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Abstract
We study the probability that a monic polynomial with integer coefficients has a low-
degree factor over the integers, which is equivalent to having a low-degree algebraic
root. It is known in certain cases that random polynomials with integer coefficients are
very likely to be irreducible, and our project can be viewed as part of a general program
of testing whether this is a universal behavior exhibited by many random polynomial
models. Our main result shows that pointwise delocalization of the roots of a random
polynomial can be used to imply that the polynomial is unlikely to have a low-degree
factor over the integers. We apply our main result to a number of models of random
polynomials, including characteristic polynomials of random matrices, where strong
delocalization results are known.

Keywords Random polynomials · Irreducible · Random matrices · Delocalization

Mathematics Subject Classification (2010) 11C08 · 15B52

1 Introduction

Consider the following question: Is it true that a randommonic polynomialwith integer
coefficients is irreducible with high probability? For example, a version of Hilbert’s
irreducibility theorem1 states that if hn,N is amonic polynomial in one variable of fixed

1 See [57] for a modern formulation of Hilbert’s irreducibility theorem.
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degreenwhere all coefficients except the degreen coefficient are chosen independently
and uniformly at random from among all integers in the interval [−N , N ], then the
probability that hn,N is irreducible approaches 1 in the limit as N → ∞. This was
first proved by van der Waerden in 1934 [54], and in fact, the probability that hn,N

is reducible is of order 1/N , which was proven by van der Waerden two years later
[55]. (The existence and value of the limiting constant was determined by Chela [9]
in 1963 in terms of the Riemann zeta function.) Van der Waerden [54,55] also showed
that, with probability tending to 1, the Galois group of the random polynomial hn,N is
the full symmetric groupSn on n elements (which implies irreducibility) as N → ∞.
Estimates for the exact order for the probability that the Galois group is not Sn have
been improved since van der Waerden, first in 1955 and 1956 by Knobloch [29,30],
then in 1973 by Gallagher [20] who applied the large sieve, followed by more recent
progress in 2010 by Zwina [57], in 2013 by Dietmann [14], and in 2015 by Rivin [44].
(See also [10,11,56] and references therein.)

How the random polynomial is generated matters, and there is a general heuristic
that if the random integer coefficients are generated so that “elementary” factorizations
are avoided—for example, one ensures that the constant coefficient is not likely to be
zero, in which case x would be a factor of the polynomial f (x)—then the polynomial
is very likely to be irreducible. One can think of this heuristic as suggesting a kind of
universality (see, for example, [6, Heuristic 1.1]), and in some specific instances, it
has been conjectured that the behavior in Hilbert’s irreducibility theorem extends to
different settings, includingwhen the degree n is growing. For example, one can define
a random polynomial gn where the constant coefficient and the degree n coefficient
are equal to 1, and all other coefficients are 0 or 1 independently with probability
1/2. In the limit as the degree n goes to infinity (in contrast to the degree being
fixed in Hilbert’s irreducibility theorem and the results discussed above) it has been
conjectured that, once again, the probability that gn is irreducible approaches one as
n → ∞. (See [28,37].)

The question of proving irreducibility in the case where the degree of the random
polynomial tends to infinity and the support of the coefficients remains bounded (or
bounded by a function of the degree) seems to be quite challenging. For example, in
the specific case of the polynomials gn described above, the current best result (due
to Konyagin [28]) shows that the probability is bounded below by c/ log n, where c is
a positive constant, and as far as the authors know, there is not a result showing that
the probability that gn is irreducible remains bounded away from zero as the degree
increases, even though this probability is conjectured to approach 1. (Interestingly,
Bary-Soroker and Kozma [4] have proven that bivariate polynomials with independent
± 1 do become irreducible with high probability as the degree increases, though the
approach does not extend to a single-variable polynomial like gn .) One key step in
Konyagin’s result [28] is showing that gn is unlikely to have a factor over the integers
with degree up to cn/ log n, which is step toward proving irreducibility; note that
showing that there is no factor over the integers of degree up to n/2 would prove
irreducibility for a degree n polynomial.

In the current note, we show that the phenomenon of random polynomials having
no factors over the integers with small degree is quite general, and in fact can be
implied by pointwise delocalization of the roots of the random polynomial. Generally
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speaking, we show that, for a randommonic polynomial f with integer coefficients, if
supz∈C P( f (z) = 0) is sufficiently small, then the probability of a low-degree factor
over the integers is also small. We refer to the quantity supz∈C P( f (z) = 0) being
small as pointwise delocalization. In particular, pointwise delocalization rules out the
possibility that f has a deterministic (or near deterministic) root. More generally,
pointwise delocalization can be viewed as measuring the probability that f has some
“elementary” factorization. For instance, P( f (0) = 0) is the probability that z is a
factor of f (z).

Our main result provides useful bounds for random polynomials with correlated
and highly dependent coefficients, because pointwise delocalization is a statement
about the roots, rather than the coefficients. This is particularly useful, for example,
when studying the characteristic polynomial of a random matrix: The coefficients are
typically dependent and correlated, but often more is known about the roots, which
are the eigenvalues of the matrix.

When f is the characteristic polynomial of a square random matrix, we can often
show that the pointwise delocalization condition holds by using sufficiently general
results which bound the probability that the matrix is singular or has a very small sin-
gular value. In Sect. 2, we consider variousmodels of randompolynomials and random
matrices for which good pointwise delocalization results are known. For example, we
show that for any ε > 0 and for an n by n random matrix with each entry + 1 or
− 1 independently with probability 1/2, the characteristic polynomial factors over the

integers with a factor of degree at most n1/2−ε with probability at most
(

1√
2

+ o(1)
)n

.

(See Theorem 2.4.)
We begin by fixing some terminology and notation. If F is a field, a polynomial

with coefficients in F is irreducible over F if the polynomial is nonconstant and
cannot be factored into the product of two nonconstant polynomials with coefficients
in F . More generally, a polynomial with coefficients in a unique factorization domain
R (for example, the integers) is said to be irreducible over R if it is an irreducible
element of the polynomial ring R[x], meaning that the polynomial is nonzero, is not
invertible, and cannot be written as the product of two noninvertible polynomials with
coefficients in R. Irreducibility of a polynomial over a ring R generalizes the definition
given for the case of coefficients in a field because, in the field case, the nonconstant
polynomials are exactly the polynomials that are noninvertible and nonzero. We say
f is reducible over R if f is not irreducible over R.
Recall that an algebraic number is a possibly complex number that is a root of a

finite, nonzero polynomial in one variable with rational coefficients (or equivalently,
by clearing the denominators, with integer coefficients). Given an algebraic number α,
there is a unique monic polynomial with rational coefficients of least degree that has
the number as a root. This polynomial is called the minimal polynomial for α, and if
α is a root of a polynomial f with rational coefficients, then the minimal polynomial
for α divides f over the rationals. If the minimal polynomial has degree k, then the
algebraic number α is said to be of degree k. For instance, an algebraic number of
degree one is a rational number. An algebraic integer is an algebraic number that is
a root of a polynomial with integer coefficients with leading coefficient 1 (a monic
polynomial). The question of whether a monic polynomial f with integer coefficients
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has an irreducible degree k factor when factored over the rationals is thus equivalent
to whether f has a root α that is an algebraic number of degree k; in fact, by Gauss’s
lemma (see for instance [16]), f being monic implies that α is an algebraic integer.

Let f be a polynomial of degree n over C. We let λ1( f ), . . . , λn( f ) ∈ C denote
the zeros (counted with multiplicity) of f , and we define

�( f ) := {λ1( f ), . . . , λn( f )} (1.1)

to be the set of zeros of f .

1.1 Models of RandomMonic Polynomials with Integer Coefficients

Asmentioned above, there aremany ensembles of randompolynomials.We beginwith
the most general ensemble of random monic polynomials with integer coefficients.

Definition 1.1 (Random monic polynomial) We say f (z) := zn + ξn−1zn−1 + · · · +
ξ1z+ξ0 is a degree n randommonic polynomialwith integer coefficients if ξn−1, . . . , ξ0
are integer-valued random variables (not necessarily independent).

We emphasize that the integer-valued random variables ξn−1, . . . , ξ0 are not
assumed to be independent or identically distributed. There are many examples of
such random polynomials.

Example 1.2 (Independent Rademacher coefficients) Let ξ0, . . . , ξn−1 be independent
Rademacher random variables, which take the values+1 or−1 with equal probability.
Then f (z) := zn + ξn−1zn−1 + · · · + ξ1z + ξ0 is a random monic polynomial with
integer coefficients. More generally, one can consider the case when ξ0, . . . , ξn−1
are independent and identically distributed (iid) copies of an integer-valued random
variable (not necessarily Rademacher); see Example 1.3 below for one such example.

