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Abstract
The law of an appropriately scaled sum of p-adic-valued, independent, identically and
rotation-symmetrically distributed randomvariablesweakly converges to a semi-stable
law, if the tail probabilities of the variables satisfy some assumption. If we consider a
scaled sum of such random variables with a sufficiently much higher scaling order, it
accumulates to the origin, and the mass of any set not including the origin gets small.
The purpose of this article is to investigate the asymptotic order of the logarithm of the
mass of such sets off the origin. The order is explicitly given under some assumptions
on the tail probabilities of the random variables and the scaling order of their sum.
It is also proved that the large deviation principle follows with a rate function being
constant except at the origin, and the rate function is good only for the case its value
is infinity off the origin.
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1 Introduction and Results

The p-adic field Qp is identified with the set of formal series x = ∑∞
i=−m αi pi with

integersm andαi = 0, 1, . . . , p−1, equippedwith the p-adic norm
∣
∣
∑∞

i=−m αi pi
∣
∣
p =

pm if α−m �= 0, and |0|p = 0. For a p-adic number a and an integer l, let B
(
a, pl

) :=
{
x ∈ Qp | |x − a|p ≤ pl

}
be the ball of radius pl centered at a. Let Bl := B

(
0, pl

)
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denote the ball centered at the origin, and Hl := Bl \ Bl−1 the sphere. By the ultra-
metric property |x + y|p ≤ max{|x |p, |y|p}, all balls and spheres are compact and
open. For the p-adic field and related fundamental subjects, we can refer to [4].

The p-adic field is a separable and complete metric space where a lot of standard
methods of stochastic analysis are available. On the other hand, the ultra-metric prop-
erty brings some unique phenomena different from the case of Euclidean spaces. The
behavior of sums of p-adic-valued random variables is one of the interesting topics
which has been studied since 1990s. Analysis based on p-adic-valued measures has
been developed with reference to mathematical physics, and sums of random variables
are discussed in this framework [2,3]. On the other hand, limit theorems on p-adic
numbers in the context of real-valued measures have been established. A p-adic ana-
log of the law of large numbers is covered in [11]. The p-adic central limit theorem
is concerned in [5,9], and [8] gives estimates of convergence. As refinements of the
central limit theorem, [10] derives a p-adic analog of the law of iterated logarithms,
and this article proceeds to estimates for large deviations. Besides, related works on
abstract probabilities are also remarkable [7].

Let ξi (i = 1, 2, . . . ) be independent identically distributed (I.I.D.) random vari-
ables on the p-adic field.We suppose its law is invariant by rotations around the origin;
namely, uξi has the same law as ξi for any p-adic number u satisfying |u|p = 1. We
also suppose its tail probabilities satisfy

T1(m) := P
(|ξi |p ≥ pm

) = p−αmL(m),

for a constant positive number α and a function L onZ such that limm→∞ L(m+1)
L(m)

= 1.

Define a sequence N (n) := p2α(p−1)
pα+1−1

T1(n)−1 for n = 1, 2, . . . , and let [N (n)] be
its integer part. Under these assumptions, the law of the scaled sum pn

∑[N (n)]
i=1 ξi

converges to a rotation-symmetric α-semi-stable law as n → ∞ [9].
Let cn(n = 1, 2, . . . ) be a sequence of nonnegative integers. Concerning the growth

rate of the scaled sum, lim supn→∞
∣
∣
∣pn+cn

∑[N (n)]
i=1 ξi

∣
∣
∣
p

= 0 if cn diverges faster than

c̃n :=
[

log n
α log p

]
, and = +∞ if cn is slower than c̃n . At the critical order cn = c̃n , the

result differs by the rate of convergence of L(m+1)
L(m)

to 1 [10].
In this article, we deal with general sequences cn(n = 1, 2, . . . ) satisfying

limn→∞ cn = +∞ and give estimates for large deviations of the law of the scaled sum.
Let Pn be the law of the scaled sum pn+cn

∑[N (n)]
i=1 ξi and put θ− := lim infn→∞ cn

n ,
θ+ := lim supn→∞ cn

n .

