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Abstract
In this paper, we study mean-field stochastic differential equations with jumps.
By Malliavin calculus for Wiener–Poisson functionals, sharp gradient estimates are
derived. Based on the gradient estimates, exponential convergence to the unique invari-
ant measure in total variation distance is also obtained under a dissipative condition.
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1 Introduction

Let {Wt }t�0 be a d-dimensional Brownian motion and {Lt }t�0 be a d-dimensional
Lévy process on a complete probability space (�,F ,P). Denote by N (dz, dt) the
jumpmeasure of Lt . According to Lévy–Khintchine formula, the Lévy process Lt has
the representation:

Lt =
∫ t

0

∫
[0<|z|<1]

z N̂ (dz, ds) +
∫ t

0

∫
[|z|�1]

zN (dz, ds),

where N̂ (dz, ds) := N (dz, ds) − ν(dz)ds is the martingale measure and ν is the
characteristic measure of N under P satisfying

∫
Rd\{0}(|z|2 ∧ 1)ν(dz) < ∞. In this

paper, we further assume
∫
[|z|�1] |z|pν(dz) < ∞ for all p � 1. LetP2 be the collection

of all probability measures with finite second moments onRd . Define the Wasserstein
distance
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W2(μ1, μ2) := inf
π∈C(μ1,μ2)

(∫
Rd×Rd

|x − y|2π(dx, dy)

) 1
2

,

where C(μ1, μ2) is the class of all couplings of μ1 and μ2. Then (P2,W2) is a Polish
space.

For measurable maps

b : Rd × P2 → R
d , σ : Rd × P2 → R

d ⊗ R
d ,

and

f : P2 → R
d ⊗ R

d ,

we consider the following mean-field stochastic differential equations (SDEs):

dXt = b(Xt ,PXt )dt + σ(Xt ,PXt )dWt + f (PXt )dLt , (1.1)

where PXt denotes the distribution of Xt under P.

1.1 Background and Notations

Mean-field SDEs, also known asMckean–Vlasov equations, were first studied by Kac
[15] in the framework of his study of the Boltzman equation for the particle density
in diluted monatomic gases, as well as in that of the stochastic toy model for the
Vlasov kinetic equation of plasma. In [19], McKean studied the propagation of chaos
in physical systems of N -interacting particles related to Boltzmann’s model for the
statistical mechanics of rarefied gases. The limit of N -particle systems with weak
interaction, formed by N equations forced by independent Brownian motions, can be
described as the solution of a nonlinear deterministic evolution equation known as the
McKean–Vlasov equations. These processes are nonlinear Markov processes. Their
transition functions may not only depend on the current state of the processes, but also
on the current distribution. Henceforth, many people paid their attention to the study of
the equations: [2,10–12,17] and references therein for the study of chaos propagation
and the limit equations; [5,13] for the regularity of the value function and associated
PDEs; [26] for gradient estimates and Harnack inequality in the diffusion case; [14]
for kinds of continuity and Harnack inequality for functional type of distribution
dependent SDEs. For more fruitful results, we refer to [16].

For distribution-independent SDEs driven by jump processes, gradient estimates
were obtained in [22,25,27,28] and references therein. For Eq. (1.1), when f ≡ 0
and σ does not depend on distribution, Wang [26] investigated gradient estimates
by using coupling method. It seems that there is no corresponding results for the
general type of equations like (1.1). Hence, in this manuscript we shall use Malliavin
calculus forWiener–Poisson functionals as a technical tool to derive gradient estimates
for Eq. (1.1). The two main procedures and novelties are: (1) adopt the notion of
derivatives with respect to probability measures first introduced by Lions [18] to study
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the Jacobian which involves the distribution term; (2) for different non-degenerate
conditions, construct corresponding modified Malliavin matrixes which have close
relation to the integration by part formula and help us to establish derivative formulas,
then to obtain sharp estimates.

The second objective of present paper is to study the exponential ergodicity of
Eq. (1.1). In diffusion case (i.e., f ≡ 0), the existence of the invariant measure was
derived by Benachour et al. [2], Veretennikov [29] and so on; and exponential conver-
gence in the Wasserstein metric was established by Cattiaux et al. [7], Wang [26] and
references therein. When f ≡ 0 and σ(x, μ) ≡ I , the exponential convergence to an
invariant measure in total variation distance was investigated by Butkovsky [6] under
the Veretennikov–Khasminskii condition. Based on the derivative estimates obtained
in Theorem 1.2 and under a dissipative condition, we will prove the exponential con-
vergence to the unique invariant measure in total variation metric of Eq. (1.1).

We will use the following notations frequently:

• Denote by B(Rd) the σ -algebra generated by all open sets of R
d and by

Bb(R
d) the class of all bounded andB(Rd)-measurable functions with the norm

‖ f ‖∞ := supx∈Rd | f (x)|. C1
b(R

d) is the collection of all bounded and differen-
tiable functions with bounded and continuous derivatives. Sd stands for the unit
sphere of Rd . Rd

0 denotes Rd \ {0}.
• The Hilbert–Schmidt norm of a matrix A is denoted by ‖A‖HS , which is defined

by ‖A‖HS :=
√∑

i, j a
2
i j .

• The letter C with or without indices will denote an unimportant constant, whose
values may change from one appearance to another.

1.2 Assumptions andMain Results

Assume there is a sub-σ -field F0 satisfying: F0 is independent of {Wt }t�0 and
{Lt }t�0, and F0 is “rich enough” such that P2 = {Pξ : ξ ∈ L2(�,F0,P)}. Let
{Ft }t�0 be the filtration generated by {Wt }t�0 and {Lt }t�0, completed and augmented
byF0; that is,

Ft := ∩r>tσ {Ws, Ls : s � r} ∨ F0 ∨ N , t ∈ [0, 1], (1.2)

where N is the collection of all P-null sets.

Definition 1.1 1. For any s � 0, a càdlàg Ft -adapted process {Xt }t�s on R
d is

called a strong solution of Eq. (1.1) from time s, if

∫ t

s
E

(
|b(Xr ,PXr )|2 + ‖σ(Xr ,PXr )‖2HS + | f (PXr )|2

)
dr < ∞, t � s,

and P-a.s.,

Xt = Xs +
∫ t

s
b(Xr ,PXr )dr +

∫ t

s
σ(Xr ,PXr )dWr +

∫ t

s
f (PXr )dLs, t � s.
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2. A triple (X̃ , W̃ , L̃) is called a weak solution to Eq. (1.1) from time s, if W̃ is a
d-dimensional Brownian motion with respect to a complete filtrated probability
space (�̃, {F̃t }t�0, P̃), and L̃ is a Lévy processwith characteristicmeasure ν under
P̃, such that X̃t solves

X̃t = X̃s +
∫ t

s
b(X̃r , P̃X̃r

)dr +
∫ t

s
σ(X̃r , P̃X̃r

)dW̃r ,+
∫ t

s
f (P̃X̃r

)dL̃r , t � s.

3. Equation (1.1) is said to have weak uniqueness in P2, if for any s � 0, any two
weak solution from time s with common initial distribution in P2 are equal in
law. To be precise, if s � 0 and (X̃s,t , W̃t , L̃ t )t�s with respect to (�̃, {F̃t }t�0, P̃)

and (Xs,t ,Wt , Lt )t�s with respect to (�, {Ft }t�0,P) are weak solutions of (1.1),
then PXs,s = P̃X̃s,s

yields PXs,· = P̃X̃s,· .

Let B0 be the unit open ball without origin. For the Lévy measure ν(dz), we have
the following assumption:

(Hν) ν|B0 is absolutely continuous with respect to the Lebesgue measure dz;
that is, there is a function κ : B0 → (0,+∞) such that

ν(dz)|B0 = κ(z)dz. (1.3)

Moreover, we assume the following regularity and order conditions:

• for some c0 > 0,

κ ∈ C1(B0; (0,∞)), |∇ log κ(z)| � c0|z|−1, ∀z ∈ B0. (1.4)

• for some c1 > 0 and α ∈ (0, 2),

lim
ε↓0 εα−2

∫
[|z|�ε]

|z|2ν(dz) = c1. (1.5)

Let us list assumptions on the coefficients.

(H1) b and σ are twice differentiable with respect to the first variable x and the
partial derivatives are bounded. b, σ and f , as well as their partial derivatives
with respect to x , are Lipschitz continuous with respect to μ; that is, there exists
a constant C > 0 such that

|b(x, μ1) − b(x, μ2)| + ‖σ(x, μ1) − σ(x, μ2)‖HS + | f (μ1) − f (μ2)| � CW2(μ1, μ2),

and

|∂xb(x, μ1) − ∂xb(x, μ2)| + |∂xσ(x, μ1) − ∂xσ(x, μ2)| � CW2(μ1, μ2),

for all x ∈ R
d and μ1, μ2 ∈ P2.

123



Journal of Theoretical Probability (2020) 33:201–238 205

(H2) For each x ∈ R
d , each of the components of b(x, ·), σ (x, ·) and f (·) is in

C1,1
b (P2) (see Definition 2.2 below) with supx∈Rd ,μ∈P2,y∈Rd |∂μb(x, μ)(y)| <

+∞ and supx∈Rd ,μ∈P2,y∈Rd |∂μσ(x, μ)(y)| < +∞. Moreover, ∂μb(·, μ)(y)
and ∂μσ(·, μ)(y) are differentiable with bounded derivatives; that is,

‖∂x∂μb‖∞ := sup
x∈Rd ,μ∈P2,y∈Rd

|∂x∂μb(x, μ)(y)| < +∞,

and

‖∂x∂μσ‖∞ := sup
x∈Rd ,μ∈P2,y∈Rd

|∂x∂μσ(x, μ)(y)| < +∞.

For x ∈ R
d , let {Xx

t }t�0 be the solution to Eq. (1.1) with initial value x .

Theorem 1.2 Assume (Hν), (H1) and (H2). The following statements hold:

1. If ‖σ−1‖∞ := supy∈Rd ,μ∈P2
|σ−1(y, μ)| < ∞, then there exists C > 0 such that

for each t ∈ (0, 1], x, y ∈ R
d and g ∈ C1

b(R
d),

|E∇g(Xx
t )| � C‖g‖∞(1 + |x |)t− 1

2 , (1.6)

and

|∇yEg(X
x
t )| � C‖g‖∞(1 + |x |)|y|t− 1

2 . (1.7)

2. If ‖ f −1‖∞ := supμ∈P2
| f −1(μ)| < ∞, then there exists C > 0 such that for each

t ∈ (0, 1], x, y ∈ R
d and g ∈ C1

b(R
d)

|E∇g(Xx
t )| � C‖g‖∞(1 + |x |)t− 1

α , (1.8)

and

|∇yEg(X
x
t )| � C‖g‖∞(1 + |x |)|y|t− 1

α . (1.9)

Remark 1.3 1. If ‖σ−1‖∞ < ∞ holds, the process L can be any Lévy process which
is independent of W and has finite p-th moment for all p � 2. In this case, the
condition (Hν) can be removed.

2. If ‖ f −1‖∞ < ∞ holds, for any α ∈ (0, 2) the order 1
α
in the gradient estimates

is sharp in short-time when L is a truncated α-stable process with characteristic
measure Cα

|z|d+α I[0<|z|<1]dz for some Cα > 0.

As an immediate result of Theorem 1.2, we have

Corollary 1.4 Assume (Hν), (H1) and (H2).
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1. If ‖σ−1‖∞ < ∞ holds, then there exists C > 0 such that for each t ∈ (0, 1] and
x1, x2 ∈ R

d ,
∫
Rd

|pt (x1, y) − pt (x2, y)|dy � C(1 + |x1| + |x2|)|x1 − x2|t− 1
2 ,

where pt (x1, y) and pt (x2, y) denote the density functions of X
x1
t and Xx2

t , respec-
tively.