Example 1.3 (Independent uniform coefficients) Let N ∈ N be a given parameter.
Let ξ0, . . . , ξn−1 be independent and identically distributed (iid) random variables
uniformly distributed on the discrete set {0, 1, . . . , N }. Then f (z) := zn+ξn−1zn−1+
· · · + ξ1z + ξ0 is a random monic polynomial with integer coefficients.

Example 1.4 (Characteristic polynomial of random matrices) Let ξ be an integer-
valued random variable, and let X be an n × n random matrix whose entries are
iid copies of ξ . Then the characteristic polynomial f (z) := det(zI − X) is a random
monic polynomial with integer coefficients. Here, I denotes the identity matrix.

Example 1.5 (Random permutation matrices) Let π be a random permutation on
{1, . . . , n} uniformly sampled from all n! permutations. Let Pπ denote the corre-
sponding permutation matrix, i.e., the (i, j)-entry of Pπ is one if i = π( j) and zero
otherwise. Clearly, Pπ is an orthogonal matrix. The permutation π may be written as
a product of � disjoint cycles with lengths c1, . . . , c�. Let fπ denote the characteristic
polynomial of Pπ . Then, as can be seen by reordering the rows and columns of Pπ so
that it is block diagonal, we have
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fπ (z) := det(zI − Pπ ) =
�∏

j=1

(zc j − 1),

where I is the identity matrix. Clearly 1 is always a root of fπ , making z − 1 a factor
and fπ reducible. In addition, fπ will have other (possibly repeated) factors as well if n
is composite or if the number of cycles � is at least 2. One way to measure randomness
in the roots of a random polynomial is testing whether the polynomial has any double
roots. For example, Tao and Vu [50] have shown that the spectrum of a random real
symmetric n by n matrix with independent entries contains no double roots with
probability tending to 1 as n increases. (See also [18,41] for a related question on
another class of random polynomials.) For contrast, in the case of the characteristic
polynomial of a random permutationmatrix, the probability that the spectrum contains
no double roots is the same as the probability of the permutation having only one cycle,
which occurs with probability 1/n and tends to zero, rather than 1.

Example 1.6 (Erdős–Rényi random graphs) Let G(n, p) be the Erdös–Rényi random
graph on n vertices with edge density p. That is, G(n, p) is a simple graph on n
vertices (which we shall label as {1, . . . , n}) such that each edge {i, j} is in G(n, p)
with probability p, independent of other edges. In the special case when p = 1/2,
one can view G(n, 1/2) as a random graph selected uniformly among all 2(

n
2) simple

graphs on n vertices. The random graph G(n, p) can be defined by its adjacency
matrix An , which is a real symmetric matrix with entry (i, j) equal to 1 if there is
an edge between vertices i and j , and the entry equal to zero otherwise. It is widely
believed (and numerical evidence suggests) that the characteristic polynomial ofAn is
irreducible with probability tending to one as n → ∞. We discuss this example more
in Sects. 2.6 and 3.

Wehave chosen to focus onmonic polynomials, but the questionof irreducibility can
also be asked for nonmonic random polynomials with integer coefficients (or equiv-
alently, by dividing by the leading coefficient, for random monic polynomials with
rational coefficients). For fixed-degree polynomials with independent coefficients,
this question was addressed by Kuba [31]. When the degree tends to infinity, we again
expect the answer to depend on the random polynomial model.

1.2 Main Results

In this paper, we focus on the algebraic degree of the roots of a random monic poly-
nomial f .

Our main result below bounds above the probability that f has an algebraic root
of degree k, for some given value of 1 ≤ k ≤ n, which is related to the question
of irreducibility since a monic polynomial with integer coefficients is irreducible if
and only if its roots are all algebraic of degree n. We expect many random monic
polynomial models to yield irreducible polynomials with high probability, and so
intuitively, algebraic roots of small degree should be rare.
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Theorem 1.7 Let f be a degree n random monic polynomial with integer coefficients
(as in Definition 1.1). Let M > 0 and 2 ≤ k ≤ n. Take 	 ⊆ {z ∈ C : |z| ≤ M}, and
suppose there exists p ∈ [0, 1] such that

sup
z∈	

P( f (z) = 0) ≤ p (1.2)

(In other words, pointwise delocalization holds on 	.) Then, the probability that f
has an algebraic root of degree at most k in 	 is at most

p(eM)k
2 + P(|λi ( f )| > M for some i), (1.3)

where λ1( f ), . . . , λn( f ) are the roots of f . If k = 1, the result holds if p(eM)k
2
is

replaced with p(3M) in (1.3).

For Theorem 1.7 to be useful, one needs to show that bound (1.3) is small. In
Lemma 1.8 we collect bounds on p(eM)k

2
that hold for specific random polynomial

models that we will discuss in Sect. 2.

Lemma 1.8 We have the following bounds on p(eM)k
2
for various values of p (the

pointwise delocalization parameter), M (the radius containing	), and k (the degree).

(i) If p = O(1/
√
n) and M = 2 and k ≤

√
log n
4 , then p(eM)k

2 = o(1).

(ii) If p =
(

1√
2

+ o(1)
)n

and M = n and k = n1/2−ε for some ε > 0, then

p(eM)k
2 =

(
1√
2

+ o(1)
)n

. (The two o(1) terms differ.)

(iii) If p = 2e−nc for some 0 < c < 1, M = C
√
n for some C > 0, and k ≤ nc

′
for

c′ < c/2, then p(eM)k
2 ≤ 2 exp

(− ( 23
)
nc
)
for sufficiently large n.

(iv) Let B > 0 and m ≥ 1, and take M = nm and k ≥ 1 constant. Then there
exists B ′ > 0 (depending only on B,m, and k) such that if p = n−B′

, then
p(eM)k

2 ≤ n−B for sufficiently large n.

1.3 Random Polynomials Over Finite Fields

There are, of course, many other ensembles of random polynomials one can consider.
For instance, one can study monic polynomials over the finite field Fq , where q is a
power of a prime. Indeed, there are qn monic polynomials of degree n over Fq , and
we can consider selecting one uniformly at random. Using Galois theory for finite
fields and Möbius inversion (see [16, Section 14.3]), one can show that the number of
degree n irreducible polynomials over Fq is

1

n

∑
d|n

μ(d)qn/d ,
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where μ is the Möbius function. Thus, the probability that a randomly selected degree
n monic polynomial over Fq is irreducible is

1

nqn
∑
d|n

μ(d)qn/d = 1

n
+ O(q−n/2),

(using the coarse bound |μ(d)| ≤ 1) for any n and q. Thus, in a finite field, a degree
n polynomial chosen uniformly at random is irreducible only with probability close
to 1/n. This contrasts sharply with the case of polynomials over the integers, where
Hilbert’s irreducibility theorem shows that at randomly chosen polynomial is very
likely to be irreducible. (See, for example, [57].)

1.4 Overview and Outline

The paper is organized as follows. In Sect. 2, we give some example applications of
our main results, including the cases of random polynomials with iid coefficients, the
characteristic polynomial of random matrices (nonsymmetric, nonsymmetric sparse,
symmetric, and elliptical), and adjacency matrices of random graphs (directed, undi-
rected, and fixed outdegree). Often we will consider the case where the underlying
random variables are Rademacher ±1 for simplicity. Section 3 motivates the model
of random polynomials studied in this paper by illustrating a connection that exists
between irreducible random polynomials, random graphs, and control theory on large-
scale graphs and networks. Theorem 1.7 and Lemma 1.8 are proven in Sect. 4. Finally,
Sect. 5 contains the proof for one of the applications discussed in Sect. 2.

1.5 Notation

We use asymptotic notation (such as O, o) under the assumption that n → ∞. In
particular, o(1) denotes a term which tends to zero as n → ∞. Let [n] := {1, . . . , n}
denote the discrete interval. We let

√−1 denote the imaginary unit and reserve i as an
index. For a finite set S, we use |S| to denote the cardinality of S. For a vector v, we
use ‖v‖ for the Euclidean norm. We let uTv = u · v denote the dot product between
two vectors u, v ∈ R

n . For a matrix A, we let ‖A‖ denote the spectral norm, i.e., ‖A‖
is the largest singular value of A. We let In denote the n × n identity matrix; often we
will drop the subscript n when its size can be deduced from context. For a polynomial
f , deg( f ) denotes the degree of f .

2 Example Applications of theMain Results

We now specialize Theorem 1.7 to some specific examples.
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Fig. 1 Quoted from [6, Figure 3], the above shows the probability that fn(x) = xn+ξn−1x
n−1+· · ·+ξ1x+

ξ0 is irreducible, where the ξi are+1 or−1 independently with probability 1/2. For degree up to n = 21, the
probability was computed exactly by exhaustively generating all 2n polynomials of the specified degree and
checking each one for reducibility using the IsIrreducible() function in Magma. For degree 22 up to
80, the probability was estimated (again using Magma) by generating 150,000,000 random polynomials for

each degree. The curve 2
√

2
π(n+1) − 4

π(n+1) is an asymptotic lower bound for the probability of reducibility

when the degree is odd. Figure produced by Borst et al. (see [6])

2.1 Random Polynomials with iid Coefficients

We now consider Example 1.2, where the coefficients of f are iid random variables.

