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Abstract
According to theWiener–Hopf factorization, the characteristic function ϕ of any prob-
ability distribution μ on R can be decomposed in a unique way as

1 − sϕ(t) = [1 − χ−(s, i t)][1 − χ+(s, i t)], |s| ≤ 1, t ∈ R ,

where χ−(eiu, i t) and χ+(eiu, i t) are the characteristic functions of possibly defective
distributions in Z+ × (−∞, 0) and Z+ × [0,∞), respectively. We prove that μ can
be characterized by the sole data of the upward factor χ+(s, i t), s ∈ [0, 1), t ∈ R in
many cases including the cases where:

1. μ has some exponential moments;
2. the function t �→ μ(t,∞) is completely monotone on (0,∞);
3. the density of μ on [0,∞) admits an analytic continuation on R.

We conjecture that any probability distribution is actually characterized by its upward
factor. This conjecture is equivalent to the following: Any probability measure μ on R

whose support is not included in (−∞, 0) is determined by its convolution powers μ∗n ,
n ≥ 1 restricted to [0,∞). We show that in many instances, the sole knowledge of μ

and μ∗2 restricted to [0,∞) is actually sufficient to determine μ. Then we investigate
the analogous problem in the framework of infinitely divisible distributions.
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1 Introduction

Let μ be any probability measure on R. Denote by (Sn) a random walk with step
distribution μ, such that S0 = 0, a.s. Define the first ladder times associated to (Sn)

by

τ− = inf{n ≥ 1 : Sn < 0}, τ+ = inf{n ≥ 1 : Sn ≥ 0}.

Then theWiener–Hopf factorization of the characteristic function ϕ(t) = ∫
eitxμ(dx)

of μ can be written as,

1 − sϕ(t) = [1 − χ−(s, i t)][1 − χ+(s, i t)], |s| ≤ 1, t ∈ R, (1.1)

where χ− and χ+ are the downward and upward space–time Wiener–Hopf factors,

χ−(s, i t) = E(sτ−eit Sτ− 1{τ−<∞}) and χ+(s, i t) = E(sτ+eit Sτ+1{τ+<∞}).

To paraphrase Feller [3], XVIII.3, the remarkable feature of the factorization (1.1)
is that it represents an arbitrary characteristic function ϕ in terms of two (possibly
defective) distributions, one being concentrated on the half line (−∞, 0) and the other
one on the half line [0,∞). However, this feature only exploits identity (1.1) for fixed
s 	= 0 and reflects the fact that μ is determined by the knowledge of the distributions
of both Sτ− and Sτ+ . But one may wonder about the extra information brought by the
joint distributions (τ−, Sτ−) and (τ+, Sτ+). In particular, is it true in general that μ is
determined by only one of these joint distributions? or equivalently, is it true that ϕ is
determined by only one of its space–time Wiener–Hopf factors?

The aim of this paper is an attempt to answer the latter question. We will actually
show that μ is determined by χ+(s, i t) in some quite large classes of distributions
including the case where μ has some positive exponential moments, or when t �→
μ(t,∞) is completely monotone on (a,∞), for some a ≥ 0, or satisfies a property
which is slightly stronger than analyticity. Obviously all these assumptions can be
verified from the sole data of χ+(s, i t). These different cases cover a sufficiently large
range of distributions for us to allow ourselves to raise the following conjecture. Let
M1 be the set of probability measures on R.

Conjecture C Any distribution μ ∈ M1 whose support is not included in (−∞, 0) is
determined by its upward space–time Wiener–Hopf factor χ+(s, i t), |s| < 1, t ∈ R.

Note that if the support of μ is contained in [0,∞), then this measure is clearly
determined by χ+, since Sτ+ = S1 in this case.
A crucial step in the proof of (1.1) is the following development of the factor χ+(s, t),
for |s| < 1 and t ∈ R,

log
1

1 − χ+(s, i t)
=

∞∑

n=1

sn

n

∫

[0,∞)

eitxμ∗n(dx), (1.2)
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see [3], XVIII.3, where μ∗n is the nth fold convolution product of μ by itself. We will
actually refer to μ∗n , n ≥ 0 as the convolution powers of μ. This identity shows that
the data of χ+ is equivalent to the knowledge of the measures μ∗n , n ≥ 1 on [0,∞)

and leads to the following equivalent conjecture.

Conjecture C’ Any distribution μ ∈ M1 whose support is not included in (−∞, 0) is
determined by its convolution powers μ∗n, n ≥ 1 restricted to [0,∞).

In particular, conjecture C is satisfied for distributions whose support is included
in [0,∞). Each of the next sections corresponds to a class of probability distributions
for which Conjecture C holds. For the first one in Sect. 2, we prove that distributions
having some particular exponential moments satisfy conjecture C. Then in Sect. 3 we
consider three other classes for which amuch stronger result thanConjectures C andC′
is true. We will see that there are actually many distributions which are determined by
the sole data ofμ andμ∗2 on [0,∞). This is the casewhen the function t �→ μ(t,∞) is
smooth enough. In Sect. 3.2,wewill consider the casewhere the function t �→ μ(t,∞)

is completely monotone on (a,∞), for some a ≥ 0 and in Sect. 3.3 we will make a
slightly stronger assumption than analyticity on this function. We will also present the
discrete counterpart of the completely monotone case in Sect. 3.4. Finally in Sect. 4,
we will consider Conjecture C in the restricted class of infinitely divisible distributions
and show that if the upper tail of the Lévy measure is completely monotone, then μ is
determined by its upper Wiener–Hopf factor. Then we end this paper in Sect. 5 with
some important remarks on the possibility of extending the classes of distributions
studied.

Throughout this paper, we will denote by C the set of distributions satisfying
Conjecture C (or equivalently Conjecture C′). Let us give a proper definition of this
set.

Definition 1.1 Let C be the set of distributions μ ∈ M1 which are determined by
their upward Wiener–Hopf factor χ+(s, i t), for |s| ≤ 1 and t ∈ R or equivalently by
the data of their convolution powers μ∗n , n ≥ 1 restricted to [0,∞). More formally,

C = {μ ∈ M1 : if μ1 ∈ M1 satisfies μ∗n = μ∗n
1 ,

on [0,∞), for all n ≥ 0, then μ = μ1}.

Then conjectures C and C′ can be rephrased as follows: Any distribution μ ∈ M1
whose support is not included in (−∞, 0) belongs to C .

The problem we investigate here originates from a result in Vigon’s Ph.D. thesis
[10], see Section 4.5 therein, where a question equivalent to Conjecture C is raised in
the setting of Lévy processes. Our question is actually more general since it concerns
distributions which are not necessarily infinitely divisible. In particular, a positive
answer to Conjecture C would imply that the law of any Lévy process (Xt , t ≥ 0)
is determined by one of its space–time Wiener–Hopf factors or equivalently by the
marginals of the process (X+

t , t ≥ 0), see Sect. 4.
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2 When � Admits Exponential Moments

2.1 Recovering the Characteristic Function and theMoment Generating Function

In this paper, we will always assume that the support of the measure μ is not included
in (−∞, 0). Let us observe that from the data of the upward Wiener–Hopf factor
χ+(s, i t), for |s| ≤ 1 and t ∈ R or equivalently from the data of the measures μ∗n ,
n ≥ 1 restricted to [0,∞), we know the sequences, P(Sn < 0) and P(Sn ≥ 0),
n ≥ 0, as well as the distributions of both τ− and τ+. In particular, we know whether
(Sn) oscillates, drifts to −∞, or drifts to ∞. The next result shows that provided
n �→ P(Sn < 0) tends to 0 sufficiently fast along some subsequence, it is possible
to recover the characteristic function ϕ of μ on some interval containing 0, from the
measures μ∗n restricted to [0,∞).

