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Abstract
We consider the spherical integral of real symmetric or Hermitian matrices when the
rank of one matrix is one. We prove the existence of the full asymptotic expansions
of these spherical integrals and derive the first and the second term in the asymptotic
expansion.
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1 Introduction

In this paper, we consider the expansion of the spherical integral

I (β)
N (DN , BN ) =

∫
exp{NTr(DNU

∗BNU )}dm(β)
N (U ), (1)

where m(β)
N is the Haar measure on orthogonal group O(N ) if β = 1, on unitary

group U (N ) if β = 2, and DN , BN are deterministic N × N real symmetric or
Hermitian matrices, that we can assume diagonal without loss of generality.We follow
[4] to investigate the asymptotics of the spherical integrals under the case DN =
diag(θ, 0, 0, 0, 0 . . . 0):

I (β)
N (DN , BN ) = I (β)

N (θ, BN ) =
∫

exp{θN (e∗
1BNe1)}dm(β)

N (U ), (2)

where e1 is the first column of U .
The main result of this paper can be stated as follows,
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Theorem If supN ‖BN‖∞ < M, then for any θ ∈ R such that |θ | < 1
4M2+10M+1

, the

spherical integral has the following asymptotic expansion (up to O(N−n−1) for any
given n):

e−N (θv− 1
2N

∑N
i=1 log(1−2θλi (BN )+2θv)) IN (θ, BN )

= m0 + m1

N
+ m2

N 2 + · · · + mn

Nn
+ O(N−n−1) (3)

where v and the coefficients {mi }ni=0 depend on θ and the derivatives of the Hilbert
transform of the empirical spectral distribution of BN .

The spherical integral provides a finite-dimensional analogue of the R-transform
in free probability [8,10], which states that if X and Y are two freely independent
self-adjoint noncommutative random variables, then their R-transforms satisfy the
following additive formula:

RX+Y = RX + RY .

In the scenario of random matrices, let {BN } and {B̃N } be sequences of uniformly
bounded real symmetric (orHermitian)matriceswhose empirical spectral distributions
converge in law toward τB and τB̃ respectively. Let VN be a sequence of independent
orthogonal (or unitary) matrices following the Haar measure. Then the noncommuta-
tive variables {BN } and {V ∗

N B̃N VN } are asymptotically free. And the law of their sum
{BN +V ∗

N B̃N VN } converges toward τB+V ∗ B̃V , which is characterized by the following
additive formula,

RτB+V∗ B̃V = RτB + RτB̃
. (4)

We refer to [1, Section 5] for a proof of this.
For the spherical integral, using the same notation as above, we have the following

additive formula

1

N
logEVN

[
I (β)
N (θ, BN + V ∗

N B̃N VN )
]

= 1

N
log I (β)

N (θ, BN ) + 1

N
log I (β)

N (θ, B̃N ).

So ifwedefine thefinite-dimensional R-transform for a randomor deterministicmatrix
BN as follows

RN (BN ) = 1

N
logEBN

[
I (β)
N (θ, BN )

]
,

then the additive law can be formulated in a more concise way,

RN (BN + V ∗
N B̃N VN ) = RN (BN ) + RN (B̃N ). (5)

Compare with (4), which takes advantage of the fact that {BN } and {V ∗
N B̃N VN } are

asymptotically free, and which holds after we take the limit as N goes to infinity.
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However, additive formula (5) holds for any N , which provides a finite-dimensional
analogue of the additivity of the R-transform. Indeed, the R-transform is some sort of
limit of our RN :

lim
N→∞ RN (BN ) = lim

N→∞
1

N
log I (β)

N (θ, BN ) = β

2

∫ 2θ
β

0
RτB (s)ds.

Combining this and some concentration of measure estimates, i.e., almost surely, as
N goes to infinity,

∣∣∣∣ 1N log I (β)
N (θ, BN + V ∗

N B̃N VN ) − RN (BN + V ∗
N B̃N VN )

∣∣∣∣→ 0, (6)

Guionnet and Maïda in [4] showed that the additivity of R-transform (4) is a direct
consequence of (5). Moreover, with a more quantitative version of (6), the finite-
dimensional analogue of R-transform may be used to study the rate of convergence
of sums of asymptotically free random matrices.

The asymptotic expansion and some related properties of spherical integrals were
thoroughly studied by Guionnet et al. [4–6]. However, in their paper, they only studied
the first term in the asymptotic expansion. We here derive the higher-order asymptotic
expansion terms. The proofs are different from those in [4]; Guionnet andMaïda relied
on large deviation techniques and used central limit theorem to derive the first-order
term. In this paper, we express the spherical integral as an integral over only two
Gaussian variables, hence allowing for easier asymptotic analysis.

The spherical integral can also be used to study the Schur polynomials. Spherical
integral (1) can be expressed in terms of Schur polynomials. The Harish-Chandra-
Itzykson-Zuber integral formula [2,7,9] gives an explicit form for integral (1) in the
case β = 2 and all the eigenvalues of D and B are simple:

I (2)
N (D, B) =

N∏
i=1

i ! det(e
Nλi (D)λ j (B))1≤i, j≤N

N
N2−N

2 �(λ(D))�(λ(B))

, (7)

where � denotes the Vandermonde determinant,

�(λ(D)) =
∏

1≤i< j≤N

(λi (D) − λ j (D)),

and λi (·) is the i-th eigenvalue. If we define the N -tuple μ = (λi (BN ) − N + i)Ni=1,
then above expression (7) is the normalized Schur polynomial times an explicit factor,

I (2)
N (D, B) =

∏N
i=1 i !

N
N2−N

2

Sμ(eNλ1(D), eNλ2(D), . . . , eNλN (D))∏
i< j ((μi − i) − (μ j − j))

∏
i< j (e

Nλi (D) − eNλ j (D))∏
i< j (λi (D) − λ j (D))

= Sμ(eNλ1(D), eNλ2(D), . . . , eNλN (D))

Sμ(1, 1, . . . , 1)

∏
i< j (e

Nλi (D) − eNλ j (D))∏
i< j (Nλi (D) − Nλ j (D))

.
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In [3], Gorin and Panova studied the asymptotic expansion of the normalized Schur
polynomial Sμ(x1,x2,...xk ,1,1,1...1)

Sμ(1,1,...,1) , for fixed k. Its asymptotic expansion can be obtained
from a limit formula [3, Proposition 3.9], combining with the asymptotic results for
Sμ(xi , 1, 1, . . . 1), which corresponds to the spherical integral where D is of rank one.
Therefore, our methods give a new proof of [3, Proposition 4.1].

2 Some Notations

Throughout this paper, N is a parameter going to infinity. We use O(N−l) to denote
any quantity that is bounded in magnitude by CN−l for some constant C > 0. We use
O(N−∞) to denote a sequence of quantities that are bounded in magnitude by Cl N−l

for any l > 0 and some constant Cl > 0 depending on l.
Given a real symmetric or Hermitian matrix B, with eigenvalues {λi }Ni=1. Let

λmin(B) (λmax(B)) be the minimal (maximal) eigenvalue.We denote the Hilbert trans-
form of its empirical spectral distribution by HB :

HB(z) : R \ [λmin(B), λmax(B)] �→ R

z �→ 1

N

N∑
i=1

1

z − λi
.

