑

s=0

qs2
−s−1 ≤ EA2

i j ≤ 1. (5.4)

By Lemma 6, we can estimate for every i ∈ [n]

‖rowi (A
Large
[n]× J̄ c

)‖22 ≤
∑

l≤lmax

qk1−l−220cεnpl

≤
∑

l≤lmax

qk1−l−220cεn
2l−k1ε

n
2k1 ≤ 160cεn,

as 2k1 ≤ 16n/ε, we used (5.4) with s = k1 − l − 2 in the last step.
Then, by the L2-norm triangle inequality applied to the rows of ALarge

[n]× J̄ c
and ASmall,

we have the row boundedness condition satisfied for Ā[n]× J̄ c . Next, at Step 3, we add

the set Ĵ of columns with largest L2-norms. The same argument as in Remark 1
shows that with probability at least 1−n−r , there are no columns with the norm larger
than C

√
cεn outside the set Ĵ . So, matrix Ã[n]×J c has all rows and columns norms

well bounded (recall that J := J̄ ∪ Ĵ ). Then, by Theorem 1, with high probability
1 − C(ln ln n)n−r

‖ Ã[n]×J c‖ � r3/2
√
cεn ln ln n. (5.5)

Repeating the same argument for the transpose, we have that

‖ ÃI c×J‖ ≤ ‖ ÃI c×[n]‖ � r3/2
√
cεn ln ln n. (5.6)

Now, we can combine (5.5) and (5.6) by triangle inequality for the operator norm to
conclude the desired norm estimate for Ã on the intersection of good events, namely
with probability

1 − exp−εn/4 −n−r − exp(−n0.5) − 2C(ln ln n)n−r ≥ 1 − n0.1−r .

Finally, let us check that the regularization is local. Again by Lemma 6, the total
number of exceptional columns

| J̄ | = |
⋃

l

Jl | ≤
∑

l≤lmax

n exp(−2cεn2
lε/n) ≤ nε/4,

since we are summing a geometric progression and l ≥ 0. Since the same argument
holds for the cardinality of Ī , we can conclude that with high probability, Algorithm 1
makes changes only in a nε × nε submatrix of A. This concludes the proof of Corol-
lary 1.
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6 Discussion

6.1 Regularization by the Individual Corrections of Entries

Dowe actually need to look at the rows and columns of A?A simpler and very intuitive
idea would be to regularize the norm of A just by zeroing out a few large entries of
A. However, this approach does not work for the case when the entries have only two
finite moments: For the efficient local regularization, one has to account for the mutual
positions of the entries in the matrix, not only for their absolute values.

Only in the case when Ai j have more than two finite moments, the truncation idea
works and it is not hard to derive the following result from known bounds on random
matrices such as [1,14,18] (see also the discussion in [13, Section 1.4]).

In the twomoments case, individual correction of the entries can guarantee a bound
with bigger additional factor ln n in the norm. It can be derived from known general
bounds on randommatrices, such as the matrix Bernstein’s inequality [17]. One would
apply the matrix Bernstein’s inequality for the entries truncated at level

√
n to get that

‖ Ã‖ ≤ ε−1/2√n · ln n.
We consider Theorem 1 more advantageous with respect to the individual correc-

tions approach not only because we are able to bound the norm closer to the optimal
order

√
n, but also due to the fact that it gives more adequate information about the

obstructions to the ideal norm bound. Namely, they are not only in the entries that are
too large, but also in the rows and columns that accumulate too many entries (all of
which are, potentially, of average size).

6.2 Symmetry Assumption

An assumption that the entries of A has to have symmetric distribution does not look
natural and potentially can be avoided. We need it in the current argument to keep
zero mean after various truncations by absolute value (in (4.1) and also in (3.4)).
The standard symmetrization techniques (see [10, Lemma 6.3]) would not work in
this case since we combine convex norm function with truncation (zeroing out of a
product subset), which is not convex.

6.3 Dependence on n

Another potential improvement is an extra
√
ln ln n factor on the optimal n-order

‖ Ã‖ ∼ √
n. The reason for its appearance in our proof is that we consider restrictions

of A to the discretization “levels” independently, and independently estimate their
norms. The second moment assumption gives us that

∑
22k pk ∼ 1. However, the best

we can hope for a norm of one “level” (after proper regularization) is 2k
√
npk (since

this is an expected L2-norm of a restricted row). Thus, we end up summing square
roots of the converging series,

∑
(22k pk)1/2, which for some distributions is as large

as square root of the number of summands (ln ln n in our case).
It would be desirable to remove extra

√
ln ln n term and symmetric distribution

assumption, proving something like the following
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Conjecture 1 Consider an n × n random matrix A with i.i.d. mean zero entries such
that EA2

i j = 1. Let Ã be the matrix that obtained from A by zeroing out all rows and
columns such that

‖rowi (A)‖m ≥ CE‖rowi (A)‖m, ‖coli (A)‖m ≥ CE‖coli (A)‖m (6.1)

for some Lm-norm to be specified (e.g., m = 2). Then with probability 1 − o(1), the
operator norm satisfies ‖ Ã‖ ≤ C ′√n.

Note that this result would be somewhat similar to the estimate proved by Seginer
[14]: in expectation, the norm of the matrix with i.i.d. elements is bounded by the
largest norm of its row or column. However, note that after cutting “heavy” rows and
columns, we lose independence of the entries in the resulting matrix. And in general,
the question of the norm regularization is not equivalent to another interesting question
about the sufficient conditions on the distribution of the entries that ensure optimal
order of the operator norm.
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