Lemma 2.1 Assume that there is α > 0 and a sequence of integers (n j ) j≥1 going to
∞ as j → ∞ such that

P(Sn j < 0) ≤ e−αn j , for all j ≥ 1. (2.1)

Then for all t such that |ϕ(t)| > e−α ,

lim
j→∞E(eit Sn j 1I{Sn j ≥0})1/n j = ϕ(t).

In particular, if (2.1) holds then ϕ can be determined on some neighborhood of 0.

Proof Recall that ϕ(t) tends to 1 as t tends to 0. Then let t be sufficiently small so that
ϕ(t) 	= 0 and let us write,

E(eit Sn j 1I{Sn j ≥0})1/n j =
[
ϕ(t)n j − E

(
eit Sn j 1I{Sn j <0}

)]1/n j

= ϕ(t)
[
1 − ϕ(t)−n jE

(
eit Sn j 1I{Sn j <0}

)]1/n j
. (2.2)

Whenever t is such that |ϕ(t)| > e−α and for all j such that P(Sn j < 0) < e−αn j ,

∣
∣
∣ϕ(t)−n jE

(
eit Sn j 1I{Sn j <0}

)∣
∣
∣ ≤ |ϕ(t)−n jP(Sn j < 0)|,
≤ (|ϕ(t)|eα

)−n j .

Therefore, the left-hand side of the above inequality tends to 0 as j → ∞ and this
yields the result thanks to Eq. (2.2). ��
Since, for all n ≥ 0,

P(S1 < 0, S2 − S1 < 0, . . . , Sn − Sn−1 < 0) = P(S1 < 0)n ≤ P(Sn < 0),
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Equation (2.1) cannot hold for all α > 0, unless P(S1 ≥ 0) = 1. Note also that if
(2.1) holds then the random walk (Sn) cannot drift to −∞. Moreover, if it holds for
all sufficiently large n, then (Sn) necessarily drifts to ∞ thanks to Spitzer’s criterion
which asserts that this happens if and only if

∑
n−1

P(Sn < 0) < ∞.

Lemma 2.2 Let μ1, μ2 ∈ M1. Denote by ϕ1 and ϕ2 their characteristic functions
and by φ1 and φ2 their moment generating functions, that is ϕ j (u) := ∫

R
eiux μ j (dx)

and φ j (v) := ∫
R

evx μ j (dx), u, v ∈ R, j = 1, 2. Assume that there exists λ 	= 0
such that φ1(λ) < ∞ and φ2(λ) < ∞ and that there is an open interval I such that
ϕ1(u) = ϕ2(u), for all u ∈ I . Then μ1 = μ2.

Proof Assume without loss of generality that λ > 0. Let D = {z = u + iv ∈ C :
u ∈ R, −λ < v < 0}. From the assumptions, the function f := ϕ1 − ϕ2 admits
an analytic continuation in the open domain D. Then let O+ = {z = u + iv ∈ C :
u ∈ I , 0 < v < λ} and O− = {z = u + iv ∈ C : u ∈ I , −λ < v < 0}. From
Schwarz reflection principle, f admits an analytic continuation in the open domain
O+ ∪ I ∪ O−. From the principle of isolated zeroes, f vanishes in O+ ∪ I ∪ O− and
from the same principle, it vanishes in D. By continuity, f (u) = 0 for all u ∈ R and
the result follows from injectivity of the Fourier transform. ��
We will say that a distribution μ ∈ M1 admits an exponential moment if there is
λ ∈ R \ {0} such that φ(λ) := ∫

R
eλx μ(dx) < ∞.

Lemma 2.3 The characteristic function of a distribution having an exponential
moment cannot vanish identically in an interval.

Proof Let ϕ be the characteristic function of μ ∈ M1. If ϕ vanishes in an interval and
if there is λ ∈ R\{0} such that φ(λ) < ∞, then we conclude from the same arguments
as in the proof of Lemma 2.2 (replacing f by ϕ) that ϕ(u) = 0 for all u ∈ R, which
is absurd since ϕ is a characteristic function. ��
Lemma 2.3 was noticed in [9] for nonnegative random variables.

Theorem 2.1 If a measure μ satisfies (2.1), then it belongs to the class C .

Proof First observe that if we knowμ∗n on [0,∞) for all n ≥ 1, thenwe can determine
if (2.1) holds since 1−μ∗n[0,∞) = P(Sn < 0). Now if (2.1) holds, then fromLemma
2.1, the characteristic function ϕ of μ can be determined on some neighborhood of 0.
Since the function t �→ χ+(1, i t) is known, from (1.1), it means that the function t �→
χ−(1, i t) can be determined on the same neighborhood. But t �→ χ−(1, i t)/χ−(1, 0)
is the characteristic function of the non-positive random variable Sτ− under P(·|τ− <

∞). Since E(eλSτ− |τ− < ∞) ≤ 1, for all λ ≥ 0, we derive from Lemma 2.2 that
χ−(1, i t) is determined for all t ∈ R. Therefore, from (1.1), ϕ(t) is determined for all
t ∈ R and the result follows. ��
Remark 2.1 Distributions having negative exponential moments provide examples for
which (2.1) is satisfied. More specifically, assume that there is λ < 0 such that φ(λ) <

1, then

P(Sn < 0) ≤ E

(
eλSn1I{Sn<0}

)
≤ φ(λ)n ,
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which implies (2.1). The question of finding an example of a distribution with no
exponential moment which satisfies (2.1) remains open.

Recall that φ is a convex function on the interval {α : φ(α) < ∞}. Moreover, since the
support of μ is not included in (−∞, 0), φ(α) is nondecreasing for α large enough.
If λ ∈ R is such that λ = inf{α : φ(α) < ∞}, then φ′(λ) will be understood as the
right derivative of φ at λ. Similarly, if λ = sup{α : φ(α) < ∞}, then φ′(λ) will be the
left derivative of φ at λ.

Lemma 2.4 For all λ ∈ R such that φ(λ) < ∞ and φ′(λ) > 0,

lim
n→+∞E(eλSn1I{Sn≥0})1/n = φ(λ) .

Proof Let (S(λ)
n ) be a random walk with step distribution μλ(dx) := eλx

φ(λ)
μ(dx).

Since

E

(
S(λ)
1

)
=

∫

R

xeλx

φ(λ)
μ(dx) = φ′(λ)

φ(λ)
> 0 ,

the random walk (S(λ)
n ) drifts to ∞, so that limn→∞ P(S(λ)

n ≥ 0) = 1. Then the result
follows from the identity

P

(
S(λ)

n ≥ 0
)

= E(eλSn1I{Sn≥0})
φ(λ)n

.

��
The following theorem shows that distributions having some negative exponential

moments less than 1 or some positive exponential moments bigger than 1 belong to
class C .

Theorem 2.2 Assume that the moment generating function φ of the measure μ satisfies
(at least) one of the two following conditions:

(a) There exists λ < 0 such that φ(λ) < 1.
(b) There exists λ > 0 such that φ(λ) ∈ (1,∞).

Then μ belongs to the class C .