On intervals (−∞, λmin(B)) and (λmax(B),+∞), HB is monotonous. The R-
transform of empirical spectral distribution of B is

RB(z) := H−1
B (z) − 1

z
,

onR/{0}, where H−1
B is the functional inverse of HB fromR/{0} to (−∞, λmin(B))∪

(λmax(B),+∞). In the following paper, for given nonzero real number θ , we denote
v(θ) = RB(2θ), for simplicity we will omit the variable θ in the expression of v(θ).

Remark 1 Notice v, defined above, satisfies the following explicit formulas:

1

N

N∑
i=1

1

1 − 2θλi + 2θv
= 1,

1

N

N∑
i=1

λi

1 − 2θλi + 2θv
= v. (8)

We denote the normalized k-th derivative of Hilbert transform

Ak := (−1)k−1

(k − 1)!(2θ)k

dk−1HB

dzk−1

(
v + 1

2θ

)
= 1

N

N∑
i=1

1

(1 − 2θλi + 2θv)k
. (9)

Notice from the definition of v, A1 = 1. The coefficients in asymptotic expansion (3)
can be represented in terms of these Ak’s.
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Also we denote

F := 1

N

N∑
i=1

λi

(1 − 2θλi + 2θv)2
= − 1

2θ
+ 1 + 2θv

2θ
A2,

G := 1

N

N∑
i=1

λ2i

(1 − 2θλi + 2θv)2
= −1 + 4θv

4θ2
+ (1 + 2θv)2

4θ2
A2.

3 Orthogonal Case

3.1 First-Order Expansion

In this section, we consider the real case, β = 1. For simplicity, in this section we
will omit the superscript (β) in all the notations. We can assume BN is diagonal
BN = diag(λ1, λ2, . . . , λN ). Notice e1 is the first column of U , which follows Haar
measure on orthogonal group O(N ). e1 is uniformly distributed on SN−1, the surface
of the unit ball in RN , and can be represented as the normalized Gaussian vector,

e1 = g

‖g‖ ,

where g = (g1, g2, . . . , gN )T is the standard Gaussian vector in R
N , and ‖ · ‖ is the

Euclidean norm in RN . Plug them into (2)

IN (θ, BN ) =
∫

exp

{
θN

λ1g21 + λ2g22 · · · + λN g2N
g21 + g22 + · · · g2N

}
N∏
i=1

dP(gi ). (10)

where P(·) is the standard Gaussian probability measure on R. Following the paper
[4], define

γN := 1

N

N∑
i=1

g2i − 1, γ̂N := 1

N

N∑
i=1

λi g
2
i − v.

Then (10) can be rewritten in the following form

IN (θ, BN ) =
∫

exp

{
θN

γ̂N + v

γN + 1

} N∏
i=1

dP(gi ).

Next we will do the following change of measure

PN (dg1, dg2, . . . , dgN ) = 1√
2π

N

N∏
i=1

(√
1 + 2θv − 2θλi e

− 1
2 (1+2θv−2θλi )g2i dgi

)
.
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With this measure, we have EPN (γN ) = 0 and EPN (γ̂N ) = 0. Therefore, intuitively
from the law of large number, as N goes to infinity, γN and γ̂N concentrate at origin.
This is exactly what we will do in the following.

Let us also define

I κ1,κ2
N (θ, BN ) =

∫
|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

exp

{
θN

γ̂N + v

γN + 1

} N∏
i=1

dP(gi ),

where constants κ1 and κ2 satisfy 1
2 > κ1 > 2κ2 and 2κ1 + κ2 > 1. We prove the

following proposition, then the difference between IN (θ, BN ) and I κ1,κ2
N (θ, BN ) is

of order O(N−∞). A weaker form of this proposition also appears in [4]. With this
proposition, for the asymptotic expansion, we only need to consider I κ1,κ2

N (θ, BN ).

Proposition 1 Given constants κ1 and κ2 satisfying
1
2 > κ1 > 2κ2 and 2κ1 + κ2 > 1.

There exist constants c, c′, depending on κ1,κ2 and sup ‖BN‖∞, such that for N large
enough

|IN (θ, BN ) − I κ1,κ2
N (θ, BN )| ≤ ce−c′N1−2κ1 IN (θ, BN ). (11)

Proof We can split (11) into two parts

IN (θ, BN ) − I κ1,κ2
N (θ, BN ) =

(∫
−
∫

|γN |≤N−κ1

)

︸ ︷︷ ︸
E1

+
⎛
⎝
∫

|γN |≤N−κ1
−
∫

|γN |≤N−κ1 ,

| ˆγN |≤N−κ2

⎞
⎠

︸ ︷︷ ︸
E2

.

Following the same argument as in [4, Lemma 14],

|E1| ≤ ce−c′N1−2κ1 IN (θ, BN ).

For E2, notice that

exp

{
θN

γ̂N + v

γN + 1

} N∏
i=1

dP(gi )

= exp

{
θNv + θN (γ̂N − vγN ) − θNγN

γ̂N − vγN

γN + 1

} N∏
i=1

dP(gi )

= eθNv exp

{
−θNγN

γ̂N − vγN

γN + 1

} N∏
i=1

1√
2π

e− 1
2 g

2
i (1−2θλi+2θv)dgi .
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With the change of variable gi = g̃i√
1−2θλi+2θv

,

exp

{
θN

γ̂N + v

γN + 1

} N∏
i=1

dP(gi )

= eθNv− 1
2

∑N
i=1 log(1−2θλi+2θv) exp

{
−θNγN

γ̂N − vγN

γN + 1

} N∏
i=1

dP(g̃i ),

where in terms of the new variables g̃i ’s, we have

γN = 1

N

N∑
i=1

g̃2i
1 − 2θλi + 2θv

− 1, γ̂N = 1

N

N∑
i=1

λi g̃2i
1 − 2θλi + 2θv

− v. (12)

We can bound |E2| as,
∣∣∣∣∣∣
∫

|γN |≤N−κ1 ,

|γ̂N |>N−κ2

exp

{
θN

γ̂N + v

γN + 1

} N∏
i=1

dP(gi )

∣∣∣∣∣∣

= eθNv− 1
2

∑N
i=1 log(1−2θλi+2θv)

∣∣∣∣∣∣
∫

|γN |≤N−κ1 ,

|γ̂N |>N−κ2

exp

{
θNγN

γ̂N − vγN

γN + 1

} N∏
i=1

dP(g̃i )

∣∣∣∣∣∣
≤ eθNv− 1

2

∑N
i=1 log(1−2θλi+2θv)e|θ |(‖BN ‖∞+|v|)N1−κ1 P(|γ̂N | > N−κ2),

where

P(|γ̂N | > N−κ2) = P

(∣∣∣∣∣
1

N

N∑
i=1

λi g̃2i
1 − 2θλi + 2θv

− v

∣∣∣∣∣ > N−κ2

)

= P

(∣∣∣∣∣
1√
N

N∑
i=1

λi (g̃2i − 1)

1 − 2θλi + 2θv

∣∣∣∣∣ > N
1
2−κ2

)

≤ 2e−c′N1−2κ2
.

The last inequality comes from the concentration measure inequality in Lemma A1
and the uniformly boundedness of ‖BN‖∞. Moreover from [4, Lemma 14], we have
the lower bound for IN (θ, BN ),

IN (θ, BN ) ≥ceθNv− 1
2

∑N
i=1 log(1−2θλi+2θ |v|)e−|θ |(‖BN ‖∞+v)N1−κ1

.