Proposition 1 For any compact open set K in Qp including the origin,

lim inf
n→∞

1

n
log Pn

(
Kc) = −αθ+ log p,

lim sup
n→∞

1

n
log Pn

(
Kc) = −αθ− log p,

where K c is the complement of K .
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Proposition 2

i. For any closed set B in Qp not including the origin,

lim inf
n→∞

1

n
log Pn(B) ≤ −αθ+ log p,

lim sup
n→∞

1

n
log Pn(B) ≤ −αθ− log p.

ii. For any open set A in Qp including the origin,

lim
n→∞ log Pn(A) = 0.

In order to determine the asymptotics of Pn(B) for sets B off the origin, we require
an additional assumption to the rate of convergence L(m+1)

L(m)
→ 1. Define δn :=

supm≥n

∣
∣
∣1 − L(m+1)

L(m)

∣
∣
∣ for n ≥ 1.

Theorem 1 Assume that either of the following two conditions is satisfied :

i. θ− = θ+ = +∞,
ii. lim supn→∞ cn log

1+δn
1−δn

< α log p.

Then for any a ∈ Qp, a �= 0, and any integer l such that 0 /∈ B
(
a, pl

)
,

lim inf
n→∞

1

n
log Pn

(
B

(
a, pl

))
= −αθ+ log p,

lim sup
n→∞

1

n
log Pn

(
B

(
a, pl

))
= −αθ− log p.

By this result, we can discuss the large deviation principle of the sequence of
probability measures Pn . For a general theory of the large deviation principle for a
sequence of random variables or probability measures on a metric space, we can refer
to [1].

Corollary 1 Under the assumption of Theorem 1, the distributions Pn(n = 1, 2, . . . )
satisfy the large deviation principle if and only if the limit θ := limn→∞ cn

n ∈ [0,+∞]
exists. If that is the case, the rate function is given by

I (x) =
{
0, x = 0,
αθ log p, x �= 0,

and I is good only for the case θ = +∞.
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2 Tail Probabilities of the Sum of I.I.D.

For n ≥ 1 and integersm, let Tn(m) := P
(∣
∣∑n

i=1 ξi
∣
∣
p ≥ pm

)
be the tail probabilities

of the sum of ξi . As a preparation for a formula for Tn(m), we shall derive an inductive

relation of Un(m) := P
(∣
∣
∑n

i=1 ξi
∣
∣
p = pm

)
= Tn(m) − Tn(m + 1).

Lemma 1

Un(m) = U1(m)(1 − Tn−1(m)) +Un−1(m)(1 − T1(m))

+ p − 2

p − 1
Un−1(m)U1(m) +

∞∑

k=m+1

pm−kUn−1(k)U1(k).

Proof By the ultra-metric property, p-adic numbers x and y satisfy |x + y|p = pm if
and only if one of the following exclusive events happens :

i. |x |p < pm, |y|p = pm ,
ii. |x |p = pm, |y|p < pm ,
iii. |x |p = |y|p ≥ pm, |x + y|p = pm .

Putting x = ∑n−1
i=1 ξi and y = ξn , by the independence of ξi we have

Un(m) = P

⎛

⎝

∣
∣
∣
∣
∣

n−1∑

i=1

ξi

∣
∣
∣
∣
∣
p

< pm, |ξn|p = pm

⎞

⎠ + P

⎛

⎝

∣
∣
∣
∣
∣

n−1∑

i=1

ξi

∣
∣
∣
∣
∣
p

= pm, |ξn|p < pm

⎞

⎠

+P

⎛

⎝

∣
∣
∣
∣
∣

n−1∑

i=1

ξi

∣
∣
∣
∣
∣
p

= |ξn|p ≥ pm,

∣
∣
∣
∣
∣

n∑

i=1

ξi

∣
∣
∣
∣
∣
p

= pm

⎞

⎠

= U1(m)

m−1∑

k=−∞
Un−1(k) +Un−1(m)

m−1∑

k=−∞
U1(k)

+
∞∑

l=0

P

⎛

⎝

∣
∣
∣
∣
∣

n−1∑

i=1

ξi

∣
∣
∣
∣
∣
p

= |ξn|p = pm+l ,

∣
∣
∣
∣
∣

n∑

i=1

ξi

∣
∣
∣
∣
∣
p

= pm

⎞

⎠ . (1)

For the case l = 0 in the last sum, the sphere Hm consists of p − 1 disjoint balls
B