Proof Let us show that from the knowledge of μ∗n restricted to [0,∞), for all n ≥ 1,
we can determine if (a) is satisfied. Assume that (2.1) holds, then from Theorem 2.1
the measure μ belongs to the class C so that we can determine if (a) holds. If (2.1)
does not hold, then from Remark 2.1, (a) is not satisfied.

Now let us deal with condition (b). From the data of μ∗n restricted to [0,∞), for
all n ≥ 1, the expression E(eλSn1I{Sn≥0}) is known, for all λ > 0 and n ≥ 1. Assume
that there is λ > 0 such that

lim
n→+∞E

(
eλSn1I{Sn≥0}

)1/n
> 1.
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Since E(eλSn1I{Sn≥0})1/n ≤ φ(λ), we have actually φ(λ) > 1. Moreover, our data
clearly allows us to know if φ(λ) < ∞. Then since φ(0) = 1, by convexity
of the function λ �→ φ(λ), it is clear that φ′(λ) > 0, so that from Lemma 2.4,
limn→+∞ E(eλSn1I{Sn≥0})1/n = φ(λ). This means that from our data, we can deter-
mine if there is λ > 0 such that φ(λ) ∈ (1,∞), which is condition (b), and in this
case limn→+∞ E(eλSn1I{Sn≥0})1/n = φ(λ), so that φ(λ) is known. Moreover, from the
continuity of φ on the set {x : φ(x) < ∞}, there is an interval I containing λ such that
for all x ∈ I , φ(x) ∈ (1,∞) and from the same reasoning as above, φ(x) is known
for all x ∈ I , so that the measure μ is determined and we conclude that it belongs to
the class C . ��
We can easily check that condition (b) of Theorem 2.2 is satisfied in the two following
situations:

(b1) φ(λ) < ∞ for all λ > 0.
(b2) μ is absolutely continuous in [0,∞) and its density f satisfies ln( f (x)) ∼

−λ0x , as x → ∞, for some λ0 ∈ (0,∞).

Indeed, in case (b1), ifμ 	= δ0 then sinceφ is a nondecreasing convex function such that
φ(0) = 1 and since the support of μ is not included in (−∞, 0), limλ→∞ φ(λ) = ∞.
In case (b2), it is clear that limλ→λ0− φ(λ) = ∞.

2.2 Skip Free Distributions

A distributionμwhose support is included inZ is said to be downward (resp. upward)
skip free ifμ(n) = 0 for all n ≤ −2 (resp. for all n ≥ 2). Clearly, skip free distributions
possess exponentialmoments.Moreover, upward skip free distributions belong to class
C from Theorem 2.2 (b) and the note following its proof. Then in this subsection,
we shall see that the case of downward skip free distributions allows us to go a little
beyond the cases encompassed by Theorems 2.1 and 2.2. We first need to make sure
that our data allows us to determine if the support of a distribution is included in Z.

Lemma 2.5 The support of the measure μ is included in Z if and only if the support
of the measures μ∗n, n ≥ 1 restricted to [0,∞) is included in Z+.

Proof The direct implication is obvious. Then assume that the support of μ∗n , n ≥ 1
restricted to [0,∞) is included in Z+, whereas the support of μ restricted to (−∞, 0]
is not included in Z−. Then there is an interval I ⊂ (−∞, 0] \Z− such thatμ(I ) > 0.
Let n ∈ Z+ \ {0} such that μ({n}) > 0 and h ∈ Z+ \ {0} such that hn + inf I > 0.
Then

0 < μ(I )μ({n})h = P(S1 ∈ I , Si+1 − Si = n, i = 1, . . . , h) ≤ P(Sn+1 ∈ hn + I ) .

This implies thatμ∗(n+1)(hn+ I ) > 0, where hn+ I ⊂ [0,∞)\Z+, which contradicts
the assumption. ��
Theorem 2.3 Downward skip free distributions belong to class C .
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Proof Let μ ∈ M1 whose convolution powers μ∗n , n ≥ 1 restricted to [0,∞) are
known. Then from Lemma 2.5, we can determine if the support of μ is included in Z
or not. Let us assume that it is the case.

As already noticed at the beginning of this section, we can determine if (Sn) drifts
to ∞ or not. Assume first that (Sn) drifts to ∞.

Let us observe that under this assumption, ifμ is a downward skip free distribution,
then there exists λ < 0 such that φ(λ) < 1. Indeed in this case, it is clear that
φ(λ) < ∞, for all λ ≤ 0. Moreover E(S1) exists and is positive. Since E(S1) =
limλ↑0(1 − φ(λ))/λ, there is necessarily λ < 0 such that φ(λ) < 1.

From Theorem 2.2 (a), we can determine if there exists λ < 0 such that φ(λ) < 1.
If this is not the case, then μ cannot be downward skip free. On the contrary, if there
exists λ < 0 such that φ(λ) < 1, then from Theorem 2.2, μ can be determined. In
particular, we know if μ is downward skip free or not.

Now assume that (Sn) does not drift to ∞ and write for n ≥ 0,

P(Sτ+ > n, τ+ < ∞) =
∑

k≥1

P(S1 < 0, . . . , Sk−1 < 0, Sk − Sk−1 > n − Sk−1)

=
∑

k≥1

∑

r≤−1

P(S1 < 0, . . . , Sk−2 < 0, Sk−1 = r)P(S1 > n − r)

=
∑

r≥1

v(r)P(S1 > n + r) , (2.3)

where v(r) = ∑
k≥1 P(S1 ≤ 0, . . . , Sk−1 ≤ 0, Sk = −r) is the mass function of the

renewal measure on {1, 2, . . . } of the (strict) downward ladder height process of (Sn),
see Chap. XII.2 in [3]. In particular, this renewal measure satisfies v(r) ≤ 1 for all
r ≥ 1. Moreover, (Sn) is downward skip free and does not drift to ∞, if and only if
v(r) = 1, for all r ≥ 1. Since it is the only unknown in Eq. (2.3), we can determine if
it is the case or not. Finally, knowing that μ is downward skip free, we immediately
determine this distribution on R from its knowledge on [0,∞). ��
It appears in the proof of Theorem 2.3 that downward skip free distributions which
drift to ∞ actually satisfy condition (a) of Theorem 2.2. Hence the only additional
case in this subsection is that of downward skip free distributions which do not drift
to ∞.

Wewill denote byE the set ofmeasuresμ satisfying the assumptions ofTheorem2.2
or those of Theorem 2.3, that is the set of measures satisfying (a) or (b) or downward
skip free distributions. It will be called the exponential class. From Theorems 2.2 and
2.3, we have E ⊂ C . Note that from Theorem 2.1, we have determined a subclass of
C which is presumably bigger than E .
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3 When � is Characterized by � and �∗2 on [0,∞).

3.1 Preliminary Results

We will show that in many cases, the sole data of μ and μ ∗ μ on [0,∞) actually
suffices to determine μ. Let us define the following class of measures:

Definition 3.1 Let C ∗ be the set of distributions μ ∈ M1 which are determined by
the data of μ and μ∗2 restricted to [0,∞). More formally,

C ∗ = {μ ∈ M1 : if μ1 ∈ M1 satisfies μ = μ1 and μ∗2 = μ∗2
1 on [0,∞), then μ = μ1}.

We emphasize here the obvious fact that C ∗ ⊂ C . In this subsection, we give a
theoretical condition for a measure to belong to class the C ∗.

