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Abstract

We consider the spherical integral of real symmetric or Hermitian matrices when the
rank of one matrix is one. We prove the existence of the full asymptotic expansions
of these spherical integrals and derive the first and the second term in the asymptotic
expansion.
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1 Introduction

In this paper, we consider the expansion of the spherical integral

1) (D, By) = / exp{NTr(DyU*ByU)Ydmy] (U), (M
where mg\’,s) is the Haar measure on orthogonal group O(N) if B = 1, on unitary

group U(N) if B = 2, and Dy, By are deterministic N x N real symmetric or
Hermitian matrices, that we can assume diagonal without loss of generality. We follow
[4] to investigate the asymptotics of the spherical integrals under the case Dy =
diag(6,0,0,0,0...0):

19Dy, By) = 16, By) = / explON (el Bye)dm O @), (@)

where ¢ is the first column of U.
The main result of this paper can be stated as follows,
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Theorem [fsupy ||Bnllooc < M, then for any 0 € R such that |0| < 1 the

1
M2+10M+1°
spherical integral has the following asymptotic expansion (up to O(N """ for any

given n):

e—N(Gv—ﬁ >N, 1og(1—20x,-(BN)+20u))IN 6. By)

=mo+ 2+ 2 T oY 3)
TN N2 N7
where v and the coefficients {m;};_, depend on 0 and the derivatives of the Hilbert
transform of the empirical spectral distribution of By.

The spherical integral provides a finite-dimensional analogue of the R-transform
in free probability [8,10], which states that if X and Y are two freely independent
self-adjoint noncommutative random variables, then their R-transforms satisfy the
following additive formula:

Rxiy = Rx + Ry.

In the scenario of random matrices, let {By} and {I§ ~} be sequences of uniformly
bounded real symmetric (or Hermitian) matrices whose empirical spectral distributions
converge in law toward tp and t; respectively. Let Vi be a sequence of independent
orthogonal (or unitary) matrices following the Haar measure. Then the noncommuta-
tive variables { By } and {V;\j l}N Vi } are asymptotically free. And the law of their sum
{Bny+ V;f, B ~ V) converges toward 7 LVEBYS which is characterized by the following
additive formula,

= Rey + Ry, “)

TB4v*BY

We refer to [1, Section 5] for a proof of this.
For the spherical integral, using the same notation as above, we have the following
additive formula

L rog By, [190, By + Vidn v | = — 102 190, Br) + — 10g 190, B
v logkvy | Iy ,N+NNN)—N0gN(,N)—i-NOgN(,N).

Soif we define the finite-dimensional R-transform for arandom or deterministic matrix
By as follows

1
R(By) = - logEa, | 110, By) .
then the additive law can be formulated in a more concise way,
Ry(By + Vi By V) = Ry(By) + Ry (Bw). ©)

Compare with (4), which takes advantage of the fact that {By} and {V}, By Vn} are
asymptotically free, and which holds after we take the limit as N goes to infinity.
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However, additive formula (5) holds for any N, which provides a finite-dimensional
analogue of the additivity of the R-transform. Indeed, the R-transform is some sort of
limit of our Ry:

20
: N 8) B (7
Jim Ry(By) = lim — log Iy’ (6. By) = 5 A Ry, (s)ds.

Combining this and some concentration of measure estimates, i.e., almost surely, as
N goes to infinity,

1 N 3
+ log 1P, By + Vi By Vy) — Ry(By + Vi By V)| — 0, (6)

Guionnet and Maida in [4] showed that the additivity of R-transform (4) is a direct
consequence of (5). Moreover, with a more quantitative version of (6), the finite-
dimensional analogue of R-transform may be used to study the rate of convergence
of sums of asymptotically free random matrices.

The asymptotic expansion and some related properties of spherical integrals were
thoroughly studied by Guionnet et al. [4-6]. However, in their paper, they only studied
the first term in the asymptotic expansion. We here derive the higher-order asymptotic
expansion terms. The proofs are different from those in [4]; Guionnet and Maida relied
on large deviation techniques and used central limit theorem to derive the first-order
term. In this paper, we express the spherical integral as an integral over only two
Gaussian variables, hence allowing for easier asymptotic analysis.

The spherical integral can also be used to study the Schur polynomials. Spherical
integral (1) can be expressed in terms of Schur polynomials. The Harish-Chandra-
Itzykson-Zuber integral formula [2,7,9] gives an explicit form for integral (1) in the
case B = 2 and all the eigenvalues of D and B are simple:

det(eNAi(D)Aj(B))lgi,jgN

(N

N2-N

N2 A(A(D))A(X(B))’

N
17D, B) =[]
i=1

where A denotes the Vandermonde determinant,

AMD) = ] (D) —2;(Dy),

I<i<j<N

and X; () is the i-th eigenvalue. If we define the N-tuple © = (A;(By) — N + i)lNzl,
then above expression (7) is the normalized Schur polynomial times an explicit factor,

HzN=1 i Sﬂ(eN)»l(D)’ eN2(D) .“’eN)LN(D)) Hi<j(eNA,»(D) _ eNx,(D))

N Tl i =) =y =) Tlio;i(D) = 2;(D))
SH(ENM(D)’ eN22(D) eNAN(D)) ni<j(eNA,-(D) _ eNA_f(D))

1$(D, B) =

.....

S, 1, 1) [Ti-; (N3 (D) = NA;(D))’
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In [3], Gorin and Panova studied the asymptotic expansion of the normalized Schur

polynomial Sux1, sz(l f" ! 11) LD for fixed k. Its asymptotic expansion can be obtained

from a limit formula [3, Proposition 3.9], combining with the asymptotic results for
Su(xi, 1,1,...1), which corresponds to the spherical integral where D is of rank one.
Therefore, our methods give a new proof of [3, Proposition 4.1].