From our assumption κ1 > 2κ2, so e|θ |(‖BN ‖∞+v)N1−κ1  ec
′N1−2κ2 . Therefore for N

large enough
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|E2| ≤ ce−c′N1−2κ2 IN (θ, BN ).

This finishes the proof of (11). ��
Since the difference between IN (θ, BN ) and I κ1,κ2

N (θ, BN ) is of order O(N−∞),
for asymptotic expansion, we only need to consider I κ1,κ2

N (θ, BN ).

I κ1,κ2
N (θ, BN ) = e

N
(
θv− 1

2N

∑N
i=1 log(1−2θλi (BN )+2θv)

)

∫
|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

exp

{
−θNγN

γ̂N − vγN

γN + 1

} N∏
i=1

dP(g̃i ),

The next thing is to expand the following integral,

∫
|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

exp

{
−θNγN

γ̂N − vγN

γN + 1

} N∏
i=1

dP(g̃i ). (13)

We recall the definition of γN and γ̂N from (12). Since the denominator γN + 1 in
the exponent has been restricted in a narrow interval centered at 1, we can somehow
“ignore” it by Taylor expansion, which results in the following error R1,

R1 :=
∣∣∣∣∣∣
∫

|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

exp

{
−θNγN

γ̂N − vγN

γN + 1

} N∏
i=1

dP(g̃i )

−
∫

|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

e−θNγN (γ̂N−vγN )
N∏
i=1

dP(g̃i )

∣∣∣∣∣∣

=
∣∣∣∣∣∣
∫

|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

e−θNγN (γ̂N−vγN )

(
exp

{
θNγ 2

N
γ̂N − vγN

γN + 1

}
− 1

) N∏
i=1

dP(g̃i )

∣∣∣∣∣ . (14)

Under our assumption 2κ1 + κ2 > 1, θNγ 2
N

γ̂N−vγN
γN+1 = O(N 1−2κ1−κ2) = o(1),

which means the above error R1 is of magnitude o(1). Therefore, the error R1 won’t
contribute to the first term in asymptotic expansion of integral (13). And the first term
of asymtotics of the spherical integral comes from the following integral

∫
|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

e−θNγN (γ̂N−vγN )
N∏
i=1

dP(g̃i ). (15)
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We will revisit this for higher-order expansion in next section. In the remaining
part of this section, we prove the following theorem about the first term of asymptotic
expansion of spherical integral. This strengthens [4, Theorem 3], where they require
additional conditions on the convergence speed of spectral measure).

Theorem 1 If supN ‖BN‖∞ < M, then for any θ ∈ R such that |θ | < 1
4M2+10M+1

,
the spherical integral has the following asymptotic expansion,

e
−N

(
θv− 1

2N

∑N
i=1 log(1−2θλi (BN )+2θv)

)
IN (θ, BN ) = 1√

A2
+ o(1), (16)

where A2 = 1
N

∑N
i=1

1
(1+2θv−2θλi )

2 .

Notice (16) is an integral of N Gaussian variables and the exponent −θNγN (γ̂N −
vγN ) is a quartic polynomial in terms of gi ’s; So, one cannot compute the above inte-
gral directly. Using the following lemma, by introducing two more Gaussian variables
x1 and x2, we can reduce the degree of the exponent to two, and it turns to be ordi-
nary Gaussian integral. Then we can directly compute it, and obtain the higher order
asymptotic expansion.

Write the exponent in integral (15) as sum of two squares, then we can implement

Lemma A2, to reduce its degree to two. Let b2 = θ/2, I1 = [−N
1
2−κ1+ε, N

1
2−κ1+ε]

and I2 = [−N
1
2−κ2+ε, N

1
2−κ2+ε], for some ε > 0. Then on the region {|γN | ≤

N−κ1 , |γ̂N | ≤ N−κ2}

e−θNγN (γ̂N−vγN )

= exp

{
−θ

2

(
√
N ((1 − v)γN + γ̂N ))2 − (

√
N ((1 + v)γN − γ̂N ))2

2

}

= 1

(
√
2π)2

∫
I2

∫
I1
e−ibx1

√
N ((1−v)γN+γ̂N )e−bx2

√
N ((1+v)γN−γ̂N )e− x21

2

e− x22
2 dx1dx2 + O(N−∞). (17)

Plug it back into (15), ignoring the O(N−∞) error,

∫
|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

e−θNγN (γ̂N−vγN )
N∏
i=1

dP(g̃i )

=
∫

|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

1

(
√
2π)2

{∫
I2

∫
I1
e−ibx1

√
N ((1−v)γN+γ̂N )e−bx2

√
N ((1+v)γN−γ̂N )

e− x21
2 e− x22

2 dx1dx2

} N∏
i=1

dP(g̃i )
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= 1

(
√
2π)2

∫
I1×I2

eibx1
√
Nebx2

√
N

2∏
i=1

e− x2i
2 dxi

∫
|γN |≤N−κ1

|γ̂N |≤N−κ2

N∏
i=1

1√
2π

e
− g̃2i

2

(
1+ 2b(i(1−v+λi )x1+(1+v−λi )x2)√

N (1−2θλi+2θv)

)
N∏
i=1

dg̃i . (18)

Notice here in the inner integral, the integral domain is the region D = {|γN | ≤
N−κ1 , |γ̂N | ≤ N−κ2} and the Gaussian variables g̃i are located in this region with
overwhelming probability. It is highly likely that if we instead integrate over the
whole space RN , the error is exponentially small. We will first compute the integral
under the belief that the integral outside this region D is negligible, then come back
to this point later. Replace the integral region D by RN ,

eibx1
√
Nebx2

√
N

⎧⎨
⎩
∫
RN

N∏
i=1

1√
2π

e
− g̃2i

2

(
1+ 2b(i(1−v+λi )x1+(1+v−λi )x2)√

N (1−2θλi+2θv)

)
N∏
i=1

dg̃i

⎫⎬
⎭

=
N∏
i=1

exp
{
b(i(1−v+λi )x1+(1+v−λi )x2)√

N (1−2θλi+2θv)

}
√
1 + 2b(i(1−v+λi )x1+(1+v−λi )x2)√

N (1−2θλi+2θv)

, (19)

where for the numerator we used the definition (8) of v, such that

1

N

N∑
i=1

1 − v + λi

1 − 2θλi + 2θv
= 1,

1

N

N∑
i=1

1 + v − λi

1 − 2θλi + 2θv
= 1. (20)

Let μi = b(i(1−v+λi )x1+(1+v−λi )x2)√
N (1−2θλi+2θv)

. Then μi = O(N ε−κ2), where 0 < ε < κ2. So we

have the Taylor expansion

N∏
i=1

eμi

√
1 + 2μi

=
N∏
i=1

eμ2
i +o(μ2

i ) =
N∏
i=1

eμ2
i

(
1 + o

(
N∑
i=1

μ2
i

))
,

later we will see
∫
e
∑N

i=1 μ2∑N
i=1 μ2

i dP(x1)dP(x2) = O(1). Thus, the first term in

the asymptotics of integral (18) comes from the integral of e
∑N

i=1 μ2
i , which is

1

(
√
2π)2

∫
I2

∫
I1
e

θ
2N

∑N
i=1

(i(1−v+λi )x1+(1+v−λi )x2)
2

(1−2θλi+2θv)2
− x21+x22

2 dx1dx2. (21)