2. If ‖ f −1‖∞ < ∞ holds, then there exists C > 0 such that for each t ∈ (0, 1] and
x1, x2 ∈ R

d ,
∫
Rd

|pt (x1, y) − pt (x2, y)|dy � C(1 + |x1| + |x2|)|x1 − x2|t− 1
α ,

where pt (x1, y) and pt (x2, y) denote the density functions of X
x1
t and Xx2

t respec-
tively.

The proofs of Theorem 1.2 and the Corollary will be shown in Sect. 3.
It is well known that under the Lipschitz condition, Eq. (1.1) has a unique strong

solution (see Theorem 3.1 below). Hence, the solution is a Markov process. Precisely
speaking, letting {X ξ

s,t }t�s denote the solution of Eq. (1.1) from time s with Fs -

measurable and square-integrable initial value X ξ
s,s = ξ , the existence and uniqueness

imply

X ξ
s,t = X

X ξ
s,r

r ,t , t � r � s � 0.

Due to this property, we may define a nonlinear semigroup {P∗
s,t }t�s onP2 by letting

P∗
s,tμ = P

X ξ
s,t

for Pξ = μ ∈ P2. For simplicity, we will use P∗
t to denote P∗

0,t . For

more detailed discussion about this kind of nonlinear semigroup, we refer to [26, p.
598].

A probability measure μ̂ is said to be an invariant measure of P∗
t if P∗

t μ̂ = μ̂

for all t � 0. The solution is called to be exponentially ergodic if for any μ ∈ P2,
P∗
t μ converges to μ̂ exponentially in the sense of total variation distance. In order

to investigate the exponential ergodicity of P∗
t , we give the following dissipative

condition.

(H3) There exist constants C1 and C2 with C2 > C1 � 0 such that for each
x1, x2 ∈ R

d and μ1, μ2 ∈ P2,

2〈b(x1, μ1) − b(x2, μ2), x1 − x2〉 + ‖σ(x1, μ1) − σ(x2, μ2)‖2HS

+
∫
R
d
0

|z|2ν(dz)| f (μ1) − f (μ2)|2 � C1W2(μ1, μ2)
2 − C2|x1 − x2|2.

Define the total variation distance on P2 as

‖μ1 − μ2‖T V := sup
A∈B(Rd )

|μ1(A) − μ2(A)|, μ1, μ2 ∈ P2.
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We have the following exponentially ergodic property.

Theorem 1.5 Let (Hν) and (H1)–(H3) hold. Assume ‖σ−1‖∞ < ∞ or ‖ f −1‖∞ <

∞. Then there is a unique invariant measure μ̂ for P∗
t such that for any μ ∈ P2,

‖P∗
t μ − μ̂(·)‖T V � C

[
1 +

(∫
Rd

|x |2μ(dx)

) 1
2
]
e− 1

2 (C2−C1)t ,

where C is a constant independent of μ and t.

The rest of this manuscript is organized as follows. In Sect. 2, we introduce some
preliminaries : Lions’ definition of the derivative of functions defined on P2 and
Malliavin calculus for Wiener–Poisson functionals. In Sect. 3, we give the proofs of
the main results. An example is shown in Sect. 4.

2 Preliminaries

In this section, we introduce some basic elements of differentiability of functions on
P2 and Malliavin calculus for Wiener–Poisson functionals.

2.1 Derivative in theWasserstein Space

Now we introduce the notion of differentiability of functions on P2 which was first
introduced by Lions [18] and revised in the notes by Cardaliaguet [8].

Let (�̃, F̃ , P̃) be a complete probability space. Denote by L2(�̃;Rd) the Hilbert
space consisting of all square integrable random variables valued on R

d , equipped
with the inner product defined as

〈ξ1, ξ2〉L2 := Ẽ(ξ1 · ξ2), ∀ξ1, ξ2 ∈ L2(�̃;Rd).

Assume F̃ is rich enough so that for each μ ∈ P2 there exists a random variable
ξ ∈ L2(�̃;Rd) such that P̃ξ = μ, i.e., μ is the distribution of ξ under P̃.

Let f : P2 → R be a function. Define its lifted function over L2(�̃;Rd),

f̃ (ξ) := f (P̃ξ ), ∀ξ ∈ L2(�̃;Rd).

Definition 2.1 A function f : P2 → R is said to be differentiable at μ0 ∈ P2, if there
is a random variable ξ0 ∈ L2(�̃;Rd) with P̃ξ0 = μ0 such that the lifted function f̃ is
Fréchet differentiable at ξ0

If f is differentiable at μ0, there exists a linear continuous mapping D f̃ (ξ0) :
L2(�̃;Rd) → R such that

f̃ (ξ0 + η) − f̃ (ξ0) = D f̃ (ξ0)(η) + o(|η|L2), η ∈ L2(�̃;Rd),
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as |η|L2 → 0. By Riesz’ representation theorem, there is a (P-a.s.) unique random
variable ζ ∈ L2(�̃;Rd) such that

D f̃ (ξ0)(η) = 〈η, ζ 〉L2 ,

for all η ∈ L2(�̃;Rd). According to Theorem 6.2 and Theorem 6.5 in [8], there is a
Borel function h0 : Rd → R

d such that ζ = h0(ξ0), P−a.s. and the function h0 only
depends on the law μ0, not on ξ0 itself. Taking into account the definition of f̃ , this
allows to write for any ξ ∈ L2(�̃;Rd),

f (P̃ξ ) − f (P̃ξ0) = Ẽ[h0(ξ0) · (ξ − ξ0)] + o(|ξ − ξ0|L2). (2.1)

We call ∂μ f (μ0)(·) := h0(·) the derivative of f at μ0. Note that ∂μ f (μ0) is only
μ0-a.e. uniquely determined, and it allows us to express D f̃ (ξ0) as a function of any
random variable ξ0 with distribution μ0, irrespective of where this random variable
is defined. In particular, the differentiation formula (2.1) is somehow invariant by
modification of the probability space (�̃, F̃ , P̃) and of the variables ξ0 and ξ used for
the representation of f , in the sense that D f̃ (ξ0) always reads as ∂μ f (μ0), whatever
the choice of ξ0 is.

Since we will consider functions f : P2 → R which are differentiable at all
elements of P2, we suppose that f̃ : L2(�̃;R) → R is Fréchet differentiable over
the whole space L2(�̃;Rd). In this case, we have the derivative ∂μ f (P̃ξ ) defined
P̃ξ -a.e. for all ξ ∈ L2(�̃;Rd). Due to Lemma 3.2 in [9], if the Fréchet derivative
D f̃ : L2(�̃;Rd) → L(L2(�̃;Rd)) is Lipschitz continuous with a Lipschitz constant
K ∈ (0,+∞), then there is for all ξ ∈ L2(�̃;Rd) a P̃ξ -version of ∂μ f (P̃ξ ) : Rd →
R
d such that

|∂μ f (P̃ξ )(y1) − ∂μ f (P̃ξ )(y2)| � K |y1 − y2|, ∀y1, y2 ∈ R
d .

Definition 2.2 A function f : P2 → R is said to be continuously differentiable with
Lipschitz-continuous and bounded derivatives, if there exists for all ξ ∈ L2(�̃;Rd) a
P̃ξ -modification of ∂μ f (P̃ξ )(·), also denoted by ∂μ f (P̃ξ )(·), such that ∂μ f : P2(R

d)×
R
d → R

d is bounded and Lipschitz continuous, that is, there is some constant C > 0
such that:

(i) |∂μ f (μ)(y)| � C , for all μ ∈ P2 and y ∈ R
d ;

(ii) |∂μ f (μ1)(y1)−∂μ f (μ2)(y2)| � C (W2(μ1, μ2) + |y1 − y2|), for allμ1, μ2 ∈
P2 and y1, y2 ∈ R

d . In this case, the function ∂μ f is considered as the derivative of
f and the collection of all such function f is denoted by C1,1

b (P2).

Remark 2.3 It is known that (cf. [5, Remark 2.1]) if f belongs to C1,1
b (P2), then the

version of ∂μ f (Pξ )(·) indicated in Definition 2.2 is unique.

Example 2.4 Given two twice continuously differentiable functions h : Rd → R and
g : R → R with bounded derivatives, we consider

f (P̃ξ ) := g(Ẽh(ξ)), ξ ∈ L2(�̃,Rd).
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Then, given any ξ0 ∈ L2(�̃,Rd),

f̃ (ξ) := f (P̃ξ ) = g(Ẽh(ξ))

is Fréchet differentiable in ξ0, and

f̃ (ξ0 + η) − f̃ (ξ0) =
∫ 1

0
g′(Ẽh(ξ0 + sη))Ẽ

(
h′(ξ0 + sη)η

)
ds

= g′(Ẽh(ξ0))Ẽ
(
h′(ξ0)η

)+ o
(‖η‖L2

)
.

Thus,

D f̃ (ξ0)(η) = Ẽ

(
g′(Ẽh(ξ0))∇h(ξ0)η

)
, η ∈ L2(�̃;Rd);

that is,

∂μ f (P̃ξ0)(y) = g′(Ẽh(ξ0))∇h(y), ∀y ∈ R
d .

Moreover, we see that

∂y∂μ f (P̃ξ0)(y) = g′(Ẽh(ξ0))∇2h(y), ∀y ∈ R
d .

2.2 Malliavin Calculus

In this section, we recall some basic facts about Bismut’s approach to Malliavin cal-
culus for jump processes (cf. [3,4,24] etc.).

Let  ⊂ R
d be an open set containing the origin. Let us define

0 :=  \ {0}, �(z) := 1 ∨ d(z, c
0)

−1, (2.2)

where d(z, c
0) is the distance of z to the complement of 0. Let � be the canonical

space of all points ω = (w,μ), where

• w : [0, 1] → R
d is a continuous function with w(0) = 0;

• μ is an integer-valued measure on [0, 1] × 0 with μ(A) < +∞ for any compact
set A ⊂ [0, 1] × 0.

Define the canonical process on � as follows: for ω = (w,μ),

Wt (ω) := w(t), N (ω; dt, dz) := μ(ω; dt, dz) := μ(dt, dz).

Let (Ft )t∈[0,1] be the smallest right-continuous filtration on � such thatW and N are
optional. In the following, we write F := F1, and endow (�,F ) with the unique
probability measure P such that
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• W is a standard d-dimensional Brownian motion;
• N is a Poisson random measure with intensity ν(dz)dt , where ν(dz) = κ(z)dz
with

κ ∈ C1(0; (0,∞)),

∫
0

(1 ∧ |z|2)κ(z)dz < +∞, |∇ log κ(z)| � C�(z),

(2.3)

where �(z) is defined by (2.2);
• W and N are independent.

In the following, we write

N̂ (dz, ds) := N (dz, ds) − ν(dz)ds.

2.3 Function Spaces

Let p � 1 and k be an integer. We introduce the following spaces for later use.

• L p(�): The space of allF -measurable random variables with finite norm:

‖F‖p := [E|F |p] 1p .

• L
1
p: The space of all predictable processes: ξ : � × [0, 1] × 0 → R

k with finite
norm:

‖ξ‖L1
p

:=
[
E

(∫ 1

0

∫
0

|ξ(s, z)|ν(dz)ds

)p
] 1

p

+
[
E

∫ 1

0

∫
0

|ξ(s, z)|pν(dz)ds

] 1
p

< ∞.

(2.4)

• L
2
p: The space of all predictable processes: ξ : � × [0, 1] × 0 → R

k with finite
norm:

‖ξ‖L2
p

:=
[
E

(∫ 1

0

∫
0

|ξ(s, z)|2ν(dz)ds

) p
2
] 1

p

+
[
E

∫ 1

0

∫
0

|ξ(s, z)|pν(dz)ds

] 1
p

< ∞.