(
α−m p−m, pm−1

)
(α−m = 1, 2, . . . , p−1) of radius pm−1.We can see that the event

|x |p = |y|p = |x + y|p = pm happens if and only if x ∈ B
(
α−m p−m, pm−1

)
and

−y ∈ B
(
α′−m p−m, pm−1

)
for someα−m �= α′−m . Since the balls B

(
α−m p−m, pm−1

)

are mapped to each other by rotations around the origin, and the law of ξi is invariant
by the rotations,

P

(
n−1∑

i=1

ξi ∈ B
(
α−m p−m, pm−1

)
)

= Un−1(m)

p − 1
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and

P
(
−ξn ∈ B

(
α′−m p−m, pm−1

))
= U1(m)

p − 1

hold for all α−m and α′−m . Therefore,

P

⎛

⎝

∣
∣
∣
∣
∣

n−1∑

i=1

ξi

∣
∣
∣
∣
∣
p

= |ξn|p =
∣
∣
∣
∣
∣

n∑

i=1

ξi

∣
∣
∣
∣
∣
p

= pm

⎞

⎠

=
∑

α−m

∑

α′−m �=α−m

P

(
n−1∑

i=1

ξi ∈ B
(
α−m p−m, pm−1

)
)

×P
(
−ξn ∈ B

(
α′−m p−m, pm−1

))

= (p − 1)(p − 2)
Un−1(m)

p − 1

U1(m)

p − 1

= p − 2

p − 1
Un−1(m)U1(m).

As for l ≥ 1, the sphere Hm+l consists of pl(p−1) disjoint balls B
(∑−m

i=−m−l αi pi ,
pm−1

)
(α−m−l = 1, 2, . . . , p − 1, and α−m−l+1, . . . , α−m = 0, 1, . . . , p − 1) of

radius pm−1. The event |x |p = |y|p = pm+l , |x + y|p = pm happens if and only if

x ∈ B
(∑−m

i=−m−l αi pi , pm−1
)
and −y ∈ B

(∑−m−1
i=−m−l αi pi + α′−m p−m, pm−1

)
for

some α−m−l , . . . , α−m , and α′−m �= α−m . Hence, we have

P

(∣
∣
∣
∣
∣

n−1∑

i=1

ξi

∣
∣
∣
∣
∣
= |ξn|p = pm+l ,

∣
∣
∣
∣
∣

n∑

i=1

ξi

∣
∣
∣
∣
∣
= pm

)

=
∑

α−m−l ,...,α−m

∑

α′−m �=α−m

P

(
n−1∑

i=1

ξi ∈ B

( −m∑

i=−m−l

αi p
i , pm−1

))

×P

(

ξn ∈ B

( −m−1∑

i=−m−l

αi p
i + α′−m p−m, pm−1

))

= pl(p − 1) · (p − 1)
Un−1(m + l)

pl(p − 1)

U1(m + l)

pl(p − 1)

= p−lUn−1(m + l)U1(m + l).

Consequently, (1) leads to

Un(m) = U1(m)

m−1∑

k=−∞
Un−1(k) +Un−1(m)

m−1∑

k=−∞
U1(k)

123
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+ p − 2

p − 1
Un−1(m)U1(m) +

∞∑

l=1

p−lUn−1(m + l)U1(m + l)

= U1(m)(1 − Tn−1(m)) +Un−1(m)(1 − T1(m))

+ p − 2

p − 1
Un−1(m)U1(m) +

∞∑

k=m+1

pm−kUn−1(k)U1(k).

	

Proposition 3

Tn(m) = 1 −
(
1 − p−1

) ∞∑

k=0

p−k
(

1 − T1(m + k) − p−1T1(m + k + 1)

1 − p−1

)n

.

Proof Let us put Vn(m) := Tn(m) − p−1Tn(m + 1). Since Tn(m) = ∑∞
l=m Un(l),

Lemma 1 gives

Vn(m)

=
∞∑

l=m

{

U1(l)(1 − Tn−1(l)) +Un−1(l)(1 − T1(l))

+ p − 2

p − 1
Un−1(l)U1(l) +

∞∑

k=l+1

pl−kUn−1(k)U1(k)

}

−p−1
∞∑

l=m+1

{

U1(l)(1 − Tn−1(l)) +Un−1(l)(1 − T1(l))

+ p − 2

p − 1
Un−1(l)U1(l) +

∞∑

k=l+1

pl−kUn−1(k)U1(k)