The exponent is a quadratic form and can be written as − 1
2 〈x, Kx〉 where K is the

following 2 × 2 symmetric matrices,

K :=
[
1 + θ

(
(1 − v)2A2 + 2(1 − v)F + G

) −θ i
(
(1 − v2)A2 + 2vF − G

)
−θ i

(
(1 − v2)A2 + 2vF − G

)
1 − θ

(
(1 + v)2A2 − 2(1 + v)F + G

)
]

,
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where A2, F , G are respectively 1
N

∑N
i=1

1
(1−2θλi+2θv)2

, 1
N

∑N
i=1

λi
(1−2θλi+2θv)2

and

1
N

∑N
i=1

λ2i
(1−2θλi+2θv)2

. With this notation, above integral (21) can be rewritten as

1

(
√
2π)2

∫
I2

∫
I1
e− 1

2 〈x,Kx〉dx1dx2. (22)

To deal with this complex Gaussian integral, we will use Lemma A3. Now we
need to verify that our matrix K satisfies the condition of Lemma A3. Write K as the
following sum

K =
[
1 + θ

(
(1 − v)2A2 + 2(1 − v)F + G

)
0

0 1 − θ
(
(1 + v)2A2 − 2(1 + v)F + G

)
]

+ i

[
0 −θ

(
(1 − v2)A2 + 2vF − G

)
−θ
(
(1 − v2)A2 + 2vF − G

)
0

]
.

Since min{λi } ≤ v(θ) ≤ max{λi }, |v(θ)| < max |λi | < M . If θ < 1
4M2+10M+1

, it
is easy to check the real part of matrix K is positive definite. To use Lemma A3, the
only thing is to compute the determinant of matrix K . Notice the algebraic relations
between parameters A2, F , G, det(K ) = A2. Therefore, we obtain the first-order
asymptotic of the spherical integral,

e−N (θv− 1
2N

∑N
i=1 log(1−2θλi (BN )+2θv)) IN (θ, BN )

= 1

(
√
2π)2

∫
I2

∫
I1
e− 1

2 〈x,Kx〉(1 + o(1))dx = 1√
A2

+ o(1).

Go back to integral (18), we need to prove that the integral outside the region D
is of order O(N−∞), then replacing the integral domain D = {|γ̂N | ≤ N−κ1 , |γN | ≤
N−κ2} by the whole space RN won’t affect the asymptotic expansion.

Lemma 1 Consider integral (18) on the complement of D, i.e., on {|γ̂N | ≥
N−κ1 or |γN | ≥ N−κ2},

R :=
∣∣∣∣
∫
I2

∫
I1
eibx1

√
N+bx2

√
Ne− x21

2 e− x22
2 dx1dx2

∫
|γ̂N |≥N−κ1

or|γN |≥N−κ2

N∏
i=1

1√
2π

e
− g̃2i

2

(
1+ 2b(i(1−v+λi )x1+(1+v−λi )x2)√

N (1−2θλi+2θv)

)
N∏
i=1

dg̃i

∣∣∣∣∣∣ .

Then for N large enough, the error R ≤ c′e−cN ζ
, for some constant c, c′, ζ > 0

depending on κ1, κ2 and ‖BN‖∞.

Proof

R ≤
∫
I2

∫
I1
e�{ibx1

√
N+bx2

√
N }e− x21

2 e− x22
2 dx1dx2

123



1062 Journal of Theoretical Probability (2019) 32:1051–1075

∫
|γ̂N |≥N−κ1

or |γN |≥N−κ2

N∏
i=1

1√
2π

e
−�
{

g̃2i
2

(
1+ 2b(i(1−v+λi )x1+(1+v−λi )x2)√

N (1−2θλi+2θv)

)}
N∏
i=1

dg̃i .

Since b = √
θ/2, b is either real or imaginary. For simplicity, here we only discuss

the case when b is real. The case when b is imaginary can be proved in the same way.
The above integral can be simplified as

R ≤
∫
I2
ebx2

√
N

⎧⎨
⎩
∫

|γ̂N |≥N−κ1

or |γN |≥N−κ2

N∏
i=1

1√
2π

e
− g̃2i

2

(
1+ 2b(1+v−λi )x2√

N (1−2θλi+2θv)

)
N∏
i=1

dg̃i

⎫⎬
⎭ e− x22

2 dx2.

To simplify it, we perform a change of measure. Let hi = g̃i
√
1 + 2b(1+v−λi )x2√

N (1−2θλi+2θv)
,

R ≤
∫
I2

ebx2
√
N

∏N
i=1

√
1 + 2b(1+v−λi )x2√

N (1−2θλi+2θv)

Ph(Dc)e− x22
2 dx2. (23)

Here Ph(·) is the Gaussian measure of (hi )Ni=1. Take 0 < ε < 1
2 − κ1, we can separate

the above integral into two parts,

R ≤
∫

[−N ε ,N ε ]
ebx2

√
N

∏N
i=1

√
1 + 2b(1+v−λi )x2√

N (1−2θλi+2θv)

Ph(Dc)e− x22
2 dx2

︸ ︷︷ ︸
E1

+
∫
I2∩[−N ε ,N ε ]c

ebx2
√
N

∏N
i=1

√
1 + 2b(1+v−λi )x2√

N (1−2θλi+2θv)

e− x22
2 dx2

︸ ︷︷ ︸
E2

. (24)

For E2, it is of the same form as (19). Use the same argument, the main contribution
from E2 is a Gaussian integral on [−N ε, N ε]c. So it stretched exponential decays,
E2 ≤ c′e−cN ζ

. For E1,

E1 ≤
∫

ebx2
√
N

∏N
i=1

√
1 + 2b(1+v−λi )x2√

N (1−2θλi+2θv)

e− x22
2 dx2 sup

x2∈[−N ε ,N ε ]
{Ph(Dc)}.

If we can show that on the interval [−N ε, N ε], Ph(Dc) is uniformly exponentially
small, independent of x2, then E1 is exponentially small. For the upper bound of
Ph(Dc), first by the union bound,

Ph(Dc) ≤ Ph(|γN | > N−κ1) + Ph(|γ̂N | > N−κ2).
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For simplicity here I will only bound the first term, the second term can be bounded
in exactly the same way.

Ph(|γN | > N−κ1 )

= Ph

(∣∣∣∣∣
1

N

N∑
i=1

h2i
1 − 2λi θ + 2θv + 2bx2(1 + v − λi )/

√
N

− 1

∣∣∣∣∣ ≥ N−κ1

)

= Ph

(∣∣∣∣∣
1

N

N∑
i=1

h2i − 1

1 − 2λi θ + 2θv + 2bx2(1 + v − λi )/
√
N

+ O(N ε− 1
2 )

∣∣∣∣∣ ≥ N−κ1

)

≤ c′e−cN ζ

, (25)

For the second to last line, we used the defining relation (8) of v, such that
1
N

∑N
i=1

1
1−2λi θ+2vθ

= 1. And for the last inequality, since ε − 1
2 < −κ2, the term

O(N ε− 1
2 ) is negligible comparedwith N−κ1 . Then the concentrationmeasure inequal-

ity in Lemma A1 implies (25). ��

3.2 Higher-Order Expansion

We recall the definition of γN and γ̂N in terms of the new variables g̃i ’s,

γN = 1

N

N∑
i=1

g̃2i
1 − 2θλi + 2θv

− 1, γ̂N = 1

N

N∑
i=1

λi g̃2i
1 − 2θλi + 2θv

− v. (26)

To compute the higher-order expansion of the spherical integral IN (θ, BN ), we
need to obtain a full asymptotic expansion of (13).