2 Some Notations

Throughout this paper, N is a parameter going to infinity. We use O (N ) to denote
any quantity that is bounded in magnitude by C N~/ for some constant C > 0. We use
O (N ~°) to denote a sequence of quantities that are bounded in magnitude by C;N ~*
for any / > 0 and some constant C; > 0 depending on /.

Given a real symmetric or Hermitian matrix B, with eigenvalues {A; }lN: |- Let
Amin (B) (Amax (B)) be the minimal (maximal) eigenvalue. We denote the Hilbert trans-
form of its empirical spectral distribution by Hp:

Hp(z) : R\ [Aqin(B), Amax(B)] = R

On intervals (=00, Amin(B)) and (Amax(B), +00), Hp is monotonous. The R-
transform of empirical spectral distribution of B is

R
Rp() = Hy' (@) — .

on R/{0}, where Hgl is the functional inverse of Hp from R/{0} to (—00, Amin(B))U
(A*max (B), +00). In the following paper, for given nonzero real number 6, we denote
v(0) = Rp(20), for simplicity we will omit the variable 6 in the expression of v(0).

Remark 1 Notice v, defined above, satisfies the following explicit formulas:
(@)

1 1 1Y
_ - -1,
N;l—Z@M—}—ZQU ;1—29,\ 1200

We denote the normalized k-th derivative of Hilbert transform
N

(=Dt gk—1Hg 1 1 1
Ay = — = — . 9
FE ke at \Y * 20 N ; (1 —261; + 20v)* ©)

Notice from the definition of v, A| = 1. The coefficients in asymptotic expansion (3)
can be represented in terms of these Ay’s.
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Also we denote

N
| A 1 14200
F = — - _ As.
N ; 20 12002~ 20 7 29 2
N 2 2
1 A 1+46v (1 +26v)
Gi=— i —_ As.
N Z (1 —20%; +200)2 102 " M

3 Orthogonal Case
3.1 First-Order Expansion

In this section, we consider the real case, 8 = 1. For simplicity, in this section we
will omit the superscript (8) in all the notations. We can assume By is diagonal
By = diag(A1, A2, ..., An). Notice e is the first column of U, which follows Haar
measure on orthogonal group O (N). ey is uniformly distributed on SV, the surface
of the unit ball in RV, and can be represented as the normalized Gaussian vector,

-8
lgll”
where ¢ = (g1, g2, ..., gn)T is the standard Gaussian vector in RV, and || - || is the
Euclidean norm in RY. Plug them into (2)
rgl+ A T+ A
In(@. By) = /exp oN =L 25;2 NgN HdP(g, (10)
g +8& +- gN i=1

where P(-) is the standard Gaussian probability measure on R. Following the paper
[4], define

L L
- 2 £ 2
N=y ;_1 g -1 yn:i= N IE_] Aig7 — v

Then (10) can be rewritten in the following form

N
+v
In(@, By) = /exp {GNVN o } DdP(g[).

Next we will do the following change of measure

N
1 1 2
Py(dgi,dga, ..., dgy) = (‘/1 + 200 — 204~ 2U+20v=20%)8; dg,-) )
«/ZnN E
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With this measure, we have Ep, (yn) = 0 and Ep, (py) = 0. Therefore, intuitively
from the law of large number, as N goes to infinity, yy and yx concentrate at origin.
This is exactly what we will do in the following.

Let us also define

~ N
K1,K2 _ yN+v .
IN (9’ BN) - ﬁVN\SN_Kl,eXp {ONVN + 1 } l—[dP(gl)a

PnI<N 2 i=1

where constants x| and k» satisfy % > k1 > 2«3 and 2«1 + k2 > 1. We prove the
following proposition, then the difference between Iy (6, By) and [ 1'\‘,"'(2 (0, By) is
of order O(N~°°). A weaker form of this proposition also appears in [4]. With this
proposition, for the asymptotic expansion, we only need to consider Il'i,l"‘z 6, By).

Proposition 1 Given constants k1 and k> satisfying % > Kk > 2Ky and 2k + kp > 1.
There exist constants ¢, ¢/, depending on K1,k and sup || By || oo, such that for N large
enough

-2k

1IN (O, By) — 15720, By)| < ce™N' " Iy(0, By). (11)

Proof We can split (11) into two parts

1N<9’BN>—I““(9,BN>=(/_/ >+ / _/ o
! lyn <N~ lyw|<N—¥1 lyn|<N—*1,

lYNISNT*2

E
1 E,

Following the same argument as in [4, Lemma 14],
Eil < ceN' 7 Iy (6, By).

For E;, notice that

exp{ VN R } HdP(gl

— exp {QNU ANy — vyn) — ONyx L - +yN } HdP(g,

ONv YN — VYN L 12012004200
=e""Vexp{ —ONyn } | | e 28 i dg;.
p{ yw+1 25 V2n l

i=
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With the change of variable g; = J#W’

)’N +v
exp{ } | | dP(gi)
. 5 — v N
= INv=2 Ly log(1=202+20) exp {_QNVN'W;]/N + 7IN } I Idp(gl.)’

where in terms of the new variables g;’s, we have

N ~2 N g
Ai e
1, . 12
Z 29x 200 Z “2on 200 1P
We can bound | E3| as,
YN +v
l/y”'<N “ xp{@N }HdP(g,
[Pn|>N~ 2
_ ONv—=L 3N log(1-203;420v) YN — VYN
=e 2 <<, SXP GN)/ J/N+ HdP(g,

7N 1>N—"2
_L1 N 20 1=k ~ _
< NV Xisi log(1=204i-+200) IOIIBN oo VDN p (10| 5 N2,

P(|)7N|>N_K2)=P< —v >N"‘2)
N
Z _M@ED N2
T 201, +29v

< 28_6 Nl 2K2
The last inequality comes from the concentration measure inequality in Lemma Al
and the uniformly boundedness of || By ||co. Moreover from [4, Lemma 14], we have
the lower bound for Iy (6, By),

where

1 rig
NZI—20M+29U

i=1

1 N 1—
In(@. By) >ce® Vo1 XiLi1081-201426101) o~ 911 By oo +0)N' 1

. 1— 7 a7 1—2,
From our assumption k| > 2k2, s0 e/?IIBNlectINT o o¢'NT752 'Therefore for N
large enough
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B2l < ce” N Iy 6, By,
This finishes the proof of (11). O

Since the difference between Iy (6, By) and 1,"**(0, By) is of order O(N~%),
for asymptotic expansion, we only need to consider / K,I’KZ 0, By).