Theorem 2.1 (Random polynomials with iid coefficients) For each n ≥ 1, let fn(z) =
zn+ξn−1zn−1+· · ·+ξ1z+ξ0, where ξ0, ξ1, . . . are iid Rademacher random variables,
which take the values+1 or−1with equal probability. Then the probability that fn(x)

has an algebraic root of degree at most n1/3

log3 n
is at most O

(
1√
n

)
.

Remark 2.2 Note that a weaker version of Theorem 2.1 follows easily from Theo-
rem 1.7. In particular, by Lemma 5.2 all roots for fn have absolute value between
1/2 and 2 and by the Littlewood–Offord theorem (see, e.g., [47, Corollary 7.8])
P( fn(z) = 0) ≤ O(1/

√
n) for any z. Thus, Lemma 1.8(i) combined with Theorem 1.7

implies that fn has no algebraic roots of degree at most
√

log n
4 with probability tending

to 1 as n tends to infinity.

We present a proof of Theorem 2.1 in Sect. 5, and below we will comment on
potential generalizations of Theorem 2.1 and its connections to the work of Konyagin
[28]. See Fig. 1 for numerical evidence suggesting that, in fact, the probability that fn
is reducible goes to zero as n → ∞.

Beyond Theorem 2.1, our methods can also be used when ξ0, ξ1, . . . are more
general iid integer-valued random variables satisfying some technical assumptions.
However, a number of complications can arise in this case [e.g., zero is always a root
of fn with probability P(ξ0 = 0)], and so we focus on the Rademacher ±1 case for
simplicity.
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In [28], Konyagin studies the random degree n polynomial gn which has 1 for
the constant coefficient and the degree n coefficient, and every other coefficient is
0 or 1 independently with equal probability. In particular, he shows that there are
constants c,C > 0 such that gn has a root that is an algebraic number with degree
at most cn/ log n with probability at most C/

√
n. Konyagin’s approach in [28] can

also be adapted to more general distributions of the random integer coefficients (see
forthcomingwork of Terlov [51]); however, themethod seems to require independence
of the coefficients,whereas an application ofTheorem1.7would allow for dependence,
though at the expense of a weaker bound on the size of the low-degree factors.

Finally, one should note that elementary Galois theory can be used to prove that if
n + 1 is prime and 2 generates the multiplicative group(
Z/(n + 1)

)×
, then every random polynomial of degree n with coefficients iid

Rademacher ±1 random variables (as in Theorem 2.1) is in fact irreducible.2 One
can prove this by considering the polynomials modulo 2, in which case +1 = −1
mod 2 and every polynomial is equal to xn + xn−1 + xn−2 + · · · + 1 (i.e., there is no
randomness); thus every root of the polynomial modulo 2 must be a (n + 1)-st root of
unity. To complete the argument, one can use the fact that F2n has cyclic multiplicative
group and the fact that the Galois group Gal(F2n/F2) is also cyclic and generated by
the Frobenius endomorphism x �→ x2. (See [16].) Interestingly, letting p = n + 1
be a prime, Artin’s conjecture on primitive roots would imply that 2 should generate
(Z/(p))× = (

Fp
)× for infinitely many p, and in fact, the proportion of primes for

which 2 generates
(
Fp
)× should asymptotically approach Artin’s constant, which is

approximately 0.3739558136 . . . . (See the survey [32].)

2.2 RandomMatrices with iid Rademacher± 1 Entries

While delocalization estimates for random polynomials with iid coefficients are fairly
weak, we now consider random matrices with independent entries, for which much
better delocalization bounds are known. Indeed, we will use the following theorem
from [7] to bound the supremum in (1.2).

Theorem 2.3 (Bourgain–Vu–Wood, Corollary 3.3 in [7]) Let q be a constant such that
0 < q ≤ 1 and let S ⊂ C be a set with cardinality |S| = O(1). If Mn is an n by n
matrix with independent random entries taking values in S such that for any entry xi j ,
we have maxs∈S P(xi j = s) ≤ q, then

P(Mn is singular) ≤ (√
q + o(1)

)n
.

Furthermore, by inspecting the proof one can see that the o(1) error term depends
only on q and the cardinality of the set S, and not on the values in the set S.

In [7], it was shown using the above result that an iid random Rademacher ± 1
matrix (i.e., where each entry is + 1 or −1 independently with probability 1/2) is

2 We thank Melanie Matchett Wood for describing the formulation and proof of this result.
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very unlikely to have a rational eigenvalue. Our result below extends this fact by
showing that, for any ε > 0, an eigenvalue that is algebraic with degree at most
n1/2−ε (which includes all rational numbers) is similarly unlikely. Our approach here
does not extend to algebraic degree

√
n or larger; however, in analogy with Hilbert’s

irreducibility theorem and related results described in introduction above, it seems
likely that the characteristic polynomial of an iid random Rademacher ± 1 matrix is
in fact irreducible with high probability, which would imply that the matrix has no
algebraic roots of degree less than n. (See [6] for supporting data.)

Theorem 2.4 Let ε > 0 be a constant, and letMn be an n by n matrix where each entry
takes the value +1 or −1 independently with probability 1/2. Then, the probability
that Mn has an eigenvalue that is an algebraic number with degree at most n1/2−ε is

bounded above by

(
1√
2

+ o(1)

)n

.

Proof Let f be the characteristic polynomial ofMn , so that the eigenvalues ofMn are
the roots of f , all eigenvalues ofMn have absolute value at most n with probability 1
by an elementary bound. (In fact, the eigenvalues of Mn are all less than O(

√
n) with

exponentially high probability using, for example, [46, Proposition 2.4]; we will not
need such a refined bound here.)

Let 	 := {z ∈ C : |z| ≤ n}. Using Theorem 2.3 above, we have for any z ∈ C that

P( f (z) = 0) = P(Mn − zIn is singular) ≤
(

1√
2

+ o(1)

)n

, (2.1)

where the o(1) error is uniform for all z ∈ C. (This follows using the facts that
{1,−1, 1 − z,−1 − z} is the set of values that can appear in Mn − zIn and that the
cardinality of this set and the value of q = 1/2 are the same for any z ∈ C.) Thus,

sup
z∈	

P( f (z) = 0) ≤
(

1√
2

+ o(1)

)n

.

We now apply Lemma 1.8(ii) and Theorem 1.7 to complete the proof. 
�

2.3 Random Symmetric Matrices

In [52], Vershynin proves a general result for real symmetric random matrices bound-
ing the singularity probability, quantifying the smallest singular value, and showing
that the spectrum is delocalized with the optimal scale. Here, we will use the follow-
ing special case showing only pointwise delocalization to illustrate an application of
Theorem 1.7.

Theorem 2.5 (Vershynin, following from Theorem 1.2 in [52]) Let B > 0 be a real
constant and letMn be a real symmetric n by n matrix whose entries xi j on and above
the diagonal (so for i ≤ j ) are iid random variables with mean zero and unit variance
satisfying

∣∣xi j
∣∣ ≤ B. Then, there exists an absolute constant c > 0 (depending only

on B) such that, for every r ∈ R,
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P(r is an eigenvalue of Mn) ≤ 2e−nc . (2.2)

It is natural to only consider real numbers r in (2.2) since real symmetric matrices
have all real eigenvalues. Also, the constant c appearing in Theorem 2.5 is typically
less than one and may be much smaller.

Themore general version of the above result proven byVershynin [52, Theorem1.2]
applies to real symmetric matrices with entries having subgaussian tails (see [53] for
why bounded implies subgaussian), and the bound we will prove on the probability
of having low-degree algebraic numbers as eigenvalues (Theorem 2.6 below) extends
to this setting.

Theorem 2.6 Let B > 0 be a real constant, let c′ > 0 be an absolute constant
satisfying c′ < c/2, where c < 1 is the absolute constant from Theorem 2.5 (which
depends only on B), and letMn be an n by n real symmetric matrix whose entries on
and above the diagonal are iid integer-valued random variables which are bounded in
absolute value by B. Then the probability thatMn has an eigenvalue that is algebraic
of degree at most nc

′
is bounded above by e−nc/2 for all sufficiently large n.