}

= U1(m)(1 − Tn−1(m)) +Un−1(m)(1 − T1(m)) + p − 2

p − 1
Un−1(m)U1(m)

+
(
1 − p−1

) ∞∑

l=m+1

{U1(l)(1 − Tn−1(l)) +Un−1(l)(1 − T1(l))

+Un−1(l)U1(l)}
= (T1(m) − T1(m + 1))(1 − Tn−1(m))

+ (Tn−1(m) − Tn−1(m + 1))(1 − T1(m))

+ p − 2

p − 1
(Tn−1(m) − Tn−1(m + 1))(T1(m) − T1(m + 1))

+
(
1 − p−1

) ∞∑

l=m+1

{(T1(l) − T1(l + 1))(1 − Tn−1(l))

+ (Tn−1(l) − Tn−1(l + 1))(1 − T1(l))

123
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+ (Tn−1(l) − Tn−1(l + 1))(T1(l) − T1(l + 1)}
= T1(m) − p−1T1(m + 1) + Tn−1(m) − p−1Tn−1(m + 1)

− 1

1 − p−1

(
T1(m) − p−1T1(m + 1)

) (
Tn−1(m) − p−1Tn−1(m + 1)

)

= V1(m) + Vn−1(m) − 1

1 − p−1 V1(m)Vn−1(m). (2)

By this equation, we can derive inductively that

Vn(m) =
(
1 − p−1

)(

1 −
(

1 − V1(m)

1 − p−1

)n)

. (3)

Indeed, this is trivial for n = 1. Provided it is true for n = n0 − 1, then (2) yields

Vn(m) = V1(m) +
(
1 − p−1

)
(

1 −
(

1 − V1(m)

1 − p−1

)n0−1
)(

1 − V1(m)

1 − p−1

)

=
(
1 − p−1

)(

1 −
(

1 − V1(m)

1 − p−1

)n0)

.

By (3), taking the sum of p−kVn(m + k) = p−kTn(m + k) − p−k−1Tn(m + k + 1)
for k = 0, 1, . . . , we obtain

Tn(m) =
∞∑

k=0

p−k
(
1 − p−1

) (

1 −
(

1 − V1(m + k)

1 − p−1

)n)

= 1 −
(
1 − p−1

) ∞∑

k=0

p−k
(

1 − T1(m + k) − p−1T1(m + k + 1)

1 − p−1

)n

.

	


Remark 1 If we import a result of [9], Proposition 3 can be derived more concisely by
using Fourier transform. Let ϕ be the character on the p-adic field defined by

ϕ

( ∞∑

i=−m

αi p
i

)

:=
{
exp

(
2π

√−1
∑−1

i=−m αi pi
)

, if m ≥ 1,

1, if m ≤ 0,

then the characteristic function of a probability measure μ on Qp is defined by

μ̂(y) :=
∫

Qp

ϕ(xy)μ(dx), y ∈ Qp.

123
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We can see the Fourier transform of the indicator function 1Bl of the ball Bl is given
by

F1Bl (x) :=
∫

Qp

1Bl (y)ϕ(xy)dy = pl1B−l (x),

(see, e.g., Chapter XIV of [6]), where
∫ ·dy denotes the integration with respect to

Haar measure ofQp normalized so that
∫
1Bl (y)dy = pl . Let μ be the law of ξi , then

we have

1 − Tn(m) =
∫

Qp

1Bm−1(x)μ
∗n(dx)

=
∫

Qp

pm−1F1B−(m−1) (x)μ
∗n(dx)

= pm−1
∫

Qp

1B−(m−1) (y)

(∫

Qp

ϕ(xy)μ∗n(dx)
)

dy

= pm−1
∫

Qp

1B−(m−1) (y)μ̂(y)ndy

= pm−1
∞∑

k=m−1

∫

|y|p=p−k
μ̂(y)ndy.

The characteristic function of μ is calculated in Lemma 3 of [9] as

μ̂(y) = 1 − (p − 1)−1(pT1(k + 1) − T1(k + 2)), if |y|p = p−k,

and then Proposition 3 follows immediately.

3 Proofs

For proofs of Propositions 1, 2, and Theorem 1, the following estimate is crucial.