5926, By) = eN(Gvfﬁ YV, log(leGAi(BN)+28v)>
N ’ -

/leSN,Kl’ exp{ —~ONyn }l_[dP(g,

[PnISNT*2
The next thing is to expand the following integral,
ﬁmfm exp { ONyn L } HdP(g, (13)
[PN|<NT*2
We recall the definition of yy and Py from (12). Since the denominator yy + 1 in

the exponent has been restricted in a narrow interval centered at 1, we can somehow
“ignore” it by Taylor expansion, which results in the following error Ry,

Ry = [VN|§N_K1, exp{ QN)/ }HdP(g,

[PNISNT2
N
_ —ONyN (PN —vYN) 5.
‘[yN‘SN—Kl’e VAN N l_[dP(gl)
[PNISNT2 i=l
— e~ ONYN(In—vyN)
lyn|SN7*L,
[PN|SN T2
v
(exp{@Nyzu} )l_[dP(gl (14)
Under our assumption 2k + k3 > 1, 9Ny2 INvyn O(N'=21-Kk2) = (1),

TyN+D
which means the above error R; is of magnitude o(1). Therefore, the error Ry won’t

contribute to the first term in asymptotic expansion of integral (13). And the first term
of asymtotics of the spherical integral comes from the following integral

N
ﬁyMgN“‘l, e ONYN(IN—vYN) ndp(gi)' (15)
[PNISNT<2 i=1
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We will revisit this for higher-order expansion in next section. In the remaining
part of this section, we prove the following theorem about the first term of asymptotic
expansion of spherical integral. This strengthens [4, Theorem 3], where they require
additional conditions on the convergence speed of spectral measure).

1

Theorem 1 Ifsupy | Bylloo < M, then for any 6 € R such that |0| < TOTI0MAT

the spherical integral has the following asymptotic expansion,

_ __1L N —20; 1
. N(eu 3N log( 20)»1(31\/)4»2911))11\7(0’ By) = o), (16)

VA2

where A2 = % Zf\lzl m

Notice (16) is an integral of N Gaussian variables and the exponent —O N yy (Py —
vyn) is a quartic polynomial in terms of g;’s; So, one cannot compute the above inte-
gral directly. Using the following lemma, by introducing two more Gaussian variables
x1 and xp, we can reduce the degree of the exponent to two, and it turns to be ordi-
nary Gaussian integral. Then we can directly compute it, and obtain the higher order
asymptotic expansion.

Write the exponent in integral (15) as sum of two squares, then we can implement
Lemma A2, to reduce its degree to two. Let b* = 0/2, I} = [—N%_’““, N%_"H'E]
and I, = [—N%_"ﬁe, N%_"ﬁé], for some € > 0. Then on the region {|yy| <
N7 N < N7}

e~ ONYN(IN—vYN)

~ e {_g VN = v)yn + 7)) = YN+ v)yy = 93))?
2 2

%2
! //e—ibxl«/N«I—v)yN+;>N>e—bsz<<1+v>yN—?N)E—T'
L J1

(V27)?2
X2
e~ Fdxdxy + O(N~). (17)

Plug it back into (15), ignoring the O (N ~*°) error,

N
ﬁy n e—9NVN(J7N—vVN)1_[dP(§I.)
NI= s
[PnISNT*2 i=l
=/ B ;{/ / e~ bx1VN((A=0)yn+78) ,=bx2V/N(1+0)yn —7n)
ey (V207 Un Jn

2 22 N
e_Ze_deldxg} HdP(gi)
i=1
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2 2

1 / ibx1VN b /N T -4
= e e e 2dx;
(\/ 27'[)2 I xI l_[ '

i=1

E’,z <1+21J(l(| —vpA)x] +(1Hv—2;)xp)

N
2 VN(1-265; +26v) ) ~.
fWN - | [ = J_ _|_|1 dg;. (18)

Ipn|<N 2 i=1

Notice here in the inner integral, the integral domain is the region D = {|yy| <
N~ |py| < N~*2} and the Gaussian variables g; are located in this region with
overwhelming probability. It is highly likely that if we instead integrate over the
whole space R", the error is exponentially small. We will first compute the integral
under the belief that the integral outside this region D is negligible, then come back
to this point later. Replace the integral region D by RY,

& (1 4 22600 ta)x +(1v—2y)xg)

N N
eibxlﬁebxzﬁ / 1—[ 1 e*T VN(1—202;4+20v) > ndgi
RV V2m i=1

N b((1—v+ri)x1+(1+v—2:)x2) }
exp i VN (1=201;+20v)

= , 19
J \/1 1 26GA—v i) +(I+v—h)x) {19
i=1 N (1-202;+260v)
where for the numerator we used the definition (8) of v, such that
N N
1 1—v+ A 1 1+v—
e T I pie e S ICD
1—26); +291) 1 —20; +29v

l=1 ‘:1
bGA(—v+r)x1+(1+v—2))x))

VN (1-202;+20v)
have the Taylor expansion

N
Hm Heu,+o(u)_1_[eﬂ, (1+0<Zu,>>,

i=1

Let u; = . Then u; = O(N7*2), where 0 < € < k3. So we

later we will see fezt 1 Z luzdP(xl)dP(xz) = O(1). Thus, the first term in

the asymptotics of integral (18) comes from the integral of eXiti i , which is

25N (((—v3)x ) +(+v—ipry)?  xF+xd

IV i=I o 4200)2 2

f / T dudo. @21
L JI

1
(v2r)?