In the rest of this article, we will often need to use the absolute continuity property
on [0,∞) of the distributions we will consider. We first observe that in Conjectures C
and C’, there is no loss of generality in assuming that μ is absolutely continuous with
respect to the Lebesgue measure on [0,∞).

Conjecture C”. Any absolutely continuous distribution μ ∈ M1 whose support is not
included in (−∞, 0) belongs to the class C .

Lemma 3.1 Conjectures C, C′ and C′′ are equivalent.

Proof We already know from Sect. 1 that Conjectures C and C’ are equivalent. Then
clearly, it suffices to prove that if Conjecture C” is true, then Conjecture C’ is true.

Letμ,μ1 ∈ M1 be any two distributions such that the measuresμ∗n
1 andμ∗n agree

on [0,∞), for all n ≥ 1. Let g be any probability density function on [0,∞), i.e.,∫ ∞
0 g(x) dx = 1 and let μ̄, μ̄1 ∈ M1 be the absolutely continuous measures whose
respective densities are h(x) = ∫

R
g(y − x) μ(dy) and h1(x) = ∫

R
g(y − x) μ1(dy),

x ∈ R.
Denoting by g∗n the n-th convolution product of the function g by itself, it is plain

that for all x ≥ 0,

μ̄∗n[x,∞) =
∫ ∞

0
μ∗n[x + y,∞)g∗n(y) dy and

μ̄∗n
1 [x,∞) =

∫ ∞

0
μ∗n
1 [x + y,∞)g∗n(y) dy.

Therefore since themeasuresμ∗n andμ∗n
1 agree on [0,∞), for all n ≥ 1, themeasures

μ̄∗n and μ̄∗n
1 also agree on [0,∞), for alln ≥ 1 and from the assumption that conjecture

C” is true, we conclude that the measures μ̄ and μ̄1 agree on R. Then we can identify
both characteristic functions:
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∫

R

eitx μ̄(dx) =
∫

R

eitx μ(dx)

∫ ∞

0
e−i t x g(x) dx and

∫

R

eitx μ̄1(dx) =
∫

R

eitx μ1(dx)

∫ ∞

0
e−i t x g(x) dx .

But from Lemma 2.3, the characteristic function of g cannot vanish identically in an
interval. This implies that

∫
R

eitx μ(dx) = ∫
R

eitx μ1(dx), for all t ∈ R by continuity
of characteristic functions. Then we conclude that μ = μ1 on R, from injectivity of
the Fourier transform. ��
We derive from Lemma 3.1 that there is no loss of generality in assuming that μ is
absolutely continuous on R. We will sometimes make this assumption and denote the
density of μ by f .

Lemma 3.2 For any probability density function, f on R and for all t ≥ 0,

∫ ∞

0
f (t + s) f̄ (s) ds = 1

2

(

f ∗ f (t) −
∫ t

0
f (t − s) f (s) ds

)

, (3.1)

where f̄ (s) = f (−s).

Proof It suffices to decompose f ∗ f as

f ∗ f (t) =
∫

R

f (t − s) f (s) ds

=
∫ 0

−∞
f (t − s) f (s) ds +

∫ t

0
f (t − s) f (s) ds +

∫ ∞

t
f (t − s) f (s) ds.

Then from a change of variables, we obtain
∫ ∞

t f (t − s) f (s) ds = ∫ 0
−∞ f (t −

s) f (s) ds = ∫ ∞
0 f (t + s) f̄ (s) ds, which proves our identity. ��

The main idea of this section is to exploit identity (3.1) in order to characterize
the function f̄ on [0,∞) (or equivalently f on (−∞, 0]) from the sole data of f
and f ∗ f on [0,∞). More specifically, assume that f restricted to [0,∞) fulfills
the following property: for any two nonnegative Borel functions g1 and g2 defined on
[0,∞) such that

∫ ∞
0 f (t + s)g1(s) ds < ∞,

∫ ∞
0 f (t + s)g2(s) ds < ∞, for all t ≥ 0,

the following implication is satisfied,

∫

[0,∞)

f (t+s)g1(s) ds =
∫

[0,∞)

f (t+s)g2(s) ds, for all t ≥ 0 ⇒ g1 ≡ g2, a.e.

(3.2)
Then clearly, the map t �→ ∫

[0,∞)
f (t + s) f̄ (s) ds characterizes f̄ on [0,∞) and

therefore from (3.1), μ is determined on R by the sole data of μ and μ∗2 on [0,∞),
that is μ ∈ C ∗.

Remark 3.1 There are density functions f which do not satisfy (3.2). For instance
with f (s) = 1

2e−s , the function t �→ ∫ ∞
0 f (t + s) f̄ (s) ds = 1

2e−t
∫ ∞
0 e−s f̄ (s) ds
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provides a very poor information on f̄ and certainly cannot characterize the function
f on [0,∞). Also if μ has a bounded support in [0,∞), then clearly the function
t �→ ∫ ∞

0 f (t + s) f̄ (s) ds cannot characterize f̄ outside this support.
Note also that from (3.1), the knowledge of t �→ ∫ ∞

0 f (t + s) f̄ (s) ds and f (t),
for t ≥ 0 is equivalent to this of the functions f and f ∗2 on [0,∞). Therefore, in the
above examples, f is not determined by the data of f and f ∗2 on [0,∞).

The following proposition gives a sufficient condition for (3.2) to hold.

Proposition 3.1 Assume that μ is absolutely continuous on R with density f . Let us
introduce the following set of functions defined on [0,∞),

H :=
{

n∑

k=1

αk f (tk + ·) : n ≥ 1, αk ∈ R, tk ≥ 0

}

.

If the restriction of f to [0,∞) belongs to L∞([0,∞)) and if H is dense in
L∞([0,∞)), then for any g ∈ L1([0,∞)), the following implication is satisfied,

∫ ∞

0
f (t + s)g(s) ds = 0, for all t ≥ 0 ⇒ g ≡ 0, a.e. (3.3)

If (3.3) holds, then μ ∈ C ∗.

Proof If
∫ ∞
0 f (t + s)g(s) ds = 0, for all t ≥ 0, then clearly, since H is dense in

L∞([0,∞)),
∫ ∞
0 h(s)g(s) ds = 0 for all h ∈ L∞([0,∞)) and this implies that

g ≡ 0, a.e.
Assume now that the restriction of the measures μ and μ∗2 are known on [0,∞).

Recall the notation f̄ from Lemma 3.2 and observe that the right-hand side of identity
(3.1) is known for all t ≥ 0. From (3.3), this determines f̄ on [0,∞) and the measure
μ is determined. ��
Unfortunately, we do not know any example of function satisfying the condition of
Proposition 3.1 and finding a simple criterion on f for it to satisfy this condition
remains an open problem. More specifically, we may wonder if the converse of Propo-
sition 3.1 holds, that is if assertion (3.3) implies that H is dense in L∞([0,∞)). The
latter problem can be compared with Wiener’s approximation theorem which asserts
that for a function f in L1(R) the set H (thought as a set of functions defined on R)
is dense in L1(R) if and only if the Fourier transform of f does not vanish, see [7].
In Sect. 3.2, we give a class of density functions such that (3.2) holds and in Sect. 3.3,
we give a class of density functions which are bounded on [0,∞) and such that (3.3)
holds.

