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Abstract A function on the state space of a Markov chain is a “lumping” if observ-
ing only the function values gives a Markov chain. We give very general conditions
for lumpings of a large class of algebraically defined Markov chains, which include
random walks on groups and other common constructions. We specialise these crite-
ria to the case of descent operator chains from combinatorial Hopf algebras, and, as
an example, construct a “top-to-random-with-standardisation” chain on permutations
that lumps to a popular restriction-then-induction chain on partitions, using the fact
that the algebra of symmetric functions is a subquotient of the Malvenuto–Reutenauer
algebra.

Keywords Markov chain · Random walks on groups · Card shuffling · Combinatorial
Hopf algebras
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1 Introduction

Combinatorialists have built a variety of frameworks for studying Markov chains
algebraically, most notably the theories of random walks on groups [18,62] and
their extensions to monoids [10,14,16]. Further examples include [23,32,54]. These
approaches usually associate some algebraic operator to the Markov chain, the advan-
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tage being that the eigendata of the operator reflects the convergence rates of the
chains. As an easy example, consider n playing cards laid in a row on a table, and
imagine exchanging two randomly chosen cards at each time step. [24] represents
this random transposition shuffle as multiplication by the sum of transpositions in the
group algebra of the symmetric group, and deduces from the representation theory of
the symmetric group that asymptotically 1

2n log n steps are required to randomise the
order of the cards. See Example 2.1 for more details of the setup.

Analogous to how these frameworks translated the convergence rate calculation into
an algebraic question of representations and characters, the present paper gives very
general algebraic conditions for a different probability problem: when is a function
θ of an algebraic Markov chain {Xt } a Markov function, meaning that the sequence
of random variables {θ(Xt )} is itself a Markov chain? The motivation for this is that
often, only certain functions ofMarkov chains are of interest. For example, the random
transposition shuffle above may be in preparation for a card game that only uses the
cards on the left (Example 2.11), or where only the position of one specific card
is important (Example 2.9). One naturally suspects that randomising only half the
cards or only the position of one card may take fewer than 1

2n log n moves, as these
functions can become randomised before the full chain does. The convergence rates
of such functions of Markov chains are generally easier to analyse when the function
is Markov, as the lumped chain {θ(Xt )} can be studied independently of the full chain
{Xt }. The reverse problem is also interesting: aMarkov chain X ′

t that is hard to analyse
directly may benefit from being viewed as {θ(Xt )} for a more tractable “lift” chain
{Xt }. [17,25,28] are examples of this idea.

The aim of this paper is to expedite the search for lumpings and lifts of “algebraic”
Markov chains by giving very general conditions for their existence. As formalised in
Sect. 2.2, the chains under consideration are associated with a linear transformation
T : V → V , where the state space is a basis B of the vector space V . Our two main
discoveries for such chains are:

– (Section 2.3, Theorem 2.7) if T descends to a well-defined map T̄ on a quotient
space V̄ of V that “respects the basis”B, then the quotient projection θ : V → V̄
gives a lumping from any initial distribution onB. The lumped chain is associated
with T̄ : V̄ → V̄ .

– (Section 2.4, Theorem 2.16) if V contains a T -invariant subspace V ′ that “respects
the basis” B, then T : V ′ → V ′ corresponds to a lumping that is only valid for
certain initial distributions, i.e. a weak lumping.

Section 2 states and proves the above very general theorems, and illustrates them
with numerous simple examples, both classical and new.

Section 3 specialises these general lumping criteria to descent operator chains on
combinatorial Hopf algebras [54]—in essence, lumpings from any initial distribution
correspond to quotient algebras, and weak lumpings to subalgebras. This is applied to
two fairly elaborate examples. Sections 3.2, 3.3, 3.4, 3.5 demystifies a theoremof Jason
Fulman [31, Th. 3.1]: the probability distribution of the RSK shape [64, Sec. 7.11] [33,
Sec. 4] of a permutation, after t top-to-random shuffles (Example 2.1) from the identity,
agrees with the probability distribution of a partition after t steps of a certain Markov
chain that removes then re-adds a random box (see Sect. 3.2.1). Fulman remarked that
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the connection between these two chains was “surprising”, perhaps because it is not
a lumping (see the start of Sect. 3). Here, we use the new lumping criteria for descent
operator chains to construct a similar chain to top-to-random shuffling that does lump
to the chain on partitions, and prove that its probability distribution after t steps from
the identity agrees with that of top-to-random.

The second application, in Sect. 3.6, is a Hopf-algebraic re-proof of a result of
Christos Athanasiadis and Persi Diaconis [9, Ex. 5.8], that riffle-shuffles and related
card shuffles lump via descent set.

2 General Theory

2.1 Matrix Notation

Given a matrix A , let A(x, y) denote its entry in row x , column y, and write AT for
the transpose of A.

Let V be a vector space (over R) with basis B, and T : V → V be a linear map.
Write [T]B for the matrix of T with respect toB . In other words, the entries of [T]B
satisfy

T(x) =
∑

y∈B
[T]B (y, x)y

for each x ∈ B.
V ∗ is the dual vector space to V , the set of linear functions from V toR. Its natural

basis is B∗ := {x∗|x ∈ B}, where x∗ satisfies x∗(x) = 1, x∗(y) = 0 for all y ∈ B,
y �= x . The dual map to T : V → V is the linear map T∗ : V ∗ → V ∗ satisfying
(T∗ f )(v) = f (Tv) for all v ∈ V, f ∈ V ∗. Dualising a linear map is equivalent to
transposing its matrix:

[
T∗]

B∗ = [T]TB .

2.2 Markov Chains from Linear Maps via the Doob Transform

To start, here is a quick summary of the Markov chain facts required for this work.
A (discrete time) Markov chain is a sequence of random variables {Xt }, where each
Xt belongs to the state space Ω . All Markov chains here are time-independent and
have a finite state space. Hence, they are each described by an |Ω|-by-|Ω| transition
matrix K : for any time t ,

P{Xt = xt |X0 = x0, X1 = x1, . . . , Xt−1 = xt−1}
= P{Xt = xt |Xt−1 = xt−1} := K (xt−1, xt ).

(Here, P{X |Y } is the probability of event X given event Y .) If the probability dis-
tribution of Xt is expressed as a row vector gt , then taking one step of the chain is
equivalent to multiplication by K on the right: gt = gt−1K . (Some authors, notably
[10], take the opposite convention, where P{Xt = y|Xt−1 = x} := K (y, x), and the
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distribution of Xt is represented by a column vector ft with ft = K ft−1.) Note that
a matrix K specifies a Markov chain in this manner if and only if K (x, y) ≥ 0 for
all x, y ∈ Ω , and

∑
y∈Ω K (x, y) = 1 for each x ∈ Ω . A probability distribution

π : Ω → R is a stationary distribution if it satisfies
∑

x∈Ω π(x)K (x, y) = π(y) for
each state y ∈ Ω . We refer the reader to the textbooks [43,47] for more background
in Markov chain theory.

This paper concerns chains which arise from linear maps. A simple motivating
example is a random walk on a group. Given a probability distribution Q on a group
G (i.e. a function Q : G → R), consider the following Markov chain on the state
spaceΩ = G: at each time step, choose a group element g with probability Q(g), and
move from the current state x to the state xg. This chain is associated with the “right
multiplication by

∑
g∈G Q(g)g” operator on the group algebra RG, i.e. to the linear

transformation T : RG → RG, T(x) := x
(∑

g∈G Q(g)g
)
. To state the relationship

more precisely: the transition matrix of theMarkov chain is the transpose of the matrix
of T relative to the basis G ofRG, i.e. K = [T]TG . (One can define similar chains from
left-multiplication operators.)

Before generalising this connection to other linear operators, here are some simple
examples of random walks on groups that we will use to illustrate lumpings in later
sections.

Example 2.1 (Card shuffling) Random walks on G = Sn , the symmetric group,
describe many examples of card shuffling. The state space of these chains are the n!
possible orderings of a deck of n cards. For convenience, suppose the cards are labelled
1, 2, . . . , n, each label occurring once. There are various different conventions on how
to represent such an ordering by a permutation, see [68, Sec. 2.2]. We follow the more
modern notation in [8] (as opposed to [6,11]) and associate σ to the ordering where
σ(1) is the label of the top card, σ(2) is the label of the second card from the top, ...,
σ(n) is the label of the bottom card. In other words, writing σ in one-line notation
(σ (1), σ (2), . . . , σ (n)) (see Sect. 3.1) lists the card labels from top to bottom. Observe
that in this convention, right-multiplication by a permutation τ moves the card in
position τ(i) to position i .

Two simple shuffles that we will consider are:

– top-to-random [6,19]: remove the top card, then reinsert it into the deck at one of
the n possible positions, chosen uniformly. A possible trajectory for a deck of five
cards is

(5, 2, 4, 3, 1) (2, 4, 3, 5, 1) (4, 3, 2, 5, 1) (4, 3, 2, 5, 1)

(2, 4, 3, 1) (4, 3, 5, 1) (3, 2, 5, 1)

The associated distribution Q on Sn is

Q(g) =
{

1
n if g = (i i − 1 . . . 1) for some i , in cycle notation;
0 otherwise.
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(Note that the identity permutation is the case i = 1.) Equivalently, the associated
linear map is right-multiplication by

q = 1

n

n∑

i=1

(i i − 1 . . . 1).

ThisMarkov chain has been thoroughly analysed over the literature: [7, Sec. 1, Sec.
2] uses a strong uniform time to elegantly show that roughly n log n iterations are
required to randomise the deck, and [19, Cor. 2.1] finds the explicit probabilities of
achieving a particular permutation after any given number of shuffles. The time-
reversal of the top-to-random shuffle is the equally well-studied Tsetlin library
[67]: [41, Sec. 4.6] describes an explicit algorithm for an eigenbasis, [56] derives
the spectrum for a weighted version, and [30] lists many more references.