The exponent is a quadratic form and can be written as —%(x, Kx) where K is the
following 2 x 2 symmetric matrices,

ko [1H0(0 =02 +2(1 —v)F +G) —0i ((1 = v Az + 20F — G)
- —0i((1 —v?) A, +2vF — G) 1-6((1+v)?4, —2(1 +v)F +G)
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N 1 1

i L 1 LN N
where Ay, F, G are respectively 5 » ;. T—mm 55507 N Yoict =207 3a07 and
)\.2

v Doiny 0287 12007 With this notation, above integral (21) can be rewritten as

1 // —Lx,Kx)
e e 2 M dx dxs. (22)
V2m)? I Ui,

To deal with this complex Gaussian integral, we will use Lemma A3. Now we
need to verify that our matrix K satisfies the condition of Lemma A3. Write K as the
following sum

K — 1+6 (1 —v)?42+2(1 —v)F +G) 0
- 0 1-6((1+v)?A; —2(1 +v)F +G)
. 0 —0 ((1 — v} Az + 20F — G)
T 20 (1= v)Ar + 20F — G) 0 '

Since min{A;} < v(0) < max{X;}, [v(0)] < max |\;| < M. If O < m, it
is easy to check the real part of matrix K is positive definite. To use Lemma A3, the
only thing is to compute the determinant of matrix K. Notice the algebraic relations
between parameters A», F, G, det(K) = A,. Therefore, we obtain the first-order

asymptotic of the spherical integral,

efN(gv,ﬁ N log(l729)\1(BN)+2611))]N(9’ By)

= («/2]_—71)2/1 /1 e*%(x,Kx>(l+o(1))dx — J%JFO(U
2 1

Go back to integral (18), we need to prove that the integral outside the region D
is of order O (N ~%°), then replacing the integral domain D = {|py| < N7, |yy| <
N2} by the whole space R won’t affect the asymptotic expansion.

Lemma 1 Consider integral (18) on the complement of D, ie., on {|yy|
N~V or|yny| = N7},

A%

R =

2 2
ibx1 /N, /N —1 9
//ele| N+bxa Ne 2 e 2(:1)(1.1(1)62
L JIL
2 )
787,-<1+2b(1(1—v+k,~)x1+(1+v—)»l-)x2)

N 1 ) N
I VN(1-202;+26v) ~
'/A|)7N|ZN*Kl l_[ /Zne | |dgl .

orlyy|=N—*2 i=1 i=1

Then for N large enough, the error R < c’e_"N{, for some constant ¢, c’, ¢ > 0
depending on k1, k2 and || BN || co-

Proof

Xz x2
i 1 2
Rff / e?)\{lbe/N—&-bxz\/N}e 2 e~ T dxydxy
L JI
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_(R{ <1+Zb(i(l—v-Ml-)x1+(l+v—kl-)x2)

N
VN (1-265;+26v) )} l_[ ds
8i-
i=1

/\ym>N - H m

or lyy|=N~*2 i=1

Since b = 4/60/2, b is either real or imaginary. For simplicity, here we only discuss
the case when b is real. The case when b is imaginary can be proved in the same way.
The above integral can be simplified as

_E(jpp0hpy ) N 2
R < | etx2vVN l_[ 2 VN (1—20%;+200) l_[d~' e~ Fdx
=/, [PylzN ¢_ 8 >
2

or lyny|>N~ K i=1 i=1

2b(1+v—A~A;)x2

To simplify it, we perform a change of measure. Let h; = g; \/ 1+ T (1260 1260

bXZf x%

R < Pr(D%Ye™ 2 dxs. (23)
5 HN \/1+ 2b(1+v—2;)x2

i=1 VN(1-201;+26v)

Here Py, (-) is the Gaussian measure of (h,')lNzl. Take 0 < € < % — K1, We can separate
the above integral into two parts,

ebe\/N 2

R 5/ N 2b(1+v—»n;) Ph(Dc)eiTzdm
—N€,N€ L V—Ai)X2
{ iz \/1 + VN (1-201;+20v)

E;

ebxz VN x%

n / . e e~ Tdx;. (24)
A= N€, N€e ! _<OUTV—A)X)
20l N \/1 T IN(1—207;1260)

E>

For E», itis of the same form as (19). Use the same argument, the main contribution
from E; is a Gaussian integral on [—N€, N€]¢. So it stretched exponential decays,
Es < c'e=N® For E,

bx2\/7 x%
e 2dx su P, (D).
/ \/1+ 2b(l+v Ai)X2 zxze[—NI:,Ne]{ h( )}
[Tizi VN(1—-202;+200)

If we can show that on the interval [—N€, N€], P, (D) is uniformly exponentially
small, independent of x», then E; is exponentially small. For the upper bound of
P, (D°), first by the union bound,

Py(D) < Py(lyn] > N7 + Pp(Jyn| > N7*2).
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For simplicity here I will only bound the first term, the second term can be bounded
in exactly the same way.