Proof (Proof of Theorem 2.6) Let f be the characteristic polynomial ofMn , so that the
eigenvalues ofMn are the roots of f , and note that by [52, Lemma 2.3], all eigenvalues
of Mn have absolute value at most C

√
n with probability at least 1 − 2e−n for some

constant C (depending only on B).
Let 	 := {r ∈ R : |r | ≤ C

√
n}. Since Mn is a real symmetric matrix, the

eigenvalues ofMn are all real. Moreover, Theorem 2.5 implies that supr∈	 P( f (r) =
0) ≤ 2e−nc . Thus, combining Theorem 1.7, Lemma 1.8(iii), and [52, Lemma 2.3]),
we have that the probability that f has an algebraic root of degree at most nc

′
is

bounded above by 2 exp(− ( 23
)
nc)+2e−n , which is at most e−nc/2 for all sufficiently

large n. 
�

2.4 Elliptical RandomMatrices

Elliptical random matrices interpolate between iid random matrices and random sym-
metric matrices. In an elliptical randommatrix, all the entries are independent with the
exception that the (i, j)-entry may depend on the ( j, i)-entry, and one also requires
that the correlation between the (i, j)-entry and the ( j, i)-entry is a constant ρ for all
i �= j . Thus, if the matrix has iid entries, then ρ = 0, and if ρ = 1, the matrix is
symmetric. There are results showing that the limiting distribution of the eigenvalues
also interpolates between the limiting distributions for iid random matrices and for
symmetric random matrices; in particular, for −1 < ρ < 1, the limiting eigenvalue

distribution (suitably scaled) is an ellipse with eccentricity
√
1 − (1−ρ)2

(1+ρ)2
; see Nguyen

and O’Rourke [35] and Naumov [33].
To apply Theorem 1.7, we will use a result due to Nguyen and O’Rourke [35]

bounding the smallest singular value, and we will focus on the special case of ±1
elliptical random matrices for simplicity. Let Mn,ρ be an elliptical random matrix
with covariance parameter −1 < ρ < 1 with entries xi j defined as follows: Let
{xi, j : i ≤ j} ∪ {ξi, j : i > j} be a collection of independent random variables, where
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P(xi, j = 1) = P(xi, j = −1) = 1/2 for i ≤ j and where

ξi, j :=
{
1 with probability (1 + ρ)/2

−1 with probability (1 − ρ)/2,

for i > j . Then let xi, j := x j,iξi, j whenever i > j . Define

Mn,ρ :=

⎛
⎜⎜⎜⎜⎜⎝

x1,1 x1,2 x1,3 . . . x1,n
x1,2ξ2,1 x2,2 x2,3 . . . x2,n
x1,3ξ3,1 x3,2ξ3,2 x3,3 . . . x3,n

...
...

. . .
. . .

...

x1,nξn,1 x2,nξn,2 . . . xn−1,nξn,n−1 xn,n

⎞
⎟⎟⎟⎟⎟⎠

,

and note that each entry takes the values +1 or −1 with equal probability. We will
call Mn,ρ a Rademacher elliptical random matrix with parameter ρ.

Theorem 2.7 (Nguyen–O’Rourke, following from Theorem 1.9 in [35]) Let Mn,ρ be
an n by n Rademacher elliptical random matrix with parameter −1 < ρ < 1, and let
B ′ > 0 be a constant. Then, for all sufficiently large n (depending only on B ′ and ρ),
we have that

sup
z∈C, |z|≤n

P(z is an eigenvalue of Mn,ρ) ≤ n−B′
.

We can now apply Theorem 1.7 to get the following result.

Theorem 2.8 LetMn,ρ be an n by n Rademacher elliptical randommatrix with param-
eter −1 < ρ < 1, and let B > 0 and K ≥ 1 be constants. Then, for all sufficiently
large n (depending only on B, ρ, and K ), the probability that the matrixMn,ρ has an
eigenvalue that is algebraic of degree at most K is bounded above by n−B.

Proof Let f be the characteristic polynomial of Mn,ρ . All eigenvalues of Mn,ρ have
absolute value at most n with probability 1 by an elementary bound. Let	 := {z ∈ C :
|z| ≤ n}, and note that Theorem 2.7 lets us take p = n−B′

for any constant B ′ > 0 in
(1.2). Thus, we may apply Theorem 1.7 and Lemma 1.8(iv) (with M = n and m = 1)
to complete the proof. 
�

2.5 Product Matrices

We now show how Theorem 1.7 can be applied to products of independent random
matrices. We begin with the following result from [38].

Theorem 2.9 (O’Rourke–Renfrew–Soshnikov–Vu, [38] Theorem 5.2) Let m ≥ 1 and
B ′, γ > 0 be constants. LetM(1)

n , . . . ,M(m)
n be independent n by n matrices in which

each entry takes the value +1 or −1 independently with probability 1/2. Define the
product

Mn := M(1)
n · · ·M(m)

n .
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Then, for all sufficiently large n (depending only on m, B ′, and γ ), we have

sup
z∈C, |z|≤nγ

P (z is an eigenvalue of Mn) ≤ n−B′
.

We can now apply Theorem 1.7 to get the following result.

Theorem 2.10 Let K ,m ≥ 1, and B > 0 be constants. Let M(1)
n , . . . ,M(m)

n be inde-
pendent n by n matrices in which each entry takes the value +1 or −1 independently
with probability 1/2. Then, for all sufficiently large n (depending only on m, K , and
B), the probability that the matrix

Mn := M(1)
n · · ·M(m)

n

has an eigenvalue that is algebraic of degree at most K is bounded above by n−B.

Proof Let f be the characteristic polynomial of Mn , and note that all eigenvalues of
Mn have absolute value at most nm with probability 1 by an elementary bound. Let
	 := {z ∈ C : |z| ≤ nm}, and note that by Theorem 2.9 we can take p = n−B′

for
any constant B ′ > 0 in (1.2). Thus, we may apply Theorem 1.7 and Lemma 1.8(iv)
(with M = nm) to complete the proof. 
�

More generally, Theorem 2.9 can be extended to products of elliptical random
matrices which satisfy a number of constraints. (See [38, Theorem 5.2] for details.)
This leads naturally to a version of Theorem 2.10 for the product of m independent
Rademacher elliptical random matrices with parameters ρ1, . . . , ρm satisfying −1 <

ρi < 1.

2.6 Erdos–Rényi RandomGraphs

We now consider Erdős–Rényi random graphs on n vertices, where each edge is
present independently at random with a constant probability p satisfying 0 < p < 1.
We denote such a graph by G(n, p) and observe that the graph can be defined by its
adjacency matrix An , which is a real symmetric matrix with entry (i, j) equal to 1 if
there is an edge between vertices i and j , and entry equal to zero otherwise.

In the Erdős–Rényi model, the independence among edges means that all entries
in the strict upper triangle of An are also independent. Thus, the following result due
to Nguyen [34] is applicable.

Theorem 2.11 (Nguyen, following from Theorem 1.4 in [34]) Let 0 < p < 1 and
B ′ > 0 be constants, and let An be the adjacency matrix of G(n, p). Then, for n
sufficiently large (depending only on p and B ′),

sup
z∈C, |z|≤n

P(z is an eigenvalue of An) ≤ n−B′
.
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By following the proof of Theorem 2.8 and applying Theorem 2.11 in place of
Theorem 2.7, we find that for any K ≥ 1 and B > 0, the probability that An has an
eigenvalue that is algebraic of degree atmost K is bounded above n−B for n sufficiently
large (depending only on K , B, and p). We state this result explicitly in Sect. 3. (See
Theorem 3.9.) The result is also true when the diagonal entries of An are allowed to
be one. (This corresponds to the case where loops are allowed in the graph.)

2.7 Directed RandomGraphs

In the case of directed random graphs where directed edges (including loops) are
included independently at random with probability p, where 0 < p < 1 is a constant,
the adjacency matrixMn is an n by nmatrix with entries independently equal to 1 with
probability p, and otherwise the entries are zero. In this case, Theorem 2.3 applies
with q := max{p, 1 − p}, and thus, following the proof of Theorem 2.4, proves that
for any ε > 0, the probability that Mn has an eigenvalue that is an algebraic number
with degree at most n1/2−ε is bounded above by

(√
q + o(1)

)n .

2.8 Directed RandomGraphs with Fixed Outdegrees

Let s be a positive integer, and let x ∈ {0, 1}n be a random binary vector uniformly
chosen from among all binary vectors containing exactly s ones. If Mn is the n × n
matrix whose rows are iid copies of the vector x , then Mn can be viewed as the
adjacency matrix of a random directed graph on n vertices (where loops are allowed)
such that each vertex has outdegree s. In this case, Mn always has s as an eigenvalue
(with the corresponding eigenvector being the all-ones vector), and hence not every
eigenvalue ofMn can be of high algebraic degree. Using Theorem 1.7, we show that,
besides this trivial eigenvalue, the other eigenvalues cannot be low-degree algebraic
numbers.

Theorem 2.12 Let 0 < ε ≤ 1, K ≥ 1, and B > 0 be a constants, and let x ∈ {0, 1}n
be a random binary vector uniformly chosen from among all binary vectors containing
exactly s ones for some s satisfying |s − n/2| ≤ (1 − ε)n/2. If Mn is a random n by
n matrix whose rows are iid copies of the vector x, then, for all sufficiently large n
(depending only on ε, K , and B), the probability that one of the nontrivial eigenvalues
of the matrix Mn is algebraic of degree at most K is bounded above by n−B.