– random-transposition [18,24, Chap. 3D]: choose two cards, possibly with repeti-
tion, uniformly and independently. If the same card was chosen twice, do nothing.
Otherwise, exchange the two chosen cards. A possible trajectory for a deck of five
cards is

(5, 2, 4, 3, 1) (5, 4, 2, 3, 1) (5, 4, 1, 3, 2) (4, 5, 1, 3, 2)

The associated distribution Q on Sn is

Q(g) =

⎧
⎪⎨

⎪⎩

1
n if g is the identity;
2
n2

if g is a transposition;

0 otherwise.

Equivalently, the associated linear map is right-multiplication by

q = 1

n
id+2

n

∑
σ ;

summing over all transpositions σ .
The mixing time for the random-transposition shuffle is 1

2n log n, as shown in
[24] using the representation theory of the symmetric group. [20] uses this chain
to induce Markov chains on trees and on matchings. A recent extension to random
involutions is [13].

Example 2.2 (Flip a random bit) [46]: Let G = (Z/2Z)d , written additively as binary
strings of length d. At each time step, uniformly choose one of the d bits, and change
it either from 0 to 1 or from 1 to 0. A possible trajectory for d = 5 is

(1, 0, 0, 1, 1) (1, 0, 1, 1, 1) (1, 0, 1, 1, 0) (0, 0, 1, 1, 0)

The associated distribution Q is

Q(g) =
{

1
d if g consists of d − 1 zeroes and 1 one;
0 otherwise.
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Equivalently, the associated linear map is right-multiplication by

q = 1

d
((1, 0, . . . , 0) + (0, 1, 0, . . . , 0) + · · · + (0, . . . , 0, 1)) .

(The addition in q is in the group algebra RG, not within the group G.)
[46] investigated the return probabilities of this walk and similar walks on (Z/2Z)d

that allow changing more than one bit.

As detailed above, the transition matrix of a random walk on a group is K = [T]TG ,
where T is the right-multiplication operator on the group algebra RG defined by

T(x) := x
(∑

g∈G Q(g)g
)
. This relationship between K and T allows the represen-

tation theory of G to illuminate the converge rates of the chain. A naive generalisation
is to declare new transition matrices to be K := [T]TB , for other linear transformations
T on a vector space with basisB. The state space of such a chain is the basisB, and
the intuition is that the transition probabilities K (x, y) would represent the chance of
obtaining y when applying T to x .

In order for K := [T]TB to be a transitionmatrix, we require K (x, y) ≥ 0 for all x, y
inB, and

∑
y∈B K (x, y) = 1. As noted by Persi Diaconis (personal communication),

the non-negativity condition can be achieved by adding multiples of the identity trans-
formation to T, which essentially keeps the eigendata properties in Theorem 2.3. In
any case, many linear operators arising from combinatorics already have non-negative
coefficients with respect to natural bases, so we do not dwell on this problem.

The row-sum condition
∑

y∈B K (x, y) = 1, though true for many important cases
[10,14], is less guaranteed. There are many possible ways to adjust K so that its row
sums become 1. One way which preserves the relationship between the eigendata of T
and the convergence rates of the chain is to rescale T and the basisB using the Doob
h-transform.

The Doob h-transform is a very general tool in probability, used to condition a
process on some event in the future [26]. The simple case of relevance here is condi-
tioning a (finite, discrete time) Markov chain on non-absorption. The Doob transform
constructs the transition matrix of the conditioned chain out of the transition proba-
bilities of the original chain between non-absorbing states, or, equivalently, out of the
original transition matrix with the rows and columns for absorbing states removed. As
observed in the multiple references below, the same recipe essentially works for any
arbitrary non-negative matrix K .

The Doob transform relies on a positive right eigenfunction η of K , i.e. a positive
function η : B → R satisfying

∑
y K (x, y)η(y) = βη(x) for some positive number

β, which is the eigenvalue. (Functions satisfying this condition with β = 1 are called
harmonic, hence the name h-transform.) To say this in a basis-independent way, recall
that K = [T]TB = [

T∗]
B∗ , so η (or more accurately, its linear extension in V ∗) is an

eigenvector of the dual map T∗ : V ∗ → V ∗ with eigenvalue β, i.e. η ◦ T = βη as
functions on V .

Theorem 2.3 (Markov chains from linear maps via the Doob h-transform) [44,
Def. 8.11, 8.12] [47, Sec. 17.6.1] [69, Lem. 4.4.1] [66, Lem. 1.4, Lem. 2.11] Let
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V be a finite-dimensional vector space with basisB, and T : V → V be a linear map
for which K := [T]TB has all entries non-negative. Suppose K has a positive right
eigenfunction η with eigenvalue β > 0. Then

i. The matrix

Ǩ (x, y) := 1

β
K (x, y)

η(y)

η(x)

is a transition matrix. Equivalently, Ǩ :=
[
T
β

]T
B̌
, where B̌ :=

{
x

η(x) : x ∈ B
}
.

ii. The left eigenfunctions g for Ǩ , with eigenvalueα (i.e.
∑

x g(x)K (x, y) = αg(y)),
are in bijection with the eigenvectors g ∈ V of T, with eigenvalue α

β
, via

g(x) := η(x) × coefficient of x in g.

iii. The stationary distributions π for Ǩ are precisely the functions of the form

π(x) := η(x)
ξx∑

x∈B ξxη(x)
,

where
∑

x∈B ξx x ∈ V is an eigenvector ofTwith eigenvalue 1, whose coefficients
ξx are all non-negative.

iv The right eigenfunctions f for Ǩ , with eigenvalue α (i.e.
∑

y K (x, y)f(y) =
αf(x)), are in bijection with the eigenvectors f ∈ V ∗of the dual map T∗, with
eigenvalue α

β
, via

f(x) := 1

η(x)
f (x).

The function η : V → R above is called the rescaling function. The output Ǩ of the
transform depends on the choice of rescaling function. Observe that, if K := [T]TB
already has each row summing to 1, then the constant function η ≡ 1 on B is a
positive right eigenfunction of K with eigenvalue 1, and using this constant rescaling
function results in no rescaling at all: Ǩ = K . This will be the case in all examples
in Sects. 2.3, 2.4, so the reader may wish to skip the remainder of this section on first
reading, and assume η ≡ 1 on B in all theorems. (Note that η ≡ 1 on B does not
mean η is constant on V , since η is a linear function. Instead, η sends a vector v in V
to the sum of the coefficients when v is expanded in the B basis.)

Proof To prove i, first note that Ǩ (x, y) ≥ 0 because β > 0 and η(x) > 0 for all x .
And the rows of Ǩ sum to 1 because

∑

y

Ǩ (x, y) =
∑

y K (x, y)η(y)

βη(x)
= βη(x)

βη(x)
= 1.

123



J Theor Probab (2019) 32:1804–1844 1811

Parts ii and iv are immediate from the definition of Ǩ . To see part iii, recall that
a stationary distribution is precisely a positive left eigenfunction with eigenvalue 1
(normalised to be a distribution). 
�

Example 2.4 To illustrate the Doob transform, here is the down–up chain on partitions
of size 3. (See Sect. 3.2.1 for a general description, and an interpretation in terms of
restriction and induction of representations of symmetric groups.)

Let V3 be the vector space with basis B3, consisting of the three partitions of size
3:

B3 :=
⎧
⎨

⎩
, ,

⎫
⎬

⎭ .

We define below a second vector space V2, and linear transformations D : V3 → V2,
U : V2 → V3 whose composition T = U ◦ D will define our Markov chain on B3.

V2 is the vector space with basis B2, the two partitions of size 2

B2 :=
{

,
}

.

For x ∈ B3, defineD(x) to be the sum of all elements ofB2 which can be obtained
from x by deleting a box on the right end of any row. So

D
( )

= ;

D
( )

= + ;

D

⎛

⎝

⎞

⎠ = ;

Then, for x ∈ B2, define U(x) to be the sum of all elements of B3 which can be
obtained from x by adding a new box on the right end of any row, including on the
row below the last row of x . So

123



1812 J Theor Probab (2019) 32:1804–1844

U
( )

= + ;

U
( )

= + ;

An easy calculation shows that

K = [U ◦ D]TB3
=
⎡

⎣
1 1 0
1 2 1
0 1 1

⎤

⎦ ,

which has all entries non-negative, but its rows do not sum to 1.
The function η : B3 → R defined by

η
( )

= 1; η

( )
= 2; η

⎛

⎝

⎞

⎠ = 1

is a right eigenfunction of K with eigenvalue β = 3. So applying the Doob transform
with this choice of rescaling function amounts to dividing every entry of K by 3, then
dividing the middle row by 2 and multiplying the middle column by 2, giving

Ǩ =

⎡

⎢⎢⎢⎣

1
3

2
3 0

1
6

2
3

1
6

0 2
3

1
3

⎤

⎥⎥⎥⎦ .

This is a transition matrix as its rows sum to 1. Observe that Ǩ = [ 1
3U ◦ D

]T
B̌3

, where

B̌3 :=
⎧
⎨

⎩
,

1

2
,

⎫
⎬

⎭ .

2.3 Quotient Spaces and Strong Lumping

As remarked in the introduction, sometimes only certain features of a Markov chain
is of interest, that is, we wish to study a process {θ(Xt )} rather than {Xt }, for some
function θ on the state space. The process {θ(Xt )} is called a lumping (or projection),
because it groups together states with the same image under θ , treating them as a single
state. The analysis of a lumping is easiest when {θ(Xt )} is itself a Markov chain. If
this is true regardless of the initial state of the full chain {Xt }, then the lumping is
strong; if it is dependent on the initial state, the lumping is weak. [43, Sec. 6.3, 6.4] is
a very thorough exposition on these topics.

This section focuses on strong lumping; the next section will handle weak lumping.
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Definition 2.5 (Strong lumping) Let {Xt }, {X̄t } be Markov chains on state spaces
Ω, Ω̄ , respectively, with transition matrices K , K̄ . Then {X̄t } is a strong lumping of
{Xt } via θ if there is a surjection θ : Ω → Ω̄ such that the process {θ(Xt )} is a
Markov chain with transition matrix K̄ , irrespective of the starting distribution X0. In
this case, {Xt } is a strong lift of {X̄t } via θ .