∫
|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

exp

{
−θNγN

γ̂N − vγN

γN + 1

} i=N∏
i=1

dP(g̃i ) (27)

=
∫

|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

e−θNγN (γ̂N−vγN ) exp

{
θNγ 2

N
γ̂N − vγN

γN + 1

} N∏
i=1

dP(g̃i )

=
∫

|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

e−θNγN (γ̂N−vγN )

{ ∞∑
k=0

1

k!
(

θNγ 2
N

γ̂N − vγN

γN + 1

)k
}

N∏
i=1

dP(g̃i )

=
∫

|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

e−θNγN (γ̂N−vγN )
N∏
i=1

dP(g̃i ) +
+∞∑
l=1

∫
|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

e−θNγN (γ̂N−vγN )

×
{

l∑
k=1

(
l − 1

k − 1

)
(−1)kθk

k! (−γN )l(
√
NγN )k

(√
N (γ̂N − vγN )

)k} N∏
i=1

dP(g̃i ).

(28)
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We consider the l-th summand in expression (28). As proved in [4, Theorem 3], the
distribution of (

√
NγN ,

√
N γ̂N ) tends to �, which is a centered two-dimensional

Gaussian measure on R2 with covariance matrix

R = 2

[
A2 F
F G

]
.

Moreover, the matrix R is non-degenerate. Therefore, by the central limit theorem,
we can obtain the asymptotic expression of the l-th term in (28)

∫
|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

e−θNγN (γ̂N−vγN )
l∑

k=1

(
l − 1

k − 1

)
(−1)kθk

k! (−γN )l(
√
NγN )k

(√
N (γ̂N − vγN )

)k N∏
i=1

dP(g̃i )

=
( −1√

N

)l {∫
e−θNx(y−vx)

{
l∑

k=1

(
l − 1

k − 1

)
(−1)kθk

k! xl+k(y − vx)k
}
d�(x, y) + o(1)

}

= O(N−l/2).

Therefore, if we cut off the infinite sum (28) at the l-th term, then the error terms are
of magnitude O(N−(l+1)/2). To obtain the full expansion, we need to understand each
term in expansion (28).

∫
|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

e−θNγN (γ̂N−vγN )

(
l − 1

k − 1

)
(−1)kθk

k! (−γN )l Nk(γN )k

(γ̂N − vγN )k
N∏
i=1

dP(g̃i ). (29)

Define

fl(t) =
∫

|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

e−t NγN (γ̂N−vγN )γ l
N

N∏
i=1

dP(g̃i ). (30)

By the dominated convergence theorem, we can interchange derivative and integral.
Integral (29) can be written as

(−1)l
(
l − 1

k − 1

)
θk

k!
dk fl(t)

dtk

∣∣∣
t=θ

.

Therefore to understand asymptotic expansion of (29), we only need to compute the
asymptotic expansion of fl(t), for l = 0, 1, 2, . . .. We have the following proposition
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Proposition 2 If supN ‖BN‖∞ < M, then for any θ ∈ R such that |θ | < 1
4M2+10M+1

,

fl has the following asymptotic expansion (up to O(N−n−1) for any given n)

fl(t) = m0 + m1

N
+ m2

N 2 + · · · + mn

Nn
+ O(N−n−1), (31)

where {mi }ni=0 depends explicitly on t, θ , v and the derivative of the Hilbert transform
of the empirical spectral distribution of BN , namely, A2, A3, A4 . . . A2n+2, as defined
in (9).

Proof First we show that fl has asymptotic expansion in form (31), then we show
those mi ’s depend only explicitly on t , θ and {Ak}+∞

k=2. We introduce two Gaussian
random variables x1 and x2, the same as in (17) and (18), we obtain the following
expression of fl(t),

fl(t) = 1

(
√
2π)2

∫
I1×I2

eibx1
√
N+bx2

√
N

2∏
i=1

e− x2i
2 dxi

∫
|γ̂N |≤N−κ1

|γN |≤N−κ2

N∏
i=1

1√
2π

e
− g̃2i

2

(
1+ 2b(i(1−v+λi )x1+(1+v−λi )x2)√

N (1−2θλi+2θv)

)
γ l
N

N∏
i=1

dg̃i + O(N−∞),

where b2 = t/2, I1 = [−N
1
2−κ1+ε, N

1
2−κ1+ε] and I2 = [−N

1
2−κ2+ε, N

1
2−κ2+ε], for

some ε > 0. The same argument, as in Lemma 1, about replacing integral domain
in the inner integral can be implemented here without too much change. So we can
replace the integral domain {|γ̂N | ≤ N−κ1 , |γN | ≤ N−κ2} by RN .

eibx1
√
N+bx2

√
N
∫
RN

N∏
i=1

1√
2π

e
− g̃2i

2

(
1+ 2b(i(1−v+λi )x1+(1+v−λi )x2)√

N (1−2θλi+2θv)

)
(32)

{
1

N

N∑
i=1

(g̃2i − 1)

1 − 2θλi + 2θv

}l N∏
i=1

dg̃i

=
N∏
i=1

exp
{
b(i(1−v+λi )x1+(1+v−λi )x2)√

N (1−2θλi+2θv)

}
√
1 + 2b(i(1−v+λi )x1+(1+v−λi )x2)√

N (1−2θλi+2θv)

∫
RN

N∏
i=1

1√
2π

e− g̃2i
2 (33)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

N

N∑
i=1

g̃2i
1+ 2b(i(1−v+λi )x1+(1+v−λi )x2)√

N (1−2θλi+2θv)

− 1

1 − 2θλi + 2θv

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

l

N∏
i=1

dg̃i

=
N∏
i=1

eμi

√
1 + 2μi︸ ︷︷ ︸
E1

∫ N∏
i=1

1√
2π

e− g̃2i
2

{
1

N

N∑
i=1

νi

1 + 2μi
(g̃2i − (1 + 2μi ))

}l N∏
i=1

dg̃i

︸ ︷︷ ︸
E2

,

(34)
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where we used (20) for the first equality, and

νi := 1

1 − 2θλi + 2θv
, μi := b(i(1 − v + λi )x1 + (1 + v − λi )x2)√

N (1 − 2θλi + 2θv)
.

Notice here μi can be written as a linear function of νi

μi =
(
i

(
1 + 1

2θ

)
x1√
N

+
(
1 − 1

2θ

)
x2√
N

)
bνi +

(
x2√
N

− i
x1√
N

)
b

2θ
. (35)

Formula (34) consists of two parts: a product factor E1 and a Gaussian integral E2.
For E1 we can obtain the following explicit asymptotic expansion

N∏
i=1

eμi

√
1 + 2μi

=
N∏
i=1

eμi− 1
2 log(1+2μi ) =

N∏
i=1

eμ2
i +
∑∞

k=3
(−1)k2k−1

k μk
i

= e
∑N

i=1 μ2
i e

∑∞
k=3

1

N
k
2−1

{
(−1)k2k−1

k

∑N
i=1

bk (i(1−v+λi )x1+(1+v−λi )x2)k

N (1−2θλi+2θv)k

}
. (36)

Notice

N∑
i=1

(i(1 − v + λi )x1 + (1 + v − λi )x2)k

N (1 − 2θλi + 2θv)k

=
k∑

m=0

{(
k

m

)
(i x1 − x2)

m(i(1 − v)x1 + (1 + v)x2)
k−m

N∑
i=1

λmi

N (1 + 2θλi + 2θv)k

}
.

