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Abstract
Let (�,F , (F)t≥0, P) be a complete stochastic basis, and X be a semimartingale
with predictable compensator (B,C, ν). Consider a family of probability measures

P = (Pn,ψ , ψ ∈ �, n ≥ 1), where � is an index set, Pn,ψ
loc� P , and denote the

likelihood ratio process by Zn,ψ
t = dPn,ψ |Ft

dP|Ft
. Under some regularity conditions in

terms of logarithm entropy and Hellinger processes, we prove that log Zn
t converges

weakly to a Gaussian process in �∞(�) as n →∞ for each fixed t > 0.

Keywords Hellinger process of order zero · Log-likelihood process ·
Semimartinagle ·Weak convergence

Mathematics Subject Classification (2010) 60F05 · 60F17

1 Introduction and Preliminaries

The celebrated Donsker theorem is a functional extension of the central limit theo-
rem in probability theory. Plenty of research on this topic has come out in the past
decades. The reader is referred to classic books, and papers like Dudley [3], Gine and
Zinn [4], Ossiander [10], Andersen et. al [1], Liptser and Shiryaev [7], van der Geer
[11], Billingsley [2], Jacod and Shiryaev [5] for both theoretical framework and wide
applications. A primary purpose of the present paper is to establish a certain Donsker
theorem for log-likelihood processes indexed by an arbitrary set. In this section, we
first introduce some basic notions about log-likelihood processes and martingale rep-
resentation property.
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Throughout this paper, we follow the standard definitions and notations of mar-
tingale theory, which can be found in the book by Jacod and Shiryaev [5]. Let
(�,F , (F)t≥0, P) be a complete stochastic basis. Fix a semimartingale X on it, and
assume that all P-martingales have a representation property relative to X . Denote
by the triplet (B,C, ν) the predictable characteristic of X (associated with some
bounded truncation function). More precisely, if �Xt = Xt − Xt− denotes the jump
of X at time t , then Xt −∑

s≤t (�Xs − hτ (�Xs)) , where hτ (x) = x1(|x |≤τ), is
a special semimartingale, which can be uniquely divided into a bounded variation
process and a local martingale process. The B is a bounded variation process of
X −∑

s≤·(�Xs − hτ (�Xs)). Let Xc be the continuous local martingale part of X ,
then

Ct = 〈Xc, Xc〉t .

Let μ be the jump measure of X defined by

μ(ω, dt, dx) =
∑

s

1(�Xs (ω) �=0)ε(s,�Xs (ω))(dt, dx) (1.1)

where ε(s,�Xs (ω)) denotes the Dirac measure at point (s,�Xs(ω)). The ν is the unique
predictable compensator of μ (up to a P-null set). Namely, ν is a predictable random
measure such that for any predictable function1 W , W ∗ (μ− ν) = W ∗ μ−W ∗ ν)

is a local martingale, where the W ∗ μ is defined by

W ∗ μt (ω)

=
⎧
⎨

⎩

∫ t
0

∫
R
W (ω, s, x)μ(ω; ds, dx) if

∫ t
0

∫
R
|W (ω, s, x)|μ(ω; ds, dx) <∞,

+∞ otherwise.

(see Section 2.1 of Chapter 2 in Jacod and Shiryaev [5] for more details). Note the
predictable quadratic variation is given by

〈W ∗ (μ− ν)〉t =
(
W − Ŵ

)2 ∗ νt +
∑

s≤t
(1− as)Ŵ

2
s , (1.2)

where

Ŵ = Ŵ (ω, t) =
∫

R

W (ω, t, x)ν(ω, {t} × dx) (1.3)

and

at (ω) = ν(ω, {t} × R). (1.4)

1 Let �̃ = �× R+ × R, P̃ = P ⊗ B, where B is a Borel σ -field on R and P a σ -field generated by all
left continuous adapted processes on �×R+. The predictable function is a P̃-measurable function on �̃.

123



Journal of Theoretical Probability (2020) 33:1401–1425 1403

It follows from Corollary 1.19 of Chapter 2 in Jacod and Shiryaev [5] that at = 0 is
equivalent to the fact X is a quasi-left continuous process.2 Specially, for a processwith
independent increments, at = 0means this process has no fixed time of discontinuity.3

Thus, we may and do choose a good version of both Ŵ and a such that Ŵ is the
predictable projection of W (ω, t,�Xt )1(�Xt �=0) and at ≤ 1. In particular,

E
(
1(�Xt=0)

∣
∣Ft−

) = 1− at . (1.5)

Now consider another probability measure P ′ such that

P ′
loc� P, (1.6)

which means that for any t ≥ 0, P ′|Ft � P|Ft . Define the likelihood ratio process

Zt = dP ′|Ft

dP|Ft

. (1.7)

It follows from Chapter III in Jacod and Shiryaev [5] that Zt is a local martingale.
Since by assumption all P-martingales have a representation property relative to

X , according to Theorem 5.19 of Chapter III in Jacod and Shiryayev [5], Zt has the
following representation: there is a predictable processβ and a nonnegative predictable
function Y on �̃ such that

Zt =
{
Z0eNt− 1

2β2·Ct
∏

s≤t (1+�Ns)e−�Ns , (ω, t) ∈ �,

0, otherwise.
(1.8)

Here

Nt = β · Xc
t +

(

Y − 1+ Ŷ − a

1− a
1(a<1)

)

∗ (μ− ν)t

and � is a random set defined as follows

σ = inf{t : Ŷt > 1 or Ŷt < 1 and at = 1},
Ht = 1

2
β2 · Ct +

(
1−√Y

)21[0,σ ) ∗ νt +
∑

s≤t

(√
1− as −

√

1− Ŷs
)2
1(s<σ),

Tn = inf{t : Ht ≥ n},
� = [0, σ ) ∩ (∪n[0, Tn]).

Note that β,Y and� depend on P ′. In fact, Y can be explicitly represented as follows.
Let MP

μ be a measure on (�̃, P̃) where �̃ := � × R+ × R, P̃ := P ⊗ B, such that

2 A quasi-left continuous process X is a càdlág adapted process such that for any increasing stopping times
Tn with limit T , limn→∞ XTn = XT .