Proof The proof of Theorem 2.12 follows closely the proof of Theorem 2.8, where
instead of using Theorem 2.7 we apply Theorem 2.13 below. The main difference
comes from the fact that we must now deal with the trivial eigenvalue at s.

Let f be the characteristic polynomial of Mn , and note that all eigenvalues of
Mn have absolute value at most n with probability 1 by an elementary bound. Let
	 := {z ∈ C : |z| ≤ n, z �= s}, and note that by Theorem 2.13 below, we may take
p = n−B′

for any constant B ′ > 0 in (1.2). Thus, we may apply Theorem 1.7 and
Lemma 1.8(iv) (with M = n and m = 1) to complete the proof. 
�

It remains to verify the following bound.
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Theorem 2.13 Let 0 < ε ≤ 1 and B > 0 be a constants, and let x ∈ {0, 1}n be
a random binary vector uniformly chosen from among all binary vectors containing
exactly s ones for some s satisfying |s − n/2| ≤ (1 − ε)n/2. If Mn is a random n
by n matrix whose rows are iid copies of the vector x, then, for n sufficiently large
(depending only on ε and B),

sup
z∈C, z �=s

P(z is an eigenvalue of Mn) ≤ n−B (2.3)

and

P(s is an eigenvalue of Mn with algebraic multiplicity at least 2) ≤ n−B . (2.4)

Proof The proof follows the arguments given by Nguyen and Vu in [36]. We begin
with the bound in (2.3). Let 	 := {z ∈ C : |z| ≤ n, z �= s}. Since, with probability 1,
all eigenvalues of Mn are contained in the disk {z ∈ C : |z| ≤ n}, it suffices to show

sup
z∈	

P(z is an eigenvalue of Mn) ≤ n−B

for n sufficiently large. Define the matrix Xn := 2Mn − Jn, where Jn is the n × n
all-ones matrix. In particular, Xn is an n × n random matrix with +1 and −1 entries
whose rows are independent with row sum 2s − n, where |2s − n| ≤ (1 − ε)n. Such
matrices were explicitly studied in [36], and the estimate below follows from [36,
Theorem 2.8]. LetMn−1 be the (n − 1) × (n − 1) submatrix ofMn formed fromMn

by removing the last row and column. Similarly, let Xn−1 := 2Mn−1 − Jn−1. Then,
for any deterministic matrix F satisfying ‖F‖ ≤ n2, [36, Theorem 2.8] implies that

sup
z∈C, |z|≤2n

P(z is an eigenvalue of Xn−1 + F) ≤ n−B (2.5)

for all n sufficiently large (depending only on ε and B).
The advantage of working withMn−1 is that it does not have a trivial eigenvalue at

s. Thus, we will reduce to the case where the bound in (2.5) is relevant. Letmi j denote
the (i, j)-entry of Mn . Define M := Mn − zIn . Then det(M) = det(M′), where M′
is obtained from M by adding the first n − 1 columns to the last column. Since each
entry of the last column ofM′ takes the value s− z, det(M′) = (s− z) det(M′′), where
M′′ is obtained fromM by replacing each entry in the last column by 1, i.e.,

M′′ :=

⎡
⎢⎢⎢⎣

m1,1 − z m1,2 . . . m1,n−1 1
...

...
. . .

...
...

mn−1,1 mn−1,2 . . . mn−1,n−1 − z 1
mn,1 mn,2 . . . mn,n−1 1

⎤
⎥⎥⎥⎦ .

Since s /∈ 	, it now suffices to show

sup
z∈C, |z|≤n

P(det(M′′) = 0) ≤ n−B (2.6)
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for n sufficiently large. Additionally, as det(Mn − zI) = (s − z) det (M′′), the bound
in (2.6) would also imply (2.4).

By subtracting the last row ofM′′ from each of the previous n − 1 rows, it follows
that det(M′′) = det(Mn−1 − Qn−1 − zIn−1), where Qn−1 is an (n − 1) × (n − 1)
rank-one matrix whose rows are each given by (mn,1, . . . ,mn,n−1). Since the entries
mn,1, . . . ,mn,n−1 are independent of the entries inMn−1, we condition on Qn−1 and
now treat this matrix as deterministic. Observe that det(Mn−1 − Qn−1 − zIn−1) = 0
if and only if 2z is an eigenvalue of

2Mn−1 − 2Qn−1 = Xn−1 − 2Qn−1 + Jn−1 =: Xn−1 + F.

By an elementary bound,

‖F‖ ≤ 2‖Qn−1‖ + ‖Jn−1‖ ≤ 3n ≤ n2

for n ≥ 3. Therefore, we conclude from (2.5) that

sup
z∈C, |z|≤n

P(det(Mn−1 − Qn−1 − zIn−1) = 0) ≤ n−B

for n sufficiently large, and the proof is complete. 
�

2.9 Other Models

In the previous subsections, we focused on random polynomial models for which good
pointwise delocalization bounds are known, especially characteristic polynomials of
random matrices. For example, the approach above also works for sparse random
matrices, using Tao and Vu’s [49, Theorem 2.9] to show pointwise delocalization.

However, there are many other models of random matrices one could consider. For
instance, sample covariance matrices arise in many applications and are well studied
in the randommatrix theory literature. Yet, the authors are not aware of delocalization
bounds of the form required for Theorem 1.7. Another interesting model is random
matrices with exchangeable entries. While Adamczak et al. [1] have obtained some
delocalization bounds for such matrices, the bounds are not strong enough to use
with Theorem 1.7. Some delocalization bounds have been proven by Cook [12,13]
for the adjacency matrix and signed adjacency matrix of such graphs, and it would
be interesting to see whether strong enough bounds could be proven to combine with
Theorem 1.7.

3 Motivation: RandomGraphs and Controllability

As discussed above, our main results are motivated by the question of whether a
random polynomial with integer coefficients is likely to be irreducible. In particular,
we have focused on characteristic polynomials of matrices, and it is natural to ask
whether such models have applications.
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In this section, we motivate these models by discussing graphs and their adjacency
matrices. Unsurprisingly, certain properties of a graph can be deduced from the char-
acteristic polynomial of its adjacency matrix. Specifically, we focus on the property
of symmetry, which in turn is related to controllability properties of a certain linear
system formed from the graph. In this section, we provide a brief introduction to lin-
ear control theory, random graphs, and their connection with our main results. The
uninterested reader can safely skip this section.

3.1 Linear Control Theory

Generally speaking, linear control theory is concerned with controlling linear systems,
so the output (or solution) of the system follows a desired path. In what follows, we
shall consider a very specific linear system formed from a matrix A and a vector b.

Let A be an n × n matrix with real entries, and let b be a vector in R
n . Then the

continuous time-invariant control system formed from the pair (A, b) is defined by
the equation

ẋ(t) = Ax(t) + u(t)b, (3.1)

where u : [t0, t1] → R is called the control and x : [t0, t1] → R
n is called the state

of the system. Here, ẋ denotes the time derivative of x . We typically view A, b, and u
as given values and x as the solution to (3.1). In particular, given A, b, an initial value
x(t0), and sufficiently smooth u, the state x is uniquely determined by (3.1).

We want to consider the general property of being able to “steer” such a system
from any given state to any other by a suitable choice of the control function u. This
ability to “steer” the system is what we will mean by the term controllability.

Definition 3.1 (Complete controllability) Let A be an n × n matrix with real entries,
and let b be a vector in R

n . We say the pair (A, b) is completely controllable if, for
any t0, any initial state x(t0) = x0, and any given final state x f , there exists t1 > t0
and a piecewise continuous control u : [t0, t1] → R such that the solution (state) of
(3.1) satisfies x(t1) = x f .

Remark 3.2 The qualifying term “completely” implies that the definition holds for all
x0 and x f . In general, several other types of controllability can also be defined.

The basic problem that now arises is to describe exactly which pairs (A, b) are
completely controllable. Kalman’s rank condition [24–27] gives a general algebraic
criterion.

Theorem 3.3 (Kalman [27]) Let A be an n × n matrix with real entries, and let b be a
vector inRn. The pair (A, b) is completely controllable if and only if the controllability
matrix [

b Ab A2b · · · An−1b
]

(3.2)

has full rank (that is, rank n). Here, the matrix in (3.2) is the n×n matrix with columns
b, Ab, A2b, …, An−1b.

Theorem 3.3 is so convenient that this rank condition is often taken as the definition
of controllability. In fact, from this point forward, we will no longer consider the linear
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system in (3.1). Instead, we will only focus on controllability matrix (3.2). To this end,
we make the following definition.

Definition 3.4 (Controllability) LetA be an n×nmatrixwith real entries, and let b be a
vector inRn .We say the pair (A, b) is controllable if the controllabilitymatrix, defined
in (3.2), has rank n. If (A, b) is not controllable, we say the pair is uncontrollable.