If we regard v and θ as constants (since they are of magnitude O(1)), then the sum∑N
i=1

λmi
N (1+2θλi+2θv)k

can be written as a linear combination of A2, A3 . . . , Ak for any
0 ≤ m ≤ k. Thus we can expand (36), to obtain

N∏
i=1

eμi

√
1 + 2μi

= e
∑N

i=1 μ2
i

{
1 +

∞∑
k=1

1

N
k
2

gk(x1, x2)

}
,

where gk(x1, x2)’s are polynomials of x1 and x2. Consider t , θ and v as constants, the
coefficients of gk(x1, x2) are polynomials in terms of A2, A3, . . . Ak+2. Moreover the
degree of each monomial of gk(x1, x2) is congruent to k modulo 2.

Next we compute the Gaussian integral E2 in (34). Expand the l-th power, we
obtain

{
1

N

N∑
i=1

νi

1 + 2μi
(g̃2i − (1 + 2μi ))

}l

= 1

Nl

∑
k1≥k2···≥km
k1+k2...km=l

⎧⎪⎨
⎪⎩

l!
k1!k2! · · · km !

∑
1≤i1,i2,...im≤N

distinct

m∏
j=1

(
νi j

1 + 2μi j
)k j (g̃2i j − (1 + 2μi j ))

k j

⎫⎪⎬
⎪⎭ .
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Denote

pk j (μi j ) =
∫

1√
2π

e−
g̃2i j
2 (g̃2i j − (1 + 2μi j ))

k j dg̃i j ,

then pk j is a k j -th degree polynomial, which only depends on k j . With this notation,
the Gaussian integral E2 can be written as,

1

Nl

∑
k1≥k2···≥km
k1+k2···km=l

⎧⎪⎨
⎪⎩

l!
k1!k2! · · · km !

∑
1≤i1,i2,...im≤N

distinct

m∏
j=1

(
νi j

1 + 2μi j

)k j

pk j (μi j )

⎫⎪⎬
⎪⎭ .

By the following lemma, the above expression can be expressed in a more symmetric
way, as a sum in terms of

1

Nl−m

m∏
j=1

{
1

N

N∑
i=1

(
νi

1 + μi

)k j
qk j (μi )

}
, (37)

where k1 ≥ k2 · · · ≥ km , k1 + k2 + · · · km = l and qk j ’s are some polynomials
depending only on k j . ��
Lemma 2 Given integers s1, s2 . . . , sm and polynomials q1, q2, . . . qm, consider the
following polynomial in terms of 2N variables x1, x2 . . . xN , y1, y2 . . . yN

h =
∑

1≤i1,i2...im≤N
distinct

m∏
j=1

x
s j
i j
q j (yi j ).

Then h can be expressed as sum of terms in the following form

l∏
j=1

{
N∑
i=1

x
t j
i q̃ j (yi )

}
, (38)

where l, {ti }Ni=1 and polynomials {q̃i }Ni=1 are to be chosen.

Proof We prove this by induction on m. If m = 1 then h itself is of form (38). We
assume the statement holds for 1, 2, 3 . . . ,m − 1, then we prove it for m.

h −
m∏
j=1

(
N∑
i=1

x
s j
i q j (yi )

)

= −
m−1∑
d=1

∑
π1,π2···πd

a partition of {1,2,...,m}

∑
1≤i1,i2...,id≤N

distinct

d∏
j=1

x

∑
l∈π j

sl

i j

∏
l∈π j

ql(yi j ). (39)
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Notice the summands of (39) are
∑

1≤i1,i2...,id≤N
distinct

∏d
j=1 x

∑
l∈π j

sl

i j

∏
l∈π j

ql(yi j ), which

are of the same form as h but with less m. Thus, by induction, each term in (39) can
be expressed as a sum of terms in form (38), so does h. ��

In view of (37), since we have μi = O(N ε−κ2), we can Taylor expand 1/(1 + μi )

in (37). Also notice (35), the relation between μi and νi , (37) has the following full
expansion

1

Nl−m

∞∑
k=0

1

N
k
2

hk(x1, x2), (40)

where hk(x1, x2) are k-th degree polynomials of x1 and x2. Consider t , θ and v as
constant (since they are of magnitude O(1)), the coefficients of hk(x1, x2) are poly-
nomials of A2, A3, . . . Ak+l−m+1. Since the Gaussian integral E2 is the sum of terms
which has the asymptotic expansion (40), itself has the full asymptotic expansion,

E2 =
∞∑
k=0

1

N
k
2

sk(x1, x2), (41)

where the coefficients of sk(x1, x2) are polynomials of A2, A3, . . . Ak+1. And the
degree of each monomial of sk is congruent to k modulo 2. Combine the asymptotic
expansions of E1 and E2, we obtain the following expansion of fl(t) (up to an error
of order O(N−∞)),

1

2π

∫
I1×I2

e− 1
2 〈x,K̃ x〉

{ ∞∑
k=0

1

N
k
2

gk(x1, x2)

}{ ∞∑
k=0

1

N
k
2

sk(x1, x2)

}
dx1dx2,

= 1

2π

∫
I1×I2

e− 1
2 〈x,K̃ x〉

{ ∞∑
k=0

∑k
l=0 gl(x1, x2)sk−l(x1, x2)

N
k
2

}
dx1dx2. (42)

where K̃ is the following 2 × 2 matrix

K̃ :=
[
1 + t

(
(1 − v)2A2 + 2(1 − v)F + G

) −t i
(
(1 − v2)A2 + 2vF − G

)
−t i

(
(1 − v2)A2 + 2vF − G

)
1 − t

(
(1 + v)2A2 − 2(1 + v)F + G

)
]

.

Formula (42) is a Gaussian integral in terms of x1 and x2. If we cut off at k = m, this

will result in an error term O(N−m+1
2 ). Now the integrand is a finite sum. The integral

is O(N−∞) outside the region I1 × I2; thus, we obtain the following asymptotic
expansion,

fl (t) =
m∑

k=0

1

N
k
2

1

2π

∫
e− 1

2 〈x,K̃ x〉
{

k∑
l=0

gl (x1, x2)sk−l(x1, x2)

}
dx1dx2 + O

(
N− m+1

2

)
. (43)

Notice the degree of each monomial of gl(x1, x2) is congruent to l modulo 2, and the
degree of each monomial of sk−l(x1, x2) is congruent to k − l modulo 2. For any odd
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k,
∑k

l=0 gl(x1, x2)sk−l(x1, x2) is sum of monomials of odd degree. Since here x1, x2
are centered Gaussian variables, the integral of

∑k
l=0 gl(x1, x2)sk−l(x1, x2) vanishes.