• Hp: The space of all measurable adapted processes h : � × [0, 1] → R
d with

finite norm:

‖h‖Hp :=
[
E

(∫ 1

0
|h(s)|2ds

) p
2
] 1

p

< +∞. (2.5)
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• Vp: The space of all predictable processes v : � × [0, 1] × 0 → R
d with finite

norm:

‖v‖Vp := ‖∇zv‖L1
p
+ ‖v�‖L1

p
< ∞, (2.6)

where �(z) is defined by (2.2). Below we shall write

H∞− := ∩p�1Hp, V∞− := ∩p�1Vp.

• H0: The space of all bounded measurable adapted processes h : �×[0, 1] → R
d .

• V0: The space of all predictable processes v : � × [0, 1] × 0 → R
d with the

following properties: (i) v and ∇zv are bounded; (ii) there exists a compact subset
U ⊂ 0 such that

v(t, z) = 0, ∀z /∈ U .

• For any t ∈ (0, 1],L1
p(t),Hp(t) andVp(t) are the corresponding spaces as defined

in (2.4), (2.5) and (2.6) when the integral interval [0, 1] is changed into [0, t].
Letm be an integer and C∞

p (Rm) be the class of all smooth functions onRm which
together with all the derivatives has at most polynomial growth. LetFC∞

p be the class
of all Wiener–Poisson functionals on � with the following form:

F = f (W (h1), . . . ,W (hm1), N (g1), . . . , N (gm2)),

where f ∈ C∞
p (Rm1+m2), h1, . . . , hm1 ∈ H0 and g1, . . . , gm2 ∈ V0 are non-random

and real-valued, and

W (hi ) :=
∫ 1

0
〈hi (s), dWs〉Rd , N (g j ) :=

∫ 1

0

∫
0

g j (s, z)N (ds, dz).

For any p > 1 and � = (h, v) ∈ Hp × Vp, let us define

D�F :=
m1∑
i=1

(∂i f )(·)
∫ 1

0
〈h(s), hi (s)〉Rdds

+
m2∑
j=1

(∂ j+m1 f )(·)
∫ 1

0

∫
0

〈v(s, z),∇zg j (s, z)〉Rd N (ds, dz), (2.7)

where “(·)” stands for W (h1), . . . ,W (hm1), N (g1), . . . , N (gm2).

Definition 2.5 For p > 1 and� = (h, v) ∈ Hp×Vp, we define the first order Sobolev

space D1,p
� being the completion of FC∞

p in L p(�) with respect to the norm:

‖F‖�;1,p := ‖F‖L p + ‖D�F‖L p .
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We have the following integration by parts formula (cf. [24, Theorem 2.9]).

Theorem 2.6 Given � = (h, v) ∈ H∞− × V∞− and p > 1, for any F ∈ D
1,p
� , we

have

ED�F = E(Fδ(�)), (2.8)

where

δ(�) :=
∫ 1

0
〈h(s), dWs〉 −

∫ 1

0

∫
0

div(κv)(s, z)
κ(z)

N̂ (dz, ds),

and div(κv) :=∑d
i=1 ∂zi (κvi ) stands for the divergence.

The following Burkholder–Davis–Gundy inequality (c.f. [20, Theorem 48] and [24,
Lemma 2.3]) will be used frequently.

Lemma 2.7 1. For any p � 1, there is a constant Cp > 0 such that for any càdlàg
martingale Mt ,

E

(
sup
s�t

|Ms |p
)

� CpE[M, M]pt . (2.9)

2. For any p � 1, there is a constant Cp > 0 such that for any ζ ∈ L
1
p,

E

(
sup

t∈[0,1]

∣∣∣∣
∫ t

0

∫
B0

ζ(s, z)N (dz, ds)

∣∣∣∣
p
)

� Cp‖ζ‖p
L1
p
. (2.10)

3 Proofs of Main Results

Let’s first show the existence and uniqueness of the solution to Eq. (1.1).

Theorem 3.1 Assume that there is a constant C > 0 such that

|b(x1, μ1) − b(x2, μ2)|2 + ‖σ(x1, μ1) − σ(x2, μ2)‖2HS + | f (μ1) − f (μ2)|2

� C
(
|x1 − x2|2 + W2(μ1, μ2)

2
)

, x1, x2 ∈ R
d , μ1, μ2 ∈ P2. (3.1)

Then Eq. (1.1) admits a unique strong/weak solution. Moreover, for any s � 0, T � s
and p � 2, E|Xs,s |p < ∞ implies

E

(
sup

t∈[s,T ]
|Xs,t |p

)
� Cs,T

(
1 + E|Xs,s |p

)
, (3.2)

where Cs,T is a constant depending on s and T .
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Proof For the existence and uniqueness of the strong solution,we refer to [13, Theorem
3.1]. And for (3.2), it can be easily derived by Lemma 2.7 andGronwall’s inequality, so
we omit the proof.We only prove the uniqueness of theweak solution. Let (Xt ,Wt , Lt )
and (X̃t , W̃t , L̃ t ) with respect to (�,Ft ,P) and (�̃, F̃t , P̃) respectively be two weak
solutions with PX0 = P̃X̃0

. Then Xt solves Eq. (1.1) while X̃t solves

d X̃t = b(X̃t , P̃X̃t
)dt + σ(X̃t , P̃X̃t

)dW̃t + f (P̃X̃t
)dL̃ t . (3.3)

To prove PX · = P̃X̃ · , let

bt (x) = b(x,PXt ), σ t (x) = σ(x,PXt ), f t = f (PXt ).

Due to (3.1) and (3.2), it is easy to verify that b and σ are Lipschitz continuous and f
is bounded on [0, 1]. Therefore, the SDE

dXt = bt (Xt )dt + σ(Xt )dW̃t + f tdL̃ t , X0 = X̃0 (3.4)

has a unique strong solution. Due to Yamada–Watanabe theorem for nonhomogeneous
SDEs with jumps (see [1]), it also has the uniqueness of the weak solution. Noting
that

dXt = bt (Xt )dt + σ(Xt )dWt + f tdLt , PX0 = P̃X̃0
,

we have P̃X · = PX · . Therefore, (3.4) can be written as

dXt = b
(
Xt , P̃Xt

)
dt + σ

(
Xt , P̃Xt

)
dW̃t + f

(
P̃Xt

)
dL̃ t .

By the uniqueness of (3.3), we obtain X = X̃ . Therefore, P̃X̃ · = PX · . ��

For any x ∈ R
d , denote by Xx

t the solution to Eq. (1.1) with initial value x . Assume
(H1) holds. Let {Jt }t∈[0,1] satisfy the following linear matrix-valued equation:

Jt = I +
∫ t

0
∂xb
(
Xx
s ,PXx

s

)
Jsds +

d∑
k=1

∫ t

0
∂xσk

(
Xx
s ,PXx

s

)
JsdW

k
s , t ∈ [0, 1],

(3.5)

where σk denotes the k-th column of σ andWk is the k-th element ofW . Then by Itô’s
formula, we can easily obtain that the inverse matrix of Jt denoted by Kt satisfies:
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Kt = I −
∫ t

0
Ks∂xb

(
Xx
s ,PXx

s

)
ds +

d∑
k=1

∫ t

0
Ks
(
∂xσk

(
Xx
s ,PXx

s

))2 ds

−
d∑

k=1

∫ t

0
Ks∂xσk

(
Xx
s ,PXx

s

)
dWk

s (3.6)

for all t ∈ [0, 1].
Lemma 3.2 Assume (H1) holds. For any p � 2, we have

E

(
sup

t∈[0,1]
|Jt |p

)
< ∞, E

(
sup

t∈[0,1]
|Kt |p

)
< ∞. (3.7)

These can be easily derived by (2.9) and Gronwall’s inequality, so we omit the proof.

3.1 Malliavin Derivatives and Their Estimates

Proposition 3.3 Assume (Hν) and (H1). For any p � 2, � := (h, v) ∈ H∞− ×V∞−
and t ∈ [0, 1], X x

t is in D1,p
� and

D�Xx
t =

∫ t

0
∂xb
(
Xx
s ,PXx

s

)
D�Xx

s ds +
∫ t

0
∂xσ

(
Xx
s ,PXx

s

)
D�Xx

s dWs

+
∫ t

0
σ
(
Xx
s ,PXx

s

)
h(s)ds +

∫ t

0

∫
B0

f
(
PXx

s

)
v(s, z)N (dz, ds). (3.8)

Moreover, there exists Cp > 0 such that

E

(
sup
s�t

|D�Xx
s |p
)

� Cp(1 + |x |p)
(

‖h‖p
H2p(t)

+ ‖v‖p
L1
p(t)

)
, ∀t ∈ [0, 1]. (3.9)

Proof Define the following Picard iteration: for all t ∈ [0, 1], Xx,0
t ≡ x and

Xx,n+1
t = x +

∫ t

0
b
(
Xx,n
s ,PXx,n

s

)
ds +

∫ t

0
σ
(
Xx,n
s ,PXx,n

s

)
dWs

+
∫ t

0
f
(
PXx,n

s

)
dLs, n � 0.

Then from the proof of Theorem 3.1 in [13] we have for any p � 2,

lim
n→∞E

(
sup

t∈[0,1]
|Xx,n

t − Xx
t |p
)

= 0. (3.10)
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Now let’s prove the following statement: for any n � 1,

Xx,n
t ∈ D

1,p
� , ∀t ∈ [0, 1] and E

(
sup

t∈[0,1]
|D�Xx,n

t |p
)

< ∞, ∀p � 2. (3.11)

Due to (2.7), (2.9) and (2.10), it is clear that (3.11) holds for n = 1. Suppose that
(3.11) holds for some n. Then, by(H1) and the chain rule [23, Lemma 2.4], we have
σ
(
Xx,n
s ,PXx,n

s

) ∈ D
1,p
� and

D�σ
(
Xx,n
s ,PXx,n

s

) = ∂xσ
(
Xx,n
s ,PXx,n

s

)
D�Xx,n

s . (3.12)

Also by (2.7), we have

D�

∫ t

0
f
(
PXx,n

s

)
dLs =

∫ t

0

∫
B0

f
(
PXx,n

s

)
v(s, z)N (dz, ds).

Using the chain rule and Lemma 2.3 in [23], one can show that
∫ t
0 b(X

n
s ,PXx,n

s
)ds ∈

D
1,p
� and

D�

∫ t

0
b
(
Xx,n
s ,PXx,n

s

)
ds =

∫ t

0
∂xb
(
Xx,n
s ,PXx,n

s

)
D�Xx,n

s ds.

Therefore, Xx,n+1
t ∈ D

1,p
� and

D�Xx,n+1
t =

∫ t

0
∂xb
(
Xx,n
s ,PXx,n

s

)
D�Xx,n

s ds +
∫ t

0
∂xσ

(
Xx,n
s ,PXx,n

s

)
D�Xx,n

s dWs

+
∫ t

0
σ
(
Xx,n
s ,PXx,n

s

)
h(s)ds +

∫ t

0

∫
0

f
(
PXx,n

s

)
v(s, z)N (dz, ds).

(3.13)

By (2.9) and (B1), we can easily have E
(
supt∈[0,1] |D�Xx,n+1

t |p
)

< ∞. So we have

proved (3.11).
Due to (H1), (3.2) and the condition (h, v) ∈ H∞− × V∞−, the linear Eq. (3.8)

has a unique solution denoted by {Yt }t∈[0,1]. For any p � 2, by (2.9) and (2.10) one
can arrive at

E

(
sup
s�t

|Ys |p
)

� Cp

∫ t

0
E|∂xb

(
Xx
s ,PXx

s

)
Ys |pds

+ CpE

(∫ t

0
|∂xσ

(
Xx
s ,PXx

s

)
Ys |2ds

) p
2

+ CpE

(∫ t

0
|σ(Xx

s ,PXx
s
)h(s)|ds

)p
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+ CpE

(∫ t

0

∫
B0

| f (PXx
s
)v(s, z)|N (dz, ds)

)p

� Cp

∫ t

0
E

(
sup
s�r

|Ys |p
)
dr + Cp

[
E

(
sup

t∈[0,1]
|Xx

t |2p + 1

)] 1
2

(
‖h‖p

H2p(t)
+ ‖v‖p

L1
p(t)

)
.