Remark 3.5 In view of Theorem 3.3, controllability and complete controllability are
equivalent. We drop the qualifying term “complete” as this is the only type of control-
lability we will consider.

3.2 Controllable Subsets in Graphs

Let G be a simple graph on the vertex set [n] := {1, . . . , n} with adjacency matrix A,
i.e.,A is a real symmetric matrix with entry (i, j) equal to 1 if there is an edge between
vertices i and j , and the entry is equal to zero otherwise. In this section, we focus on
the controllability of (A, b). Of particular importance is the case when b ∈ {0, 1}n
is a binary vector. Indeed, in this case, b can be viewed as the characteristic vector
of some subset of the vertex set [n]. We make the following definitions. We say the
simple graph G on n vertices is controllable if (A, 1) is controllable, where A is the
adjacency matrix of G and 1 is the all-ones vector in R

n . Additionally, we say G is
minimally controllable if (A, ei ) is controllable for every 1 ≤ i ≤ n, where e1, . . . , en
is the standard basis of Rn .

Studying the controllability properties of large-scale graphs and networks has
become an important and challenging task in control theory with several real-world
applications. For instance, one of the emerging applications of network controllability
is the control of neural networks inside the brain and its relation to behavioral regula-
tion [19,22]. In this application,3 the neural network in the brain is modeled as a graph
with each vertex representing a neuron or region in the brain.

Another application involves studying social influence. Indeed, with the prevalence
of online social networks, social influence is now a highly studied topic due, in part,
to its use in categorizing efficient mechanisms for the spread of information as well
as identification of susceptible members of society [2,5]. In this application, the graph
in question is the social network, and the characteristic vector b can be viewed as
identifying the “leaders” in the network who try to control the other individuals.

We recall the following elementary definitions. Isomorphisms of simple graphs are
bijections of the vertex sets preserving adjacency as well as nonadjacency. Automor-
phisms of the graph G are G → G isomorphisms. Clearly, the identity map is always
an automorphism. A graph is called asymmetric if it has no nontrivial automorphisms.

We now discuss some connections which exist between controllability, asymmetry,
and the characteristic polynomial of the adjacency matrix.

Proposition 3.6 (Godsil, following from Lemma 1.1 in [21]) If the simple graph G is
controllable, then G is asymmetric.

3 Both of the applications mentioned here typically involve studying matrices other than the adjacency
matrix of the underlying graph. For simplicity, we will only consider the adjacency matrix in this paper.
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Godsil, in [21], showed a connection between the characteristic polynomial of the
adjacency matrix and controllability.

Theorem 3.7 (Godsil, Corollary 5.3 in [21]) Let G be a simple graph with adjacency
matrix A. If the characteristic polynomial of A is irreducible over the rationals, then
G is controllable and minimally controllable.

Putting these two results together, we recover the well-known implication (see, for
example, [8]) that ifG is a simple graphwith adjacencymatrixA and the characteristic
polynomial of A is irreducible over the rationals, then G is asymmetric.

3.3 Conjectures and Results Concerning RandomGraphs

Recall that G(n, p) is the Erdös–Rényi random graph on the vertex set [n] with edge
density p. That is, G(n, p) is a simple graph on n vertices (which we shall label as
1, . . . , n) such that each edge {i, j} is in G(n, p) with probability p, independent of
other edges. In the special case when p = 1/2, one can view G(n, 1/2) as random
graph selected uniformly among all 2(

n
2) simple graphs on n vertices. We letAn be the

zero-one adjacency matrix of G(n, p).
It was proven by Pólya [42] and Erdős and Rényi [17] thatG(n, 1/2) is asymmetric

with probability 1 − (n
2

)
n−n−2(1 + o(1)); see [3] and references therein for further

details. In other words, most simple graphs are asymmetric. In view of Proposition 3.6,
this gives an upper bound for the probability that G(n, p) is controllable. In terms of
a lower bound, Godsil [21] has recently conjectured that most simple graphs are
controllable and minimally controllable.

Conjecture 3.8 (Godsil [21]) The probability that G(n, 1/2) is controllable and min-
imally controllable approaches 1 as n → ∞.

One can view Conjecture 3.8 as stating that controllability (alternatively, minimal
controllability) is a universal property of graphs. Conjecture 3.8 was recently proven
in [39,40]. The proof relies on Kalman’s rank condition (Theorem 3.3) and one of its
corollaries known as the Popov–Belevitch–Hautus (PBH) test. (See [23, Section 12.2]
for details.) In particular, the proof given in [39,40] involves studying the additive
structure of the eigenvectors of the random adjacency matrix An .

It has also been conjectured (and numerical evidence suggests) that the character-
istic polynomial of the adjacency matrix of G(n, 1/2) is irreducible over the rationals
with high probability. The authors are not aware of any progress in proving this con-
jecture. In view of Theorem 3.7, though, this conjecture would imply Conjecture 3.8.
Specifically, Theorem 3.7 hints at another approach to prove Conjecture 3.8, which
would be entirely different from the proofs given in [39,40]. While the proofs in these
previous works focused on the eigenvector structure, this new method only requires
working with the eigenvalues (in particular, the characteristic polynomial) of An . If
one could show, for instance, that, with high probability, An has no eigenvalues that
are algebraic of degree at most n/2, then both conjectures would follow. While our
main results do not go so far, they do hint that this may indeed be the case. Theorem 3.9
below follows from Theorem 2.11 and the reasoning in Sect. 2.6.
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Theorem 3.9 Fix0 < p < 1, and let B > 0 and K ≥ 1be constants. Let G(n, p)be an
Erdős–Rényi random graph on n vertices with edge density p. Then, for n sufficiently
large (depending on B, K , and p), the probability that the adjacency matrix An of
G(n, p) has an eigenvalue that is algebraic of degree at most K is bounded above by
n−B.

Note that Vershynin’s result [52, Theorem 1.2] (and also the special case stated in
Theorem 2.5) is not applicable here because then entries of the adjacency matrix do
not have zero mean. It would be interesting to see whether [52, Theorem 1.2] could
be extended to the case where the entries had nonzero mean; such a result would
directly improve the bound in Theorem 3.9 above, likely giving a result analogous to
Theorem 2.6.

4 Proof of Theorem 1.7 and Lemma 1.8

We prove Theorem 1.7 first and prove Lemma 1.8 at the end of this section. We prove
Theorem 1.7 via a series of lemmata. Some of the results in this section can also be
found in the text [16] by Dummit and Foote; we provide proofs in certain cases for
completeness.

Lemma 4.1 Let f be a polynomial with rational coefficients. If λ is a root of f , then
the minimal polynomial of λ divides f over the rationals.

Proof Let g denote the minimum polynomial of λ. By definition of the minimum
polynomial, this implies that deg(g) ≤ deg( f ). Hence, by the division algorithm,
f (z) = h(z)g(z) + r(z), where h and r are polynomials with rational coefficients
and deg(r) < deg(g). Since λ is a root of both f and g, we have that λ is a root of
r . However, since deg(r) < deg(g) and g is the minimum polynomial of λ, we must
have that r(z) = 0. 
�

For the proof of the next lemma, we will need Gauss’s lemma.

Theorem 4.2 (Gauss’s lemma; Proposition 5 on page 303 of [16]) Let f be a noncon-
stant polynomial with integer coefficients. If f is irreducible over the integers, then f
is irreducible over the rationals.

Lemma 4.3 Let f be a monic polynomial with integer coefficients. If λ is a root of f
with minimal polynomial g, then g is a monic polynomial with integer coefficients and
λ is an algebraic integer.

Proof We begin by factoring f over the integers into irreducible polynomials f j for
1 ≤ j ≤ �:

f (z) =
�∏

j=1

f j (z).
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It must be the case that each f j is monic. Additionally, λ must be a root of one of the
f j ’s; without loss of generality, assume λ is a root of f1. By Lemma 4.1, g divides f1
over the rationals. However, from Gauss’s lemma (Theorem 4.2), this implies (since
f1 is monic) that g = f1. We conclude that g is a monic polynomial with integer
coefficients, and by definition it follows that λ is an algebraic integer. 
�

Lemma 4.4 below is the main lemma we will need to prove Theorem 1.7. Roughly
speaking, Lemma 4.4 says that if f is a monic polynomial with integer coefficients
and bounded roots, then there are only a limited number of points in C that can be
roots for f that are algebraic with low degree.

Lemma 4.4 (Counting bound) Let M > 0 and 1 ≤ k ≤ n. Then there exists a set
S ⊂ C (depending only on M and k) of algebraic integers with cardinality

|S| ≤ k
k∏
j=1

(
2

(
k

j

)
M j + 1

)

such that the following holds. If f is a monic polynomial of degree n with integer
coefficients whose roots are bounded in magnitude by M and λ is an root of f that is
algebraic of degree k, then λ ∈ S.