Pr(lynl > N7

2

fz ki

N~ 1 —226 4+ 20v + 2bxo(1 + v — A;)/V/N

—1| > N"‘l>

1< h?—1
=Pu\|5 +ONTH[ =N
1<N;1 246 + 200 + 2bxo(1 + v — A;) /N
< clemeN, (25)

For the second to last line, we used the defining relation (8) of v, such that
% Z:N=1 m = 1. And for the last inequality, since € — % < —k3, the term

O(N“~ 2 ) is negligible compared with N ~*!. Then the concentration measure inequal-
ity in Lemma A1 implies (25). O

3.2 Higher-Order Expansion
We recall the definition of yy and Py in terms of the new variables g;’s,
~2

N N g
’z
1, v (26
; =200 1200 ; T —20a 1200 49

To compute the higher-order expansion of the spherical integral Iy (0, By), we
need to obtain a full asymptotic expansion of (13).

i=N

YN — VYN N
/‘VANSN': exp { GNVN—VN 1 } 11 dP(gi) (27)
lynI=NT*2 1=
lynISN~FL, e*QN}/N(}/N orw) exp {QN v VN }Hdp(gl
NI=
[PNISNT*2
X 1
= ﬁy <N e ONYN(N—VYN) {ZE (QN)/I%, +l > }HdP(gz
NI= )
[PNISNT*2 k=0 " YN
N +00
— —ONyN (PN —vYN) 5. —ONyN (PN —VYN)
- ﬁyN\sN—“l,e Hdp(g’) + Zﬁymgv-ﬂ,e
[PnISNT<2 i=l =17 |py|=N—2
1 ( 1) 9 N
x {Z (k ) ) () SNy (VNG = oyw)) }HdP(éi).
k=1 i=1

(28)
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We consider the /-th summand in expression (28). As proved in [4, Theorem 3], the
distribution of (+/Nyy,~/Nyy) tends to I, which is a centered two-dimensional
Gaussian measure on R? with covariance matrix

. Ay F
L]

Moreover, the matrix R is non-degenerate. Therefore, by the central limit theorem,
we can obtain the asymptotic expression of the /-th term in (28)

6Ny Py —uny et
fWN o e ”Z(k 1) ) Ny

[PNI<N~ o k=1

(VNG —vv))’ [Terc)

=

1y ! (- 1)"
— (ﬁ) {/e—GNx(y—vx) =Z< ) l+k(y _ Ux)k} dr (x, y) +0(1)}
k=1

= O(N~'%).

Therefore, if we cut off the infinite sum (28) at the /-th term, then the error terms are
of magnitude O (N ~U*+1/2)_ To obtain the full expansion, we need to understand each
term in expansion (28).

kpk
—ONyn (PN —vYN) (=D NG k
lywl=N=1, € i — (=yn) N*(yn)

k!
[PNISNTF2
N
v —vyw)* [ [dP @G- (29)
i=1
Define
N N
fi) = [leSN,KI, e N ey L TTdP (). (30)

[PnI<N2 i=l

By the dominated convergence theorem, we can interchange derivative and integral.
Integral (29) can be written as

(_1),< — 1)9’< dk £,(1)

k! dek li=e

Therefore to understand asymptotic expansion of (29), we only need to compute the
asymptotic expansion of f;(¢), for/ =0, 1, 2, .... We have the following proposition
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Proposition 2 Ifsupy l|Bylloo < M, then for any 6 € R such that |0| < m,

f1 has the following asymptotic expansion (up to O(N~"~1) for any given n)
Ay =mo+ "L 2 T oy, (31)
N N2 N7
where {m;}?_, depends explicitly on t, 0, v and the derivative of the Hilbert transform
of the empirical spectral distribution of By, namely, Ay, Az, A4 ... Aa,y2, as defined
in (9).

Proof First we show that f; has asymptotic expansion in form (31), then we show
those m;’s depend only explicitly on ¢, 6 and {Ay }2‘3 We introduce two Gaussian
random variables x; and x», the same as in (17) and (18), we obtain the following
expression of f; (1),

2

2
fi) = 1 [ eibx1ﬁ+bx2ﬁl—[e—%dxi

(V 27'[)2 I xI i=1

/ N | _§(H_2b(i(17:rxi),x|+<1+u—xi)x2)) l N

N(1-20i;426v) ~ —0Q

v | | ==¢ , vy [1d& + o=,
PN <N H o N
lywl=N—*2 i=1 e i=1

where b2 = 1/2, I} = [-N2 K7€ N271+€] and [, = [N 272+ N27K2F€] for
some € > 0. The same argument, as in Lemma 1, about replacing integral domain
in the inner integral can be implemented here without too much change. So we can
replace the integral domain {|py| < N7, |yn| < N7} by RV,

N 1 _ﬁ 1+2b(i(17v+)»i)x1+(l+v7)\i)x2)
ibxiv/N+bxa/N 2 VN(1=202;+200)
e I1 e (32)
RY © ) 2
1
N ~2 N
1 (g — 1D .
_ _ i ds;
{N;1—29Ai+29u 11 8i
N b1 =v+A)x 1 +(1+v—27)x2) }
_ exP[ VN(1-261;+26v) / 1 5 33)
! 2b((1—v+r)xi+(A+v=2A)x2) JpN + 1 /27
i=l \/1 + VN (1-202;+26v) i=1
..2 l
1 N 1+2b(i(lfv+)»i)§(]+(1+U—Ai)x2) -1 N
VN(1-205;4260v) ~
J— L d .
N; 1 — 260 + 200 E 8i
1
N ) N 5 N N
et 1 & 11 Vi - -
= e @ - +2u0 ¢ [Taz,
e [ e (3 L -0 v | Tes
Ey E
(34)
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where we used (20) for the first equality, and

o 1 o DA =0 A+ (40— d)
’ ' VN(1 =202 + 20v) ’

1 — 20 +26v’

Notice here p; can be written as a linear function of v;

: 1 x 1\ x2 > x1 \ b
;= l+—)— l—— ) — )by — i = 35
= (1 ( ) 5+ (1-3) )t (-5 @
Formula (34) consists of two parts: a product factor £ and a Gaussian integral E».
For E| we can obtain the following explicit asymptotic expansion

N et N 1 N 2, voo  (=Dkok—1 g
1_[ — Heﬂi_jlog(l+2ﬂi) — 1—[ et s
i VI 20m i=1
i T iy U St
= ezi=ttig N2 ! (36)

Notice

i (1= v+ a)xs + (1 +v = A)x)k
N(1 —20A; +26v)k

i=1

k k P AT
= Z {<m>(ix| —x)" (1 —v)x; + (1 +v)x) "™ ; N +29)’Li 200 } .