The following necessary and sufficient condition for strong lumping is known as
Dynkin’s criterion:

Theorem 2.6 (Strong lumping for Markov chains) [43, Th. 6.3.2] Let {Xt } be a
Markov chain on a state space Ω with transition matrix K , and let θ : Ω → Ω̄ be a
surjection. Then {Xt } has a strong lumping via θ if and only if, for every x1, x2 ∈ Ω

with θ(x1) = θ(x2), and every ȳ ∈ Ω̄ , the transition probability sums satisfy

∑

y:θ(y)=ȳ

K (x1, y) =
∑

y:θ(y)=ȳ

K (x2, y).

The lumped chain has transition matrix

K̄ (x̄, ȳ) :=
∑

y:θ(y)=ȳ

K (x, y)

for any x with θ(x) = x̄ . 
�
When the chain {Xt } arises from linear operators via the Doob h-transform,

Dynkin’s criterion translates into the statement below regarding quotient operators.

Theorem 2.7 (Strong lumping for Markov chains from linear maps) [52, Th. 3.4.1]
Let V be a vector space with basis B, and T : V → V, η : V → R be linear maps
allowing the Doob transform Markov chain construction of Theorem 2.3. Let V̄ be a
quotient space of V , and denote the quotient map by θ : V → V̄ . Suppose that

1. the distinct elements of {θ(x) : x ∈ B} are linearly independent, and
2. T, η descend to maps on V̄ - that is, there exists T̄ : V̄ → V̄ , η̄ : V̄ → R, such

that θ ◦ T = T̄ ◦ θ and η̄ ◦ θ = η.

Then, the Markov chain defined by T̄ (on the basis B̄ := {θ(x) : x ∈ B}, with
rescaling function η̄) is a strong lumping via θ of the Markov chain defined by T.

In the simplified case where η ≡ 1 on B and β = 1 (so no rescaling is required
to define the chain on B), such as for random walks on groups, taking η̄ ≡ 1 on B̄
satisfies η̄ ◦ θ = η, so condition 2 reduces to a condition on T only, and the lumped
chain also does not require rescaling.

In the general case, the idea of the proof is that θ ◦T = T̄◦θ is essentially equivalent
to Dynkin’s criterion for the unscaled matrices K := [T]TB and K̄ := [T̄]T

B̄
, and this

turns out to imply Dynkin’s criterion for the Doob-transformed transition matrices.

Proof Let K = [T]TB , K̄ = [T̄]T
B̄
, and let β be the eigenvalue of η. The first step

is to show that η̄ is a possible rescaling function for T̄, i.e. η̄ is an eigenvector of T̄∗
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with eigenvalue β, taking positive values on B̄. In other words, the requirement is
that [T̄∗(η̄)]v = βη̄v for every v ∈ V̄ , and η̄(v) > 0 if v ∈ B̄. Since θ : V → V̄
and its restriction θ : B → B̄ are both surjective, it suffices to verify the above two
conditions for v = θ(x) with x ∈ V and with x ∈ B, respectively.

Now

[T̄∗(η̄)](θx) = η̄ ◦ T̄(θx) = η̄ ◦ θ ◦ T(x) = η ◦ T(x) = T∗η(x) = βη(x) = [βη̄]θ(x).

And, for x ∈ B, we have η̄(θ(x)) = η(x) > 0.

Now let Ǩ , ˇ̄K denote the transition matrices that the Doob transform constructs
from K and K̄ . (Strictly speaking, we do not yet know that the entries of K̄ are non-
negative—this will be proved in Eq. (2.1) below—but the formula in the definition
of the Doob transform remains well-defined nevertheless.) By Theorem 2.6 above, it
suffices to show that, for any x ∈ B with θ(x) = x̄ , and any ȳ ∈ B̄,

ˇ̄K (x̄, ȳ) =
∑

y:θ(y)=ȳ

Ǩ (x, y).

By definition of the Doob transform, this is equivalent to

1

β
K̄ (x̄, ȳ)

η̄(ȳ)

η̄(x̄)
= 1

β

∑

y:θ(y)=ȳ

K (x, y)
η(y)

η(x)
.

Because η̄θ = η, the desired equality reduces to

K̄ (x̄, ȳ) =
∑

y:θ(y)=ȳ

K (x, y). (2.1)

Now expand both sides of T̄ ◦ θ(x) = θ ◦ T(x) in the B̄ basis:

∑

ȳ∈B̄
K̄ (x̄, ȳ)ȳ = θ

⎛

⎝
∑

y∈B
K (x, y)y

⎞

⎠ =
∑

ȳ∈B̄

⎛

⎝
∑

y:θ(y)=ȳ

K (x, y)

⎞

⎠ ȳ.

Equating coefficients of ȳ on both sides completes the proof. 
�
Example 2.8 (Forget the last bit under “flip a random bit”) Take G = (Z/2Z)d , the
additive group of binary strings of length d, as in Example 2.2. Then Ḡ = (Z/2Z)d−1

is a quotient group of G, by forgetting the last bit. The quotient map θ : G → Ḡ
induces a surjective map θ : RG → RḠ.

Recall that the “flip a random bit” chains comes from the linear transforma-

tion on RG of right-multiplication by q = 1
d

(
(1, 0, . . . , 0) + (0, 1, 0, . . . , 0) + · · ·

+ (0, . . . , 0, 1)
)
. Since multiplication of group elements descends to quotient groups,

forgetting the last bit is a lumping, and the lumped chain is associated with
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right-multiplication in RḠ by the image of q in RḠ, which is 1
d

(
(1, 0, . . . , 0) +

(0, 1, 0, . . . , 0)+ . . .+ (0, . . . , 0, 1)+ (0, . . . , 0)
)
, where there are d summands each

of length d − 1.
The analogous construction holds for any quotient Ḡ of any group G; see [8, App.

IA].

The above principle extends to “quotient sets”, i.e. a set of coset representatives,
which need not be groups (and is extended further to double-coset representatives in
[25]):

Example 2.9 (“Follow the ace of spaces” under shuffling) Consider G = Sn , and let
H = Sn−1 be the subgroup of Sn which permutes the last n − 1 objects. Then the
transpositions τi := (1 i), for 2 ≤ i ≤ n, together with τ1 := id, give a set of right
coset representatives of H . The coset Hτi consists of all deck orderings where the
card with label 1 is in the i th position from the top. Recall that right-multiplication
is always well defined on the set of right cosets, so any card-shuffling model lumps
by taking right cosets. This corresponds to tracking only the location of the card with
label 1. [8, Sec. 2] analyses this chain in detail for the “riffle-shuffles” of [11].

The example of lumping to coset representatives can be further generalised to a
framework concerning orbits under group actions; notice in the phrasing below that
the theorem applies to more than random walks on groups.

Theorem 2.10 (Strong lumping to orbits under group actions) Let V be a vector
space with basis B, and T : V → V, η : V → R be linear maps allowing the Doob
transform Markov chain construction of Theorem 2.3. Let {si : B → B} be a group
of maps whose linear extensions to V commute with T, and which satisfies η ◦ si = η.
Then the Markov chain defined by T lumps to a chain on the {si }-orbits of B.

This theorem recovers Example 2.9 above, of lumping a randomwalk on a group to
right cosets, by letting si be left-multiplication by i , as i ranges over the subgroup H .
Since si is left-multiplication and T is right-multiplication, they obviously commute.
Hence any right-multiplication random walk on a group lumps via taking right cosets.

Proof Let B̄ be the sets of {si }-orbits of B, and let θ : B → B̄ send an element
of B to its orbit. Let V̄ be the vector space spanned by B̄. Then T descends to a
well-defined map on V̄ because of the following: if θ(x) = θ(y), then x = si (y) for
some si , so T(x) = T ◦ si (y) = si ◦ T(y) (using si to denote the linear extension in
this last expression), and so T(x) and T(y) are in the same orbit. And the condition
η ◦ si = η ensures that η̄ is well defined on the {si }-orbits. 
�

Below are two more specialisations of Theorem 2.10 that hold for random walks
on any group as long as the element being multiplied is in the centre of the group
algebra; we illustrate them with card-shuffling examples.

Example 2.11 (Values of the top k cards under random-transposition shuffling) This
simple example appears to be new. Recall that the random-transposition shuffle cor-
responds to right-multiplication by q = 1

n id+ 2
n

∑
i< j (i j) on RSn . Because q is
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a sum over all elements in two conjugacy classes, it is in the centre of RSn , hence
right-multiplication by q commutes with any other right-multiplication operator. Let
si : Sn → Sn be right-multiplication by i ∈ Sn−k , the subgroup of Sn which
only permutes the last n − k objects. Then Theorem 2.10 implies that the random-
transposition shuffle lumps to the orbits under this action, which are the left-cosets
of Sn−k (see also Example 2.9). The coset τSn−k consists of all decks whose top k
cards are τ(1), τ (2), . . . , τ (k) in that order (i.e. all decks that can be obtained from
the identity by first applying τ and then permuting the bottom n−k cards in any way).
Hence the lumped chain tracks the values of the top k cards.

Example 2.12 (Coagulation–fragmentation) As noted in [20, Sec. 1.5], the follow-
ing chain is one specialisation of the processes in [29], modelling the splitting and
recombining of molecules.

Recall that the random-transposition shuffle corresponds to right-multiplication
by the central element q = 1

n id+ 2
n

∑
i< j (i j) on RSn . Let si : Sn → Sn be

conjugation by the group element i , for all i inSn . This conjugation action commutes
with right-multiplication by q:

si ◦ T (x) = i(qx)i−1 = q(i xi−1) = T ◦ si (x),

where the second equality uses that q is central. So Theorem 2.10 implies that the
random-transposition shuffle lumps to the orbits under this conjugation action, which
are the conjugacy classes ofSn . Each conjugacy class ofSn consists precisely of the
permutations of a specific cycle type, and so can be labelled by the multiset of cycle
lengths, a partition of n (see Sect. 3.1). These cycle lengths represent the sizes of the
molecules. As described in [21], right-multiplication by a transposition either joins two
cycles or breaks a cycle into two, corresponding to the coagulation or fragmentation
of molecules.