3 t is called as the fixed time of discontinuity if P(�Xt �= 0) > 0.
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MP
μ (W ) = E(W ∗ μ)∞ for all measurable nonnegative functions W . Then Y is the

conditional expectation of Z
Z− with respect to P̃ under MP

μ , namely

Y = MP
μ

(
Z

Z−
|P̃

)

.

Define the log-likelihood process Lt by

Lt = log Zt . (1.9)

This process has been a well-studied object in the context of both stochastic processes
and statistical inferences. Obviously,

Lt = log Z0 + β · Xc
t −

1

2
β2 · Ct +

(

Y − 1+ Ŷ − a

1− a
1(a<1)

)

∗ (μ− ν)t

+
∑

s≤t
(log(1+�Ns)−�Ns) .

Assume we are given a family of probability measures Pn = {Pn,ψ : ψ ∈ �} on
(�,F), indexed by an arbitrary non-empty set �, and assume

Pn,ψ
loc� P

for every n > 0 andψ ∈ �.We shall bemainly interested in the sequence of likelihood
ratio processes Zn,ψ

t . The main purpose of the paper is to establish a certain Donsker
theorem for log-likelihood processes log Zn

t in �∞(�) as n →∞, where we denote
by �∞(�) the space of bounded real-valued functions defined on �.

It seems hard to develop directly an invariance principle for log Zn due to com-
plicated structure. To the best of our knowledge, there are only few works in this
area, such as Le Cam [6], Vostrikova [13] and so on. The reader can find some inter-
esting results in Nishiyama [8] and [9], where log Zn is assumed to be very special
continuous semimartingales and discrete time semimartingales, respectively. It is a
challenging problem to extend Nishiyama’s work to general setting. To attack such
a problem, we shall combine stochastic calculus techniques and chaining arguments
with the Kakutani–Hellinger distance for probability measures. In particular, we shall
characterize the regularity of �∞(�)-valued log-likelihood processes in terms of the
Kakutani–Hellinger distance and the Hellinger processes.

The rest of the paper is organized as follows. We will first make some necessary
assumptions and then state our main result in Sect. 2. The proof of main result is given
in Sect. 3, which consists of several lemmas and two propositions.
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2 Main Result

To state our main results, we need some more notations and make some technical
assumptions. Startwith theKakutani–Hellinger distance between twoprobabilitymea-
sures P and P ′. Assume that Q is a third probability measure on (�,F) such that

P � Q, P ′ � Q (2.1)

Let

Z = dP

dQ
, Z ′ = dP ′

dQ
(2.2)

and define the Kakutani–Hellinger distance by

ρ2(P, P ′) = 1

2

∫

�

(√
Z −√Z ′

)2
dQ. (2.3)

It is easy to check that ρ(P, P ′) is a metric in the space of probability measures and
does not depend on the probability measure Q. Note

ρ2(P, P ′) = 1− EQ

√
Z Z ′ (2.4)

For 0 < α < 1, call H̆(α; P, P ′) = EQ(Zα(Z ′)1−α) the Hellinger integral of order
α. We remark that H̆(α; P, P ′) → 1 as α → 0 if P ′ � P .

Proceed to introduce the Hellinger processes. Assume that

P
loc� Q, P ′

loc� Q (2.5)

and define

Zt = dP|Ft

dQ|Ft

, Z ′t =
dP ′|Ft

dQ|Ft

. (2.6)

Then for each 0 < α < 1, there is a unique predictable increasing process h(α; P, P ′),
called the Hellinger process of order α, such that

(i)

h(α; P, P ′)0 = 0

(ii)

h(α; P, P ′)t = 1∪[0, Sn ] · h(α; P, P ′)t
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(iii)

Y (α)t + Y (α)− ∗ νt is local martingale

where

Sn = inf{t : Zt > n or Z ′t > n}

and

Y (α)t = Zα
t (Z ′t )1−α.

One can extend the above Hellinger process to order zero and even to a general
function. Given a function ψ : R �→ R such that

ψ(x)

|x − 1|2 ∧ |x − 1| (2.7)

is bounded with convention 0
0 = 0 and ψ(1) = 0. Denote

j (ψ; P, P ′)t =
∑

s≤t

Z ′s
Z ′s−

ψ

(
Zs/Zs−
Z ′s/Z ′s−

)

, (2.8)

then there is a predictable increasing process, denoted by ı(ψ; P, P ′), such that

(i’)

ı(ψ; P, P ′)0 = 0

(ii’)

ı(ψ; P, P ′)t = 1∪[0, Tn ] · ı(ψ; P, P ′)t

(iii’)

j (ψ; P, P ′)Tn∧t − ı(ψ; P, P ′)Tn∧t is local martingale .

Call ı(ψ; P, P ′) the Hellinger process of order 0 associated with ψ . In particular,
if

ψ(x) =
{
1, x = 0,
0, x > 0,

then we simply call ı(ψ; P, P ′) the Hellinger process of order 0.
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In general, it is rather complicated to compute h(α; P, P ′). However,we fortunately
have the following explicit formula in the special case P ′ � P:

h(α; P, P ′) = α(1− α)

2
β2 · C + ϕα(1,Y ) ∗ ν +

∑

s≤t
ϕα(1− as, 1− Ŷs)

In particular,

h

(
1

2
; P, P ′

)

= 1

8
β2 · C + 1

2
(1−√Y )2 ∗ ν + 1

2

∑

s≤t

(√
1− as −

√

1− Ŷs

)2

,

ı(ψ; P, P ′) = Yψ

(
1

Y

)

∗ ν +
∑

s≤t
(1− a′s)ψ

(
1− as
1− a′s

)

.

Our technical assumptions mainly involve three aspects: the predictable envelope
of {Yn,ψ , ψ ∈ �}, the Kakutani–Hellinger distance between probability measures
Pn,ψ and the size of index set �.

For every n > 0, denote the essence supremum Y
n
(�) = [supψ∈� Yn,ψ ]P̃,MP

ν
.

This is the predictable envelope of {Yn,ψ , ψ ∈ �} used in Definitions 2.1 and 2.3 of
Nishiyama [9].