3.2 The Completely Monotone Class

In this subsection, we assume that μ is absolutely continuous with respect to the
Lebesgue measure on R and we denote by f its density.
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We will show that if f restricted to (a,∞), for some a ≥ 0 is a completely monotone
function satisfying some mild additional assumption, then μ is characterized from μ

and μ∗2 on [0,∞). Let us first recall that from Bernstein’s Theorem, the function f
is completely monotone on (a,∞), for a ≥ 0, if and only if there is a positive Borel
measure ν on (0,∞) such that for all t > a,

f (t) =
∫ ∞

0
e−utν(du). (3.4)

Theorem 3.1 Assume that there is a ≥ 0 such that the restriction of f to (a,∞) is
completely monotone. Assume moreover that the support of the measure ν in (3.4)
contains an increasing sequence (an) such that

∑
n a−1

n = +∞. Then (3.2) holds and
μ ∈ C ∗.

Proof Let g be any nonnegative Borel function defined on [0,∞) such that
∫ ∞
0 f (t +

s)g(s) ds < ∞, for all t > a. Then from Fubini’s Theorem, for all t > a,

∫ ∞

0
f (t + s)g(s) ds =

∫ ∞

0

∫ ∞

0
e−u(t+s)ν(du)g(s) ds

=
∫ ∞

0
e−ut

∫ ∞

0
e−us g(s) ds ν(du).

This expression is the Laplace transform of the measure θ(du) := ∫ ∞
0 e−us g(s) ds ν

(du). The knowledge of this Laplace transform for all t > a characterizes the measure
θ(du) so that a version of the density function u �→ ∫ ∞

0 e−us g(s) ds is known on a
Borel set B ⊂ (0,∞) such that ν(Bc) = 0. Since this density function is continuous, it
is known on B and hence it is known everywhere on the support of ν. Therefore, from
the assumption on ν, we can find an increasing sequence (an) such that

∑
n a−1

n = +∞
and such that the Laplace transform

∫ ∞
0 e−ans g(s) ds of the function g at an is known

for each n. From a result in [4], this is enough to determine the function g and (3.2)
holds, see also [3, p. 430].

Then we derive from (3.2) and Lemma 3.2 that the function f̄ is determined on
[0,∞) from the restriction on [0,∞) of μ and μ∗2. Therefore the measure μ is
determined. ��
We will denote by M the set of absolutely continuous measures μ whose density
f satisfies the assumption of Theorem 3.1. This class will be called the completely
monotone class. Theorem 3.1 shows that M ⊂ C ∗.

Remark 3.2 Note that since f is a density function, the measure ν in (3.4) should also
satisfy ∫ ∞

a
f (t) dt =

∫ ∞

0

e−au

u
ν(du) ≤ 1. (3.5)

Remark 3.3 Clearly class E is not included in class M . Moreover, it is easy to find
an example of a measure in class M which does not belong to class E . Indeed, we
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readily check that whenever the support S of ν is such that S ∩ (0, ε) 	= ∅, for all
ε > 0, then μ has no positive exponential moments. Let us take for instance

f (t) =
{∫ 1

0 u2e−ut du t ≥ 0,
∫ 1
0 u2eut du t ≤ 0.

Then f satisfies the assumption ofTheorem3.1, fora = 0 and ν(du) = u21I[0,1](u) du,
so it belongs to class M . Moreover the probability measure with density f has no
exponential moments, so it does not belong to class E .

Remark 3.4 Theorem 3.1 excludes completely monotone functions of the type f (t) =∑n
k=1 αke−βk t , t > a, for some αk, βk > 0 and some finite n since in this case the

measure ν(du) = ∑n
k=1 αkδβk (du) does not satisfy the condition required by this

theorem. It also excludes functions f whose support is bounded since completely
monotone functions on (a,∞) are analytic on (a,∞). This remark is consistent with
Remark 3.1.

3.3 The Analytic Class

Let us assume again that μ has density f on R. We will now exploit the same kind of
arguments as in the previous subsection by assuming that f is the Fourier transform
of some complex valued function.

Theorem 3.2 Assume that there is a Borel complex valued function k such that for all
t ≥ 0,

f (t) =
∫

R

eiut k(u) du. (3.6)

Assume moreover that

1. the absolute moments Mn = ∫
R

|u|n|k(u)| du, n ≥ 0 are finite and satisfy

lim sup
n

Mn

n! < ∞,

2. the function k does not vanish on any interval of R.

Then f is bounded on [0,∞) and (3.3) holds, in particular μ ∈ C ∗. Moreover f
admits an analytic continuation on R.

Proof The fact that f is bounded followsdirectly from (3.6) and1.Let g ∈ L1([0,∞)),
then from (3.6) and Fubini’s theorem, we can write for all t ≥ 0,

∫ ∞

0
f (t + s)g(s) ds =

∫ ∞

0

∫

R

eiu(t+s)k(u) du g(s) ds

=
∫

R

eiut
∫ ∞

0
eius g(s) ds k(u) du.
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Assume that this expression vanishes for all t ≥ 0 and set ϕ(u) = ∫ ∞
0 eius g(s) ds.

This means that the Fourier transform


(t) :=
∫

R

eiutϕ(u) k(u) du,

of the function u �→ ϕ(u)k(u), u ∈ R vanishes for all t ≥ 0. Then let us show that
under our assumptions, the function 
 is analytic on the whole real axis. First note
that since |ϕ(u)| ≤ ‖g‖L1 , u ∈ R and since all the moments Mn are finite, then 
 is
infinitely differentiable on R and


(n)(t) =
∫

R

(iu)neiutϕ(u) k(u) du, t ∈ R. (3.7)

Then notice that for all t, u, x ∈ R,

∣
∣
∣
∣e

iux
(

eitu − 1 − i tu

1! − · · · − (i tu)n−1

(n − 1)!
)∣

∣
∣
∣ ≤ |tu|n

n! .

We derive from this inequality and (3.7) that

∣
∣
∣
∣
(x + t) − 
(x) − t

1!

′(x) − · · · − tn−1

(n − 1)!

(n−1)(x)

∣
∣
∣
∣ ≤ Mn

n! |t |n . (3.8)

Set c = lim supn Mn/n!, then from Stirling’s formula, for |t | < 1/(3c), the right-
hand side of (3.8) tends to 0, as n → +∞; hence, the Taylor series of 
 converges
in some interval around x , for all x ∈ R. It follows that 
 is analytic on R. As a
consequence, 
 is determined by its expression on the positive half line. Hence the
Fourier transform of the continuous function u �→ ϕ(u)k(u) vanishes on R, which
means that this function vanishes a.e. on R. Since k does not vanish on any interval of
R and ϕ is continuous, it implies that ϕ(u) = 0, for all u ∈ R and we conclude that
g(t) = 0, for almost every t ∈ [0,∞). We have proved that (3.3) holds and from the
second part of Proposition 3.1, μ is characterized by the restriction of μ and μ∗2 on
[0,∞).

We have proved above that 
(t) = ∫
R

eiutϕ(u) k(u) du is analytic on R. It follows
from the same arguments that the continuation of f onRwhich is defined in a natural
way by f (t) = ∫

R
eiut k(u) du, t ∈ R is analytic, which proves the last assertion of

the theorem. ��
We will denote by A the class of distributions which satisfy the assumptions of

Theorem 3.2. It will be called the analytic class. From Theorem 3.2, A ⊂ C ∗.
It is very easy to construct examples of distributions in classA , simply by choosing

any symmetric function k which satisfies assumptions 1 and 2 in Theorem 3.2. Let us
consider for instance k(u) = e−|u|, for u ∈ R. Then

f (t) =
∫

R

eiut e−|u| du = 1

2(1 + t2)
, t ≥ 0.
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Any extension on R of this function into a density function determines a distribution
of A which does not belong to classes E and M . Conversely, none of the classes E
and M is included in A . It is straightforward for E . Then let us consider

f (t) = 1

4

(∫ 1

0
e−ut u1/2du +

∫ ∞

1
e−ut u−1du

)

, t > 0.