Gronwall’s inequality, together with (3.2), implies

E

(
sup
s�t

|Ys |p
)

� Cp
(
1 + |x |p)

(
‖h‖p

H2p(t)
+ ‖v‖p

L1
p(t)

)
.

It follows from (3.8) and (3.13) that

E

(
sup

t∈[0,1]
|D�Xx,n+1

s − Yt |p
)

� Cp

∫ 1

0
E|∂xb

(
Xx,n
s ,PXx,n

s

)
D�Xx,n

s − ∂xb
(
Xx
s ,PXx

s

)
Ys |pds

+ Cp

∫ 1

0
E|∂xσ

(
Xx,n
s ,PXx,n

s

)
D�Xx,n

s − ∂xσ
(
Xx
s ,PXx

s

)
Ys |pds

+ CpE

(∫ 1

0
|σ (Xx,n

s ,PXx,n
s

)− σ
(
Xx
s ,PXx

s

)||h(s)|ds
)p

+ CpE

(∫ 1

0

∫
0

| f (PXx,n
s

)− f (PXx
s
)||v(s, z)|N (dz, ds)

)p

� Cp

∫ 1

0
E|∂xb

(
Xx,n
s ,PXx,n

s

)− ∂xb
(
Xx
s ,PXx

s

)|p|Ys |pds

+ Cp

∫ 1

0
E|∂xσ

(
Xx,n
s ,PXx,n

s

)− ∂xσ
(
Xx
s ,PXx

s

)|p|Ys |pds

+ Cp

∫ 1

0
E|D�Xx,n

s − Ys |pds

+ CpE

[∫ 1

0
|Xx,n

s − Xx
s |2 + W2(PXx,n

s
,PXx

s
)2ds

∫ 1

0
|h(s)|2ds

] p
2

+ Cp sup
s∈[0,1]

W2(PXx,n
s

,PXx
s
)p‖v‖p

L1
p

� Cp

∫ 1

0
E

(
sup
s�t

|D�Xx,n
s − Ys |p

)
dt

+ Cp

(
E sup

t∈[0,1]
|Xx,n

s − Xx
s |2p

) 1
2
⎛
⎝
(
E sup

t∈[0,1]
|Yt |2p

) 1
2

+ ‖h‖p
H2p

+ ‖v‖p
L1
p

⎞
⎠ .
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Gronwall’s inequality implies

lim sup
n→∞

E

(
sup

t∈[0,1]
|D�Xx,n+1

t − Yt |p
)

� Cp lim sup
n→∞

(
E sup

t∈[0,1]
|Xx,n

t − Xx
t |2p

) 1
2

= 0.

Combining this with (3.10) and the fact W2(PXx,n
s

,PXx
s
)p � E|Xx,n

s − Xx
s |p, and

letting n → ∞ in (3.13), we obtain Xx
t ∈ D

1,p
� and D�Xx

t satisfies Eq. (3.8). ��

Lemma 3.4 Assume (Hν) and (H1). For any � : (h, v) ∈ H∞− × V∞−, we have
Kt ∈ D

1,2
� . Moreover, there exists a constant C > 0 such that

E

(
sup
s�t

|D�Ks |2
)

� C
(
‖h‖2

H4(t) + ‖h‖2
H8(t) + ‖v‖2

L
1
4(t)

)
, ∀t ∈ [0, 1]. (3.14)

Proof Define the following Picard’s iteration: for each t ∈ [0, 1], K (0)
t = I and for

n � 0,

K (n+1)
t = I −

∫ t

0
K (n)
s ∂xb

(
Xx
s ,PXx

s

)
ds +

d∑
k=1

∫ t

0
K (n)
s

(
∂xσk(X

x
s ,PXx

s
)
)2 ds

−
d∑

k=1

∫ t

0
K (n)
s ∂xσk

(
Xx
s ,PXx

s

)
dWk

s , t ∈ [0, 1].

Then for any p � 2, it is routine to prove that

lim
n→∞E

(
sup

t∈[0,1]
|K (n)

t − Kt |p
)

= 0. (3.15)

By induction, Proposition 1.3.2 and 1.2.4 in [21], and Proposition 3.3 we have K (n+1)
t

is Malliavin differentiable along �. Moreover,

D�K (n+1)
t = −

∫ t

0
D�K (n)

s ∂xb(X
x
s ,PXx

s
)ds −

∫ t

0
K (n)
s ∂2x b

(
Xx
s ,PXx

s

)
D�Xx

s ds

+
d∑

k=1

∫ t

0
D�K (n)

s

(
∂xσk

(
Xx
s ,PXx

s

))2
ds

+ 2
d∑

k=1

∫ t

0
K (n)
s ∂xσk

(
Xx
s ,PXx

s

)
∂2x σk

(
Xx
s ,PXx

s

)
D�Xx

s ds
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−
d∑

k=1

∫ t

0
D�K (n)

s ∂xσk
(
Xx
s ,PXx

s

)
dWk

s −
d∑

k=1

∫ t

0
K (n)
s ∂2x σk

(
Xx
s ,PXx

s

)
D�Xx

s dW
k
s

−
d∑

k=1

∫ t

0
K (n)
s ∂xσk

(
Xx
s ,PXx

s

)
hk(s)ds,

where hk denotes the k-th component of h. Let {Yt }t∈[0,1] solve the following linear
equation:

Yt = −
∫ t

0
Ys∂xb

(
Xx
s ,PXx

s

)
ds −

∫ t

0
Ks∂

2
x b
(
Xx
s ,PXx

s

)
D�Xx

s ds

+
d∑

k=1

∫ t

0
Ys
(
∂xσk

(
Xx
s ,PXx

s

))2 ds + 2
d∑

k=1

∫ t

0
Ks∂xσk

(
Xx
s ,PXx

s

)
∂2xσk

(
Xx
s ,PXx

s

)
D�Xx

s ds

−
d∑

k=1

∫ t

0
Ys∂xσk

(
Xx
s ,PXx

s

)
dWk

s −
d∑

k=1

∫ t

0
Ks∂

2
x σk
(
Xx
s ,PXx

s

)
D�Xx

s dW
k
s

−
d∑

k=1

∫ t

0
Ks∂xσk

(
Xx
s ,PXx

s

)
hk(s)ds. (3.16)

Then by Hölder’s inequality and (2.9), we can arrive at

E

(
sup

t∈[0,1]
|D�K (n+1)

s − Ys |2
)

� C
∫ 1

0
E

(
sup
s�t

|D�K (n)
s − Ys |2

)
ds + C

∫ 1

0
E|K (n)

s − Ks |2|D�Xx
s |2ds + CE

(∫ 1

0
|K (n)

s − Ks ||h(s)|ds
)2

� C
∫ 1

0
E

(
sup
s�t

|D�K (n)
s − Ys |2

)
ds + C

[
E

(
sup

t∈[0,1]
|K (n)

t − Kt |4
)] 1

2
⎡
⎣
(
E sup

t∈[0,1]
|D�Xx

t |4
) 1

2

+ ‖h‖2
H4

⎤
⎦ .

Gronwall’s inequality, together with (3.9), yields

lim
n→∞E

(
sup

t∈[0,1]
|D�K (n+1)

s − Ys |2
)

� lim
n→∞C

[
E

(
sup

t∈[0,1]
|K (n)

t − Kt |4
)] 1

2

⎡
⎣
(
E sup

t∈[0,1]
|D�Xx

t |4
) 1

2

+ ‖h‖2
H4

⎤
⎦ = 0.

Combining this with (3.15), we obtain Kt ∈ D
1,2
� and D�Kt = Yt for all t ∈ [0, 1]

a.s.. Moreover, by (3.9), (3.7) and (3.16) we have
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E

(
sup
s�t

|D�Ks |2
)

� C
∫ t

0
E

(
sup
s�r

|D�Ks |2
)
dr + C

∫ t

0
E|Ks |2|D�Xx

s |2ds + CE

(∫ t

0
|Ks ||h(s)|ds

)2

� C
∫ t

0
E

(
sup
s�r

|D�Ks |2
)
dr + C

[
E

(
sup

s∈[0,1]
|Ks |4

)] 1
2

⎧⎨
⎩
[
E

(
sup
s�t

|D�Xx
s |4
)] 1

2

+‖h‖2
H4(t)

⎫⎬
⎭

� C
∫ t

0
E

(
sup
s�r

|D�Ks |2
)
dr + C(1 + |x |2)

(
‖h‖2

H8(t) + ‖h‖2
H4(t) + ‖v‖2

L
1
4(t)

)
.

Hence,

E

(
sup
s�t

|D�Ks |2
)

� C(1 + |x |2)
(
‖h‖2

H8(t) + ‖h‖2
H4(t) + ‖v‖2

L
1
4(t)

)
,

where C is a constant independent of t . ��

3.2 Directional Derivative with Respect to Initial Value

Recall that for given x, y ∈ R
d , the directional derivative of Xx

t along the direction y
is defined as

∇y X
x
t := L2 − lim

ε→0

1

ε

(
Xx+εy
t − Xx

t

)
, ∀t ∈ [0, 1].

Denote by (W̃ , L̃) a copy of (W , L) on some complete probability space (�̃, F̃ , P̃),
and by {X̃ x

t }t�0 the copy of the solution to the SDE (1.1), but driven by Brownian
motion W̃ and Lévy process L̃ . Obviously, (W̃ , L̃, X̃ x ) is an independent copy of
(W , L, Xx ), defined over (�̃, F̃ , P̃). And for all t ∈ [0, 1], ∇y X̃ x

t is the directional
derivative of X̃ x

t along the direction y.

Proposition 3.5 Assume (H1) and (H2). Then for any t ∈ [0, 1] and x, y ∈ R
d , we

have

∇y X
x
t = y +

∫ t

0
∂xb
(
Xx
s ,PXx

s

)∇y X
x
s ds +

∫ t

0
Ẽ

(
∂μb
(
Xx
s ,PXx

s

)
(X̃ x

s )∇y X̃
x
s

)
ds

+
∫ t

0
∂xσ

(
Xx
s ,PXx

s

)∇y X
x
s dWs +

∫ t

0
Ẽ

(
∂μσ

(
Xx
s ,PXx

s

)
(X̃ x

s )∇y X̃
x
s

)
dWs

+
∫ t

0
Ẽ

(
∂μ f

(
PXx

s

)
(X̃ x

s )∇y X̃
x
s

)
dLs . (3.17)
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Moreover, for any p � 2 there exists Cp > 0 such that

E

(
sup

t∈[0,1]
|∇y X

x
t |p
)

� Cp|y|p, (3.18)

where Cp is a constant independent of x, y and t .

Proof For the sake of convenience, we assume b ≡ 0. For ε > 0, let

Xx+εy
t = x + εy +

∫ t

0
σ
(
Xx+εx
s ,PXx+εy

s

)
dWs +

∫ t

0
f
(
PXx+εy

s

)
dLs, t ∈ [0, 1].

Then for any p � 2, by the Lipschitz continuity of σ and f and Gronwall’s inequality
it is easy to prove

E

(
sup

t∈[0,1]
|Xx+εy

t − Xx
t |p
)

� Cp|y|pε p. (3.19)

Observe that

σ
(
Xx+εy
s ,PXx+εy

s

)− σ
(
Xx
s ,PXx

s

)

=
∫ 1

0
∂λ

(
σ
(
Xx
s + λ(Xx+εy

s − Xx
s ),PXx+εy

s

))
dλ

+
∫ 1

0
∂λ

(
σ
(
Xx
s ,PXx

s +λ(Xx+εy
s −Xx

s )

))
dλ

= αε
s

(
Xx+εy
s − Xx

s

)+ Ẽ

(
βε
s

(
X̃ x+εy
s − X̃ x

s

))
,

where

αε
s :=

∫ 1

0
∂xσ

(
Xx
s + λ

(
Xx+εy
s − Xx

s

)
,PXx+εy

s

)
dλ

and

βε
s :=

∫ 1

0
∂μσ

(
Xx
s ,PXx

s +λ
(
Xx+εy
s −Xx

s

)
) (

X̃ x
s + λ

(
X̃ x+εy
s − X̃ x

s

))
dλ.