Using Lemma A5, (43) can be rewritten as

[ m2 ]∑
k=0

1

Nk

1

2π

∫
e− 1

2 〈x,K̃ x〉
{

2k∑
l=0

gl (x1, x2)s2k−l(x1, x2)

}
dx1dx2 + O(N−[ m2 ]−1)

=
[ m2 ]∑
k=0

1

Nk

1√
det(K̃ )

{
2k∑
l=0

gl (∂ξ1 , ∂ξ2 )s2k−l(∂ξ1 , ∂ξ2 )e
1
2 〈ξ,K̃−1ξ 〉

} ∣∣∣
ξ=0

+ O(N−[ m2 ]−1).

Since the entries of matrix K̃ and the coefficients of
∑2k

l=0 gl(x1, x2)s2k−l(x1, x2)
depend only on t , θ , v and A2, A3, . . . , A2k+2. This implies fl(t) has the expansion
(31). ��

From the argument above, the asymptotic expansion of (27) up to O(N−l/2) is a
finite sum in terms of derivatives of fk(t)’s at t = θ . Differentiate fl(t) term by term,
we arrive at our main theorem of this paper,

Theorem 2 If supN ‖BN‖∞ < M, then for any θ ∈ R such that |θ | < 1
4M2+10M+1

,

the spherical integral has the following asymptotic expansion (up to O(N−n−1) for
any given n)

e−N (θv− 1
2N

∑N
i=1 log(1−2θλi (BN )+2θv)) IN (θ, BN )

= m0 + m1

N
+ m2

N 2 + · · · + mn

Nn
+ O(N−n−1),

where v = RBN (θ) and {mi }ni=0 depends on θ , v and the derivatives of Hilbert trans-
formof the empirical spectral distribution of BN at v+1/2θ , namely A2, A3, . . . A2n+2
as defined in (9). Especially we have

m0 = 1√
A2

, m1 = 1√
A2

(
3

2

A4

A2
2

− 5

3

A2
3

A3
2

+ 1

6

)
.

Proof In the last section, Theorem 1, we have computed the first term in the expansion
m0 = 1√

A2
. We only need to figure out the second term m1. For this, we cut off (31)

at l = 2,

∫
|γN |≤N−κ1 ,

|γ̂N |≤N−κ2

exp

{
−θNγN

γ̂N − vγN

γN + 1

} i=N∏
i=1

dP(g̃i )

= f0
∣∣∣
t=θ

− θ
d

dt
f1
∣∣∣
t=θ

+
(

θ2

2

d2

dt2
+ θ

d

dt

)
f2
∣∣∣
t=θ

+ O(N−2). (44)
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Take l = 0, 1, 2 in (30), we obtain the asymptotic expansion of f0, f1 and f2 (we put
the detailed computation in the appendix),

f0
∣∣∣
t=θ

= 1√
A2

+ 1

N

1√
A2

(
7

6
− 3

A2
+ 2A3

A2
2

− 5

3

A2
3

A3
2

+ 3

2

A4

A2
2

)
+ O(N−2),

−θ
d

dt
f1
∣∣∣
t=θ

= 1

N

1√
A2

(
−4 + 6

A2
− 2A3

A2
2

)
+ O(N−2),

(
θ2

2

d2

dt2
+ θ

d

dt

)
f2
∣∣∣
t=θ

= 1

N

1√
A2

(
3 − 3

A2

)
+ O(N−2).

Plug them back to (44), we get

m0 = 1√
A2

, m1 = 1√
A2

(
3

2

A4

A2
2

− 5

3

A2
3

A3
2

+ 1

6

)
.

��

4 Unitary Case

In this section, we consider the unitary case, β = 2. As we will see soon that the
unitary case is a special case of orthogonal case. With the same notation as before, let
BN = diag(λ1, λ2, . . . , λN ). andU follows the Haar measure on unitary groupU (N ).
The first column e1 of U can be parametrized as the normalized complex Gaussian
vector,

e1 = g(1) + ig(2)

‖g(1) + ig(2)‖ ,

where g(1) = (g1, g3 . . . , g2N−3, g2N−1)
T and g(2) = (g2, g4, . . . , g2N−2, g2N )T are

independent Gaussian vectors in R
N . Then the spherical integral has the following

form

I (2)
N (θ, BN ) =

∫
exp

{
Nθ

λ1(g21 + g22) + · · · + λN (g22N−1 + g22N )

g21 + g22 + · · · + g22N−1 + g22N

}
2N∏
i=1

dP(gi ).

Consider the 2N ×2N diagonal matrix D2N = diag{λ1, λ1, λ2, λ2, . . . , λN , λN }with
each λi appearing twice. Then we have the following relation,

I (2)
N (θ, BN ) = I (1)

2N (θ/2, D2N ).

Define ṽ and { Ãi }∞i=1 as in the notation section but replace θ by θ/2 and replace BN

by D2N , namely ṽ = RBN (θ) and
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Ãk = (−1)k−1

(k − 1)!θk
dk−1HBN

dzk−1

(
ṽ + 1

θ

)
= 1

N

N∑
i=1

1

(1 − θλi + θṽ)k
. (45)

Then from Theorem 2, we have the following theorem for unitary case.

Theorem 3 If supN ‖BN‖∞ < M, then for any θ ∈ R such that |θ | < 1
4M2+10M+1

,

the spherical integral I (2)
N (θ, BN ) has the following asymptotic expansion (up to

O(N−n−1) for any given n)

I (2)
N (θ, BN ) = I (1)

2N (θ/2, D2N )

= eN (θv− 1
N

∑N
i=1 log(1−θλi (BN )+θv))

{
m0 + m1

N
+ m2

N 2 + · · · + mn

Nn
+ O(N−n−1)

}
,

where ṽ = RBN (θ) and {mi }ni=0 depends on θ , ṽ, { Ãi }2n+2
i=2 , and the derivatives of

Hilbert transform of the empirical spectral distribution of BN at ṽ + 1/θ . Especially
we have

m0 = 1√
Ã2

, m1 = 1

2
√
Ã2

(
3

2

Ã4

Ã2
2

− 5

3

Ã2
3

Ã3
2

+ 1

6

)
.
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Appendix A. Properties of Gaussian RandomVariables

The following is a useful lemma on the concentration ofmeasure for the sumof squares
of Gaussian random variables.

Lemma A1 Given independent Gaussian random variables {gi }Ni=1, consider the

weighted sum
∑N

i=1 ai g
2
i , where the coefficients {ai }Ni=1 depend on N. If there exists

some constant c > 0, such that max{|ai |} ≤ c√
N
, then for N large enough, the

weighted sum satisfies the following concentration inequality,

P

(
|

N∑
i=1

ai (g
2
i − 1)| ≥ N κ

)
≤ 2e−c′N2κ

, 0 < κ <
1

2
.

Proof This can be proved by applying Markov’s inequality to exp{t∑N
i=1 ai (g

2
i − 1)}

for some well-chosen value of t . ��
The following is a useful trick, which states that we can express eα2/2 as a Gaussian

integral. Then the exponents are all linear in α.
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Lemma A2 For any α ∈ C with |α| ≤ CN κ ,

e
α2
2 = 1√

2π

∫
I
e− x2

2 e−xαdx + O(N−∞),

where interval I = [−N κ+ε, N κ+ε] for any ε > 0.

Proof Recall the formula, for any α ∈ C

1√
2π

∫
R

e− (x+α)2
2 = 1.