Lemma 2 There exist positive constants C1 and C2 independent of n ≥ 1 and l ∈ Z
such that, for every fixed integer l,

C1
(
p−α(1 − δn)

)cn+l ≤ Pn
(
Bc
l

) ≤ C2
(
p−α(1 + δn)

)cn+l

holds for sufficiently large n. Furthermore, the both constants C1 and C2 can be taken
arbitrarily close to C := C(α) := pα(p−1)

pα+1−1
, and accordingly,

lim sup
n→∞

Pn
(
Bc
l

)

(
p−α(1 + δn)

)cn+l
≤ C ≤ lim inf

n→∞
Pn

(
Bc
l

)

(
p−α(1 − δn)

)cn+l

123
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holds for any integer l.

Proof Fix an integer l and take any ε > 0. By Proposition 3, we have

Pn
(
Bc
l

) = P

⎛

⎝

∣
∣
∣
∣
∣
∣
pn+cn

[N (n)]∑

i=1

ξi

∣
∣
∣
∣
∣
∣
p

≥ pl+1

⎞

⎠

= T[N (n)](n + cn + l + 1)

= 1 −
(
1 − p−1

) ∞∑

k=0

p−k(1 − v(n + cn + l + k))[N (n)],

where

v(m) :=
(
1 − p−1

)−1
(T1(m + 1) − p−1T1(m + 2))

=
(
1 − p−1

)−1
(

1 − p−α−1 L(m + 2)

L(m + 1)

)

T1(m + 1).

Since v(m) tends to 0 as m → ∞,

e−(1+ε) < (1 − v(n + cn + l + k))
1

v(n+cn+l+k) < e−(1−ε)

holds for sufficiently large n and any k ≥ 0, and then

1 −
(
1 − p−1

) ∞∑

k=0

p−k
(
e−(1−ε)

)v(n+cn+l+k)[N (n)]

< Pn
(
Bc
l

)

< 1 −
(
1 − p−1

) ∞∑

k=0

p−k
(
e−(1+ε)

)v(n+cn+l+k)[N (n)]
,

namely,

(
1 − p−1

) ∞∑

k=0

p−k
(
1 − e−(1−ε)v(n+cn+l+k)[N (n)])

< Pn
(
Bc
l

)

<
(
1 − p−1

) ∞∑

k=0

p−k
(
1 − e−(1+ε)v(n+cn+l+k)[N (n)]) . (4)

We have

123
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(
p−α(1 − δn)

)cn+l+k+1

≤ T1(n + cn + l + k + 1)

T1(n)
= p−α(cn+l+k+1)

cn+l+k∏

i=0

L(n + i + 1)

L(n + i)

≤ (
p−α(1 + δn)

)cn+l+k+1
,

and

1 − ε < 1 − δn+cn+l ≤ L(n + cn + l + k + 2)

L(n + cn + l + k + 1)
≤ 1 + δn+cn+l < 1 + ε,

for all k ≥ 0, if n is large enough so that δn+cn+l < ε. We also have

(1 − ε)N (n) ≤ [N (n)] ≤ N (n) (5)

for large n, since N (n) = p2α(p−1)
pα+1−1

T1(n)−1 → ∞ as n → ∞. Applying these inequal-

ities to v(n + cn + l + k)[N (n)] = (
1 − p−1

)−1
(
1 − p−α−1 L(n+cn+l+k+2)

L(n+cn+l+k+1)

)
T1(n +

cn + l + k + 1)
[
p2α(p−1)
pα+1−1

T1(n)−1
]
, we see that

(1 − ε)
(
1 − p−1

)−1 (
1 − p−α−1(1 + ε)

) p2α(p − 1)

pα+1 − 1

(
p−α(1 − δn)

)cn+l+k+1

< v(n + cn + l + k + 1)[N (n)]
<

(
1 − p−1

)−1 (
1 − p−α−1(1 − ε)

) p2α(p − 1)

pα+1 − 1

(
p−α(1 + δn)

)cn+l+k+1
. (6)

In particular, take n large enough so that δn < ε ∧ (pα − 1), then the assumption
cn → +∞ implies that the right-hand side goes to 0 as n → ∞ uniformly for k ≥ 0.
Since limt→0