Proof For each c0, . . . , ck−1 ∈ Z, we define the monic polynomial with coefficients
c0, . . . , ck−1 as

hc0,...,ck−1(z) := zk +
k∑
j=1

ck− j z
k− j .

Each such polynomial is a monic polynomial with integer coefficients, and hence the
roots of any such polynomial are always algebraic integers. Define the index set

T :=
{
(c0, . . . , ck−1) ∈ Z

k : |ck− j | ≤
(
k

j

)
M j for j = 1, . . . , k

}
.

By construction,

|T | ≤
k∏
j=1

(
2

(
k

j

)
M j + 1

)
.

We now define the set S as the collection of roots of all polynomials hc0,...,ck−1 whose
coefficients (c0, . . . , ck−1) ∈ T . In other words, recalling (1.1),

S :=
⋃

(c0,...,ck−1)∈T
�(hc0,...,ck−1).
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Since each polynomial hc0,...,ck−1 has at most k distinct roots, it follows that

|S| ≤ k|T | ≤ k
k∏
j=1

(
2

(
k

j

)
M j + 1

)
. (4.1)

We now claim that S satisfies the conclusion of the lemma. Indeed, let f be a
monic polynomial of degree n with integer coefficients whose roots are bounded in
magnitude by M . Let λ1, . . . , λn be the roots of f , and suppose λ1 is an algebraic root
of degree k. It follows from Lemmas 4.1 and 4.3, that the minimal polynomial of λ1,
say g, is a monic polynomial with integer coefficients which divides f . This implies
that the roots of g are also roots of f . (Clearly, λ1 is a root of both f and g.) Without
loss of generality, assume λ1, . . . , λk are the roots of g. Then

g(z) = (z − λ1) · · · (z − λk) = zk +
k∑
j=1

dk− j z
k− j ,

where dk− j := (−1) j
∑

1≤i1<···<i j≤k λi1 · · · λi j . As noted above, each dk− j ∈ Z.
In addition, since each root of f is bounded in magnitude by M , it follows that
|dk− j | ≤ (k

j

)
M j . This implies that (d0, . . . , dk−1) ∈ T . Therefore, we conclude that

the roots of g are contained in S. 
�
With Lemma 4.4 in hand, we are now ready to prove Theorem 1.7. The main idea

is simple: If f does have an algebraic root of degree k, then Lemma 4.4 shows it must
be contained in the set S, which has small cardinality. We can then show that each of
the points in S is unlikely to be a root of f using the bound in (1.2).

Proof of Theorem 1.7 Let f be a random monic polynomial with integer coefficients.
Let S ⊂ C be the set of algebraic integers from Lemma 4.4. In particular, S is a
deterministic set which only depends on M and k, and S has cardinality

|S| ≤ k
k∏
j=1

(
2

(
k

j

)
M j + 1

)
. (4.2)

Let B f ,M be the event that all roots z of f satisfy |z| ≤ M . If f has an algebraic root
of degree k in 	 and B f ,M holds, then Lemma 4.4 implies that this root must be in
S ∩ 	. Hence, by the union bound, we obtain

P ( f has an algebraic root of degree k in 	)

≤ P
({there exists w ∈ S ∩ 	 such that f (w) = 0} ∩ B f ,M

)+ P(B f ,M )

≤
( ∑

w∈S∩	

P ( f (w) = 0)

)
+ P(B f ,M )

≤ p|S| + P(B f ,M ).
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The conclusion now follows from the cardinality bound given in (4.2) combined with
Lemma 4.5 (based on Stirling’s approximation) below. 
�
Lemma 4.5 (Some useful bounds) For M ≥ 1 and k ≥ 2,

M (k2+k)/2e(k2−k log(k))/2 ≤
k∏
j=1

(
2

(
k

j

)
M j + 1

)
≤ (eM)(k

2+k)/2 (4.3)

and
k∑

l=1

l
l∏

j=1

(
2

(
l

j

)
M j + 1

)
≤ (eM)k

2
. (4.4)

If k = 1, the upper bound of 3M holds in (4.3) and (4.4).

Proof of Lemma 4.5 To prove the upper bound in (4.3), we note that

k∏
j=1

(
2

(
k

j

)
M j + 1

)
≤

k∏
j=1

3

(
k

j

)
M j = 3kMk(k+1)/2

k∏
j=1

(
k

j

)
.

Using falling factorial notation (k) j := k(k − 1) · · · (k − j + 1), we compute

3k
k∏
j=1

(
k

j

)
= 3k

∏k
j=1 j j

∏k
j=1 j ! ≤ 3k

∏k
j=1 j j

∏k
j=1

√
2π j( j/e) j

=
(

3√
2π

)k exp(k(k + 1)/2)√
k!

≤
(

3√
2π

)k exp(k(k + 1)/2 + k/2)

(2πk)1/4kk/2

= exp

[
k(k + 1)/2 + k/2 + k log

(
3/

√
2π
)

− k

2
log k − 1

4
log(2πk)

]

≤ exp

[
k(k + 1)/2 + k

(
1/2 + log

(
3/

√
2π
)

− 1

2
log k

)]
.

Note that the first and second inequalities above come from Stirling’s approximation:

j ! ≥ √
2π j

(
j

e

) j

. (4.5)

It is easy to see that
(
1/2+ log(3/

√
2π) − 1

2 log k
)

= log
(

3
√
e√

k2π

)
becomes negative

for k ≥ 4, proving the upper bound for k ≥ 4. For the k = 1, 2, 3 cases, one can

explicitly expand
∏k

j=1

(
2
(k
j

)
M j + 1

)
and use M ≥ 1 to verify that it is at most 3M

when k = 1 and is less than (eM)(k
2+k)/2 when k = 2 or 3. This completes the proof

of the upper bound in (4.3).
To show the upper bound in (4.4), we note that

∑k
�=1 � = k2+k

2 , and, for k ≥ 3,

we have
(
k2+k
2

)
(eM)(k

2+k)/2 ≤ (eM)k
2
by elementary calculus. (Note the function
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e(k2−k)/2 − k2+k
2 is positive and increasing for all k ≥ 3.) Finally, for k = 2, one can

check that 3M + 2(eM)3 ≤ (eM)4 for any M ≥ 1, thus proving (4.4).
To show the lower bound in (4.3), we use the same approach as for the upper bound,

noting that

k∏
j=1

(
2

(
k

j

)
M j + 1

)
≥

k∏
j=1

2

(
k

j

)
M j = 2kMk(k+1)/2

k∏
j=1

(
k

j

)
.

To bound 2kMk(k+1)/2∏k
j=1

(k
j

)
, we use Stirling’s approximation j ! ≤ e

√
j

(
j

e

) j

in

each place where we used (4.5) in the upper bound proof above, eventually arriving at

2k
k∏
j=1

(
k

j

)
= 2k

k∏
j=1

(k) j
j ! = 2k

∏k
j=1 j j

∏k
j=1 j !

≥ exp

[
k2

2
+ k − 1

2
− 1

4
log k − k log

( e
2

)
− k

2
log k

]

≥ exp

[
k2

2
− k

2
log k

]
,

where the last inequality holds since k − 1
2 − 1

4 log k − k log
( e
2

)
is positive for all

k ≥ 1. This completes the proof of the lower bound.
One can see from the proof that k2

2 − k
2 log k + o(k log k) is the correct order for

the exponent on e in (4.3). 
�
Proof of Lemma 1.8 For (i), note that O

(
1√
n

)
(2e)

log n
4 is equal to O(exp(− 1

2 log n +
1+log 2

4 log n)) = o(1).

For (ii), note that (en)n
1−2ε = exp(n(n−2ε(1 + log n)) = (1 + o(1))n .

For (iii), note that 2e−nc (eC
√
n)n

2c′ ≤ exp(log 2 + −nc + n2c
′
(1 + log(Cn)))

= exp
(
nc(−1 + log 2

nc + n2c
′−c(log n + logC)

)
≤ exp(nc(− 2

3 )) for sufficiently large
n.

Finally, for (iv), given B, note that we can choose B ′ = B + 2mK 2 and then
n−B′

(enm)K
2 = n−B exp(−2mK 2 log n+K 2(1+m log n)) ≤ n−B for n sufficiently

large. 
�

5 Proof of Theorem 2.1

Wewill show that it is likely that fn(z) has no irreducible factor of degree n1/3/ log3(n)

or less, following a similar approach to Konyagin [28]. As in [28], we bound the
probability as a sum of two cases, depending on whether the irreducible factor is
cyclotomic or not. We have optimized the proof in the noncyclotomic case for the
highest possible degree (up to log factors); however, a stronger result can be proved in
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the cyclotomic case. Pointwise delocalization in the noncyclotomic case will follow
from an anti-concentration result proven by Tao andVu (Lemma 5.1) whichwe discuss
before giving the proof of Theorem 2.1.