Our final example shows that the group {si } inducing the lumping of a randomwalk
on G need not be a subgroup of G:

Example 2.13 (The Ehrenfest Urn) [18, Chap. 3.1.3] Recall that the “flip a random
bit” chain comes from the linear transformation on R (Z/2Z)d of right-multiplication
by q = 1

d ((1, 0, . . . , 0) + (0, 1, 0, . . . , 0) + · · · + (0, . . . , 0, 1)). Let the symmetric
groupSd act on (Z/2Z)d by permuting the coordinates. Because q is invariant under
this action, right-multiplication by q commutes with this Sd action. So the “flip a
random bit” Markov chain lumps to the Sd -orbits, which track the number of ones
in the binary string. The lumped walk is as follows: if the current state has k ones,
remove a one with probability k

d ; otherwise add a one. As noted by [18, Chap. 3.1.3],
interpreting the state of k ones as k balls in an urn and d − k balls in another urn gives
the classical Ehrenfest urn model: given two urns containing d balls in total, at each
step, remove a ball from either urn and place it in the other.

Remark In the previous three examples, the action {si : G → G} respects multipli-
cation on G:

si (gh) = si (g)si (h) (2.2)
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Then the random walk from right-multiplication by q lumps to the {si }-orbits if and
only if q is invariant under {si }. But Eq. 2.2 need not be true in all applications of
Theorem 2.10 - see Example 2.9 where si is left-multiplication.

2.4 Subspaces and Weak Lumping

Now turn to the weaker notion of lumping, where the initial distribution matters.

Definition 2.14 (Weak lumping) Let {Xt }, {X ′
t } be Markov chains on state spaces

Ω,Ω ′, respectively, with transition matrices K , K ′. Then {X ′
t } is a weak lumping of

{Xt } via θ , with initial distribution X0, if there is a surjection θ : Ω → Ω ′ such
that the process {θ(Xt )}, started at the specified X0, is a Markov chain with transition
matrix K ′. In this case, {Xt } is a weak lift of {X ′

t } via θ .

[43, Th. 6.4.1] gives a complicated necessary and sufficient condition for weak
lumping. (Note that they write π for the initial distribution and α for the stationary
distribution.) Their simple sufficient condition [43, Th. 6.4.4] has the drawback of not
identifying any valid initial distribution beyond the stationary distribution—such a
result would not be useful for the many descent operator chains which are absorbing.
So instead we appeal to a condition for continuous Markov processes [60, Th. 2],
which when specialised to the case of discrete time and finite state spaces reads:

Theorem 2.15 (Sufficient condition for weak lumping forMarkov chains) [60, Th. 2]
Let K be the transition matrix of a Markov chain {Xt } with state space Ω . Suppose
Ω = � Ω i , and there are distributions π i on Ω such that

1. π i is nonzero only on Ω i ,
2. The matrix

K ′(i, j) :=
∑

x∈Ω i ,y∈Ω j

π i (x)K (x, y)

satisfies the equality of rowvectorsπ i K = ∑
j K

′(i, j)π j for all i , or equivalently

∑

x∈Ω

π i (x)K (x, y) =
∑

j

K ′(i, j)π j (y)

for all i and all y.

Then, from any initial distribution of the form
∑

i αiπ
i , for constants αi , the chain

{Xt } lumps weakly to the chain on the state space {Ω i } with transition matrix K ′. 
�
(This condition was implicitly used in [43, Ex. 6.4.2].)

Remark As the proof of Theorem 2.16 will show, the case of chains from the Doob
transform without rescaling corresponds to each π i being the uniform distribution
on Ω i . In this case, the conditions above simplify: we require that K ′(i, j) :=
1

|Ω i |
∑

x∈Ω i ,y∈Ω j K (x, y) satisfy 1
|Ω i |

∑
x∈Ω K (x, y) = 1

|Ω j |
∑

j K
′(i, j)π j (y) for

123



1818 J Theor Probab (2019) 32:1804–1844

all i and all y ∈ Ω j . In other words, the only requirement is that
∑

x∈Ω K (x, y)
depends only on Ω j 
 y, not on y, a condition somewhat dual to Doob’s.

For Markov chains arising from the Doob transform, the condition π i K =∑
j K

′(i, j)π j translates to the existence of invariant subspaces. It may seem strange
to consider the subspace spanned by

{∑
x∈Bi x

}
, but Example 2.18 and Sect. 3.4.2will

show two examples that arise naturally, namely permutation statistics and congruence
Hopf algebras.

Theorem 2.16 (Weak lumping for Markov chains from linear maps) Let V be a
vector space with basis B, and T : V → V, η : V → R be linear maps admitting
the Doob transformMarkov chain construction of Theorem 2.3. SupposeB = �i Bi ,
and write xi for

∑
x∈Bi x . Let V ′ be the subspace of V spanned by the xi , and suppose

T(V ′) ⊆ V ′. Define a map θ : B → {xi } by setting θ(x) := xi if x ∈ Bi . Then,
the Markov chain defined by T : V → V lumps weakly to the Markov chain defined
by T : V ′ → V ′ (with basis B′ := {xi }, and rescaling function the restriction η :
V ′ → R) via θ , from any initial distribution of the form P{X0 = x} := αθ(x)

η(x)
η(θ(x)) ,

where the αs are constants depending only on θ(x). In particular, if η ≡ 1 on B (so
no rescaling is required to define the chain on B), the Markov chain lumps from any
distribution which is constant on each Bi .

Note that, in the simplified case η ≡ 1, it is generally not true that the restriction
η : V ′ → R is constant on B′ - indeed, for xi ∈ B′, it holds that η(xi ) = |Bi |. So a
weak lumping chain from Theorem 2.16 will generally require rescaling.

Remark Suppose the conditions of Theorem 2.16 hold, and let j : V ′ ↪→ V be the
inclusion map. Now the dual map j∗ : V ∗ � V ′∗, and T∗ : V ∗ → V ∗, satisfy the
hypotheses of Theorem 2.7, except that there may not be suitable rescaling functions
η : V ∗ → R and η̄ : V ′∗ → R. Because the Doob transform chain for T∗ is the
time-reversal of the chain for T [52, Th. 3.3.2], this is a reflection of [43, Th. 6.4.5].

The proof of Theorem 2.16 is at the end of this section.

Example 2.17 (Number of rising sequences under riffle-shuffling) [11, Cor. 2] The
sequence {i, i +1, . . . , i + j} is a rising sequence of a permutation σ if those numbers
appear in that order when reading the one-line notation of σ from left to right. Viewing
σ as a deck of cards, this says that the card with label i is somewhere above the card
with label i + 1, which is somewhere above the card with label i + 2, and so on, until
the card with label i + j . Formally, σ−1(i) < σ−1(i +1) < · · · < σ−1(i + j). Unless
otherwise specified, a rising sequence is assumed to be maximal, i.e. σ−1(i − 1) >

σ−1(i) < σ−1(i + 1) < · · · < σ−1(i + j) > σ−1(i + j + 1).
Following [11], write R(σ ) for the number of rising sequences in σ . This statis-

tic is also written ides(σ ), as it is the number of descents in σ−1. For example,
R(2, 4, 5, 3, 1) = 3, the three rising sequences being {1}, {2, 3} and {4, 5}.

[11] studied the popular riffle–shuffle model, where the deck is cut into two accord-
ing to a binomial distribution and interleaved. (We omit the details as this shuffle is
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not the focus of the present paper). This arises from right-multiplication in RSn by

q = n + 1

2n
id+ 1

2n
∑

R(σ )=2

σ.

[11, Cor. 2] shows that riffle-shuffling, if started from the identity, lumps weakly via
the number of rising sequences. This result can be slightly strengthened by applying
the present Theorem 2.16 in conjunction with [11, Cor. 3], which proves explicitly that
q generates a subalgebra spanned by xi := ∑

R(σ )=i σ , for 1 ≤ i ≤ n. The authors
recognised this subalgebra as equivalent to Loday’s “number of descents” subalgebra
[63]. (More precisely: the linear extension to RSn of the inversion map I (σ ) := σ−1

is an algebra antimorphism—i.e. I (στ) = I (τ )I (σ )—and it sends xi to the sum
of permutations with i − 1 descents, which span Loday’s algebra.) Since the basis
elements xi have the form stipulated in Theorem 2.16, it follows that the lumping via
the number of rising sequences is valid starting from any distribution that is constant
on the summands of each xi , i.e. on each subset of permutations with the same number
of rising sequences.

The key idea in the previous example is that, if q ∈ RG generates a subalgebra
V ′ of RG of the form described in Theorem 2.16, then this produces a weak lumping
of the random walk on G given by right-multiplication by q. We apply this to the
top-to-random shuffle:

Example 2.18 (Length of last rising sequence under top-to-random shuffling) This
simple example appears to be new. In addition to the definitions in Example 2.17,
more terminology is necessary. The length of the rising sequence {i, i + 1, . . . , i + j}
is j +1. Following [19], write L(σ ) for the length of the last rising sequence, meaning
the one which contains n. For example, the rising sequences of (2, 4, 3, 5, 1) have
lengths 1, 2, 2, respectively, and L(2, 4, 3, 5, 1) = 2.

Recall that the top-to-random shuffle is given by right-multiplication by

q = 1

n

n∑

i=1

(i i − 1 . . . 1).