Assumption 1 For any n > 0, ψ ∈ �, �n,ψ ≡ �× [0, 1] and 0 ≤ a < 1. Moreover,
{Yn,ψ , ψ ∈ �} attains their predictable envelope for every n > 0, namely, there is a
ψ0 ∈ � such that Yn,ψ0 = [supψ∈� Yn,ψ ]P̃,MP

ν
.

Assumption 2 For every ε > 0, as n →∞

sup
ψ∈�

ı
(
f1+ε, P, Pn,ψ

)
t

P−→ 0 (2.9)

where f1+ε(x) = |x − 1|1{1/(1+ε)<x<1+ε}c .
There is a nonnegative definite continuous function Vt on � × �, such that as

n →∞,

sup
ψ∈�

∣
∣
∣h

(
1

2
; P, Pn,ψ

)

t
− 1

8
Vψ,ψ
t

∣
∣
∣

P−→ 0 (2.10)

and for every ψ, φ ∈ �,

h

(
1

2
; Pn,ψ , Pn,φ

)

t

P−→ 1

8
Vψ,φ
t . (2.11)

Let � be an arbitrary set, �� a positive rational number. � = {�(ε)}ε∈(0,��] is
called a decreasing series of finite partitions (DFP) of � if
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(i) each �(ε) = {�(ε; k) : 1 ≤ k ≤ N�(ε)} is a finite partition of �, namely

� =
N�(ε)⋃

k=1
�(ε; k);

(ii) N�(��) = 1 and limε↓0 N�(ε) = ∞;
(iii) N�(ε) ≥ N�(ε′) as ε ≤ ε′.

Given a 0 < ε ≤ ��, the ε-entropy H�(ε) is defined by

H�(ε) = √
log(1+ N�(ε)).

Assumption 3 There exists a decreasing series of finite partitions, �, of � such that
as n →∞

∫ ��

0
H�(ε)dε <∞

and

‖Hn‖� = OP (1)

where

‖Hn‖2� = sup
ε∈(0,��]∩Q

max
1≤k≤N�(ε)

max
ψ,φ∈�(ε,k)

1

ε2
h

(
1

2
; Pn,ψ , Pn,φ

)

1
.

We are now ready to state our main result as follows.

Theorem 2.1 Under Assumptions 1, 2 and 3, we have

Ln
1 ⇒ G in �∞(�), (2.12)

where G stands for a Gaussian element in �∞(�), each d-dimensional marginal
(Gψ1 , · · · ,Gψd ) is a normal random vector with mean

�μ = −1

2

(
Vψi ,ψi
1 , 1 ≤ i ≤ d

)
(2.13)

and covariance structure

� = (
V

ψi ,ψ j
1

)
1≤i, j≤d . (2.14)

The proof is given in Sect. 2. For the sake of comparison, we review an earlier result
due to Nishiyama [9] in the discrete time case. Let (Fi )i≥0 be a discrete time stochastic
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basis, and Pn = {Pn,ψ : ψ ∈ �} a family of probability measures on (�,F), such
that

Pn,ψ
loc� P. (2.15)

Define

Wn,ψ
i = dPn,ψ |Fi

dP|Fi

(2.16)

and

ξ
n,ψ
i =

√
√
√
√Wn,ψ

i

Wn,ψ
i−1

− 1 (2.17)

Nishiyama [9] studied weak convergence for log-likelihood processes logWn
n in

�∞(�) and obtained a similar result to (2.12) under some integrability assumptions
involving ξn’s and entropy conditions. More specifically, assume

(i) for every ε > 0

n∑

i=1
E
(
( sup
ψ∈�

ξ
n,ψ
i )21{supψ∈� ξ

n,ψ
i >ε}

∣
∣
∣Fi−1

)
P−→ 0;

(ii) there exists a decreasing series of finite partitions, �, of � such that

sup
ε∈(0,��]∩Q

max
1≤k≤N�(ε)

1

ε2

n∑

i=1
sup

ψ,φ∈�(ε,k)
E
(|ξn,ψ

i − ξ
n,φ
i |2|Fi−1

) = OP (1)

(2.18)

and

∫ ��

0
H�(ε)dε <∞; (2.19)

(iii) there is a V : � ×� → R such that

sup
ψ∈�

∣
∣
∣
∣
∣

n∑

i=1
4E∗

(
(ξ

n,ψ
i )2|Fi−1

)− Vψ,ψ

∣
∣
∣
∣
∣

P−→ 0;

and for ψ, φ ∈ �
n∑

i=1
4E

(
ξ
n,ψ
i ξ

n,φ
i |Fi−1

)
P−→ Vψ,φ.
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Then

logWn
n ⇒ G in �∞(�), (2.20)

where G stands for a Gaussian element in l∞(�), each d-dimensional marginal
(Gψ1 , . . . ,Gψd ) is a normal random vector with mean

�μ = −1

2

(
Vψi ,ψi , 1 ≤ i ≤ d

)

and covariance structure

� = (
Vψi ,ψ j

)
1≤i, j≤d .

To conclude the Introduction, two more remarks are given .

Remark 2.2 Observe in the discrete time case the Hellinger process can be computed
as follows.

h

(
1

2
; P, Pn,ψ

)

= 2
n∑

i=1
E
[
(ξ

n,ψ
i )2

∣
∣
∣Fi−1

]
(2.21)

and

ı( f1+ε, P, Pn,ψ ) =
n∑

i=1
E
[
(ξ

n,ψ
i )21{ 1

1+ε
≤(ξ

n,ψ
i +1)2<1+ε}c

∣
∣
∣Fi−1

]
(2.22)

Thus, there is to some extent a similarity between our assumptions in Theorem 2.1 and
Nishiyama’s assumptions. However, it seems neater to use the Hellinger processes in
continuous time case.

The integrability condition (Assumption 3) of partitioning entropy plays an impor-
tant role in the proof of Theorem 2.1. It is possible to use the metric entropy condition,
but we need to introduce a suitable pseudo-metric in the index set �. The Hellinger
processes would also be very likely a good candidate.

Remark 2.3 It is rather interesting to consider the limiting behavior of the process
log Zn in �∞([0, 1] ×�). To this end, we need to establish a tightness criterion in the
space [0, 1] ×�. This is more complicate, and will be left to the future work.