Moreover, for any p � 2 by the Lipschitz continuity of ∂xσ and ∂μσ we have

E

(
sup

s∈[0,1]
|αε

s − ∂xσ
(
Xx
s ,PXx

s

)|p
)

� E

(
sup

s∈[0,1]

∫ 1

0
|∂xσ

(
Xx
s + λ

(
Xx+εy
s − Xx

s

)
,PXx+εy

s

)− ∂xσ
(
Xx
s ,PXx

s

)|pdλ
)
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� CpE

(
sup

s∈[0,1]
|Xx+εy

s − Xx
s |p + sup

s∈[0,1]
W

p
2

(
PXx+εy

s
,PXx

s

))

� CpE

(
sup

s∈[0,1]
|Xx+εy

s − Xx
s |p
)

� Cp|y|pε p, (3.20)

and

Ẽ

(
sup

s∈[0,1]
|βε

s − ∂μσ
(
Xx
s ,PXx

s

)(
X̃ x
s

)|p
)

� CpẼ

(
sup

s∈[0,1]
|X̃ x+εy

s − X̃ x
s |p + sup

s∈[0,1]
sup

λ∈[0,1]
W2
(
P
Xx
s +λ
(
Xx+εy
s −Xx

s

),PXx
s

)p
)

� CpẼ

(
sup

s∈[0,1]
|X̃ x+εy

s − X̃ x
s |p
)

� Cp|y|pε p. (3.21)

By the similar argument as above, we have

f
(
PXx+εy

s

)− f
(
PXx

s

) = Ẽ

(
γ ε
s

(
X̃ x+εy
s − X̃ x

s

))

for some process γ ε with

Ẽ

(
sup

s∈[0,1]
|γ ε

s − ∂μ f
(
PXx

s

)
(X̃ x

s )|p
)

� Cp|y|pε p. (3.22)

Consider the following equation:

Y x
t (y) = y +

∫ t

0
∂xσ

(
Xx
s ,PXx

s

)
Y x
s (y)dWs +

∫ t

0
Ẽ

[
∂μσ

(
Xx
s ,PXx

s

)(
X̃ x
s

)
Ỹ x
s (y)

]
dWs

+
∫ t

0
Ẽ

[
∂μσ

(
PXx

s

)(
X̃ x
s

)
Ỹ x
s (y)

]
dLs . (3.23)

By classical Picard’s iteration, it is not difficult to prove that there is a unique solution
and an independent copy Ỹ of Y , defined on (�̃, F̃ , P̃). Then

Xx+εy
t − Xx

t − εY x
t (y) =

∫ t

0
∂xσ

(
Xx
s ,PXx

s

)(
Xx+εy
s − Xx

s − εY x
s (y)

)
dWs

+
∫ t

0
Ẽ

(
∂μσ

(
Xx
s ,PXx

s

)(
X̃ x
s

)(
X̃ x+εy
s − X̃ x

s − εỸ x
s (y)

))
dWs

+
∫ t

0

(
αε
s − ∂xσ

(
Xx
s ,PXx

s

))(
Xx+εy
s − Xx

s

)
dWs

+
∫ t

0
Ẽ

[(
βε
s − ∂μσ

(
Xx
s ,PXx

s

)(
X̃ x
s

))(
X̃ x+εy
s − X̃ x

s

)]
dWs
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+
∫ t

0
Ẽ

(
∂μ f

(
PXx

s

)(
X̃ x
s

)(
X̃ x+εy
s − X̃ x

s − εỸ x
s (y)

))
dLs

+
∫ t

0
Ẽ

[(
γ ε
s − ∂μ f

(
PXx

s

)(
X̃ x
s

))(
X̃ x+εy
s − X̃ x

s

)]
dLs .

Hence, it follows from Lemma 2.7 that

E

(
sup

t∈[0,1]
|Xx+εy

t − Xx
t − εY x

t (y)|2
)

� C
∫ 1

0
E

(
sup
s�t

|Xx+εy
s − Xx

s − εY x
s (y)|2

)
dt

+ C
∫ 1

0
Ẽ

(
sup
s�t

|X̃ x+εy
s − X̃ x

s − εỸ x
s (y)|2

)
dt

+ C
∫ 1

0
E

(
|Xx+εy

s − Xx
s |2|αε

s − ∂xσ
(
Xx
s ,PXx

s

)|2) ds

+ CE

∫ 1

0
Ẽ

(
|X̃ x+εy

s − X̃ x
s |2|βε

s − ∂μσ
(
Xx
s ,PXx

s

)(
X̃ x
s

)|2) ds

+ CE

∫ 1

0

∫
R
d
0

Ẽ

(
|X̃ x+εy

s − X̃ x
s |2|γ ε

s − ∂μ f
(
PXx

s

)(
X̃ x
s

)|2) |z|2ν(dz)ds

� C
∫ 1

0
E

(
sup
s�t

|Xx+εy
s − Xx

s − εY x
s (y)|2

)
dt

+ C

[
E

(
sup

s∈[0,1]
|Xx+εy

s − Xx
s |4
)] 1

2
[
E

(
sup

s∈[0,1]
|αε

s − ∂xσ
(
Xx
s ,PXx

s

)|4
)] 1

2

+ C

[
E

(
sup

s∈[0,1]
|Xx+εy

s −Xx
s |4
)] 1

2
[
Ẽ

(
sup

s∈[0,1]
|βε

s −∂μσ
(
Xx
s ,PXx

s

)(
X̃ x
s

)|4
)] 1

2

+ C

[
E

(
sup

s∈[0,1]
|Xx+εy

s − Xx
s |4
)] 1

2
[
Ẽ

(
sup

s∈[0,1]
|γ ε

s − ∂μ f
(
PXx

s

)(
X̃ x
s

)|4
)] 1

2

.

Gronwall’s inequality, together with (3.19), (3.20), (3.21) and (3.22), yields

E

(
sup

t∈[0,1]
|Xx+εy

t − Xx
t − εY x

t (y)|2
)

� C |y|4ε4.

Thus,

lim
ε→0

E

(
sup

t∈[0,1]

∣∣∣ε−1(Xx+εy
t − Xx

t

)− Y x
t (y)

∣∣∣2
)

= 0.
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For (3.18), it is due to Lemma 2.7 and Grondwall’s inequality. ��
Lemma 3.6 Assume (Hν), (H1) and (H2). For any x, y ∈ R

d and � = (h, v) ∈
H∞− × V∞−, we have ∇y X x

t ∈ D
1,2
� and

E

(
sup
s�t

|D�∇y X
x
s |2
)

�C(1 + |x |2)|y|2
(
‖h‖2

H4(t) + ‖h‖2
H8(t) + ‖v‖2

L4(t)

+ ‖v‖2
V2(t) + ‖v‖2

V4(t)

)
, (3.24)

where C is a constant independent of x, y and t.

Proof By the similar argument as discussed in the proof of Lemma 3.4, using Picard’s
iteration we can prove that ∇y X x

t is Malliavin differentiable. And by (3.17), we have

D�∇y X
x
t =

∫ t

0
∂2x b
(
Xx
s ,PXx

s

)
D�Xx

s ∇y X
x
s ds +

∫ t

0
∂xb
(
Xx
s ,PXx

s

)
D�∇y X

x
s ds

+
∫ t

0
Ẽ

(
∂x∂μb

(
Xx
s ,PXx

s

)(
X̃ x
s

)
D�Xx

s ∇y X̃
x
s

)
ds

+
∫ t

0
∂2xσ

(
Xx
s ,PXx

s

)
D�Xx

s ∇y X
x
s dWs

+
∫ t

0
∂xσ

(
Xx
s ,PXx

s

)
D�∇y X

x
s dWs

+
∫ t

0
∂xσ

(
Xx
s ,PXx

s

)∇y X
x
s h(s)ds

+
∫ t

0
Ẽ

(
∂μσ

(
Xx
s ,PXx

s

)(
X̃ x
s

)∇y X̃
x
s

)
h(s)ds

+
∫ t

0
Ẽ

(
∂x∂μσ

(
Xx
s ,PXx

s

)(
X̃ x
s

)
D�Xx

s ∇y X̃
x
s

)
dWs

+
∫ t

0

∫
B0

Ẽ

(
∂μ f

(
PXx

s

)(
X̃ x
s

)∇y X̃
x
s

)
v(s, z)N (dz, ds).

Then by Lemma 2.7 and Hölder’s inequality one can obtain

E

(
sup
s�t

|D�∇y X
x
s |2
)

� C
∫ t

0
E|D�Xx

s |2|∇y X
x
s |2ds + C

∫ t

0
E|D�∇y X

x
s |2ds

+ C
∫ t

0
E|D�Xx

s |2Ẽ|∇y X̃
x
s |2ds + CE

(∫ t

0
|∇y X

x
s ||h(s)|ds

)2

+ CE

(∫ t

0
Ẽ|∇y X̃

x
s ||h(s)|ds

)2

+ CE

(∫ t

0

∫
B0

Ẽ|∇y X̃
x
s ||v(s, z)|ν(dz)ds

)2

+ CE

(∫ t

0

∫
B0

Ẽ|∇y X̃
x
s |2|v(s, z)|2ν(dz)ds

)
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� C
∫ t

0
E

(
sup
s�r

|D�∇y X
x
s |2
)
dr + C

[
E

(
sup

t∈[0,1]
|∇y X

x
t |4
)] 1

2

‖h‖2
H4(t)

+ C

[
E

(
sup

t∈[0,1]
|∇y X

x
t |4
)] 1

2
[
E

(
sup
s�t

|D�Xx
s |4
)] 1

2

+ CẼ

(
sup

s∈[0,1]
|∇y X̃

x
s |2
)

‖v‖2
V2(t) + C

[
Ẽ

(
sup

s∈[0,1]
|∇y X̃

x
s |4
)] 1

2

‖v‖2
V4(t).

Gronwall’s inequality, together with (3.9) and (3.18), gives

E

(
sup
s�t

|D�∇y X
x
s |2
)

�C(1 + |x |2)|y|2
(
‖h‖2

H4(t) + ‖h‖2
H8(t) + ‖v‖2

L
1
4(t)

+ ‖v‖2
V2(t) + ‖v‖2

V4(t)

)
,

where C is a constant independent of x, y and t . ��

3.3 Prooof of Theorem 1.2

The following lemma, which was introduced in [24, Lemma 5.2] and [27, Lemma
2.5,2.6], is very useful to derive the gradient estimates.

Lemma 3.7 Under (1.5), we have the following statements:

1. for any p � 2, there exist constants ε0,C0,C1 > 0 such that for all ε ∈ (0, ε0),

C0ε
p−α �

∫
[|z|�ε]

|z|pν(dz) � C1ε
p−α. (3.25)

2. for any p � 2, there exists a constant Cp > 0 such that for each t, ε ∈ (0, 1),

E

(∫ t

0

∫
[0<|z|�ε]

|z|3N (dz, ds)

)−p

� Cp

(
(tε3−α)−p + t−

3p
α

)
. (3.26)

For any� = (h, v) ∈ H∞−×V∞−, by (3.5), (3.6), (3.8) and applying Itô’s formula
to Kt D�Xx

t , one can easily have

D�Xx
t = Jt

(∫ t

0
Ksσ

(
Xx
s ,PXx

s

)
h(s)ds +

∫ t

0

∫
0

Ks f
(
PXx

s

)
v(s, z)N (dz, ds)

)
,

∀t ∈ [0, 1]. (3.27)
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For each fixed t ∈ (0, 1), let ζt (z) be a smooth, nonnegative and real-valued function
such that

ζt (z) = |z|3, if |z| � 1

4
t
1
α and ζt (z) = 0, if |z| � 1

2
t
1
α

with |∇zζt (z)| � C |z|2 and |ζt (z)| � C |z|3, where C is a constant independent of t .
In what follows, we choose some specific (h, v) ∈ H∞− × V∞− in the following

two cases.