The rising sequences of the cycles (i i − 1 . . . 1) are precisely {1} and {2, 3, . . . , n},
and these are the only permutations σ with L(σ ) = n − 1. [19, Th. 4.2] shows that
the algebra generated by q is spanned by xi := ∑

L(σ )=i σ , for 1 ≤ i ≤ n. Thus,
Theorem 2.16 shows that top-to-random shuffling weakly lumps via the length of the
last rising sequence, starting from any distribution that is constant on permutations
with the same last rising sequence length. In particular, since the identity is the only
permutation with L(σ ) = n, the lumping holds if the deck starts at the identity
permutation.

Proof of Theorem 2.16 In the notation of Theorem 2.15, the distribution π i is

π i (x) =
{

η(x)
η(xi )

if x ∈ Bi ;
0 otherwise,
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which clearly satisfies condition 1.
To check condition 2, write T′, η′ for the restrictions of T, η to V ′, and set K =

[T]TB , K ′ = [T′]TB′ . As in the proof of Theorem 2.7, we start by showing that η′ is a
possible rescaling function for T′:

(T′)∗(η′) = η′ ◦ T′ = (η ◦ T)|V ′ = (βη)|V ′ = βη′,

so η′ is an eigenvector of T′∗ with eigenvalue β. And η′ is positive on B′ because
η′(xi ) = ∑

x∈Bi η(x), a sum of positive numbers.
Write Ǩ , Ǩ ′ for the associated transition matrices. (As in the proof of Theorem 2.7,

we check that the entries of K ′ are non-negative later, in Eq. 2.3.) We need to show
that, for all i and for all y ∈ B,

∑

x∈Bi

π i (x)Ǩ (x, y) =
∑

j

Ǩ ′(xi , x j )π j (y).

Note that π j (y) is zero unless y ∈ B j , so only one summand contributes to the
right-hand side. By substituting for π i , Ǩ and Ǩ ′, the desired equality is equivalent
to

∑

x∈Bi

η(x)

η(xi )

1

β
K (x, y)

η(y)

η(x)
= K ′(xi , x j )

1

β

η(x j )

η(xi )

η(y)

η(x j )
,

which reduces to

∑

x∈Bi

K (x, y) = K ′(xi , x j ) (2.3)

for y ∈ B j .
Now, by expanding in theB′ basis,

T′(xi ) =
∑

j

K ′(xi , x j )x j =
∑

j

K ′(xi , x j )
∑

y∈B j

y.

On the other hand, a B expansion yields

T′(xi ) =
∑

x∈Bi

T(x) =
∑

x∈Bi

∑

y∈B
K (x, y)y.

So

∑

y∈B

∑

x∈Bi

K (x, y)y =
∑

j

K ′(xi , x j )
∑

y∈B j

y =
∑

y

∑

j :y∈B j

K ′(xi , x j )y,

and since B is a basis, the coefficients of y on the two sides must be equal. 
�
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3 Lumpings from Subquotients of Combinatorial Hopf Algebras

This section specialises the strong and weak lumping criteria of Part I to Markov
chains from descent operators on combinatorial Hopf algebras [54]. Our main running
example (which in fact motivated the entire paper) is a lift for the “down-up chain on
partitions”, where at each step a random box is removed and a possibly different
random box added, according to a certain distribution (see Sect. 3.2.1). The stationary

distribution of this chain is the Plancherel measure π(λ) = (dim λ)2

n! , where dim λ is
the dimension of the symmetric group representation indexed by λ, or equivalently the
number of standard tableaux of shape λ (see below for definitions). Because (dim λ)2

is the number of permutations whose RSK shape [64, Sec. 7.11] [33, Sec. 4] is λ,
it is natural to ask if the down–up chain on partitions is the lumping of a chain on
permutations with a uniform stationary distribution.

Fulman [31, Th. 3.1] proved that this is almost true for top-to-random shuffling:
the probability distribution of the RSK shape after t top-to-random shuffles from the
identity, agrees with the probability distribution after t steps of the down–up chain on
partitions. However, it is not true that top-to-random shuffles lump via RSK shape. [15,
Fig. 1] is an explicit 8-step trajectory of the partition chain that has no corresponding
trajectory in top-to-random shuffling. In other words, it is possible for eight top-to-
random shuffles to produce an RSK shape equal to the end of the exhibited partition
chain trajectory, but no choice of intermediate steps will have RSK shapes equal to
the given trajectory. (Technically, this figure is written for random-to-top, the time-
reversal of top-to-random, so one should read it backwards from right to left, to apply
it to top-to-random shuffles.)

The present Theorem 3.11 finds that top-to-random shuffling can be modified to
give an honest weak lift of the down–up chain on partitions: every time a card ismoved,
relabel it with the current time that wemoved the card, then track the (reversed) relative
orders of the labels. (A different interpretationwithout cards is in Sect. 3.4.1) This lift is
constructed in two stages—Sect. 3.3 builds a strong lift to tableaux using Hopf algebra
quotients, and Sect. 3.4 builds a weak lift to permutations using Hopf subalgebras.
Sect. 3.5 then shows that the multistep transition probabilities of the relabelled chain
agree with the unmodified top-to-random shuffle, if both are started at the identity,
thus recovering the Fulman result.

3.1 Notation

A partition λ is a weakly decreasing sequence of positive integers: λ := (λ1, . . . , λl)

with λ1 ≥ . . . ≥ λl > 0. This is a partition of n, denoted λ � n, if λ1 + · · · + λl = n.
We will think of a partition λ as a diagram of left-justified boxes with λ1 boxes in the
topmost row, λ2 boxes in the second row, etc. For example, (5,2,2) is a partition of 9,
and below is its diagram.
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A tableau of shape λ is a filling of each of the boxes in λ with a positive integer.
The shift of a tableaux T by an integer k, denoted T [k], increases each filling of T by
k. A tableau is standard if it is filled with {1, 2, . . . , n}, each integer occurring once.
If no two boxes of a tableau T has the same filling, then its standardisation std(T ) is
computed by replacing the smallest filling by 1, the second smallest filling by 2, and
so on. Clearly std(T ) is a standard tableau, of the same shape as T . A box b of T is
removable if the difference T \b is a tableau. Below shows a tableau of shape (5, 2, 2),
its shift by 3, and its standardisation. The removable boxes in the first tableau are 11
and 13.

1 2 5 10 13
4 8
6 11

4 5 8 13 16
7 11
9 14

1 2 4 7 9
3 6
5 8

T T [3] std(T )

For a partition λ, write dim(λ) for the number of standard tableaux of shape λ, as
this is the dimension of the symmetric group representation corresponding to λ [61,
Chap. 2].

In the same vein, this paper will regard permutations as “standard words”, using
one-line notation: σ := (σ (1), . . . , σ (n)). The length of aword is its number of letters.
The shift of a word σ by an integer k, denoted σ [k], increases each letter of σ by k.
If a word σ has all letters distinct, then its standardisation std(σ ) is computed by
replacing the smallest letter by 1, the second smallest letter by 2, and so on. Clearly
std(σ ) is a permutation. For example, σ = (6, 1, 4, 8, 2, 11, 10, 13, 5) is a word of
length 9. Its shift by 3 is σ [3] = (9, 4, 7, 11, 5, 14, 13, 16, 8), and its standardisation
is std(σ ) = (5, 1, 3, 6, 2, 8, 7, 9, 4).

We assume the reader is familiar with RSK insertion, a map from permutations to
tableaux (only the insertion tableau is relevant here, not the recording tableau), see
[64, Sec. 7.11] [33, Sec. 4].

A weak-composition D (also called a decomposition in [3]) is a list of non-negative
integers

(
d1, d2, . . . , dl(D)

)
. This is a weak-composition of n, denoted D � n, if

d1 + · · · + dl = n. For example, (1, 3, 0, 2, 2, 0, 1) is a weak-composition of 11.
A composition I is a list of positive integers

(
i1, i2, . . . , il(I )

)
, where each ik is a

part. This is a composition of n, denoted I � n, if i1 + · · · + il = n. For example,
(1, 3, 2, 2, 1) is a composition of 11. Define a partial order on the compositions of
n: say J ≤ I if J can be obtained by joining adjacent parts of I . For example,
(6, 2, 1) ≤ (1, 3, 2, 2, 1), and also (1, 3, 4, 1) ≤ (1, 3, 2, 2, 1).

The descent set of a wordw = (w1, . . . , wn) is defined to be
{
j ∈ {1, 2, . . . , n−1}

|w j > w j+1

}
. It is more convenient here to rewrite the descent set as a composition

in the following way: a word w has descent composition Des(w) = I if i j is the
number of letters between the j −1th and j th descent, i.e. if wi1+···+i j > wi1+···+i j+1
for all j , and wr ≤ wr+1 for all r �= i1 + · · · + i j . For example, the descent set
of (6, 1, 4, 8, 2, 11, 10, 13, 5) is {1, 4, 6, 8}, and Des(6, 1, 4, 8, 2, 11, 10, 13, 5) =
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(1, 3, 2, 2, 1). Note that Des(σ−1) consists of the lengths of the rising sequences
(as in Example 2.17) of σ .

3.2 Markov Chains from Descent Operators, and the Down–Up Chain on
Partitions

The Markov chains in this and subsequent sections arise from descent operators on
combinatorial Hopf algebras, through the framework of [54] as summarised below.

Loosely speaking, a combinatorial Hopf algebra is a graded vector space H =⊕∞
n=0 Hn with a basis B = �n Bn indexed by a family of “combinatorial objects”,

such as partitions, words, or permutations. The grading reflects the “size” of these
objects. H admits a linear product map m : H ⊗ H → H and a linear coproduct
map Δ : H → H ⊗H satisfying certain compatibility axioms; see the survey [39]
for details. These two operations encode, respectively, how the combinatorial objects
combine and break. The concept was originally due to Joni and Rota [42], and the
theory has since been expanded in [1,2,12,40] and countless other works.