3 Proofs

Let us start with a decomposition. Observe that

Nn,ψ
t = βn,ψ · Xc

t +
(

Yn,ψ − 1+ Ŷ n,ψ − a

1− a

)

∗ (μ− ν)t .

123



Journal of Theoretical Probability (2020) 33:1401–1425 1411

It is easy to see

�Nn,ψ
t = (

Yn,ψ (t,�Xt )− 1
)
1(�Xt �=0) −

Ŷ n,ψ
t − at
1− at

1(�Xt=0),

and so we have

�Ln,ψ
t = log

(
1+�Nn,ψ

t
)

= log
(
Yn,ψ (t,�Xt )

)
1(�Xt �=0) + log

(

1− Ŷ n,ψ
t − at
1− at

)

1(�Xt=0).

Let μn,ψ be the jump measure of Ln,ψ defined by

μ
n,ψ
t =

∑

s≤t
1
(�Ln,ψ

s �=0)ε(s,�Ln,ψ
s )

and νn,ψ the correspondingpredictable compensator. Then for anypredictable function
W (ω, t, x),

W ∗ μn,ψ =
∑

s≤t
W (log Yn,ψ (t,�Xt ))1(�Xt �=0)

+
∑

s≤t
W

(
log

(
1− Ŷ n,ψ − a

1− a

))
1(�Xt=0)

= W (log Yn,ψ ) ∗ μ+
∑

s≤t
W

(
log

(
1− Ŷ n,ψ

s − as
1− as

))
1(�Xs=0),

and so by the fact that 1− as is the predictable projection of 1(�Xs=0),

W ∗ νn,ψ = W (log Yn,ψ ) ∗ ν +
∑

s≤t
W

(
log

(
1− Ŷ n,ψ

s − as
1− as

))
(1− as). (3.1)

Given a positive number τ , consider the truncation function

hτ (x) = x1(|x |≤τ) (3.2)

and define

Ľn,τ,ψ
t =

∑

s≤t

(
�Ln,ψ

s − hτ

(
�Ln,ψ

s

))
(3.3)

Thus, combined together, we easily have a canonical decomposition

Ln,ψ
t = Ľn,τ,ψ

t + βn,ψ · Xc
t −

1

2
(βn,ψ )2 · Ct + hτ ∗ (μn,ψ − νn,ψ )t
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+
∑

s≤t

Ŷ n,ψ
s − as
1− as

−
(
Yn,ψ − 1+ Ŷ n,ψ − a

1− a

)
∗ νt

+ hτ (log Y
n,ψ ) ∗ νt +

∑

s≤t
log

(
1− Ŷ n,ψ

s − as
1− as

)
(1− as).

For simplicity of writing, let

An,ψ
1,t = βn,ψ · Xc

t −
1

2
(βn,ψ )2 · Ct ,

An,ψ
2,t = hτ ∗ (μn,ψ − νn,ψ )t ,

An,ψ
3,t =

∑

s≤t

Ŷ n,ψ
s − as
1− as

−
(
Ŷ n,ψ − 1+ Ŷ n,ψ − a

1− a

)
∗ νt

+ hτ

(
log Yn,ψ

) ∗ νt +
∑

s≤t
log

(
1− Ŷ n,ψ

s − as
1− as

)
(1− as), (3.4)

Thus, we have

Ln,ψ
t = Ľn,τ,ψ

t + An,ψ
1,t + An,ψ

2,t + An,ψ
3,t

The proof of Theorem 2.1 will consist of a series of lemmas and propositions.

Lemma 3.1 Under Assumptions 1, 2 and 3, we have for each ψ ∈ � and τ > 0, as
n →∞

Ľn,τ,ψ
t

P−→ 0 (3.5)

Proof Set

ϒn,ψ
s = 1− Ŷ n,ψ

s

1− as
. (3.6)

Then

Ľn,τ,ψ
t = log(Yn,ψ )1(| log(Yn,ψ )|>τ) ∗ μt +

∑

s≤t
log(ϒn,ψ

s )1
(| log(ϒn,ψ

s )|>τ)
1(�Xs=0).

Also, for any δ > 0

| log(Yn,ψ )|1(| log(Yn,ψ )|>τ) ∗ νt

≤ | log(Yn,ψ )|1(| log(Yn,ψ )|>τ)1(|Yn,ψ−1|≤δ) ∗ μt

+ | log(Yn,ψ )|1(| log(Yn,ψ )|>τ)1(|Yn,ψ−1|>δ) ∗ μt .
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By the Lenglart domination property (see page 35 of Jacod and Shiryaev [5]),

P
(| log(Yn,ψ )|1(| log(Yn,ψ )|>τ)1(|Yn,ψ−1|≤δ) ∗ μt > ε

)

≤ η

ε
+ P

(| log(Yn,ψ )|1(| log(Yn,ψ )|>τ)1(|Yn,ψ−1|≤δ) ∗ νt > η
)
.

Note for δ < 1 there is a positive constant cδ such that for any x > 0

| log x |1(|x−1|≤δ) ≤ cδ|x − 1|1(|x−1|≤δ), (3.7)

so

| log(Yn,ψ )|1(| log(Yn,ψ )|>τ)1(|Yn,ψ−1|≤δ) ∗ νt

≤ cδ|Yn,ψ − 1|1(e−τ <Yn,ψ<eτ )c1(|Yn,ψ−1|≤δ) ∗ νt
P−→ 0.

On the other hand, for each ε ∈ (0, 1)

P(| log(Yn,ψ )|1(| log(Yn,ψ )|>τ)1(|Yn,ψ−1|>δ) ∗ μt > ε) ≤ P(1(|Yn,ψ−1|>δ) ∗ μt > ε).

Again, by the Lenglart domination property, it follows for any η > 0

P(1(|Yn,ψ−1|>δ) ∗ μt > ε) ≤ η

ε
+ P(1(|Yn,ψ−1|>δ) ∗ νt > η)

≤ η

ε
+ P(|Yn,ψ − 1|1(|Yn,ψ−1|>δ) ∗ νt > δη).

Letting n →∞ and then η → 0, we have

P(1(|Yn,ψ−1|>δ) ∗ μt > ε)→ 0.