1. If ‖σ−1‖∞ := supx∈Rd ,μ∈P2
|σ−1(x, μ)| < ∞, for any fixed t ∈ (0, 1] and

1 � j � d, we set

ht, j (s) = 1

t
σ−1(Xx

s ,PXx
s

)
(Js)· j , ∀s ∈ [0, t] and v ≡ 0, (3.28)

where (Js)· j stands for the j-th column of Js .
2. If ‖ f −1‖∞ := supμ∈P2

| f −1(μ)| < ∞, for any fixed t ∈ (0, 1] and 1 � j � d,
set

h ≡ 0 and vt, j (s, z) = f −1(
PXx

s

)
(Js)· jζ(z), ∀s ∈ [0, t], z ∈ 0. (3.29)

Define

δt (vt, j ) :=
∫ t

0

∫
B0

div(κ(z)vt, j (s, z))
κ(z)

N̂ (dz, ds),

and

Gt, j :=
∫ t

0

∫
B0

〈∇zζt (z), vt, j (s, z)〉N (dz, ds).

We have the following estimates.

Lemma 3.8 1. Assume ‖σ−1‖∞ < ∞. For any p � 2, we have

‖ht, j‖Hp(t) � Cpt
− 1

2 , 1 � j � d, (3.30)

where CP is a constant independent of t .
2. Assume ‖ f −1‖∞ < ∞. For any p � 2, we have

‖vt, j‖L1
p(t)

� Cpt
3
α , ‖vt, j‖Vp(t) � Cpt

2
α , 1 � j � d, (3.31)

and

E|δt (vt, j )|p � Cpt
2p
α , E|Gt, j |p � Cpt

5p
α , 1 � j � d. (3.32)

where Cp is a constant independent of t .
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Proof 1. By (3.7), we have

‖ht, j‖Hp(t) =
[
E

(∫ t

0
|1
t
σ−1(Xx

s ,PXx
s

)
(Js) j |2ds

) p
2
] 1

p

� 1

t
‖σ−1‖∞

[
E

(
sup

t∈[0,1]
|Js |p

)] 1
p

t
1
2 � Cpt

− 1
2 ,

where Cp is a constant independent of t .
2. For any p � 2 and j = 1, . . . , d, by (2.10) and (3.25) we can obtain

‖vt, j‖p
L1
p(t)

�CpE

∫ t

0

∫
B0

|vt, j (s, z)|pν(dz)ds + CpE

(∫ t

0

∫
B0

|vt, j (s, z)|ν(dz)ds

)p

�CpE

∫ t

0

∫
B0

|Js |p|ζt (z)|pν(dz)ds + CpE

(∫ t

0

∫
B0

|Js ||ζt (z)|ν(dz)ds

)p

�CpE

∫ t

0

∫
[0<|z|�t

1
α ]

|Js |p|z|3pν(dz)ds

+ CpE

(∫ t

0

∫
[0<|z|�t

1
α ]

|Js ||z|3ν(dz)ds

)p

�Cpt
3p−α

α t + Cpt
p
(
t
3−α
α

)p
� Cpt

3p
α .

Observe that

|∇zvt, j (s, z)| = | f −1(μs)(Js−)· j∇zζt (z)| � C |Js ||z|2 I[0<|z|�t
1
α ].

Then we have

‖vt, j‖p
Vp(t)

�Cp‖∇zvt, j‖p
L1
p(t)

+ Cp‖�vt, j‖p
L1
p(t)

�CpE

∫ t

0

∫
[0<|z|�t

1
α ]

|Js |p|z|2pν(dz)ds

+ CpE

(∫ t

0

∫
[0<|z|�t

1
α ]

|Js ||z|2ν(dz)ds

)p

�Cpt
2p−α

α t + Cp(t
2−α
α t)p � Cpt

2p
α .

Since

∣∣∣∣div(κ(z)vt, j (s, z))
κ(z)

∣∣∣∣ =
∣∣∣〈∇ log κ(z), f −1(

PXx
s

)
(Js)· j ζt (z)〉

+〈 f −1(
PXx

s

)
(Js)· j ,∇zζt (z)〉

∣∣∣
� C

|z| |Js ||z|
3 I[0<|z|�t

1
α ] + C |Js ||z|2 I[0<|z|�t

1
α ] � C |Js ||z|2 I[0<|z|�t

1
α ],
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then by (2.9) and (3.25) we have for any p � 2,

E|δt (vt, j )|p =E

∣∣∣∣
∫ t

0

∫
B0

div(κ(z)vt, j (s, z))
κ(z)

N̂ (dz, ds)

∣∣∣∣
p

� CpE

(∫ t

0

∫
B0

∣∣∣∣div(κ(z)vt, j (s, z))
κ(z)

∣∣∣∣
2

ν(dz)ds

) p
2

� Cp

(∫
[0<|z|�t

1
α ]

|z|4ν(dz)

) p
2

E

(
sup

s∈[0,1]
|Js |p

)
t
p
2

� Cpt
p(4−α)
2α t

p
2 = Cpt

2p
α .

It follows from (2.10), (3.7) and (3.25) that

E|Gt, j |p = E

∣∣∣∣
∫ t

0

∫
B0

〈∇zζt (z), vt, j (s, z)〉N (dz, ds)

∣∣∣∣
p

� CpE

∫ t

0

∫
B0

∣∣〈∇zζt (z), vt, j (s, z)〉
∣∣p ν(dz)ds

+ CpE

(∫ t

0

∫
B0

∣∣〈∇zζt (z), vt, j (s, z)〉
∣∣ ν(dz)ds

)p

� Cp

∫
[0<|z|�t

1
α ]

|z|5pν(dz)E

(
sup

s∈[0,1]
|Js |p

)

+ Cp

(∫
[0<|z|�t

1
α ]

|z|5ν(dz)

)p

E

(
sup

s∈[0,1]
|Js |p

)

� Cpt
5p−α

α t + Cpt
(5−α)p

α t p � Cpt
5p
α .

��
Now we are ready to give the proof of Theorem 1.2.

Proof For any � = (h, v) ∈ H∞− × V∞−, by (3.5), (3.6), (3.8) and applying Itô’s
formula to Kt D�Xx

t , one can easily have

D�Xx
t = Jt

(∫ t

0
Ksσ

(
Xx
s ,PXx

s

)
h(s)ds +

∫ t

0

∫
B0

Ks f
(
PXx

s

)
v(s, z)N (dz, ds)

)
,

∀t ∈ [0, 1]. (3.33)

1. Assume ‖σ−1‖∞ < ∞. For any fixed t ∈ (0, 1] and 1 � j � d, set ht, j and v as
in (3.28). Define a matrix Mt by

(Mt )i j := D(ht, j ,0)X
x,i
t , 1 � i, j � d,
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where Xx,i
t stands for the i-th element of Xx

t . Then by (3.33) we obtain

Mt = (D(ht,1,0)X
x
t , . . . , D(ht,d ,0)X

x
t

) = Jt .

For any g ∈ C1
b(R

d), by Theorem 2.6 we have

E∇g(Xx
t ) = E∇g(Xx

t )Mt Kt =
d∑

i=1

E
(
D(ht,i ,0)g(X

x
t )(Kt )i ·

)

=
d∑

i=1

ED(ht,i ,0)
(
g(Xx

t )(Kt )i ·
)−

d∑
i=1

E
(
g(Xx

t )D(ht,i ,0)(Kt )i ·
)

= E

[
g(Xx

t )

d∑
i=1

(
(Kt )i ·

∫ t

0
〈ht,i (s), dWs〉 − D(ht,i ,0)(Kt )i ·

)]
,

where (Kt )i · stands for the i-th row of Kt . Moreover, it follows from Hölder’s
inequality, (3.7), (3.14) and (3.30) that

|E∇g(Xx
t )| � C‖g‖∞(1 + |x |)

d∑
i=1

(‖ht,i‖H2(t) + ‖ht,i‖H4(t) + ‖ht,i‖H8(t)
)

� C‖g‖∞(1 + |x |)t− 1
2 ,

where C is a constant independent of x and t .
For any y ∈ R

d and g ∈ C1
b(R

d), also by Theorem 2.6 one has

∇yEg(X
x
t ) = E

(∇g(Xx
t )∇y X

x
t

)

= E
(∇g(Xx

t )Mt Kt∇y X
x
t

) =
d∑
j=1

E
(
D(ht, j ,0)g(X

x
t )(Kt∇y X

x
t ) j ·
)

=
d∑
j=1

ED(ht, j ,0)
(
g(Xx

t )(Kt∇y X
x
t ) j ·
)

−
d∑
j=1

E
(
g(Xx

t )D(ht, j ,0)(Kt∇y X
x
t ) j ·
)

= E

⎡
⎣g(Xx

t )

d∑
j=1

(
(Kt ) j ·∇y X

x
t

∫ t

0
〈ht, j (s), dWs〉

− D(ht, j ,0)(Kt ) j ·∇y X
x
t − (Kt ) j ·(D(ht, j ,0)∇y X

x
t )
)
⎤
⎦ .
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Hence, by Hölder’s inequality, (3.7), (3.9), (3.14), (3.18), (3.24) and (3.30) one
can arrive at

|∇yEg(X
x
t )| �C‖g‖∞

d∑
j=1

[(
E sup

t∈[0,1]
|Kt |4

) 1
4
(
E sup

t∈[0,1]
|∇y X

x
t |4
) 1

4 ‖ht, j‖H2(t)

+
(
E sup

s�t
|D(ht, j ,0)Ks |2

) 1
2
(
E sup

t∈[0,1]
|∇y X

x
t |2
) 1

2

+
(
E sup

t∈[0,1]
|Kt |2

) 1
2
(
E sup

t∈[0,1]
|D(ht, j ,0)∇y X

x
t |2
) 1

2
]

�C‖g‖∞(1 + |x |)|y|
d∑
j=1

(‖ht, j‖H2(t) + ‖ht, j‖H4(t) + ‖ht, j‖H8(t)
)

�C‖g‖∞(1 + |x |)|y|t− 1
2 .

2. Assume ‖ f −1‖∞ < ∞. For any fixed t ∈ (0, 1] and 1 � j � d, set

h ≡ 0 and vt, j (s, z) = f −1(
PXx

s

)
(Js)· jζt (z), ∀s ∈ [0, t], z ∈ B0.

Define a matrix M̂t by

(M̂t )i j := D(0,vt, j )X
x,i
t , 1 � i, j � d.

Then by (3.33) we obtain

M̂t = (D(0,vt, j )X
x
t , . . . , D(0,vt, j )X

x
t

) = Jt

∫ t

0

∫
B0

ζt (z)N (dz, ds) =: Jt Ht .

For any g ∈ C1
b(R

d), due to Theorem 2.6 we have

E∇g(Xx
t ) = E

(
∇g(Xx

t )M̂t Kt H
−1
t

)
=

d∑
j=1

E
(
D(0,vt, j )g(X

x
t )(Kt ) j ·H−1

t

)

=
d∑
j=1

ED(0,vt, j )
(
g(Xx

t )(Kt ) j ·H−1
t

)−
d∑
j=1

E
(
g(Xx

t )D(0,vt, j )
(
(Kt ) j ·H−1

t

))

= E

⎡
⎣g(Xx

t )

d∑
j=1

(
(Kt ) j ·H−1

t δt (vt, j ) − D(0,vt, j )(Kt ) j ·H−1
t + (Kt ) j ·H−2

t Gt, j
)
⎤
⎦ .