1−e−t

t = 1, we have

1 − e−(1−ε)v(n+cn+l+k+1)[N (n)] ≥ (1 − ε)2v(n + cn + l + k + 1)[N (n)],
1 − e−(1+ε)v(n+cn+l+k+1)[N (n)] ≤ (1 + ε)2v(n + cn + l + k + 1)[N (n)]

for large n, and therefore, inequalities (4) lead to

(
1 − p−1

) ∞∑

k=0

p−k(1 − ε)2v(n + cn + l + k + 1)[N (n)]

< Pn
(
Bc
l

)

<
(
1 − p−1

) ∞∑

k=0

p−k(1 + ε)2v(n + cn + l + k + 1)[N (n)].
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Applying (6) to the above, we obtain

(1 − ε)3
(
1 − p−α−1(1 + ε)

) p2α(p − 1)

pα+1 − 1

(
p−α(1 − δn)

)cn+l+1

× 1

1 − p−α−1(1 − δn)

< Pn
(
Bc
l

)

< (1 + ε)2
(
1 − p−α−1(1 − ε)

) p2α(p − 1)

pα+1 − 1

(
p−α(1 + δn)

)cn+l+1

× 1

1 − p−α−1(1 + δn)
.

Put C1 = (1− ε)4
1−p−α−1(1+ε)

1−p−α−1(1−ε)

pα(p−1)
pα+1−1

and C2 = (1+ ε)3
1−p−α−1(1−ε)

1−p−α−1(1+ε)

pα(p−1)
pα+1−1

, then
since δn < ε we obtain

C1
(
p−α(1 − δn)

)cn+l ≤ Pn
(
Bc
l

) ≤ C2
(
p−α(1 + δn)

)cn+l

for sufficiently large n.
We can see C1 and C2 both approach C as ε → 0; then, the second assertion is

clear. 	


Now let us give proofs to Propositions 1, 2, and Theorem 1, using the estimates of
Lemma 2.

Proof (Proposition 1) Since K is assumed to be compact open and 0 ∈ K , there exist
integers l1 ≥ l2 such that Bl2 ⊂ K ⊂ Bl1 . Then, Lemma 2 implies

C1
(
p−α(1 − δn)

)cn+l1 ≤ Pn
(
Kc) ≤ C2

(
p−α(1 + δn)

)cn+l2 .

Take their logarithm and divide by n, then we have

cn + l1
n

(−α log p + log(1 − δn)) + logC1

n

≤ 1

n
log Pn

(
Kc)

≤ cn + l2
n

(−α log p + log(1 + δn)) + logC2

n
.

Since δn → 0 as n → ∞, taking lim sup and lim inf of each side, the assertion is
proved. 	
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Proof (Proposition 2) (i) Since the complement Bc is an open set including the origin,
we can take an integer l such that Bl ⊂ Bc. Apply Proposition 1 to K = Bl , then

lim inf
n→∞

1

n
log Pn(B) ≤ lim inf

n→∞
1

n
log Pn

(
Bc
l

) = −αθ+ log p,

and

lim sup
n→∞

1

n
log Pn(B) ≤ lim sup

n→∞
1

n
log Pn

(
Bc
l

) = −αθ− log p.

(ii) We can take an integer l such that Bl ⊂ A, and Lemma 2 implies

log
(
1 − C2

(
p−α(1 + δn)

)cn+l
)

≤ log Pn(Bl) ≤ log Pn(A) ≤ 0.

By the assumption limn→∞ cn = +∞, we have C2
(
p−α(1 + δn)

)cn+l → 0 as n →
∞, and hence, the left-hand side tends to 0. 	

Proof (Theorem 1) For the case (i), our claim is trivial by Proposition 2 (i). Let us
assume (ii) and put |a|p = pk . The sphere Hk is the disjoint union of pk−l−1(p − 1)
balls of radius pl . Since each of these balls is mapped to the ball B

(
a, pl

)
by a rotation

around the origin, and the law of ξi is invariant by the rotation, it follows that

Pn
(
B

(
a, pl

))
= Pn(Hk)

pk−l−1(p − 1)
= Pn

(
Bc
k−1

) − Pn
(
Bc
k

)

pk−l−1(p − 1)
. (7)

Applying Lemma 2 to l = k − 1 and l = k, we obtain

C1
(
p−α(1 − δn)

)cn+k−1 − C2
(
p−α(1 + δn)

)cn+k

≤ Pn
(
Bc
k−1

) − Pn
(
Bc
k

)

≤ C2
(
p−α(1 + δn)