In combination, we have proved the desired statement. ��
Lemma 3.2 Under Assumptions 1, 2 and 3, we have for each ψ ∈ �, as n →∞

(Yn,ψ − 1) ∗ νt
P−→ 0, (3.8)

(1−
√
Yn,ψ )2 ∗ νt

P−→ 0, (3.9)
∑

s≤t

(√
1− as −

√

1− Ŷ n,ψ
s

)2 P−→ 0. (3.10)

Consequently,

1

8
(βn,ψ )2 · Ct

P−→ Vψ
t . (3.11)
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Proof Obviously, for any ε > 0

|Yn,ψ − 1| ≤ ε + |Yn,ψ − 1|1(|Yn,ψ−1|>ε).

Also, by Assumption 2

|Yn,ψ − 1|1(|Yn,ψ−1|>ε) ∗ νt ≤ ı(h1+ε; P, Pn,ψ )

P−→ 0, n →∞.

The desired (3.8) holds.
Observe an elementary inequality: for any 0 < ε < 1, there is a positive constant

cε such that

(
√
1+ x − 1)2 ≤

⎧
⎨

⎩

|x |2, |x | ≤ ε < 1,

cε|x |, |x | > ε.

Then it follows

(
√
Yn,ψ − 1)2 ∗ νt ≤ |Yn,ψ − 1|21(|Yn,ψ−1|≤ε) ∗ νt

+cε|Yn,ψ − 1|1(|Yn,ψ1|>ε) ∗ νt ,

|Yn,ψ − 1|21(|Yn,ψ−1|≤ε) ∗ νt ≤ ε2ν([0, t] × R),

|Yn,ψ − 1|1(|Yn,ψ−1|>ε) ∗ νt ≤ ı(h1+ε; P, Pn,ψ ).

Thus, under Assumption 2, we have by letting n →∞ and then ε → 0

(
√
Yn,ψ − 1)2 ∗ νt

P−→ 0.

For (3.10), note

∑

s≤t

(√
1− as −

√

1− Ŷ n,ψ
s

)2 =
∑

s≤t
(1− as)

(
1−

√

1− Ŷ n,ψ
s

1− as

)2

=
∑

s≤t
(1− as)

(
1−

√

ϒ
n,ψ
s

)2
,

where ϒ
n,ψ
s is as in (3.6). Then it easily follows
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(
1−

√

ϒ
n,ψ
s

)2 ≤ |ϒψ
s − 1|21

(|ϒn,ψ
s −1|≤ε)

+ cε|ϒn,ψ
s − 1|1

(|ϒn,ψ
s −1|>ε)

,

∑

s≤t
(1− as)|ϒn,ψ

s − 1|21
(|ϒn,ψ

s −1|≤ε)
≤ ε2

∑

s≤t
(1− as),

∑

s≤t
(1− as)|ϒn,ψ

s − 1|1
(|ϒn,ψ

s −1|>ε)
≤ ı(h1+ε; P, Pn,ψ ).

Thus, under Assumption 2, we have by first letting n →∞ and then ε → 0

∑

s≤t

(√
1− as −

√

1− Ŷ n,ψ
s

)2 P−→ 0.

The proof is now complete. ��
Lemma 3.3 Under Assumptions 1, 2 and 3, we have for each ψ ∈ � and τ > 0, as
n →∞

hτ ∗ (μn,ψ − νn,ψ )t
P−→ 0.

Proof First, observe the quadratic variation of hτ ∗ (μn,ψ − νn,ψ )t is given by

〈hτ ∗ (μn,ψ − νn,ψ )〉t = (hτ (log Y
n,ψ ))2 ∗ νt

+
∑

s≤t

(

hτ

(

log

(

1− Ŷ n,ψ
s − as
1− as

)))2

(1− as).

We shall prove that 〈hτ ∗ (μn,ψ −νn,ψ )〉t converges in probability to zero below. Note
there is a δ > 0 such that for any ε < δ

∣
∣(hτ (log(1+ x)))2 − 4(1−√1+ x)2

∣
∣ ≤

{ |x |3, |x | ≤ ε < δ,

cε|x |, |x | > ε

where 0 < cε <∞. Thus, it follows for any ε < δ

(hτ (log Y
n,ψ ))2 ∗ νt ≤ |Yψ − 1|31(|Yψ−1|≤ε) ∗ νt

+ cε|Yn,ψ − 1|1(|Yn,ψ−1|>ε) ∗ νt .

Hence, letting n →∞ and then ε → 0 immediately yields

(hτ (log Y
n,ψ ))2 ∗ νt

P−→ 0.

A similar argument shows

∑

s≤t

(

hτ

(

log

(

1− Ŷ n,ψ
s − as
1− as

)))2

(1− as)
P−→ 0.
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Combined together, we have the desired statement. ��
Lemma 3.4 Under Assumptions 1, 2 and 3, we have for each ψ ∈ � and τ > 0, as
n →∞

An,ψ
3,t

P−→ 0.

Proof Note there is a δ > 0 such that for any ε < δ

∣
∣
∣hτ (log(1+ x))+ 2(1−√1+ x)2 − x

∣
∣
∣ ≤

{ |x |3, |x | ≤ ε < δ,

cε|x |, |x | > ε,

where 0 < cε <∞. Thus, it follows for any ε < δ

∣
∣
∣
∣
∣
hτ

(
log Yn,ψ

) ∗ νt + 2(1−
√
Yn,ψ )2 ∗ νt −

(

Ŷ n,ψ − 1+ Ŷ n,ψ − a

1− a

)

∗ νt

∣
∣
∣
∣
∣

≤ |Yn,ψ − 1|31(|Yn,ψ−1|≤ε) ∗ νt + cε|Yn,ψ − 1|1(|Yn,ψ−1|>ε) ∗ νt .

This implies

∣
∣
∣
∣
∣
hτ

(
log Yn,ψ

) ∗ νt + 2(1−
√
Yn,ψ )2 ∗ νt −

(

Ŷ n,ψ − 1+ Ŷ n,ψ − a

1− a

)

∗ νt

∣
∣
∣
∣
∣

P−→ 0.