To define the descent operators, it is necessary to introduce a refinement of the
coproduct relative to the grading. Given a weak-composition D = (

d1, d2, . . . , dl(D)

)

of n, follow [2] and define ΔD : Hn → Hd1 ⊗ · · · ⊗ Hdl(D)
to be a projection to the

graded subspaceHd1 ⊗· · ·⊗Hdl(D)
of the iterated coproduct (Δ⊗ id⊗l(D)−1) ◦ · · · ◦

(Δ ⊗ id⊗ id) ◦ (Δ ⊗ id) ◦ Δ. So ΔD models breaking an object into l(D) pieces, of
sizes d1, . . . , dl(D), respectively. See the examples below.

Example 3.1 An instructive example of a combinatorial Hopf algebra is the shuffle
algebra S . Its basis is the set of all words in the letters {1, 2, . . . , N } (for some N ,
whose exact value is often unimportant). View the word (w1, . . . , wn) as the deck of
cards with card w1 on top, card w2 second from the top, and so on, so card wn is at
the bottom. The degree of a word is its number of letters, i.e. the number of cards
in the deck. The product of two words, also denoted by �, is the sum of all their
interleavings (with multiplicity), and the coproduct is deconcatenation, or cutting the
deck. For example:

m((1, 5) ⊗ (5, 2)) = (1, 5)� (5, 2) = 2(1, 5, 5, 2) + (1, 5, 2, 5) + (5, 1, 5, 2)

+ (5, 1, 2, 5) + (5, 2, 1, 5);
Δ1,3(1, 5, 5, 2) = (1) ⊗ (5, 5, 2);

Δ2,0,2(1, 5, 5, 2) = (1, 5) ⊗ () ⊗ (5, 2).

(Here, () denotes the empty word, the unit of S .) Observe that

1

4
m ◦ Δ1,3(1, 5, 5, 2) = 1

4
m((1) ⊗ (5, 5, 2)) = 1

4
(1, 5, 5, 2) + 1

4
(5, 1, 5, 2)

+1

4
(5, 5, 1, 2) + 1

4
(5, 5, 2, 1).
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The four words that appear on the right-hand side are precisely all the possible results
after a top-to-random shuffle of the deck (1, 5, 5, 2), and the coefficient of each word
is the probability of obtaining it. The same is true for decks of n cards and the operator
1
nm ◦ Δ1,n−1.

Instead of removing only the top card—i.e. creating two piles of sizes 1 and n −
1, respectively—consider cutting the deck into l piles of sizes d1, . . . , dl for some
weak-composition D of n. Then interleave these l piles together into one pile - i.e.
uniformly choose an ordering of all n cards such that any two cards from the same
one of the l piles stay in the same relative order. Such a shuffle is described by (a
suitablemultiple of) the composite operatorm◦ΔD . These composites (and their linear
combinations) are the descent operators of [55], so named because, on a commutative
or cocommutative Hopf algebra, their composition is equivalent to the multiplication
in Solomon’s descent algebra [63] of the symmetric group. This descent algebra view
will be useful in the proof of Theorem 3.14, relating these shuffles to a different chain
on permutations.

[19] studied more general “cut-and-interleave” shuffles where the cut composition
D is random, according to some probability distribution P on the weak-compositions
of n. These P-shuffles are described by

m ◦ ΔP :=
∑

D

P(D)( n
d1...dl(D)

)m ◦ ΔD,

more precisely, their transition matrices are [m ◦ ΔP ]TBn
, whereBn is the word basis

of the shuffle algebra. (The notation m ◦ ΔP , from [54], is non-standard and coined
especially for this Markov chain application of descent operators.) Notice that, if P
is concentrated at (1, n − 1), then m ◦ ΔP = 1

nm ◦ Δ1,n−1, corresponding to the
top-to-random shuffle as described in Example 3.1. The present paper will focus on
the case where P is concentrated at (n − 1, 1), so m ◦ ΔP = 1

nm ◦ Δn−1,1 models the
“bottom-to-random” shuffle.

[22,54] extend this idea to other combinatorial Hopf algebras, using m ◦ ΔP to
construct Markov chains which model first breaking a combinatorial object into l
pieces where the distribution of piece size is P , and then reassembling the pieces. In
particular, 1

nm ◦ Δn−1,1 describes removing a piece of size 1 and reattaching it. For
general combinatorial Hopf algebras, this construction requires the Doob transform
(Theorem 2.3).

To simplify the exposition, focus on the case where |B1| = 1, i.e. there is only
one combinatorial object of size 1. (This is not true of the shuffle algebra, where
B1 consists of all the different possible single card labels. Hence, we will ignore
the shuffle algebra henceforth, until Sect. 3.5.) Writing • for this object, Δ1,...,1(x)
then is a multiple of • ⊗ · · · ⊗ • = •⊗ deg x . [54, Lem 3.3] showed that, under the
conditions in Theorem 3.2, this multiple is a rescaling function. (Briefly, conditions
i and ii guarantee that K := [m ◦ ΔP ], the matrix before the Doob transform, has
non-negative entries, and condition iii ensures η is positive on Bn .)

123



J Theor Probab (2019) 32:1804–1844 1825

Theorem 3.2 (Markov chains from descent operators) [54, Lem 3.3, Th. 3.4] Sup-
pose H = ⊕

n Hn is a graded connected Hopf algebra with a basis B = �n Bn

satisfying:

o. B1 = {•};
i. for all w, z ∈ B, the expansion of m(w ⊗ z) in the B basis has all coefficients

non-negative;
ii. for all x ∈ B, the expansion of Δ(x) in the B ⊗ B basis has all coefficients

non-negative;
iii. for all x ∈ Bn with n > 1, it holds that Δ(x) �= 1 ⊗ x + x ⊗ 1 (i.e. Bn contains

no primitive elements when n > 1).

Then, for any fixed n and any probability distribution P(D) on weak-compositions
D of n, the corresponding descent operator m ◦ ΔP : Bn → Bn given by

m ◦ ΔP :=
∑

D

P(D)( n
d1...dl(D)

)m ◦ ΔD

and rescaling function η : Bn → R given by

η(x) := coefficient of •⊗n in Δ1,...,1(x)

admit the Doob transform construction of Theorem 2.3.

The stationary distributions of these chains are easy to describe:

Theorem 3.3 [54, Th. 3.12] The unique stationary distribution of the Markov chains
constructed in Theorem 3.2 is

π(x) = 1

n!η(x) × coefficient of x in •⊗n,

independent of the distribution P.

[54, Th. 3.5] derives the eigenvalues of all descent operator chains. For our main
example of 1

nm ◦ Δn−1,1, these eigenvalues are:

Theorem 3.4 [54, Th. 4.4.i] For the descent operator 1
nm ◦ Δn−1,1, the eigenvalues

of the chains constructed in Theorem 3.2 are j
n for 0 ≤ j ≤ n, j �= n − 1, and their

multiplicities are dimHn− j − dimHn− j−1.

[54, Th. 4.4] also describes some eigenvectors. Since their formulae are complicated
and they are not the focus of the present paper, we do not go into detail here.

3.2.1 Example: the Down–Up Chain on Partitions

We explain in detail below the Markov chain that arises from applying the Doob
transform to 1

nm ◦ Δn−1,1 on the algebra of symmetric functions. This chain is one
focus of [31].
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Work with the algebra of symmetric functionsΛ [64, Chap. 7], with basis the Schur
functions {sλ}, which are indexed by partitions. For clarity, we will often write λ in
place of sλ. The degree of λ is the number of boxes in its diagram.

As described in [39, Sec. 2.5], Λ carries the following Hopf structure:

m(sν ⊗ sμ) = sνsμ =
∑

λ

cλ
νμsλ;

Δ(sλ) =
∑

ν,μ

cλ
νμsν ⊗ sμ,

where cλ
νμ are the Littlewood-Richardson coefficients. These simplify greatly when

μ is the partition (1) - namely cλ
νμ = 1 if the diagrams of λ and ν differ by one box,

and cλ
νμ = 0 otherwise. (This is one case of the Pieri rule.) Writing λ ∼ ν ∪ � and

ν ∼ λ\� when the diagram of λ can be obtained by adding one box to the diagram of
ν, the above can be summarised as

m(ν ⊗ (1)) =
∑

λ:λ∼ν∪�
λ;

Δdeg ν−1,1(λ) =
⎛

⎝
∑

ν:ν∼λ\�
ν

⎞

⎠⊗ (1).

For example,

m

⎛

⎝ ⊗
⎞

⎠ = + + ;

Δ4,1

⎛

⎝

⎞

⎠ = ⊗ + ⊗ .

To investigate how the Doob transform turns this data into probabilities, it is neces-
sary to first understand the rescaling function η. By Theorem3.2, η(λ) is the coefficient
of (1)⊗ deg(λ) in Δ1,...,1(λ), i.e. the number of ways to remove boxes one by one from
λ. Since such ways are in bijection with the standard tableaux of shape λ, it holds
that η(λ) = dim λ. Hence, the Doob transform creates the following transition matrix
from 1

nm ◦ Δn−1,1:

Ǩ (λ, μ) =
∑

ν:ν∼λ\�,μ∼ν∪�

1

n

dimμ

dim λ
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=
∑

ν:ν∼λ\�,μ∼ν∪�

1

n

dimμ

dim ν

dim ν

dim λ
.

The second expression suggests a decomposition of each time step into two parts:

1. Remove a box from λ to obtain ν, with probability dim ν
dim λ

.

2. Add a box to ν to obtain μ, with probability 1
n
dimμ
dim ν

.

The two parts are illustrated by down-right and up-right arrows, respectively, in the
following example trajectory in degree 5:

One easy way to implement step 1, the box removal, is via the hook walk of [37]:
uniformly choose a box b, then uniformly choose a box in the hook of b—that is, to
the right or below b—and continue uniformly picking from successive hooks until you
reach a removable box. Similarly, step 2 can be implemented using the complimentary
hook walk of [38]: start at the box (outside the partition diagram) in row n, column n,
uniformly choose a box in its complimentary hook—that is, to its left or above it, and
outside of the partition—and continue uniformly picking from complimentary hooks
until you reach an addable box.