)cn+k−1 − C1
(
p−α(1 − δn)

)cn+k
. (8)

Here let us verify the left-hand side of this inequality is positive for large n. By

the assumption lim supn→∞ cn log
1+δn
1−δn

< α log p, we have pα
(
1−δn
1+δn

)cn
> 1 for

sufficiently large n. Since C1
C2

can be arbitrarily close to 1 and δn → 0 as n → ∞, the
ratio

C1
(
p−α(1 − δn)

)cn+k−1

C2
(
p−α(1 + δn)

)cn+k
= C1

C2

(1 − δn)
k−1

(1 + δn)k
· pα

(
1 − δn

1 + δn

)cn

is greater than 1 for sufficiently large n. Therefore, the left-hand side of (8) is positive,
and then we can estimate the logarithm of (7) as

log
(
C1

(
p−α(1 − δn)

)cn+k−1 − C2
(
p−α(1 + δn)

)cn+k
)
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−(k − l − 1) log p − log(p − 1)

≤ log Pn
(
B

(
a, pl

))

≤ log
(
C2

(
p−α(1 + δn)

)cn+k−1 − C1
(
p−α(1 − δn)

)cn+k
)

−(k − l − 1) log p − log(p − 1).

Divide the each side by n, then we proceed to

cn + k − 1

n
(−α log p + log(1 − δn))

+1

n

(

log

(

C1 − C2 p
−α(1 − δn)

(
1 + δn

1 − δn

)cn+k
)

−(k − l − 1) log p − log(p − 1)

)

≤ 1

n
log Pn

(
B

(
a, pl

))

≤ cn + k − 1

n
(−α log p + log(1 + δn))

+1

n

(

log

(

C2 − C1 p
−α(1 + δn)

(
1 − δn

1 + δn

)cn+k
)

−(k − l − 1) log p − log(p − 1)

)

.

Since δn → 0 and lim supn→∞
(
1+δn
1−δn

)cn
< pα , the second terms of the left- and the

right-hand side go to 0 as n → ∞. Hence, taking lim inf and lim sup of the both sides,
our assertion follows. 	


Proof (Corollary 1) If we suppose Pn (n = 1, 2, . . . ) satisfy the large deviation
principle with some rate function I , then Theorem 1 requires

αθ+ log p ≤ inf
x∈B(a,pl)

I (x) ≤ αθ− log p;

therefore, θ+ = θ−. Thus for the large deviation principle, it is necessary that
limn→∞ cn

n exists.
Conversely, suppose that θ := limn→∞ cn

n exists, and let I (x) = αθ log p for x �= 0
and I (0) = 0. For the large deviation principle, what we have to show are

lim inf
n→∞

1

n
log Pn(A) ≥ − inf

x∈A
I (x) (9)
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for any open set A in Qp, and

lim sup
n→∞

1

n
log Pn(B) ≤ − inf

x∈B I (x) (10)

for any closed set B.
For the empty set φ, (9) and (10) are trivial. If an open set A includes the origin,

then by Proposition 2 (ii),

lim inf
n→∞

1

n
log Pn(A) = 0 = −I (0) = − inf

x∈A
I (x).

Suppose next A �= φ is an open set not including the origin. Take a ∈ Qp and an
integer l such that B

(
a, pl

) ⊂ A, then by Theorem 1,

lim inf
n→∞

1

n
log Pn(A) ≥ lim inf

n→∞
1

n
log Pn

(
B

(
a, pl

))
= −αθ log p = − inf

x∈A
I (x).

Let B be a closed set including the origin, then trivially we have

lim sup
n→∞

1

n
log Pn(B) ≤ 0 = −I (0) = − inf

x∈B I (x).

In case a closed set B �= φ does not include the origin, we can take an integer l such
that Bl ⊂ Bc, and then Proposition 1 implies

lim sup
n→∞

1

n
log Pn(B) ≤ lim sup

n→∞
1

n
log Pn

(
Bc
l

) = −αθ log p = − inf
x∈B I (x).

Therefore, the large deviation principle holds with the rate function I .
In case θ = +∞, it holds that {x ∈ Qp | I (x) ≤ c} = {0} for any c ≥ 0, and in

case θ < +∞, we have {x ∈ Qp | I (x) ≤ c} = Qp for c ≥ αθ log p. Therefore, I is
good if and only if θ = +∞. 	
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