Moreover, it follows from (3.7), (3.14), (3.26), (3.31) and (3.32) that

|E∇g(Xx
t )| �C‖g‖∞

d∑
j=1

(
‖Kt‖L4‖H−1

t ‖L4‖δt (vt, j )‖L2 + ‖D(0,vt, j )Kt‖L2‖H−1
t ‖L2

+ ‖Kt‖L4‖H−2
t ‖L4‖Gt, j‖L2

)

123



230 Journal of Theoretical Probability (2020) 33:201–238

�C‖g‖∞(1 + |x |)
(
t−

3
α t

2
α + t−

3
α t

3
α + t−

6
α t

5
α

)

�C‖g‖∞(1 + |x |)t− 1
α .

where C is a constant independent of x and t .
For any y ∈ R

d and g ∈ C1
b(R

d),

∇yEg(X
x
t ) = E

(∇g(Xx
t )∇y X

x
t

) = E

(
∇g(Xx

t )M̂t Kt H
−1
t ∇y X

x
t

)

=
d∑
j=1

E

(
D(0,vt, j )g(X

x
t )(Kt H

−1
t ∇y X

x
t ) j ·
)

=
d∑
j=1

ED(0,vt, j )

(
g(Xx

t )(Kt H
−1
t ∇y X

x
t ) j ·
)

−
d∑
j=1

E

(
g(Xx

t )D(0,vt, j )(Kt H
−1
t ∇y X

x
t ) j ·
)

= E

[
g(Xx

t )

d∑
j=1

(
(Kt ) j ·H−1

t ∇y X
x
t δt (vt, j )

− D(0,vt, j )(Kt ) j ·H−1
t ∇y X

x
t + (Kt ) j ·H−2

t Gt, j∇y X
x
t

− (Kt ) j ·H−1
t (D(0,vt, j )∇y X

x
t )
)]

.

Hence, by Hölder’s inequality, (3.7), (3.14), (3.24), (3.26), (3.31) and (3.32) one
can arrive at

|∇yEg(X
x
t )| �C‖g‖∞

d∑
j=1

[
‖Kt‖L8‖H−1

t ‖L4‖∇y X
x
t ‖L8‖δt (vt, j )‖L2

+ ‖D(0,vt, j )Kt‖L2‖H−1
t ‖L4‖∇y X

x
t ‖L4

+ ‖Kt‖L4‖H−2
t ‖L2‖Gt, j‖L8‖∇y X

x
t ‖L8

+ ‖Kt‖L4‖H−1
t ‖L4‖D(0,vt, j )∇y X

x
t ‖L2

]

�C‖g‖∞(1 + |x |)|y|
(
t−

3
α t

2
α + t−

3
α t

3
α + t−

6
α t

5
α + t−

3
α t

2
α

)

�C‖g‖∞(1 + |x |)|y|t− 1
α .

��
Let’s give the proof of Corollary 1.4.

Proof We only prove the first statement, since the second one can be obtained by the
same argument. For any x1, x2 ∈ R

d , according to Lemma 2.1.1 in [21] and (1.6), both
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of Xx1
t and Xx2

t have density functions denoted by pt (x1, y) and pt (x2, y) respectively.
By (1.7), we have

∣∣Eg(Xx1
t ) − Eg(Xx2

t )
∣∣ =

∣∣∣∣
∫ 1

0

d

dr
Eg(Xx2+r(x1−x2)

t )dr

∣∣∣∣
�
∫ 1

0

∣∣∣∇x1−x2E f (Xx2+r(x1−x2)
t )

∣∣∣ dr
�C‖g‖∞(1 + |x1| + |x2|)|x1 − x2|t− 1

2 .

Hence,

∫
Rd

|pt (x1, y) − pt (x2, y)|dy = sup
‖g‖∞�1,g∈Bb(R

d )

∣∣Eg(Xx1
t ) − Eg(Xx2

t )
∣∣

= sup
‖g‖∞�1,g∈C1

b (Rd )

∣∣Eg(Xx1
t ) − Eg(Xx2

t )
∣∣

�C(1 + |x1| + |x2|)|x1 − x2|t− 1
2 .

��

3.4 Proof of Theorem 1.5

Proof The proof is divided into three steps.

Step 1 We first prove that for any μ1, μ2 ∈ P2,

W2(P
∗
s,tμ1, P

∗
s,tμ2)

2 � W2(μ1, μ2)
2e−(C2−C1)(t−s). (3.34)

Without loss of generality, we only prove the case for s = 0. Let ξ1 and ξ2 be two
square-integrable and F0-measurable random variables such that

W2(μ1, μ2)
2 = E|ξ1 − ξ2|2.

Denote by X ξ1
t and X ξ2

t the solutions to (1.1) with initial value ξ1 and ξ2, respectively.
By (H3) and Itô’s formula, we have

E

(
|X ξ1

t − X ξ2
t |2e(C2−C1)t

)

= W2(μ1, μ2)
2 + 2

∫ t

0
E

(〈
X ξ1
s − X ξ2

s , b
(
X ξ1
s ,P

X
ξ1
s

)
− b
(
X ξ2
s ,P

X
ξ2
s

)〉

+ ‖σ(X ξ1
s ,P

X
ξ1
s

) − σ
(
X ξ2
s ,P

X
ξ2
s

)
‖2HS

+
∫
R
d
0

|z|2ν(ds)| f (P
X

ξ1
s

) − f (P
X

ξ2
s

)|2
)
e(C2−C1)sds
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+ (C2 − C1)

∫ t

0
E|X ξ1

s − X ξ2
s |2e(C2−C1)sds

� W2(μ1, μ2)
2 +

∫ t

0
E

(
C1W2(PX

ξ1
s

,P
X

ξ1
s

)2 − C2|X ξ1
s − X ξ2

s |2
)
e(C2−C1)sds

+ (C2 − C1)

∫ t

0
E|X ξ1

s − X ξ2
s |2e(C2−C1)sds

� W2(μ1, μ2)
2. (3.35)

Hence,

W2(P
∗
t μ1, P

∗
t μ2)

2 � E

(
|X ξ1

t − X ξ2
t |2
)

� W2(μ1, μ2)
2e−(C2−C1)t .

Step 2We prove the existence and uniqueness of the invariant measure. Let X0
t denote

the solution with initial value 0 and ε0 := C2−C1
4 . By Itô’s formula, (H3), (3.2) and

Young’s inequality, we have

E

(
|X0

t |2e(C2−C1−2ε0)t
)

= E

∫ t

0

(
2〈b(X0

s ,PX0
s
), X0

s 〉 + ‖σ(X0
s ,PX0

s
)‖2HS

+
∫
R
d
0

|z|2ν(dz)| f (PX0
s
)|2
)
e(C2−C1−2ε0)sds

+ (C2 − C1 − 2ε0)
∫ t

0
E|X0

s |2e(C2−C1−2ε0)sds

� C0 +
∫ t

0
(C1 + ε0)W2(PX0

s
, δ0)

2 − (C2 − ε0)E|X0
s |2ds

+ (C2 − C1 − 2ε0)
∫ t

0
E|X0

s |2e(C2−C1−2ε0)sds

� C0,

where C0 is a constant depending on ε0 and the values of b, σ at the point (0, δ0) and
f at δ0. Then we have

sup
t�0

E|X0
t |2 � C0 sup

t�0
e−(C2−C1−2ε0)t � C0. (3.36)

Recalling the weak uniqueness of the solution, we have

P∗
t (P∗

s δ0) = P∗
t+sδ0, s, t � 0.

This, together with (3.34) and (3.36), yields

W2(P
∗
t+sδ0, P

∗
t δ0)

2 � e−(C2−C1)tE|X0
s |2 � C0e

−(C2−C1)t .
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Then,

lim
t→∞ sup

s�0
W2(P

∗
t+sδ0, P

∗
t δ0) = 0, (3.37)

which means that {P∗
t δ0}t�0 is a W2-Cauchy family when t → ∞. Then, there is a

unique probability measure μ̂ ∈ P2 such that

lim
t→∞W2(P

∗
t δ0, μ̂) = 0. (3.38)

Then it follows from (3.34), (3.37) and (3.38) that

W2(P
∗
t μ̂, μ̂) � lim

s→∞W2(P
∗
t μ̂, P∗

t P
∗
s δ0) + lim

s→∞W2(P
∗
t P

∗
s δ0, P

∗
s δ0)

+ lim
s→∞W2(P

∗
s δ0, μ̂) = 0,

which means that μ̂ is an invariant measure for P∗
t indeed.

Step 3 Let ξ be anF0-measurable random variable with distributionμ. For any t > 1,
by Markov property and Theorem 1.2 we have

∣∣∣∣Eg(X ξ
t ) −

∫
Rd

g(y)μ̂(dy)

∣∣∣∣ =
∣∣∣∣Eg(X ξ

t ) −
∫
Rd

Eg(X y
t )μ̂(dy)

∣∣∣∣
�
∫
Rd

∣∣∣Eg(X ξ
t ) − Eg(X y

t )

∣∣∣ μ̂(dy)

�
∫
Rd

∣∣∣∣E
[
E

(
g(X

X ξ
t−1

1 ) − Eg(X
Xy
t−1

t )|Ft−1

)]∣∣∣∣ μ̂(dy)

�C‖g‖∞
∫
Rd

|E(X ξ
t−1 − X y

t−1)|μ̂(dy)

�C‖g‖∞
∫
Rd

(
E|ξ − y|2) 12 μ̂(dy)e− 1

2 (C2−C1)(t−1)

�C‖g‖∞

[
1 +

(∫
Rd

|x |2μ(dx)

) 1
2
]
e− 1

2 (C2−C1)t .

Hence,

‖P∗
t μ − μ̂(·)‖T V = sup

‖g‖∞�1,g∈C1
b

∣∣∣∣Eg(X ξ
t ) −

∫
Rd

g(y)μ̂(dy)

∣∣∣∣

�C

[
1 +

(∫
Rd

|x |2μ(dx)

) 1
2
]
e− 1

2 (C2−C1)t , (3.39)

where C is a constant independent of t and μ. It is obvious that for C large enough,
(3.39) holds for all t ∈ [0, 1]. So we finish the proof.

��
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4 An Example

In this section, as an application of our main results, we study the classic McKean–
Vlasov equation. Given b0 : Rd → R

d , σ0 : Rd → R
d ⊗R

d and f0 : Rd → R
d ⊗R

d ,
we assume:

(A1) b0 and σ0 are twice differentiable functions with bounded derivatives; f0 is a
differential function with a bounded derivative.

(A2) For some C0 > 0,

|〈σ0(x)ξ, ξ 〉| � C0, ∀x ∈ R
d , ∀ξ ∈ S

d .

(A3) For some C1 > 0,

|〈 f0(x)ξ, ξ 〉| � C1, ∀x ∈ R
d , ∀ξ ∈ S

d .

(A4) There exists λ > 0 such that

2〈b0(y1) − b0(y2), y1 − y2〉 � −λ|y1 − y2|2, ∀y1, y2 ∈ R
d .

Define

b(x, μ) =
∫
Rd

b0(x − y)μ(dy), σ (x, μ) =
∫
Rd

σ0(x − y)μ(dy), ∀x ∈ R
d , μ ∈ P2,

and

f (μ) =
∫
Rd

f0(y)μ(dy), ∀μ ∈ P2.

For α ∈ (0, 2), {Lt }t�0 is a d-dimensional truncated α-stable process with Lévy

measure
IB0 (z)dz
|z|d+α , while {Wt }t�0 is a d-dimensional Brownian motion independent of

L . Now consider the following equation:

Xx
t = x +

∫ t

0
b
(
Xx
s ,PXx

s

)
ds +

∫ t

0
σ
(
Xx
s ,PXx

s

)
dWs +

∫ t

0
f
(
PXx

s

)
dLs .