The transition matrix of this chain in degree 3 is

(3) (2, 1) (1, 1, 1)

(3) 1
3

2
3 0

(2, 1) 1
6

2
3

1
6

(1, 1, 1) 0 2
3

1
3

.

To interpret theMarkov chain on partitions fromother descent operatorsm◦ΔP , it is
necessary to view a partition of n as an irreducible representation ofSn , as explained
in [61, Chap. 2]. Then, the multiplication and comultiplication of partitions come,
respectively, from the induction of the external product and the restriction to Young
subgroups—for irreducible representations corresponding to the partitions μ � i ,
ν � j and λ � n,

μν = Ind
Si+ j

Si×S j
μ × ν; Δn−i,i (λ) = ResSn

Sn−i⊗Si
λ.

So the chains from m ◦ ΔP model restriction-then-induction, as detailed below.
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Definition 3.5 Each step of the P-restriction-then-induction chain on irreducible rep-
resentations of the symmetric group Sn goes as follows:

1. Choose a weak-composition D = (d1, . . . , dl(D)) of n with probability P(D).
2. Restrict the current irreducible representation to the chosenYoung subgroupSd1 ×

· · · × Sdl(D)
.

3. Induce this representation toSn , then pick an irreducible constituent with proba-
bility proportional to the dimension of its isotypic component.

[31] considered similar chains for subgroups of any group H ⊆ G instead of
Sd1 × · · · × Sdl(D)

⊆ Sn .
To calculate the common unique stationary distribution of all these descent operator

chains, using Theorem 3.3, first note that, for λ � n, the coefficient of λ in (1)n is
given by

|{(ν2, . . . , νn−1) : ν2 ∼ (1) ∪ �, v3 ∼ ν2 ∪ �, . . . , λ ∼ νn−1 ∪ �}| = dim λ.

To obtain π(λ), multiply the above by η(λ)
n! . As η(λ) is also dim λ, this means π(λ) =

(dim λ)2

n! , the Plancherel measure.

3.3 Quotient Algebras and a Lift to Tableaux

The following theorem is a specialisation of Theorem 2.7, about the strong lumping
of Markov chains from linear maps, to the case of descent operator chains.

Theorem 3.6 (Strong lumping for descent operator chains) [53, Th. 4.1] Let H ,
H̄ be graded, connected Hopf algebras with bases B, B̄, respectively, that both
satisfy the conditions in Theorem 3.2. If θ : H → H̄ is a Hopf-morphism such
that θ(Bn) = B̄n for all n, then the Markov chain on Bn which the Doob transform
fashions from the descent operator m ◦ΔP lumps strongly via θ to the Doob transform
chain from the same operator on B̄n.

Proof Condition 1 of Theorem 3.2 requires the distinct images of Bn under θ to be
linearly independent—this is true here by hypothesis.

Condition 2 requires θ ◦(m ◦ΔP ) = (m ◦ΔP )◦θ , and η̄◦θ = η. The former is true
because θ is a Hopf-morphism. To check the latter, apply both sides to an arbitrary
x ∈ Bn and multiply by •̄⊗n , where •̄ is the unique element of B̄1; then the condition
required is equivalent to

η̄(θ(x))•̄⊗n = η(x)•̄⊗n . (3.1)

The left-hand side is Δ1,...,1(θ(x)), by definition of η̄. Because θ is a Hopf-morphism,
this is equal to (θ ⊗ · · · ⊗ θ) ◦ Δ1,...,1(x) = (θ ⊗ · · · ⊗ θ)

(
η(x)•⊗n

)
, by definition

of η (writing • for the unique element ofB1). Hence this is (θ(•) ⊗ · · · ⊗ θ(•))η(x).
Since θ(Bn) = B̄n for all n, it is true for n = 1, which means θ(•) ∈ B̄1. Since
B̄1 = {•̄}, it must be that θ(•) = •̄. Hence (θ(•) ⊗ · · · ⊗ θ(•))η(x) = η(x)•̄⊗n ,
proving Eq. 3.1. 
�
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Remark Observe that the proof does not fully use the assumption θ(Bn) = B̄n for
all n—all that is required is that θ(Bn) = B̄n for the single value of n of interest,
and that θ(B1) = B̄1. Indeed, if Bn can be partitioned into communication classes
Bn = �i B

(i)
n for the m ◦ ΔP Markov chain (i.e. it is impossible to move between

distinctB(i)
n using the m ◦ ΔP Markov chain), so there is effectively a separate chain

on eachB(i)
n , then, to prove a lumping for the chain on oneB(i)

n , it suffices to require
θ(x) ∈ B̄n only for x ∈ B(i)

n (and θ(B1) = B̄1). This will be useful in Sect. 3.6 for
showing that cut-and-interleave shuffles of n distinct cards lump via descent set, as
this lumping is false for non-distinct decks.

3.3.1 Example: the Down–Up Chain on Standard Tableaux

To use Theorem 3.6 to lift the descent operator chains on partitions of the previous
section, we need a Hopf algebra whose quotient isΛ, and the quotient map must come
from a map from the basis elements of the new, larger Hopf algebra to partitions (or
more accurately, to Schur functions). Below describes one such algebra, the Poirer–
Reutenauer Hopf algebra of standard tableaux. It was christened (ZT, ∗, δ) in [57],
but we follow [27, Sec. 3.5] and denote it by FSym, for “free symmetric functions”.
Its distinguished basis is {ST }, where T runs over the set of standard tableaux. As with
partitions, it will be convenient to write T in place of ST . This algebra is graded by the
number of boxes in T . The quotient map FSym → Λ is essentially taking the shape
of the standard tableaux—the image of ST in Λ is sshape(T ).

Because the product and coproduct of FSym are fairly complicated, involving Jeu
de Taquin and other tableauxmanipulations, we describe here onlym : Hn−1⊗H1 →
Hn and Δn−1,1, and direct the interested reader to [57, Sec. 5c, 5d] for details.

If T is a standard tableaux with n − 1 boxes, then the product m(T ⊗ 1 ) is the
sum of all ways to add a new box, filled with n, to T . For example,

m

⎛

⎝
1 2
3
4

⊗
1
⎞

⎠ =
1 2 5
3
4

+
1 2
3 5
4

+
1 2
3
4
5

.

The coproduct Δn−1,1 is “unbump and standardise”. [64, fourth paragraph of proof
of Th. 7.11.5] explains unbumping as follows: for a removable box b in row i , remove
b, then find the box in row i − 1 containing the largest integer smaller than b. Call
this filling b1. Replace b1 with b, then put b1 in the box in row i − 2 previously
filled with the largest integer smaller than b1, and continue this process up the rows.
In the second term in the example below, these displaced fillings are 4, 3, 2. What
unbumping achieves is this: if bwas the last number to be inserted in an RSK insertion
that resulted in T , then unbumping b from T recovers the tableaux before b was
inserted. The coproduct Δn−1,1(T ) is the sum of unbumpings over all removable
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boxes b of T , then standardising the unbumped tableaux, for example

Δ4,1

⎛

⎝
1 2 5
3
4

⎞

⎠ = std

⎛

⎝
1 2
3
4

⎞

⎠⊗ 1 + std

(
1 3 5
4

)
⊗ 1

= 1 2
3
4

⊗ 1 + 1 2 4
3

⊗ 1 .

To describe the down–up chain on standard tableaux (i.e. the chain which the Doob
transform fashions from the map 1

nm ◦ Δn−1,1), it remains to calculate the rescaling

function η(T ). This is the coefficient of 1
⊗n

in Δ1,...,1(T ), which the description of
Δn−1,1 above rephrases as the number ofways to successively choose boxes to unbump
from T . Such ways are in bijection with the standard tableaux of the same shape as T ,
so η(T ) = dim(shape T ). Hence one step of the down–up chain on standard tableaux,
starting from a tableau T of n boxes, has the following interpretation:

1. Pick a removable box b of T with probability dim(shape(T \b))
dim(shape T )

, and unbump b. (As

for partitions, one can pick b using the hook walk of [37].)
2. Standardise the remaining tableaux and call this T ′.
3. Add a box labelled n to T ′, with probability 1

n
dim(shape(T ′∪n))
dim(shape T ′) . (As for partitions,

one can pick where to add this box using the complimentary hook walk of [38].)

Here are a few steps of a possible trajectory in degree 5 (the red marks the unbumping
paths):

1 3
2
4
5

1 2 5
3
4

1 2 4
3 5

1 2
3 4
5

1 2
3
4

1 2 4
3

1 2
3 4
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The transition matrix of this chain in degree 3 is

1 2 3 1 2
3

1 3
2

1
2
3

1 2 3 1
3

2
3 0 0

1 2
3

1
6

1
3

1
3

1
6

1 3
2

1
6

1
3

1
3

1
6

1
2
3

0 0 2
3

1
3

.

According to Proposition 3.3, the unique stationary distribution of the down–up

chain on tableau is π(T ) = 1
n!η(T )×coefficient of T in 1

n
. Note that there is a

unique way of adding outer boxes filled with 1, 2, . . . in succession to build a given

tableau T , so each tableau of n boxes appears precisely once in the product 1
n
.

Hence π(T ) = 1
n!η(T ) = 1

n! dim(shape T ).
As explained at the beginning of this subsection, the symmetric functions Λ is a

quotient of FSym [57, Th. 4.3.i], and the quotient map sends ST to sshape(T ). Applying
Theorem 3.6 then gives:

Theorem 3.7 The down–upMarkov chain on standard tableaux lumps to the down–up
Markov chain on partitions via taking the shape. 
�

By the same argument, the P-restriction-then-induction chains on partitions, for
any probability distribution P , lift to m ◦ ΔP chains on tableaux, but these are hard to
describe.

3.4 Subalgebras and a Lift to Permutations

The following theorem is a specialisation of Theorem 2.16, about the weak lumping
of Markov chains from linear maps, to the case of descent operator chains.