The main contribution of the above integral comes from where |x + α| is small. More
precisely,

∣∣∣∣e α2
2

∫
R

e− (x+α)2
2 dx − e

α2
2

∫
I
e− (x+α)2

2

∣∣∣∣ ≤ e
|α|2
2

∣∣∣∣
∫
I c
e− (x+α)2

2 dx

∣∣∣∣
≤ 2e

|α|2
2

∫ ∞

Nκ+ε

e− (x−|α|)2
2 dx ≤ 2e

C2N2κ
2

∫ ∞

Nκ+ε−CNκ

e− x2
2 dx ≤ c′e−cN2κ+2ε = O(N−∞),

where c and c′ are constants independent of N . Therefore

e
α2
2 = e

α2
2

1√
2π

∫
e− (x+α)2

2 = 1√
2π

∫
I
e− x2

2 e−xαdx + O(N−∞).

��
The following lemmas are useful identities about Gaussian integrals.

Lemma A3 If an n by n symmetric matrix K can be written as K = A + i B, where
A is a real positive definite matrix, B is a real symmetric matrix. Then we have the
Gaussian integral formula

1

(
√
2π)n

∫
Rn

e− 1
2 〈x,Kx〉dx = 1√

det(K )
.

Proof Since A is positive definite, there exists a positive definite matrix C such that
A = CTC . SinceCBCT is symmetric, it can be diagonalized by some special orthog-
onal matrix U , let P = UC . Then we have A = PT P and B = PT DP , where
D = diag{d1, d2, . . . , dn}. Thus K = A + i B = PT (I + i D)P . Plug this back to
the integral

1

(
√
2π)n

∫
RN

e− 1
2 〈x,Kx〉dx = 1

(
√
2π)n

∫
RN

e− 1
2 〈x,PT (I+i D)Px〉dx

= 1

(
√
2π)n det(P)

∫
RN

e− 1
2 〈y,(I+i D)y〉dy = 1

(
√
2π)n det(P)

n∏
k=1

∫
RN

e− (1+idk )

2 y2k dyk

= 1

(
√
2π)n det(P)

n∏
k=1

√
2π

1 + idk
= 1√

det(K )
, (46)
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where the square root in (46) is the branch with positive real part, in our case K is a
2 × 2 matrix. ��

Lemma A4 Given n by n symmetric matrix K , whose real part is positive definite, then
we have the following change of variable formula for Gaussian type integral,

∫
Rn

F(x)e− 1
2 〈x,Kx〉dx = det(A)

∫
Rn

F(Ay + b)e− 1
2 〈Ay+b,K (Ay+b)〉dy,

where F is a polynomial in terms of {xi }ni=1, A = diag{a1, a2 . . . , an} and �(ai ) > 0
for i = 1, 2 . . . n, and b ∈ C

n.

Proof This can be proved by reducing to one dimensional case. ��

Lemma A5 Given n by n symmetric matrix K , whose real part is positive definite, then
we have the following integral formula for any polynomial F( or even infinite power
series) in the variables {xi }ni=1,

∫
Rn

F(x)e− 1
2 〈x,Kx〉dx =

√
2π

n

√
det(K )

{
F(∂ξ )e

1
2 〈ξ,K−1ξ〉} ∣∣∣

ξ=0
.

Proof Consider the Laplacian transform,

∫
Rn

e〈x,ξ〉F(x)e− 1
2 〈x,Kx〉dx =

∫
F(∂ξ )e

〈x,ξ〉e− 1
2 〈x,Kx〉dx .

Since e− 1
2 〈x,Kx〉 is a Schwartz function, with decaying speed faster than e〈x,ξ〉. By

dominated convergence theorem, we can interchange the integral and differential.

∫
Rn

e〈x,ξ〉F(x)e− 1
2 〈x,Kx〉dx = F(∂ξ )

{∫
Rn

e〈x,ξ〉e− 1
2 〈x,Kx〉dx

}

= F(∂ξ )

{
e
1
2 〈ξ,K−1ξ〉

∫
Rn

e− 1
2 〈(x−K−1ξ),K (x−K−1ξ)〉dx

}
.

From Lemma A3 and Lemma A4, we get

∫
Rn

F(x)e− 1
2 〈x,Kx〉dx =

∫
Rn

e〈x,ξ〉F(x)e− 1
2 〈x,Kx〉dx

∣∣∣
ξ=0

=
√
2π

n

√
det(K )

{
F(∂ξ )e

1
2 〈ξ,K−1ξ〉} ∣∣∣

ξ=0
.

��
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Appendix B. Detailed Computation form1

In this section, we give the detailed computation for coefficient m1. To compute f0,
f1, f2, take l = 0, 1, 2 in (30) and follow the process in Page 14, 15. It is not hard to
derive,

f0(θ) = 1

2π

∫ (
1 + 1

N
p0(x1, x2)

)
e− 1

2 〈x,Kx〉dx + O(N−2)

= 1√
det(K )

(
1 + 1

N
p0(∂ξ1 , ∂ξ2)e

1
2 〈ξ,K−1ξ〉

) ∣∣∣
ξ=0

+ O(N−2), (47)

where

p0(x1, x2) = θ2

2

N∑
i=1

(i(1 − v + λi )x1 + (1 + v − λi )x2)4

N (1 − 2θλi + 2θv)4

+ θ3

9

{
N∑
i=1

(i(1 − v + λi )x1 + (1 + v − λi )x2)3

N (1 − 2θλi + 2θv)3

}2

.

And for f1 and f2,

fi (t) = 1

N

1

2π

∫
pi (x1, x2)e

− 1
2 〈x,K̃ x〉dx + O(N−2)

= 1

N

1√
det(K̃ )

pi (∂ξ1 , ∂ξ2)e
1
2 〈ξ,K̃−1ξ〉

∣∣∣
ξ=0

+ O(N−2), (48)

where

p1(x1, x2) = 2t2

3

{
N∑
i=1

(i(1 − v + λi )x1 + (1 + v − λi )x2)

N (1 − 2θλi + 2θv)2

}

{
N∑
i=1

(i(1 − v + λi )x1 + (1 + v − λi )x2)3

N (1 − 2θλi + 2θv)3

}

+ 2t
N∑
i=1

(i(1 − v + λi )x1 + (1 + v − λi )x2)2

N (1 − 2θλi + 2θv)3
,

p2(x1, x2) =
N∑
i=1

2

N (1 − 2θλi + 2θv)2
+ 2t

{
N∑
i=1

(i(1 − v + λi )x1 + (1 + v − λi )x2)

N (1 − 2θλi + 2θv)2

}2

.

For integral (47) and (48), it is merely symbolic computation, and we can easily do it
by some mathematic software, like Mathematica, then get explicit formula for f0, f1
and f2.
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f0(θ) = 1√
A2

+ 1

N

1√
A2

(
7

6
− 3

A2
+ 2A3

A2
2

− 5

3

A2
3

A3
2

+ 3

2

A4

A2
2

)
+ O(N−2),

f1(t) = 1

N

{
2t(t − θ)(2t A2

2 − A3(t − 2θ) − A2(t + 2θ))

θ3(det(K̃ ))
5
2

}
+ O(N−2),

f2(t) = 1

N

2A2

(det(K̃ ))
3
2

+ O(N−2).

Actually in thisway,we can obtain any higher expansion terms of the spherical integral.
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