Then we have the following results:

Theorem 4.1 1. Assume (A1) and (A2). Then there exists C > 0 such that

|E∇g(Xx
t )| � C‖g‖∞t−

1
2 , |∇yEg(X

x
t )| � C‖g‖∞t−

1
2 , ∀g ∈ C1

b(R
d), y ∈ R

d .

2. Assume (A1) and (A3). Then there exists C > 0 such that

|E∇g(Xx
t )| � C‖g‖∞t−

1
α , |∇yEg(X

x
t )| � C‖g‖∞t−

1
α , ∀g ∈ C1

b(R
d), y ∈ R

d .
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3. Assume (A1), (A2)(or (A3)) and (A4) hold. Let ‖∇σ0‖HS,∞ := sup|v|=1,x∈Rd

‖∇vσ0(x)‖HS < ∞. If

λ0 := λ − 1 − ‖∇b0‖2∞ − 4‖∇σ0‖2HS,∞ −
∫
B0

|z|2ν(dz)‖∇ f0‖2∞ > 0, (4.1)

then there exists a unique invariant measure � such that for any μ0 ∈ P2,

‖P∗
t μ0 − �‖T V � C

(
1 +

(∫
B0

|x |2μ0(dx)

) 1
2
)
e− 1

2λ0t .

Proof We divide the proof into two steps.

Step 1 In this part, we prove the statements (1) and (2). It suffices for us to verify the
conditions required in Theorems 1.2 and 1.5. In fact, due to (A1) it is easy to see that
b and σ are twice differentiable with respect to the first variable x and

‖∂ ix b‖∞ := sup
x∈Rd ,μ∈P2

|∂ ix b(x, μ)| < ∞,

‖∂ ixσ‖∞ := sup
x∈Rd ,μ∈P2

|∂ ixσ(x, μ)| < ∞, i = 1, 2.

Moreover, for all x ∈ R
d and μ1, μ2 ∈ P2,

|b(x, μ1) − b(x, μ2)| �
∫
Rd

|b0(x − y) − b0(x − z)|π(dy, dz)

� ‖∇b0‖∞
(∫

Rd
|y − z|2π(dy, dz)

) 1
2

,

where π is an arbitrary coupling of μ1 and μ2. Hence,

|b(x, μ1) − b(x, μ2)| � ‖∇b0‖∞W2(μ1, μ2).

By similar arguments, we can prove σ , ∇b and f are all Lipschitz continuous with
respect to the second variable μ.
For any x ∈ R

d , due to Example 2.4 we have

∂μb(x, μ)(y) = −∇b0(x − y), ∀y ∈ R
d ,

which is Lipschitz continuouswith respect to both of y andμ. So b(x, ·) is inC1,1
b (P2).

Furthermore,

∂x∂μb(x, μ)(y) = −∇2b0(x − y)

is bounded onRd ×P2×R
d . The same argument can derive σ(x, ·), f (·) ∈ C1,1

b (P2)

with ∂μσ, ∂μ f , and ∂x∂μσ bounded.
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By (A2) and the continuity of map (x, ξ) �→ 〈σ0(x)ξ, ξ 〉 we have either

〈σ0(x)ξ, ξ 〉 � C0, ∀x ∈ R
d , ξ ∈ S

d . (4.2)

or

〈σ0(x)ξ, ξ 〉 � −C0, ∀x ∈ R
d , ξ ∈ S

d . (4.3)

Without loss of generality we assume (4.2) holds, then

〈σ(x, μ)ξ, ξ 〉 =
∫
Rd

〈σ0(x − y)ξ, ξ 〉μ(dy) � C0, ∀x ∈ R
d , μ ∈ P2, ξ ∈ S

d ,

which implies σ−1(x, μ) exists for all x ∈ R
d and μ ∈ P2. Moreover, we have

‖σ−1‖∞ < ∞. Similarly, by (A1) and (A3) we can obtain ‖ f −1‖∞ < ∞. Now,
according to Theorem 1.2 we have proved the statements of (1) and (2).

Step 2 For any x1, x2 ∈ R
d and μ1, μ2 ∈ P2, we have

2〈b(x1, μ1) − b(x2, μ2), x1 − x2〉
= 2

∫
Rd

〈b0(x1 − y) − b0(x2 − y), x1 − x2〉μ1(dy)

+ 2
∫
Rd

〈b0(x2 − z1) − b0(x2 − z2), x1 − x2〉π(dz1, dz2)

� −λ|x1 − x2|2 + 2‖∇b0‖∞
(∫

Rd
|z1 − z2|2π(dz1, dz2)

) 1
2 |x1 − x2|,

where π is a coupling of μ1 and μ2. Thus,

2〈b(x1, μ1) − b(x2, μ2), x1 − x2〉
� −λ|x1 − x2|2 + 2‖∇b0‖∞W2(μ1, μ2)|x1 − x2|
� −(λ − 1)|x1 − x2|2 + ‖∇b0‖2∞W2(μ1, μ2)

2. (4.4)

Meanwhile, the same arguments can derive

‖σ(x1, μ1) − σ(x2, μ2)‖2HS +
∫
B0

|z|2ν(dz)| f (μ1) − f (μ2)|2

� 2‖∇σ0‖2HS,∞|x1 − x2|2 + 2‖∇σ0‖2HS,∞W2(μ1, μ2)
2

+
∫
B0

|z|2ν(dz)‖∇ f0‖2∞W2(μ1, μ2)
2. (4.5)

By (4.1), (4.4), (4.5) and Theorem 1.5, we immediately obtain the claim (3).

��

123



Journal of Theoretical Probability (2020) 33:201–238 237

Acknowledgements The author is very grateful to the editor and referee for detailed reports and corrections.
He also would like to thank Professors Zhao Dong, Renming Song, and Fengyu Wang for their valuable
discussions. This work is supported by National Natural Science Foundation of China (Nos. 11501286,
11790272), Natural Science Foundation of Jiangsu Province (No. BK20150564) and CSC.

References

1. Barczy, M., Li, Z.H., Pap, M.: Yamada–Watanabe results for stochastic differential equations with
jumps. Int. J. Stoch. Anal. Art. ID 460472 (2015)

2. Benachour, S., Roynette, B., Talay, D., Vallois, P.: Nonlinear selfstabilizing processes. I. Existence,
invariant probability, propagation of chaos. Stoch. Process. Appl. 75, 173–201 (1998)

3. Bismut, J.M.: Calcul des variations stochastiques et processus de sauts. Z. Wahrsch. Verw. Gebiete 63,
147–235 (1983)

4. Bitchtler, K., Jacod, J.J.: Gravereaux,Malliavin Calculus for Processes with Jumps. Gordan andBreach
Science Publishers, New York (1987)

5. Buckdahn, R., Li, J., Peng, S., Rainer, C.: Mean-field stochastic differential equations and associated
PDEs. Ann. Prob. 45, 824–878 (2017)

6. Butkovsky, O.A.: On ergodic properties of nonlinear Markov chains and stochastic Mckean–Vlasov
equations. Theory Probab. Appl. 58, 661–674 (2014)

7. Cattiaux, P., Guillin, A., Malrieu, F.: Probability approach for granular media equations in the non-
uniformly convex case. Probab. Theory Relat. Fields 140, 19–40 (2008)

8. Cardaliaguet, P.: Notes on mean filed games (from P.L. Lions’ lectures at Collège de France) (2013)
9. Carmona,R.,Delarue, F.: Forward–backward stochastic differential equations and controlledMcKean–

Vlasov dynamics. Ann. Probab. 43, 2647–2700 (2015)
10. Chan, T.: Dynamics of the McKean–Vlasov equation. Ann. Probab. 22, 431–441 (1994)
11. Dawson, D.: Stochastic McKean–Vlasov equations. Nonlinear Differ. Equ. Appl. 2, 199–229 (1995)
12. Graham, C.: McKean–Vlasov Ito–Skorohod equations, and nonlinear diffusions with discrete jump

sets. Stoch. Process. Appl. 40, 69–82 (1992)
13. Hao, T., Li, J.: Mean-field SDEs with jumps and nonlocal integral-PDEs. Nonlinear Differ. Equ. Appl.

23, 17 (2016)
14. Huang, X., Röckner, M., Wang, F.-Y.: Nonlinear Fokker–Planck equations for probability measures

on path space and path-distribution dependent SDEs. arXiv:1709.00556v1 (2017)
15. Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Math-

ematical Statistics and Probability, 1954–1955, Vol. III, pp. 171–197. University California Press,
Berkeley (1956)

16. Kolokoltsov, V.N.: Nonlinear Markov Processes and Kinetic Equations. Cambridge University Press,
Cambridge (2010)

17. Kotelenez, P., Kurtz, T.: Macroscopic limits for stochastic partial differential equations of McKean–
Vlasov type. Probab. Theory Relat. Fields 146, 189–222 (2010)

18. Lions, P.: Cours au Collège de France: Théorie des jeuàchamps moyens. Available at http://www.
college-de-france.fr/default/EN/all/equ[1]der/audiovideo.jsp

19. McKean, H.P.: Propagation of chaos for a class of nonlinear parabolic equations. In: Lecture Series in
Differential Equations, vol. 7, pp. 41–57 (1967)

20. Protter, E.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2004)
21. Nualart, D.: The Malliavin Calsulus and Related Topics. Springer, New York (2006)
22. Song, Y.: Gradient estimates and coupling property for semilinear SDEs driven by jump processes.

Sci. China Math. 58, 447–458 (2015)
23. Song, Y., Xie, Y.: Existence of density functions for the running maximum of a Lévy–Itô diffusion.

Potential Anal. 48(1), 35–48 (2018)
24. Song, Y., Zhang, X.: Regularity of density for SDEs driven by degenrate Lévy noises. Electron. J.

Probab. 20(21), 1–27 (2015)
25. Wang, F.-Y.: Gradient estimate for Ornstein–Uhlenbeck jump processes. Stoch. Process. Appl. 121,

466–478 (2011)
26. Wang, F.-Y.: Distribution dependent SDEs for Landau type equations. Stoch. Process. Appl. 128,

595–621 (2018)

123

http://arxiv.org/abs/1709.00556v1
http://www.college-de-france.fr/default/EN/all/equ[1]der/audiovideo.jsp
http://www.college-de-france.fr/default/EN/all/equ[1]der/audiovideo.jsp


238 Journal of Theoretical Probability (2020) 33:201–238

27. Wang, F.-Y., Xu, L., Zhang, X.: Gradient estimates for SDEs driven by multiplicative Lévy noise. J.
Funct. Anal. 269, 3195–3219 (2015)

28. Wang, L., Xie, L., Zhang, X.: Derivative formulae for SDEs driven by multiplicative α-stable-like
processes. Stoch. Process. Appl. 125, 867–885 (2015)

29. Veretennikov, A.Y.: On ergodic measures for Mckean-Vlasov stochastic equations. In: Harald, N.,
Denis, T. (eds.) Monte-Carlo and Quasi-Monte Carlo Methods, pp. 471–486. Springer, Berlin (2006)

123


	Gradient Estimates and Exponential Ergodicity for Mean-Field SDEs with Jumps
	Abstract
	1 Introduction
	1.1 Background and Notations
	1.2 Assumptions and Main Results

	2 Preliminaries
	2.1 Derivative in the Wasserstein Space
	2.2 Malliavin Calculus
	2.3 Function Spaces

	3 Proofs of Main Results
	3.1 Malliavin Derivatives and Their Estimates
	3.2 Directional Derivative with Respect to Initial Value
	3.3 Prooof of Theorem 1.2
	3.4 Proof of Theorem 1.5

	4 An Example
	Acknowledgements
	References