If we regard v and 6 as constants (since they are of magnitude O (1)), then the sum

N A . . . .
i N (7285, 1200k SN be written as a linear combination of A, Az ..., Ay for any

0 < m < k. Thus we can expand (36), to obtain

N

el N 2 1
— Zi:l Hi 1 N
=e i + E gk(x1,x2) ¢,
i V1420 { =1 N% }

1

where gy (x1, x2)’s are polynomials of x| and x;. Consider ¢, 6 and v as constants, the
coefficients of gi(x1, x2) are polynomials in terms of Ay, A3, ... Ax42. Moreover the
degree of each monomial of g (x1, x2) is congruent to k modulo 2.

Next we compute the Gaussian integral E; in (34). Expand the /-th power, we
obtain

- @& — A +2m))
Nl - 1+2M,

_ 1! K K
= > il > ]‘[(l+2 )(g,—(1+2m))

ki=ky >k 1<iy,iz,..im<N j=1
ki+ka.. kp=l dlslmct
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Denote

55

tj

P, (i) / = L@ 1+ 2 )5

then py; is a kj-th degree polynomial, which only depends on k. With this notation,
the Gaussian integral E» can be written as,

k.
1 I vi; !
Nl Z kiko! - k! Z 1_[(1+2 ) Pr; (i)

k1>kp->kp 1<iy,i2,...im<N j=1
k1+ko k=1 distinct

By the following lemma, the above expression can be expressed in a more symmetric
way, as a sum in terms of

I {1 N( Vi )kj ( )} -
—m ~r - Clkj Mi )
i1 N “ 1+ i

= i=1

where ki > kp--- > ky, ki +ky + ---k,, = [ and qrk; ’s are some polynomials
depending only on ;. O

Lemma 2 Given integers s1, 52 ..., Sm and polynomials q1, q2, .. .qm, consider the
following polynomial in terms of 2N variables x1,x2 ... XN, Y1, Y2 - .- YN

m
h= > T«

1<iy,iz...im<N j=1
distinct

Then h can be expressed as sum of terms in the following form

N
I1 {Zx?’c}j(yi)} : (38)

J=1

where |, {tl-}lN: | and polynomials {c}i}f\': | are to be chosen.

Proof We prove this by induction on m. If m = 1 then £ itself is of form (38). We

assume the statement holds for 1,2, 3...,m — 1, then we prove it for m.
m N
S
11 (zx,.-fq]@,))

j=1 \i=l1

m—1 d
Zlerr St
== ) > IIs77 [Tawp 69
d=1 (T, T0d 1<iy,ip...,ig<N j=1 ' lem;
a partition of {1,2,...,m} distinct
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> 7
Notice the summands of (39) are Y 1 <;,. ,2 1d<N l_[] 1% a Hlen qi (yl]) which

dist
are of the same form as & but with less m Thus by induction, each term in (39) can
be expressed as a sum of terms in form (38), so does /. O

In view of (37), since we have u; = O(N€~*2), we can Taylor expand 1/(1 + ;)
in (37). Also notice (35), the relation between p; and v;, (37) has the following full
expansion

N, — Z ,éhkm,xz) (40)

where hj(x1, x2) are k-th degree polynomials of x; and x;. Consider ¢, 6 and v as
constant (since they are of magnitude O (1)), the coefficients of sy (x1, x2) are poly-
nomials of Ay, A3, ... Akti—m+1. Since the Gaussian integral E; is the sum of terms
which has the asymptotic expansion (40), itself has the full asymptotic expansion,

e ¢]

1
Ey=) —psi(x1, x2), (41)

k=0 N2

where the coefficients of si(x1, x2) are polynomials of Aj, A3z, ... Ax+1. And the
degree of each monomial of s is congruent to k£ modulo 2. Combine the asymptotic
expansions of E1 and E5, we obtain the following expansion of f;(¢) (up to an error
of order O (N ™)),

1 T P | > 1
— 5 (x,Kx)
— e’ — 8k (x1, x2) — Sk (x1, x2) ¢ dx1dxa,
57 Dyt {M Ha e |
1 9
_ o~ Z S &1 (a1, x2)sk—1 (x1, X2) Qoo (42)
2 I xIp k=0 NZ
where K is the following 2 x 2 matrix
o [1+1(d =02 +2(1 = v)F +G) —ti (1 — v} Az + 2vF — G)
: —1i((1 — v} Az + 2vF — G) 1—t((1+v)?4 —2(1 + v)F + G)

Formula (42) is a Gaussian integral in terms of x1 and x». If we cut off at k = m, this

. . _mtl . . . .
will result in an error term O (N~ 2 ). Now the integrand is a finite sum. The integral
is O(N~%) outside the region I} x I; thus, we obtain the following asymptotic
expansion,

. k
ﬁ(r)—Z kzﬂ e5<W>{Zg1(x1,xz>skl(xl,xz>}dx1dxz+0(1v21). (43)

1=0

Notice the degree of each monomial of g;(x1, x7) is congruent to / modulo 2, and the
degree of each monomial of sx_;(x1, x2) is congruent to k — / modulo 2. For any odd
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k, Zf:o g1(x1, x2)sk—1(x1, x2) is sum of monomials of odd degree. Since here x1, x3

are centered Gaussian variables, the integral of Zf:o g1(x1, x2)Sk—1(x1, x2) vanishes.
Using Lemma AS5, (43) can be rewritten as