Since it was proved 2(1−√Yn,ψ )2 ∗ νt
P−→ 0, then we have

∣
∣
∣
∣
∣
hτ

(
log Yn,ψ

) ∗ νt −
(

Ŷ n,ψ − 1+ Ŷ n,ψ − a

1− a

)

∗ νt

∣
∣
∣
∣
∣

P−→ 0.

Similarly, we have

∣
∣
∣
∣
∣

∑

s≤t

Ŷ n,ψ
s − as
1− as

+
∑

s≤t
hτ

(

log
(
1− Ŷ n,ψ

s − as
1− as

)
)

(1− as)

∣
∣
∣
∣
∣

P−→ 0.

Combined together, the proof is complete. ��
Proposition 3.5 Under Assumptions 1, 2 and 3, every finite-dimensional marginal of
Ln converges weakly.

Proof From Lemmas 3.1–3.4,

βn,ψ
s · Xc

t −
1

2
(βn,ψ

s )2 · Ct

has non-degenerate limiting finite-dimensional marginal laws, and the other part of
Ln asymptotically vanishes.
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For every ψ , the process

βn,ψ
s · Xc

t −
1

2
(βn,ψ

s )2 · Ct

is a continuous semimartingale. Its predictable characteristics (B̂ψ, Ĉψ, 0) are

B̂n,ψ
t = −1

2
(βn,ψ )2 · Ct ,

Ĉn,ψ
t = (βn,ψ )2 · Ct .

By Lemma 3.2 and Assumption 2, there is a non-decreasing continuous function
V , such that V0 = 0,

sup
ψ∈�

|(βn,ψ )2 · Ct − Vψ,ψ
t | P∗→ 0, (3.12)

(βn,ψβn,ψ ) · Ct
P→ Vψ,φ

t (3.13)

for every ψ, φ ∈ �.
The proposition is now concluded by Theorem VIII.3.6 of Jacod and Shiryaev [5].

��
Next we turn to verifying uniform tightness.

Lemma 3.6 Under Assumptions 1, 2 and 3, we have for each τ > 0, as n →∞

sup
ψ∈�

∣
∣Ľn,τ,ψ

t

∣
∣ P−→ 0. (3.14)

Proof Recall

Ľn,τ,ψ
t =

∑

s≤t
log

(
Yn,ψ (s,�Xs)

)
1(∣

∣ logYn,ψ (s,�Xs

∣
∣>τ

)1(�Xs �=0)

+
∑

s≤t
log

(
1− Ŷ n,ψ

s − as
1− as

)
1(∣∣

∣ log
(

1− Ŷ
n,ψ
s −as
1−as

)∣
∣
∣>τ

)1(�Xs=0). (3.15)

Let us prove

sup
ψ∈�

∑

s≤t

∣
∣log

(
Yn,ψ (s,�Xs)

)∣
∣ 1(∣∣

∣ logYn,ψ (s,�Xs )

∣
∣
∣>τ

)1(�Xs �=0)
P−→ 0 (3.16)

and

sup
ψ∈�

∑

s≤t
log

(

1− Ŷ n,ψ
s − as
1− as

)

1(∣∣
∣ log

(

1− Ŷ
n,ψ
s −as
1−as

)∣
∣
∣>τ

)1(�Xs=0)
P−→ 0. (3.17)
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For (3.16), note

∣
∣log

(
Yn,ψ (s,�Xs)

)∣
∣ 1(∣∣

∣ log Yn,ψ (s,�Xs )

∣
∣
∣>τ

) = log
(
Yn,ψ (s,�Xs)

)
1(

log Yn,ψ (s,�Xs )>τ

)

− log
(
Yn,ψ (s,�Xs)

)
1(

log Yn,ψ (s,�Xs )<−τ

).

Thus, we need only to prove

∑

s≤t
sup
ψ∈�

log
(
Yn,ψ (s,�Xs)

)
1(logYn,ψ (s,�Xs )>τ)1(�Xs �=0)

P−→ 0 (3.18)

and

∑

s≤t
inf

ψ∈�
log

(
Yn,ψ (s,�Xs)

)
1(log Yn,ψ (s,�Xs )<−τ)1(�Xs �=0)

P−→ 0. (3.19)

Let us first look at (3.18). Set

Y
n,�

(ω; s, x) =
[
sup
ψ∈�

Yn,ψ (ω; s, x)
]

P̃,MP
μ

. (3.20)

Then
∑

s≤t
sup
ψ∈�

log
(
Yn,ψ (s,�Xs)

)
1(logYn,ψ (s,�Xs )>τ)1(�Xs �=0)

≤
∑

s≤t
log

(
Y
n,�

(ω; s,�Xs)
)
1
(logY

n,�
(ω;s,�Xs )>τ)

1(�Xs �=0)

= log
(
Y
n,�)

1
(logY

�
>τ)

∗ μt . (3.21)

For any ε, η > 0,

P(log
(
Y
n,�)

1
(logY

n,�
>τ)

∗ μt > ε) ≤ η

ε
+ P(log

(
Y

�)
1
(logY

n,�
>τ)

∗ νt > η).

Note x − 1 > log x if log x > 0. Then

log
(
Y
n,�)

1
(logY

n,�
>τ)

≤ (Y
n,� − 1)1

(Y
n,�−1>τ)

. (3.22)

Recalling the definition of ı( f1+ε, P, Pn,ψ ) and Assumptions 1 and 2, we can obtain
(3.18). The proofs of (3.19) and (3.17) are similar. ��
Lemma 3.7 Under Assumptions 1, 2 and 3, for any ε, η > 0, there is a δ > 0 and a
partition �(δ) = {�(δ), 1 ≤ k ≤ N (δ)} such that

lim sup
n→∞

P

(

sup
1≤k≤N�(δ)

sup
φ,ψ∈�(δ,k)

|An,2,ψ
t − An,2,φ

t | > ε

)

≤ η. (3.23)
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Proof Let us fix ε, η > 0. First, note

An,2,ψ
t = hτ (log Y

n,ψ ) ∗ (μ− ν)t

+
∑

s≤t
hτ

(

log

(

1− Ŷs
n,ψ − as
1− as

))

1(�Xs=0)

−hτ

(

log

(

1− Ŷs
n,ψ − as
1− as

))

(1− as).