The measure ν(du) = (
u1/21I[0,1](u) + u−11I[1,∞)(u)

)
du satisfies the condition of

Theorem 3.1 so that μ ∈ M (here we choose a = 0). However, limt→0+ f (t) = ∞;
hence, it does not admit an analytic continuation on R, so that f does not belong
to class A , from Theorem 3.2. (Note also that since the support of ν intersects any
interval (0, ε), ε > 0, themeasureμ has no positive exponential moments, see Remark
3.3.)

Here is a consequence of Theorem 3.2 for stable distributions.

Corollary 3.1 Let S be a stable distribution on R with index α ∈ [1, 2]. (When α = 1,
we assume that S is the symmetric Cauchy distribution.) If a measure μ satisfies μ = S
and μ ∗ μ = S ∗ S on [0,∞) then μ = S on R.

Proof Let f be the density of μ in [0,∞). From the expression of the characteristic
exponent of stable distributions and Fourier inverse transform, for all t ≥ 0,

f (t) = 1

2π

∫

R

e−i tue−c|u|α(1−iβ sgn(u) tan(πα/2)) du,

where β ∈ [−1, 1] and c is some positive constant. Then we can easily check that if
α ∈ [1, 2], f satisfies the conditions of Theorem 3.2 and the result follows. ��
Corollary 3.1 should be compared with a result from Rossberg and Jesiak [6] which
asserts that if F1 and F2 are the distribution functions of two stable distributions and
if F1(x) = F2(x) for x belonging to a set which contains at least three accumulation
points, l1, l2 and l3 such that Fi (l j ) 	= 0, 1 for i = 1, 2 and j = 1, 2, 3, then F1 ≡ F2,
onR. We stress that in Corollary 3.1 it is not even known a priori thatμ is an infinitely
divisible distribution. It is actually conjectured in [6] that if F is the distribution
function of an infinitely divisible distribution and satisfies F(x) = S(x), for all x ≥ 0,
then F ≡ S on R. This problem is solved (and proved to be true) only for α = 2.

3.4 A Class of Discrete Distributions

In this section, we present the discrete counterpart of classM . More specifically, we
will consider distributions whose support is included in Z.

First we need the following equivalent of Lemma 3.2 for discrete distributions. Its
proof is straightforward so we omit it.

Lemma 3.3 Let (qn)n∈Z be any probability on Z. Define q∗2
n = ∑

k∈Z qn−kqk . Then
for all n ≥ 1

0∑

k=−∞
qn−kqk = 1

2

(

q∗2
n −

n−1∑

k=1

qn−kqk

)

, (3.9)

where we set
∑n−1

k=1 qn−kqk = 0 if n = 1.
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A sequence (ak)k≥0 of nonnegative real numbers is called completely monotone if
for all k ≥ 0 and n ≥ 1,

�nak := �n−1ak − �n−1ak+1 ≥ 0,

where�0a = a. A result from Hausdorff asserts that (ak)k≥0 is completely monotone
if and only if there is a finite measure ν on [0, 1] such that for all k ≥ 0,

ak =
∫ 1

0
tk ν(dt). (3.10)

Let us set μ({n}) = μn , for n ∈ Z. Then by assuming that (μn)n≥0 is completely
monotone, we obtain a new class of distributions satisfying conjecture C as shows the
following theorem.

Theorem 3.3 Assume that the support of μ is included in Z. Assume moreover that
(μn)n≥0 is completely monotone and that the support of the measure ν in the repre-
sentation (3.10) contains a decreasing sequence (cn) such that

∑
(− ln cn)−1 = ∞.

Then μ ∈ C ∗.

Proof First let us observe that we can derive from the data of μ and μ∗2 restricted to
[0,∞) that the support of μ is included in Z. Indeed, assume that the support of μ

restricted to (−∞, 0] is not included inZ−. Then there is an interval I ⊂ (−∞, 0]\Z−
such that μ(I ) > 0. From (3.10), μ({n}) > 0 for all n ≥ 1. Let n ∈ Z+ \ {0} such
that n + inf I > 0, then

0 < μ(I )μ({n}) = P(S1 ∈ I , S2 − S1 = n) ≤ P(S2 ∈ n + I ).

This implies that μ∗2(n + I ) > 0, where n + I ⊂ [0,∞) \Z+, which contradicts the
assumption.

From the Hausdorff representation recalled above, there is a unique finite measure
ν on [0,1] such thatμk = ∫ 1

0 tk ν(dt). Using this representation and Fubini’s theorem,
we can write for all n ≥ 0,

∞∑

k=0

μ−kμn+k =
∫ 1

0
tn

( ∞∑

k=0

μ−k tk

)

ν(dt).

From (3.9) in Lemma 3.3 applied to (μk), we derive that this expression is determined
from the knowledge ofμ andμ∗2 on [0,∞). This means that we know themoments of
the measure

(∑∞
k=0 μ−k tk

) ·ν(dt). This measure is finite and its support is included in
[0, 1]; hence, it is determined by its moments. Then we know the generating function
t �→ ∑∞

k=0 μ−k tk of the sequence (μ−k)k≥0 on the support of ν, since this function is
continuous. From the assumption,we know this generating function on a sequence (cn)

such that
∑

(− ln cn)−1 = ∞. This is enough to determine the sequence (μ−k)k≥0,
from [4].

We conclude that the measuresμ andμ∗2 restricted to [0,∞) allow us to determine
μ on Z. ��
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The set of measures satisfying the assumptions of Theorem 3.3 will be called
the discrete monotone class and will be denoted by Md . Theorem 3.3 shows that
Md ⊂ C ∗. Moreover, it is clear that none of the classes E , M and A is included in
Md and that these classes do not contain Md .

4 When � is Infinitely Divisible

The aim of this section is to present a problem equivalent to conjecture C in the
framework of infinitely divisible distributions. When μ is infinitely divisible, the
Wiener–Hopf factorization can be understood in two different ways: we can either
factorize the characteristic function ϕ as in (1.1) or we can factorize the characteristic
exponent ψ , which is defined by

ϕ(t) = eψ(t), t ∈ R.