[71 2k
1 1 1,7 m
[ =5 (x,Kx) (-1
kE:O N o fe 2 {12—0 gl(xl,x2)52k—l(xlax2)}dxldX2+0(N 27

(5]

—

1
Pl \/det(K)

Since the entries of matrix K and the coefficients of leio g1(x1, x2)82%—1(x1, X2)
depend only on ¢, 0, v and Ay, A3, ..., Ayy2. This implies f;(¢z) has the expansion
3D). O

From the argument above, the asymptotic expansion of (27) up to O(N~//?) is a
finite sum in terms of derivatives of fi(#)’s at r = 6. Differentiate f;(¢) term by term,
we arrive at our main theorem of this paper,

2k
L g-1 _[m—
{Zgl(f’ava&)mz(asl,ﬂsﬁ"z(w E)} ‘H+0(N 2.
1=0 B

Theorem 2 Ifsupy || Bylloo < M, then for any 6 € R such that |0| < m,
the spherical integral has the following asymptotic expansion (up to O(N~"~1) for

any given n)

e NOv—5x TN, log(1-2602; (BN)+20) 1 (9 By)
— m” 0 N—n—l
_m0+—+—+--'+m+ ( ),
where v = Rp,, (0) and {m;};_, depends on 0, v and the derivatives of Hilbert trans-

form of the empirical spectral distribution of By at v+1/20, namely A>, Az, ... Ay42
as defined in (9). Especially we have

n
1

1 1 (3 A4 5A§+1
my= —, mH=—|-——F—-— .
T VUA T U \2A2 343 6

Proof In the last section, Theorem 1, we have computed the first term in the expansion
my = \/;AT' We only need to figure out the second term m27. For this, we cut off (31)

atl =2,

. i=N
YN — VYN -

—ONyy ———— dP(g;

\[VN|SN—K1,CXP{ ONyN e },Ll] (&)

[Pn|<NT*2

_ " 92d2+9d ’ + O(N2 44
= fo - (—— a) 2 — (N79). (44)

2 dt?

Gdf
=0 dt !
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Take l = 0, 1, 2 in (30), we obtain the asymptotic expansion of fy, fi and f> (we put
the detailed computation in the appendix),

P 1 L (73 24 5A§+3A4 Lo
ey = VA TN VA Ay A2 343 242 ’
d 6 243 5
—0— —-—— — - O(N
dzfl =0 NA/ ( Ar )+ ( ).
02 d? d
———+0 —-—— O(N~
(2d12+ dz)f2 =6 NA/ ( >+ (N7,

Plug them back to (44), we get

1 1 (344 54} L1 1
mog = N my = — S —
T VA T U \2a2 T 3a3 T 6

4 Unitary Case

In this section, we consider the unitary case, 8 = 2. As we will see soon that the
unitary case is a special case of orthogonal case. With the same notation as before, let
By = diag(A1, A2, ..., An).and U follows the Haar measure on unitary group U (N).
The first column e; of U can be parametrized as the normalized complex Gaussian
vector,

gD ig®
gD +ig@)”

where gV = (g1.¢3.... gan—3. gan—1)" and g? = (g2, g4. ..., gan—2. g2n)" are
independent Gaussian vectors in R . Then the spherical integral has the following
form

M2+ g+ +AN(gEy_ s + 82y)
1@, BN):/exp{NQ e N1 2N HdP(g,
gi+g+ ey 8y i=1

Consider the 2N x 2N diagonal matrix Doy = diag{X1, A1, A2, A2, ..., An, An} With
each A; appearing twice. Then we have the following relation,

156, By) = 133 (6/2, D).

Define v and {A,-}?il as in the notation section but replace 6 by 6/2 and replace By
by Doy, namely v = Rp, (0) and
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N
y (=Dt @ =lHg, (. 1 1 1
Ay = ==y 45
=Gk a1 Pt NZ(I—GM—F%)" “5)

i=1

Then from Theorem 2, we have the following theorem for unitary case.

S S
4M?+10M+1°
the spherical integral 1 1(\,2 )(9, By) has the following asymptotic expansion (up to
O(N7"Y) for any given n)

Theorem 3 Ifsupy ||Bylloo < M, then for any 0 € R such that |6| <

2
186, By) = 1)) (6/2, Day)

_ N@Ov—=1% ZNzllog(l—Bk,-(BN)+0v)){ mp ma My —n—1 }
=e N i my+—+-—+-+—+ON :
ot TNz N7 ( )

where v = Rp, (0) and {m;}}_, depends on 6, v, {A,-}izfz'z, and the derivatives of

Hilbert transform of the empirical spectral distribution of By at v + 1/0. Especially
we have

1 1 (344 543 Ll

= — = \A ~_2 Y ~_3 =

A /A, \24; 343 6
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Appendix A. Properties of Gaussian Random Variables

The following is a useful lemma on the concentration of measure for the sum of squares
of Gaussian random variables.

Lemma A1 Given independent Gaussian random variables {gi}lN: |» consider the
weighted sum ZIN=1 a,-gl.z, where the coefficients {a,-}lN: | depend on N. If there exists
some constant ¢ > 0, such that max{|a;|} < \/Lﬁ then for N large enough, the

weighted sum satisfies the following concentration inequality,

N
e |
P(1Y ai(g? — DI = N ) <2e7N™, 0<k <.

i=1

Proof This can be proved by applying Markov’s inequality to exp{¢ ZlN: 1 G (gi2 -1}
for some well-chosen value of 7. O
o2/2

The following is a useful trick, which states that we can express e as a Gaussian

integral. Then the exponents are all linear in «.
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Lemma A2 Forany o € C with |a| < CN*,

o2
e =

xotd ONOO
\/E/ x 4+ O( ),

where interval I = [—N**€, N*€] for any € > 0.