Let

Jn,1,ψ
t = hτ (log Y

n,ψ ) ∗ (μ− ν)t

and

Jn,2,ψ
t =

∑

s≤t

[

hτ

(

log

(

1− Ŷ n,ψ
s − as
1− as

))

1(�Xs=0)

−hτ

(

log

(

1− Ŷ n,ψ
s − as
1− as

))

(1− as)

]

.

We shall treat Jn,1,ψ
t and Jn,2,ψ

t separately below. Let us only focus on the Jn,2,ψ
t

since the Jn,1,ψ
t is similar and simpler.

According to Assumption 3, there is a sufficiently large positive finite constant K
such that

lim sup
n→∞

P
(‖Hn‖�,t > K

) ≤ η

4
. (3.24)

Thus, we only need to condition on the event {Hn‖�,t > K }. In particular, we shall
prove

E∗ max
1≤k≤N�(δ)

sup
ψ,φ∈�(δ,k)

∣
∣
∣J

2,ψ
t − J 2,φt

∣
∣
∣ 1{||H||�,t≤K } ≤ c11

∫ δ

0
H�(ε)dε. (3.25)

Assuming (3.25), we can take δ so small that

c11

∫ δ

0
H�(ε)dε <

εη

4
, (3.26)

from which it follows by the Markov inequality

lim sup
n→∞

P

(

sup
1≤k≤N�(δ)

sup
φ,ψ∈�(δ,k)

|Jn,2,ψ
t − Jn,2,φ

t | > ε, ||H||�,t ≤ K

)

≤ η

4
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This in turn together with (3.24) implies

lim sup
n→∞

P

(

sup
1≤k≤N�(δ)

sup
φ,ψ∈�(δ,k)

|Jn,2,ψ
t − Jn,2,φ

t | > ε

)

≤ η

2
.

It remains to prove (3.25). For every integer p ≥ 0, construct a nested refinement
partition �(2−pδ) = {�(2−pδ; k), 1 ≤ k ≤ N�(2−pδ)} of �, and then choose an
element ψp,k from each partitioning set �(2−pδ; k) in such a way that

{
ψp,k : 1 ≤ k ≤ N�(2−pδ)

} ⊂
{
ψp+1,k : 1 ≤ k ≤ N�(2−p−1δ)

}
. (3.27)

For every ψ ∈ � and each p ≥ 0, define πpψ = ψp,k and �pψ = �(2−pδ; k)
whenever ψ ∈ �(2−pδ; k). Obviously, �pψ ⊆ �p−1ψ . Define

W (�pψ)t =
[

sup
ϕ,φ∈�pψ

∣
∣
∣
∣
∣
hτ

(

log

(

1−
(
Ŷ n,ϕ
s − as
1− as

)))

− hτ

(

log

(

1−
(
Ŷ n,φ
s − as
1− as

)))∣
∣
∣
∣
∣

]

P̃,MP
μ

.

Note W (�pψ) ≤ W (�p−1ψ). Set

αp = 2−p+1δ
H�(2−p−1δ)

K , p ≥ 0 (3.28)

and

A0(ψ) = 1{W (�0ψ)≤α0}, B0(ψ) = 1{W (�0ψ)>α0}

and for p ≥ 1

Ap(ψ) = 1{W (�0ψ)≤α0,...,W (�p−1ψ)≤αp−1,W (�pψ)≤αp},
Bp(ψ) = 1{W (�0ψ)≤α0,...,W (�p−1ψ)≤αp−1,W (�pψ)>αp}.

It is easy to see

A0 + B0 = 1

and for each p ≥ 1

Ap + Bp = Ap−1.

Hence, it follows for any q ≥ 1

Aq + Bq + Bq−1 + · · · + B0 = 1.
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Note π0ψ = π0φ if ψ, φ ∈ �(δ, k), and so we have

sup
φ,ψ∈�(δ,k)

∣
∣
∣J

n,2,ψ
t − Jn,2,φ

t

∣
∣
∣ ≤ 2 sup

ψ∈�

∣
∣
∣J

n,2,ψ
t − Jn,2,π0ψ

t

∣
∣
∣ .

It is now enough to show

E∗ sup
ψ∈�

|Jn,2,ψ
t − Jn,2,π0ψ

t |1{||H||�,t≤K } ≤ c12

∫ δ

0
H�(ε)dε. (3.29)

We have the following identity

Jn,2,ψ
t − Jn,2,π0ψ

t =
q∑

p=0
(Jn,2,ψ

t − J
n,2,πpψ
t )Bp(ψ) (3.30)

+ (Jn,2,ψ
t − J

n,2,πqψ
t )Aq(ψ)

+
q∑

p=1
(J

n,2,πpψ
t − J

n,2,πp−1ψ
t )Ap−1(ψ).

Denote

Mn,p,ψ
t = (Jn,2,ψ

t − J
n,2,πpψ
t )Bp(ψ).

We shall only establish (3.29) for Mn,p,ψ since the other three terms in RHS of (3.30)
can be similarly treated.

Obviously, Mn,p,ψ is a local martingale, and

|�Mn,p,ψ
t | ≤ |W (�p−1(ψ))t |Bp(ψ) ≤ αp−1.

On the other hand, the predictable quadratic variation of Mn,p,ψ
t satisfies

〈Mn,p,ψ 〉t =
∑

s≤t

[

hτ

(

log

(

1− Ŷ n,ψ
s − as
1− as

))

−hτ

(

log

(

1− Ŷ
n,πpψ
s − as
1− as

))]2

(1− as).

By an elementary calculation, for any γ ∈ (0, 1) there is a constant cγ such that

| log x − log y| ≤ cγ |√x −√y|
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whenever x, y ∈ [1− γ, 1+ γ ]. Then it follows

〈Mn,p,ψ 〉1 ≤
∑

s≤t

⎡

⎣

√

1− Ŷ n,ψ
s − as
1− as

−
√
√
√
√

(

1− Ŷ
n,πpψ
s − as
1− as

)⎤

⎦

2

(1− as)

≤
∑

s≤t

[√

1− Ŷ n,ψ
s −

√

1− Ŷ
n,πpψ
s

]2

≤ 2h

(
1

2
; Pn,ψ , Pn,πpψ

)

≤ 2(2−pδ)2||H||2�,t .