Then let us recall the Wiener–Hopf factorization in the latter context. Let (Xt , t ≥ 0)
be a real Lévy process issued from 0 under the probability P and such that X1 has law
μ under this probability, that is E(eiu Xt ) = e−tψ(u), for all t ≥ 0. The characteristic
exponent of μ is given explicitly according to the Lévy–Khintchine formula by

ψ(u) = iau + σ 2

2
u2 +

∫

R\{0}
(1 − eiux + iux1{|x |≤1})�(dx),

where a ∈ R, σ ≥ 0 and � is a measure on R \ {0}, such that ∫ (x2 ∧ 1)�(dx) < ∞.
Then the Wiener–Hopf factorization of ψ has the following form:

s + ψ(u) = κ+(s,−iu)κ−(s, iu), u ∈ R, s ≥ 0, (4.1)

where κ+ and κ− are the Laplace exponents of the upward and downward ladder

processes (τ+, H+) and (τ−, H−) of X , that is E(e−ατ
+/−
t −iβH+/−

t ) = e−tκ+/−(α,β).
These exponents are given explicitly for α, β ≥ 0 by the identities,

κ−(α, β) = k− exp

(∫ ∞

0

∫

(−∞,0)
(e−t − e−αt−βx )

1

t
P(Xt ∈ dx) dt

)

(4.2)

κ+(α, β) = k+ exp

(∫ ∞

0

∫

[0,∞)

(e−t − e−αt−βx )
1

t
P(Xt ∈ dx) dt

)

, (4.3)

where k− and k+ are positive constants depending on the normalization of the local
times at the infimum and at the supremum of X . The joint law of (τ+

1 , H+
1 ) is the

continuous time counterpart of the joint law (τ+, Sτ+) defined in Sect. 1, in the setup
of random walks. We refer to Chap. VI of [1], Chap. IV of [5] or Chap. IV of [2] for
complete definitions of these notions. Note that our formulation of the Wiener–Hopf
factorization (4.1) includes compound Poisson processes since expression (4.3) takes
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account of a possible mass at 0 for the measure P(Xt ∈ dx). This slight extension can
be derived from p. 24 and 25 of [10], see also the end of Section 6.4, p. 183 in [5].

For an infinitely divisible probability measure μ with Lévy measure �, we will set
�(t) = �(t,∞), for t > 0 and denote by μt the law of Xt , where (Xt , t ≥ 0) is a
Lévy process such that X1 has law μ (in particular μ = μ1).

Lemma 4.1 Let μ(1) and μ(2) be two infinitely divisible probability measures with
respective Lévy measures �(1) and �(2) and Wiener–Hopf factors κ

(1)
+ and κ

(2)
+ . Then

κ
(1)
+ = κ

(2)
+ if and only if μ(1)

t = μ
(2)
t on [0,∞), for all t ≥ 0. Moreover, if κ(1)

+ = κ
(2)
+ ,

then �
(1)

(t) = �
(2)

(t), for all t > 0.

Proof Let μ be an infinitely divisible probability measure. Then from the identity

1

t
P(Xt ∈ dx) dt =

∫ ∞

0
P(τu ∈ dt, Hu ∈ dx)

du

u
, x ≥ 0, t > 0, (4.4)

which can be found in Section 5.2 of [2], we see that the law of Xt in [0,∞), for all
t ≥ 0, is determined by the law of (τ, H) and hence by κ+. (Note that equation (4.4)
is also valid for compound Poisson processes.) Conversely, it follows directly from
formula (4.3) that κ+ is determined by the data of the measure μt on [0,∞), for all
t ≥ 0.

The second assertion is a consequence of the first one and Exercise 1 of chap. I in
[1], which asserts that the family of measures 1

t P(Xt ∈ dx) converges vaguely toward
�, as t → 0. ��
The above lemma enables us to make the connection between the two Wiener–Hopf
factorizations (1.1) and (4.1). Let us state it more specifically in the following propo-
sition.

Proposition 4.1 Let μ(1) and μ(2) be two infinitely divisible probability measures with
respective Wiener–Hopf factors κ

(1)
+ , κ

(2)
+ and χ

(1)
+ , χ

(2)
+ . If κ

(1)
+ = κ

(2)
+ , then χ

(1)
+ =

χ
(2)
+ .

Proof The result is straightforward from Lemma 4.1. Indeed, knowing κ+ we can
determine μn = μ∗n restricted to [0,∞), for all n ≥ 1 and from Sect. 1 that this data
is equivalent to that of χ+. ��
Definition 4.1 We will denote by Ci the class of infinitely divisible distributions μ

which are determined by the data of their upward Wiener–Hopf factor κ+(s, t), for
s, t ≥ 0 or equivalently by the data of the measures μt , t > 0 restricted to [0,∞).
More formally,

Ci = {μ ∈ M1, infinitely divisible : if μ(1) ∈ M1, infinitely divisible

satisfies μ
(1)
t = μt , on [0,∞), for all t > 0, then μ(1) = μ}.

Let us denote byI the set of infinitely divisible distributions. Then it is straightforward
that I ∩ C ⊂ Ci . In particular if Conjecture C is true, then Ci = I . It was proved
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in Chapter 4 of [10] that infinitely divisible distributions having some exponential
moments belong to class Ci , which is a consequence of our results. The latter work
uses a different technique based on the analytical continuation of the Wiener–Hopf
factors κ+ and κ−.

Let k−, δ−, γ− and k+, δ+, γ+ be the killing rate, the drift and the Lévy measure
of the subordinators H− and H+, respectively, and let us set γ̄+(x) = γ+(x,∞) and
γ̄−(x) = γ−(x,∞). Let also U− be the renewal measure of the downward ladder
height process H−, that is U−(dx) = ∫ ∞

0 P(H−
t ∈ dx).

Theorem 4.1 Assume that the function t ∈ (a,∞) �→ �(t) is completely monotone,
for some a ≥ 0, that is there exists a Borel measure ν on (0,∞) such that for all
t > a,

�(t) =
∫ ∞

0
e−ut ν(du). (4.5)

Assume moreover that the support of ν contains an increasing sequence (an) such that∑
n a−1

n = +∞. Then the measure μ belongs to the class Ci .

Proof The proof relies on Vigon’s équation amicale inversée, see [10], p. 71, or (5.3.4)
p. 44 in [2] which can be written as

γ̄+(x) =
∫

[0,∞)

U−(dy)�(x + y), x > 0. (4.6)

Note that (4.6) is analogous to (2.3). FromLemma 4.1, given κ+, we know both γ̄+(x),
for x > 0 and�(t), for t > 0. Then we will show that under our assumption, equation
(4.6) allows us to determine the renewal measure U−(dy), so that the law of X will
be entirely determined, thanks to the relation:

Û−(z) =
∫

R+
e−yzU−(dy)

= 1

κ−(0, z)
, z > 0, (4.7)

and the Wiener–Hopf factorization (4.1).
From (4.5), (4.6) and Fubini’s Theorem, we can write for all x > 0,

γ̄+(x) =
∫

[0,∞)

U−(dy)

∫ ∞

0
e−(x+y)z ν(dz)

=
∫ ∞

0
e−xzÛ−(z) ν(dz). (4.8)

Then the left hand side of Eq. (4.8) determines the measure Û−(z) ν(dz). Since
z �→ Û−(z) is a continuous function, then it is determined on the support of
ν. From our assumption on this support and [4] we derive that Û− (and hence
κ−(0, z) = − logE(e−zH−

1 )) for z > 0, is determined. ��
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Note that an analogous result to Theorem 4.1 holds when μ has support in Z and
the sequence �(n), n ≥ 1 satisfies the same assumptions as (μn)n≥0 in Theorem 3.3.
One may also wonder if an assumption such as (3.6) for �(t) would lead to a similar
result to Theorem 3.2. However, in order to use the same argument as in the proof of
this theorem together with equation (4.6), we need Û−(z) to be bounded, which is not
the case in general.

Remark 4.1 As already observed above, the class Ci contains at least all probability
measures in the setI ∩(E ∪M ∪A ∪Md) but Theorem 4.1 shows that there are other
distributions in Ci . Indeed, it is easy to construct an example of a compound Poisson
process (Xt , t ≥ 0) with intensity 1, whose Lévy measure � satisfies conditions of
Theorem 4.1 but such that the law μ(dx) = e−1 ∑

n≥0 �∗n(dx)/n! of X1 does not
belong to any of the classes E ,M , A and Md .