Proof Recall the formula, for any o € C

(Y+Ot)2

7= |

The main contribution of the above integral comes from where |x + «| is small. More

precisely,
é (X+ot)2 _ (x+a)2 ﬁ _ (.r+ot)2
ez e dx —e 2 e 2 <e2 e 2 dx
R ¢
k2 [ _eoja? 2% [0 22 N2 2e _
<2e 2 e T dx <2e 2 e~ Tdx < eV = O(N™%),
Nk+e NK+67CNK

where ¢ and ¢’ are constants independent of N. Therefore

2 (x+oz)2

e%:e%r r/

e “dx + O(N™™).

The following lemmas are useful identities about Gaussian integrals.

Lemma A3 [f an n by n symmetric matrix K can be written as K = A + i B, where
A is a real positive definite matrix, B is a real symmetric matrix. Then we have the
Gaussian integral formula

;/ o hekng, L
(V2m)" JRre det(K)

Proof Since A is positive definite, there exists a positive definite matrix C such that
A = CTC.Since CBCT is symmetric, it can be diagonalized by some special orthog-
onal matrix U, let P = UC. Then we have A = PTP and B = PTDP, where
D = diag{d\,d>,...,d,}. Thus K = A+iB = PT(I +iD)P. Plug this back to
the integral

1 1 1 T
— L kx) _ —5(x,PT (I+iD)Px)
- e 2 dx = / e 2 dx
(V2" ./]RN (V2m)n Jry
1
I S —Ly.(+iDyy) /
= e 2 dy = | |
(V27)" det(P) /RN v (V2m)" det(P) det(P) RV

(H»u/k)

1 1

46
(JZTT)”det(P)H 1+1dk = JaeuK) (46)
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where the square root in (46) is the branch with positive real part, in our case K is a
2 x 2 matrix. o

Lemma A4 Given n by n symmetric matrix K, whose real part is positive definite, then
we have the following change of variable formula for Gaussian type integral,

/ F(x)e 2%K2dx = det(A) / F(Ay + b)e™ 1(Avtb- KAyt gy
n Rll

where F is a polynomial in terms of{xi};?zl, A =diaglay,a> ..., a,}and R(a;) > 0
fori=1,2...n,andb € C".

Proof This can be proved by reducing to one dimensional case. O

Lemma A5 Given n by n symmetric matrix K, whose real part is positive definite, then
we have the following integral formula for any polynomial F( or even infinite power
series) in the variables {x;}7_,,

1 \/27rn 1 —1
Fo)e—3@Kx) gy — F(9:)e1&K'8) ‘
/n (x)e * «/det(K_){ (9)e }

£=0

Proof Consider the Laplacian transform,
/ e(x’$>F(x)e_%(x’Kx>dx = / F(85)e<x’§)e_%(x’Kx>dx.

Since e~ 2K¥) is a Schwartz function, with decaying speed faster than ¢*¢). By

dominated convergence theorem, we can interchange the integral and differential.

[ e(x,E)F(x)e—%u,Kx)dx = F(d) {/

Rn

=F(ag){ei<5~’<]5>f e_;«x_K]S)’K("_K]E»dx}.

e<x,s>e—;<x,1<x>dx}

From Lemma A3 and Lemma A4, we get

/ F(x)e_%OC,Kx)dx:/ 6<X’§>F(x)e_%<x’Kx>dx’

_ _ﬁ() [Faoetexs)

£=0

£=0
O
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Appendix B. Detailed Computation for m,

In this section, we give the detailed computation for coefficient m1. To compute fy,
f1, fa,take I =0, 1, 2 in (30) and follow the process in Page 14, 15. It is not hard to
derive,

1 1
fo(9) = E/ <1 + NPO(MJQ)) e 2 KR gy 4 O(N72)

|
= Jae®)

1 e -
<1+ﬁpo<asl,8&)ez<f”< 15>)] +OW™), @)

where

92§:(1(1—v+x)x1+(1+u—,\)x2)4

N(1 —20Ax; +20v)*

po(x1, x2) =

2
63 i (i(1 — v+ A)x1 4 (1 4+ v — A)x2)°
N(1 —26x; + 26v)3 ‘
And for f] and f3,

fi() = pi(x1, x2)e” 2K gy 4 O(N7?)

-z =
S
=~

5>\ +OWND, (48)

= — ———=0i(0%, 352)62 o
N ,/det(K

where

i A1 = v+ 21)x1 + (1 +v — A)x2)
N(1 —20%; + 20v)2

22
pi(x1, x2) = 3

i=1

i ((1 = v+ 2r)x1 4+ (4 v = A)x2)?
N(1 —20%; + 20v)

i=l

+2ri ((1 = v+ 2)x1 + (1 + v — A)x2)?
= N(1 —20x; +29v)3 ’

2
i (1= v+ 2)x1 + (1 + v — 2)x2)
N —26x; + 29v)2

N
) 2t
pa(x1, xp) = Z N =20, +29U)2 + {

i=1

For integral (47) and (48), it is merely symbolic computation, and we can easily do it
by some mathematic software, like Mathematica, then get explicit formula for fp, f1
and f>.
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1 1 1 (7 3 243 543 344 5
O=—=+y ="+t 5 30 O(N™?),
Jo® s NVR\6 a4 A 3a2a)” (N
2 2

1|2t — 0)(2:A§ — As(t —20) — Ay (t +26))

- +O(N™?),
03(det(K))3

fil) =

2A;

— s L+ OWNTD).
(det(K))2

z|- =]

h) =

Actually in this way, we can obtain any higher expansion terms of the spherical integral.
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