Let Z be a complex-valued random variable. The Lévy concentration function of
Z is defined as

L(Z , t) := sup
u∈C

P(|Z − u| ≤ t)

for all t ≥ 0. The Lévy concentration function bounds the small ball probabilities for
Z , which are the probabilities that Z is in a ball of radius t .

Lemma 5.1 (Tao–Vu, following from Lemma 9.2 in [48]) Let ξ1, . . . , ξn be iid
Rademacher random variables, which take the values +1 and −1 with equal prob-
ability. Let x0, . . . , xn be complex numbers, and suppose there is a subsequence
xi1 , . . . , xim with the property that

|xi j | ≥ 2|xi j+1 |

for all j = 1, . . . ,m − 1. Consider the sum S := ∑n
k=0 ξk xk . Then one has

L(S, 0) ≤ C exp(−cm)

for some absolute constants C, c > 0.

We now have the tools to prove Theorem 2.1.

Proof of Theorem 2.1 Let ξ0, ξ1, . . . be iid Rademacher random variables which take
the values+1 and−1 with equal probability, and recall that fn(z) := zn +ξn−1zn−1+
· · · + ξ1z + ξ0. The general approach below follows Konyagin [28].

First, we bound the number of irreducible polynomials g(z) of degree d that can
divide fn(z). If g(z) divides fn(z), then all roots of g(z) are roots of fn(z) and so are
algebraic integers with absolute value between 1/2 and 2 (by Lemma 5.2). Also, the
set of roots of any given monic irreducible g(z) are disjoint from the set of roots of
any other monic irreducible polynomial (by uniqueness of the minimal polynomial
and Lemma 4.1); thus, the number of degree d algebraic integers that can be roots of
fn(z) is an upper bound for the number of possible degree d irreducible polynomials
g(z) that can divide fn(z). Hence, by Lemmas 4.4 and 4.5, we have

#{degree d irreducible g(z) that divide fn(z)} ≤ (2e)d
2
. (5.1)

When d ≤ 2, the total number of possible divisors g(z) is a constant, so apply-
ing Remark 2.2, the probability that any such polynomial divides fn(z) is at most
O(1/

√
n). Thus, it is sufficient to consider irreducible divisors with degree at least 3,

and we assume for the remainder of the proof that a possible divisor g(z) has degree
d ≥ 3.
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For the noncyclotomic case, we will show sufficient delocalization so that the prob-
ability that fn(z) has an irreducible factor of degree d with 3 ≤ d ≤ n1/3/ log3(n) is
exponentially small. Let g(z) be an arbitrary noncyclotomic irreducible polynomial
with degree d where 3 ≤ d ≤ n1/3/ log3(n). By Lemmas 4.1 and 4.3, we may assume
g is monic; also, g(z) divides f (z) if and only if f (w) = 0, where w is any root of
g(z). By a result of Dobrowolski [15], since g(z) is noncyclotomic, it must have a root
w satisfying

|w| ≥ 1 + c

d

(
log log d

log d

)3

,

where c is a positive constant; note that the lower bound strictly exceeds 1 since
d ≥ 3. We will show that the sequence 1, w,w2, w3, . . . , wn contains a subsequence
that grows quickly, and then apply Lemma 5.1. Because d ≤ n1/3/ log3 n, we know
that |w| ≥ 1+ c

n1/3
and so if we take a minimal integer b satisfying b ≥ 4n1/3

c , we have

that |w|b ≥ (1 + c
n1/3

)b ≥ exp
(

cb
2n1/3

)
for sufficiently large n (since 1 + x ≥ ex/2

for all sufficiently small positive x) , which shows that |w|b ≥ 2. We can now take
the subsequence w0, wb, w2b, . . . , w� n

b �b, noting each term is at least twice the term
before in absolute value, and so Lemma 5.1 implies the delocalization bound

P(g(z) divides fn(z)) = P( fn(w) = 0)

≤ C exp
(
−c

(⌊n
b

⌋
+ 1

))
≤ C exp(−cn2/3),

where C and c are constants that may change from line to line. By (5.1), there are

at most (2e)d
2 ≤ exp

(
n2/3

log6 n
(1 + log 2)

)
possible polynomials g(z) with degree d

where 3 ≤ d ≤ n1/3/ log3 n. Taking a union bound over all possible g(z) with
all possible degrees d, we see that the probability that fn(z) has an irreducible
noncyclotomic factor with degree in the range 3 ≤ d ≤ n1/3/ log3 n is at most

C n1/3

log3 n
exp

(
−cn2/3 + n2/3

log6 n
(1 + log 2)

)
, which is less than exp(−cn2/3) for suffi-

ciently large n.
For the cyclotomic case, we will use the union bound over all cyclotomic polyno-

mials of a given degree. Let Ecyl be the event that there exists a cyclotomic polynomial
of degree d with 3 ≤ d ≤ n1/3 that divides fn(x), and let Ecyl,d be the event that there
exists a cyclotomic polynomial of degree d that divides fn(x). By the union bound,

we have P(Ecyl) ≤ ∑n1/3
d=3 P(Ecyl,d), and so it remains to prove a bound on P(Ecyl,d).

Recall that the k-th cyclotomic polynomial is 
k(x) = ∏
1≤a≤k

gcd(a,k)=1

(
x − e2π i

a
k

)
.

Assume that 
k(x) has degree d ≥ 3 (which implies k ≥ 3) and divides fn(x). Then
we have fn(α) = 0, where α is a root of
k(x). Because αk = 1, we have that fn(α) =∑k−1

j=0 A jα
j where A j = ∑

b≡ j (mod k)
0≤b≤n

ξb; note that the A j are independent. Because

fn(α) = 0 and α has algebraic degree d, we have
∑d−1

j=0 A jα
j = −∑k−1

j=d A jα
j =∑d−1

j=0 Bjα
j , for some integers Bj that are functions of Ad , . . . , Ak−1, and so the Bj

are independent of A0, . . . , Ad−1. Furthermore, because the minimal polynomial for
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α has degree d, we must have A j = Bj for 0 ≤ j ≤ d − 1. We may condition on the
Bj and apply the Littlewood–Offord inequality (see, for example, [47, Corollary 7.8])
to each equation A j = ∑

b≡ j (mod k)
0≤b≤n

ξb = Bj , resulting in the bound

P(
k(x) divides fn(x)) ≤ P(A j = Bj for 0 ≤ j ≤ d − 1) = O

(√
k√
n

)d

.

It is well known that if 
k(x) has degree d, then k ≤ cd log log d for a constant c
(following from, for example, Rosser and Schoenfeld [45, Theorem 15]), and so using
the assumption that d ≤ n1/3, we have

P(
k(x) divides fn(x)) ≤ O

(
1

n1/4

)d

,

a bound independent of k. Because every cyclotomic polynomial is equal to 
k(x)

for some k, we have that P(Ecyl,d) ≤ O
(

1
n1/4

)d
N (d), where N (d) is the number of

cyclotomic polynomials with degree d. Pomerance [43] showed that N (d) ≤ cd. (In
fact, [43] shows that the constant c tends slowly to zero as d tends to infinity.) Thus,

P(Ecyl,d) ≤ dO
(

1
n1/4

)d
.

We now apply the union bound to Ecyl = ⋃
3≤d≤n1/3 Ecyl,d . From the discussion

after (5.1), we know that the probability of a factor with degree at most 2 is bounded by
O(1/

√
n) (in fact, this bound is tight for the possible factors x+1 and x−1), and so by

the previous paragraph, we need a similar bound on
∑n1/3

d=3

(
c

n1/4

)d
d for any constant

c. In fact, using the formula for an infinite arithmetico–geometric series, we have that

∞∑
d=3

( c

n1/4

)d
d ≤ 4

( c

n1/4

)3 ≤ O

(
1√
n

)

for n sufficiently large, which completes the proof. 
�
Lemma 5.2 If fn(z) := zn + ξn−1zn−1 + · · · + ξ1z + ξ0 is a polynomial in which the
coefficients ξ0, ξ1, . . . ξn−1 take values 1 or −1, all roots of fn have absolute value
strictly between 1/2 and 2.

Proof If |z| ≤ 1/2, then
∣∣∣zn +∑n−1

j=1 z
jξ j

∣∣∣ ≤ ∑n
j=1

1
2 j < 1, and hence | fn(z)| ≥

|ξ0| −
∣∣∣zn +∑n−1

j=1 z
jξ j

∣∣∣ > 0. Thus, if fn(z) = 0, we must have |z| > 1/2.

Similarly, if |z| ≥ 2, then
∣∣∣∑n−1

j=0 z
jξ j

∣∣∣ ≤ ∑n−1
j=0 2

j < 2n, and hence | fn(z)| ≥
2n −

∣∣∣∑n
j=1 z

jξ j

∣∣∣ > 0, showing that |z| < 2 for any value of z for which fn(z) = 0.

�
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