An infinitely divisible distribution is said to be downward skip free (respectively
upward skip free) if the support of the measure� is included in (−∞, 0] (respectively
in [0,∞)). Upward skip free distributions clearly belong to class Ci from theWiener–
Hopf factorization (4.1). Then here is a counterpart of Theorem 2.3.

Theorem 4.2 Downward skip free infinitely divisible distributions belong to the class
Ci .

Proof The proof relies on Vigon’s équation amicale, p. 71 in [10]. See also equation
(5.3.3), p. 44 in [2]. If δ− > 0, then from [10], the Lévy measure γ+ is absolutely
continuous and we will denote by γ+(x) its density. Then Vigon’s équation amicale
can be written as

�(x) =
∫ ∞

0
γ+(x + du)γ̄−(u) + δ−γ+(x) + k−γ̄+(x), x > 0.

It is plain that in the right-hand side, the term
∫ ∞
0 γ+(x + du)γ̄−(u) is identically 0 if

and only if the Lévy process X is spectrally positive, that is μ is downward skip free.
Moreover, (4.1) for u = 0 entails that the knowledge of κ+ implies that of κ−(s, 0),
for all s ≥ 0. In particular, we know the killing rate of the subordinator (τ−

t , t ≥ 0),
and that killing rate is the same as that of (H−

t , t ≥ 0), that is k−. Then we conclude
that X is spectrally positive if and only if there is a constant δ− such that

�(x) = δ−γ+(x) + k−γ̄+(x), x > 0,

and this can be determined, since from our data, we know k−, �(x) and γ̄+(x), for
x > 0. ��

5 More Classes of Distributions

In the previous sections,wehavehighlighted the subclassesE ,M ,Md andA ofC and
proved that these sets of distributions are distinct from each other. More specifically,
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none of them is included into another one. Then the aim of this section is to show that
some of these classes can be substantially enlarged through simple arguments.

Actually formost of the subclasses investigated in this paper,we imposed conditions
bearing only onμ restricted to [0,∞), but one is also allowed to make assumptions on
μ∗n restricted to [0,∞). In order tomove in this direction, let usmention the following
straightforward extension of results of Sect. 3.

Proposition 5.1 Let μ ∈ M1 be absolutely continuous with density f . If there is n ≥ 1
such that the density function f ∗n satisfies the same conditions as f in Theorems 3.1
or in Theorem 3.2, then μ is determined by μ∗n and μ∗2n restricted to [0,∞). In
particular μ belongs to class C .

It is plain that an analogous extension of Theorem 3.3 is satisfied. Then here is a more
powerful result allowing us to extend our classes of distributions.

Theorem 5.1 Let μ ∈ M1. If there is ν ∈ M1 whose support is included in (−∞, 0]
and such that μ ∗ ν ∈ C , then μ ∈ C .

Proof Let μ,μ1 ∈ M1 such that for each n ≥ 1, the measures μ∗n and μ∗n
1 restricted

to [0,∞) coincide. Set μ̄ = μ ∗ ν and μ̄1 = μ1 ∗ ν. Then from commutativity of
the convolution product, μ̄∗n = μ∗n ∗ ν∗n and μ̄∗n

1 = μ∗n
1 ∗ ν∗n . Since the support

of ν∗n is included in (−∞, 0] and μ∗n and μ∗n
1 restricted to [0,∞) are known and

coincide, themeasures μ̄∗n and μ̄∗n
1 restricted to [0,∞) are known and coincide. Since

μ̄ ∈ C , the measures μ̄ and μ̄1 are equal. Finally, from Lemma 2.3, the characteristic
function of ν does not vanish on any interval of R and the identity μ = μ1 follows
from continuity and injectivity of the Fourier transform. ��
Theorem 5.1 entails in particular that Conjecture C’ is equivalent to the following one:
Any distribution μ ∈ M1 whose support is not included in (−∞, 0) is determined
by its convolution powers μ∗n , n ≥ 1 restricted to [a,∞), for some a ≥ 0. Indeed, it
suffices to choose ν = δ−a in Theorem 5.1. Findingmore general examples illustrating
this result is an open problem. In order to do so, one needs for instance to find the
characteristic function ϕ of a random variable which belongs to class C and the
characteristic function ϕY of a nonnegative random variable Y such that the ratio
ϕ(t)/ϕY (−t) is the characteristic function of some random variable X . Then since the
law of X − Y belongs to class C , so does the law of X from Theorem 5.1.

Note that neither Proposition 5.1 nor Theorem 5.1 allows us to enlarge class E . In
order to do so in the same spirit as in Theorem 5.1, one needs to find an invertible
transformation T (μ) ∈ M1 of a distribution μ ∈ M1 \ E , such that T (μ)∗n , n ≥ 1
restricted to [0,∞) would be known and such that T (μ) belongs to class E .

Let us end this paper with an example of a distribution which satisfies conjecture C,
although it does not belong to any of the classes studied here. Assume that the support
of μ is included in Z and recall that according to Lemma 2.5, this assumption can
be checked from the data of the measures μ∗n , n ≥ 0 restricted to [0,∞). Assume
moreover that there are positive integers a and b such that

{
μ(n) > 0, for all n ≥ a + b and μ(n) = 0, for all n = 0, . . . , a + b − 1,

μ∗2(n) = 0, for all n = 0, . . . , a.
(5.1)
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Thenwe can determineμ onZ−, so thatμ ∈ C . Let us first show thatμ(n) = 0, for all
n ≤ −b. Assume that there is n ≤ −b such thatμ(n) > 0. Then let k = 0, . . . , a such
that k − n ≥ a + b. By definition of the convolution product 0 ≤ μ(k − n)μ(n) ≤
μ∗2(k), but from our assumptions μ(k − n)μ(n) > 0 and μ∗2(k) = 0, which is
contradictory, hence μ(n) = 0, for all n ≤ −b. On the other hand, assumptions (5.1)
entail that for all k = a + 1, . . . , a + b − 1,

μ∗2(k) =
k+b−1∑

i=a+b

μ(k − i)μ(i),

that is μ∗2(a + 1) = μ(−b + 1)μ(a + b), μ∗2(a + 2) = μ(−b + 2)μ(a + b) +
μ(−b + 1)μ(a + b + 1),…. Therefore, this system allows us to determine μ(n), for
n = −b + 1,−b + 2, . . . ,−1 and the conclusion follows.

Let us consider for instance a = 1, b = 3 and

μ(−2) = μ(−1) = 1 − c

2
and μ(n) = 1

n3 , n ≥ 4,

where c = ∑
n≥4 n−3. Clearly, such a distribution does not belong to any of the classes

A , M or Md . Then let us check that it does not belong to class E . The mean of μ

satisfies

∑

k≥−2

kμ(k) = −3

2
(1 − c) +

∑

n≥4

1

n2 < 0 ,

so that (2.1) does not hold.Moreoverμhas nopositive exponentialmoments. Therefore
conditions of Theorems 2.1 and 2.2 are not satisfied and since μ is not downward skip
free, we obtain the conclusion. Finally, it cannot be proved that μ belongs class C
by applying Proposition 5.1 or Theorem 5.1. However, from the above arguments, μ
does belong to class C .
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