By Bernstein–Freedman’s inequality (see Lemma 3.2 of Nishiyama [8]) for local
martingale with bounded jumps, it follows for ε > 0,

P(|Mn,p,ψ
t | > ε, ||H||�,t ≤ K ) ≤ 2 exp

(
− ε2

2[αp−1ε + (2−pδK )2]
)
.

This, in turn together with Lemma 2.2.10 of van der Vaart and Wellner [12], yields

E∗ sup
ψ∈�

|Mn,p,ψ |1{||H||�,1≤K } ≤ αp−1H�(2−pδ)2 + 2−pδc13H�(2−pδ)

≤ c132
−pδH�(2−pδ)

and

E∗ sup
ψ∈�

∣
∣
∣

q∑

p=0
Jn,2,ψ
t − J

n,2,πpψ
t

∣
∣
∣Bp(ψ)1{||H||�,1≤K } ≤ c13

q∑

p=0
2−pδH�(2−pδ)

≤ c14

∫ δ

0
H�(ε)dε.

Thus, (3.25) is obtained, and so complete the proof. ��

Lemma 3.8 Under Assumptions 1, 2 and 3, for any ε, η > 0, there is a δ > 0 and a
partition �(δ) = {�(δ), 1 ≤ k ≤ N (δ)} such that

lim sup
n→∞

P

(

sup
1≤k≤N�(δ)

sup
φ,ψ∈�(δ,k)

|An,1,ψ
t − An,1,φ

t | > ε

)

≤ η.

Proof Recall

An,1,ψ
t = βn,ψ · Xc

t −
1

2
(βn,ψ )2 · Ct .
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It is enough to prove the following two statements

lim sup
n→∞

P

(

sup
1≤k≤N�(δ)

sup
φ,ψ∈�(δ,k)

|(βn,ψ )2 · Ct − (βn,ψ )2 · Ct | > ε

)

≤ η

2

(3.31)

and

lim sup
n→∞

P
(

sup
1≤k≤N�(δ)

sup
φ,ψ∈�(δ,k)

|βn,ψ · Xc
t − βn,ψ · Xc

t | > ε
)
≤ η

2
.

(3.32)

We shall concentrate on proving (3.31) below since (3.32) is similar. The proof is
completely similar to that of Lemma 3.7 with some minor modifications. For every
integer p ≥ 0, choose an element ψp,k from each partitioning set �(2−pδ; k) in such
a way that

{
ψp,k : 1 ≤ k ≤ N�(2−pδ)

} ⊂
{
ψp+1,k : 1 ≤ k ≤ N�(2−p−1δ)

}
.

and define πpψ = ψp,k and �pψ = �(2−pδ; k) whenever ψ ∈ �(2−pδ; k). Note

sup
1≤k≤N�(δ)

sup
φ,ψ∈�(δ,k)

|(βn,ψ )2 · Ct − (βn,φ)2 · Ct |

≤ 2 sup
ψ∈�

|(βn,ψ
s )2 · Ct − (βn,π0ψ

s )2 · Ct |,

then a main step is to prove

E∗ sup
ψ∈�

|(βn,ψ )2 · Ct − (βn,π0ψ)2 · Ct |1{||�||�,1≤K } ≤ c14

∫ δ

0
H�(ε)dε. (3.33)

To this end, for p ≥ 0, set

�(�pψ)t =
[

sup
ϕ,φ∈�pψ

|(βn,ϕ
s )2 − (βn,φ

s )2|
]

P̃,MP
μ

.

Obviously, �(�pψ) ≤ �(�p−1ψ). Define

D0(ψ) = 1{�(�0ψ)≤α0}, E0(ψ) = 1{�(�0ψ)>α0},
Dp(ψ) = 1{�(�0ψ)≤α0,...,�(�p−1ψ)≤αp−1,�(�pψ)≤αp},
Ep(ψ) = 1{�(�0ψ)≤α0,...,�(�p−1ψ)≤αp−1,�(�pψ)>αp},

where αp is as in (3.28).
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Note we have the following identity

(βn,ψ )2 · Ct − (βn,π0ψ)2 · Ct =
q∑

p=1
((βn,πpψ)2 · Ct − (βn,πp−1ψ)2 · Ct )Dp−1(ψ)

+ ((βn,ψ )2 · Ct − (βn,πqψ)2 · Ct )Dq(ψ)

+
q∑

p=0
((βn,ψ )2 · Ct − (βn,πpψ)2 · Ct )Ep(ψ).

and

(
(βn,ψ )2 · Ct − (βn,πpψ)2 · Ct

)
Ep(ψ) ≤ �(�pψ)(Ct − C0)Ep(ψ)

≤ �(�pψ)2

αp
(Ct − C0)Ep(ψ).

In addition, it is easy to see

E∗ sup
ψ∈�

((βn,πpψ)2 · Ct − (βn,πp−1ψ)2 · Ct )Dp(ψ) ≤ 2−pδH�(2−pδ)

by Schwarz’s inequality. Thus,

E∗ sup
ψ∈�

|(βn,ψ )2 · Ct − (βn,π0ψ)2 · Ct |1{||H||�,1≤K }

≤
q∑

p=1
K22

−p−1δH�(2−p−1δ)

≤ K2

∫ δ

0
H�(ε)dε.

Thus, (3.31) is proved. We complete the proof of this lemma. ��
We can obtain the following proposition by Lemmas 3.6–3.8.

Proposition 3.9 Under Assumptions 1, 2 and 3, for any ε, η > 0, there is a δ > 0 and
a partition �(δ) = {�(δ), 1 ≤ k ≤ N (δ)} such that

lim sup
n→∞

P
(

sup
1≤k≤N�(δ)

sup
φ,ψ∈�(δ,k)

|Ln,ψ − Ln,φ | > ε
)
≤ η.

The proof of Theorem 2.1 Proposition 3.9 implies the asymptotic equicontinuity of Ln ,
and the asymptotic marginal distribution of Ln is obtained by Proposition 3.5. Then
we can obtain Theorem 2.1 by these two propositions and Theorem 1.1 in Nishiyama
[9]. ��
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