Theorem 3.8 (Weak lumping for descent operator chains) Let H , H ′ be graded,
connected Hopf algebras with state space basesB,B′, respectively, that both satisfy
the conditions in Theorem 3.2. Suppose for all n that θ : Bn → B′

n is such that the
“preimage sum” map θ∗ : B′

n → Hn, defined by θ∗(x ′) := ∑
x∈B,θ(x)=x ′ x, extends

to aHopf-morphism. Then theMarkov chain onBn which theDoob transform fashions
from the descent operator m ◦ ΔP lumps weakly via θ to the Doob transform chain
from the same map on B′

n, from any starting distribution X0 where X0(x)
η(x) = X0(y)

η(y)
whenever θ(x) = θ(y).
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Proof First observe that θ∗ sends B′
n to a linearly independent set in Hn , so θ∗ :

H ′ → H is injective, hence it is legal to identify x ′ ∈ H ′ with
∑

x∈B,θ(x)=x ′ x
and view H ′ as a Hopf subalgebra of H . So H ′ is an invariant subspace of H
under m ◦ ΔP . The other requirements of Theorem 2.16 are that each element in the
basis B′

n should be a sum over disjoint subsets of Bn , which is true by hypothesis;
and that the restriction of the rescaling function η : Hn → R to B′

n is the natural
rescaling function for H ′

n . The definition of η′ is that, for all x ∈ B′
n , it holds that

Δ1,...,1(x ′) = η′(x ′)•′⊗n , where •′ is the unique element of B′
1. Since θ sends B1 to

B′
1, it must be true that •′ = θ(•), i.e. • = θ∗(•′), or • = •′ when viewing H ′ as a

subalgebra of H . Hence Δ1,...,1(x ′) = η′(x ′) • ⊗n . The left-hand side is

Δ1,...,1

⎛

⎝
∑

x∈B,θ(x)=x ′
x

⎞

⎠ =
∑

x∈B,θ(x)=x ′
Δ1,...,1(x) =

∑

x∈B,θ(x)=x ′
η(x)•⊗n = η(x ′)•⊗n,

where the second equality uses the definition of η, and the third equality uses the
linearity of η. Hence η′(x ′) = η(x ′). 
�

3.4.1 Example: the Down–Up Chain on Permutations

Recall that the previous section lifted the down–up chain on partitions to the down–up
chain on tableaux, using that the symmetric functions Λ is a quotient of the Hopf
algebra FSym of tableaux. To further lift this chain to permutations using Theorem
3.8, we express FSym as a subalgebra of a Hopf algebra of permutations, namely the
Malvenuto–Reutenauer algebra.

Before a full description of this Hopf structure on permutations, here is an intuitive
interpretation of its down–up chain, from 1

nm ◦ Δn−1,1. (This is a mild variant of [54,
Ex. 1.2], which is for 1

nm ◦ Δ1,n−1.) You keep an electronic to-do list of n tasks. Each
day, there are two changes to the list: first, you complete the task at the top of the
list and delete it; next, you receive a new task, which you add to the list in a position
depending on its urgency (more urgent tasks are placed closer to the top). Assume
that each incoming task is equally distributed in urgency relative to the n − 1 tasks
presently on the list, so each new task is inserted into the list in a uniform position.

To construct aMarkov chain from this process, we assign a permutation (in one-line
notation) to each to-do list. For the end-of-day lists, this will be a permutation of n; for
mid-day lists (after the task-completion and before the new task arrives), this will be a
permutation of n− 1. This permutation assignment is rather complicated and requires
three steps as follows:

1. write i for the task received on day i , so the to-do list becomes a vertical list of
numbers;

2. standardise this list; now the numbers indicate the relative time that each task has
spent on the list: 1 denotes the task that’s been on the list for the longest time, 2
for the next oldest task, and so on, so n denotes the task you received today;

3. read these numbers from the bottomof the list to the top, so the bottommost number
in the list appears leftmost in the permutation (in one-line notation).
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The diagram below shows one possibility over days 5, 6, 7 and 8 (thus three transi-
tions) of both the original task numbering before standardisation and theMarkov chain
on permutations from the standardised task numbering; each down arrow indicates the
completion of the top task, and each up arrow the introduction of the new task, and
these two parts together give one timestep of the Markov chain.

original task
numbering

1

3

4

2

5

3

6

4

2

5

6

4

7

2

5

4

7

2

5

8
3

4

2

5

6

4

2

5

4

7

2

5

Markov chain
on permutations

(5, 2, 4, 3, 1) (4, 1, 3, 5, 2) (3, 1, 5, 2, 4) (5, 3, 1, 4, 2)

(4, 1, 3, 2) (3, 1, 2, 4) (3, 1, 4, 2)

The same chain arises from performing the top-to-random shuffle and keeping track
of the relative last times that the cards were last touched, instead of their values.

As mentioned above, this is the chain associated with 1
nm ◦ Δn−1,1 on the

Malvenuto-Reutenauer Hopf algebra of permutations, denoted (ZS, ∗,Δ) in [50, Sec.
3], (ZS, ∗, δ) in [57], andSSym in [4]. We follow the recent Parisian literature, such
as [27], and call this algebra FQSym, for “free quasisymmetric functions”.

The basis of concern here is the fundamental basis {Fσ }, as σ ranges over all
permutations (of any length). As in the previous sections, we often write Fσ simply
as σ . The degree of σ is its length when considered as a word.

We explain the Hopf structure on FQSym by example. The product σ1σ2 is σ1 �

σ2[deg σ1] , the sum of all “interleavings” or “shuffles” of σ1 with the shift of σ2 by
deg(σ1):

(3, 1, 2)(2, 1) = (3, 1, 2)� (5, 4)

= (3, 1, 2, 5, 4) + (3, 1, 5, 2, 4) + (3, 1, 5, 4, 2)

+ (3, 5, 1, 2, 4) + (3, 5, 1, 4, 2)

+ (3, 5, 4, 1, 2) + (5, 3, 1, 2, 4) + (5, 3, 1, 4, 2)

+ (5, 3, 4, 1, 2) + (5, 4, 3, 1, 2).

The coproduct is “deconcatenate and standardise”:

Δ(σ) =
∑

σ1·σ2=σ

std(σ1) ⊗ std(σ2),

where · denotes concatenation. Thus

Δ(4, 1, 3, 2)
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= () ⊗ (4, 1, 3, 2) + std(4) ⊗ std(1, 3, 2) + std(4, 1) ⊗ std(3, 2)

+ std(4, 1, 3) ⊗ std(2) + (4, 1, 3, 2) ⊗ ()

= () ⊗ (4, 1, 3, 2) + (1) ⊗ (1, 3, 2) + (2, 1) ⊗ (2, 1)

+ (3, 1, 2) ⊗ (1) + (4, 1, 3, 2) ⊗ ().

Recall that we are primarily interested in 1
nm ◦ Δn−1,1. Note that Δn−1,1 removes

the last letter of the word and standardises the result, whilst right-multiplication by
(1) yields the sum of all ways to insert the letter n. Since Δn−1,1(σ ) contains only one
term, we see inductively that the rescaling function is η(σ ) ≡ 1. Hence one step of
the down–up chain on FQSym, starting at σ ∈ Sn , has the following description:

1. Remove the last letter of σ .
2. Standardise the remaining word.
3. Insert the letter n into this standardised word, in a uniformly chosen position.

The transition matrix of this chain in degree 3 is (all empty entries are 0)

(1, 2, 3) (1, 3, 2) (3, 1, 2) (2, 3, 1) (2, 1, 3) (3, 2, 1)

(1, 2, 3) 1
3

1
3

1
3

(1, 3, 2) 1
3

1
3

1
3

(3, 1, 2) 1
3

1
3

1
3

(2, 3, 1) 1
3

1
3

1
3

(2, 1, 3) 1
3

1
3

1
3

(3, 2, 1) 1
3

1
3

1
3

.

According to Proposition 3.3, the unique stationary distribution of this chain is
π(σ) = 1

n!η(σ )×coefficient of σ in (1)n . Since there is a unique way of inserting the
letters 1, 2, . . . in that order to obtain a given permutation, each permutation of length
n appears precisely once in the product (1)n . Hence π(σ) ≡ 1

n! .
Recall that the point of discussing this chain is that it is a weak lift of the down–up

chain on tableaux of the previous section, if in the initial distribution any two permuta-
tions having the same RSK insertion tableau are equally probable (such permutations
are said to belong to the same plactic class). Let RSK denote the map sending a per-
mutation to its insertion tableau under the Robinson–Schensted–Knuth algorithm (this
tableau is often called P). [57, Th. 4.3.iii] shows that FSym is a subalgebra of FQSym
under the injection θ∗(ST ) := ∑

RSK(σ )=T Fσ , so Theorem 2.16 applies. (Note that
the rescaling function η(T ) = dim(shape T ) is indeed the restriction of η(σ ) ≡ 1,
since the number of terms Fσ in the image of ST is dim(shape T ).) Thus

Theorem 3.9 Thedown–upMarkov chain onpermutations lumpsweakly to the down–
up Markov chain on tableaux via taking RSK insertion tableau, whenever the initial
distribution is constant on plactic classes. 
�

This lumping can be “concatentated” with the lumping of Theorem 3.7 from
tableaux to partitions. Thus the down–up chain on permutations lumps weakly to
the down–up chain on partitions via taking the shape of the RSK insertion tableau,
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whenever the initial distribution is constant on plactic classes. By the same reasoning,
this is true for chains from any descent operator m ◦ ΔP . We call such chains on
permutations the P-shuffles-with-standardisation.

Definition 3.10 Fix an integer n, and let P(D) be a probability distribution on the
weak-compositions of n. Each step of the P-shuffle-with-standardisation Markov
chain on the permutations Sn (viewed in one-line notation) goes as follows:

1. Choose a weak-composition D of n with probability P(D).
2. Deconcatenate the current permutation into a word w1 of the first d1 letters, w2 of

the next d2 letters, and so on.
3. Replace the smallest letter in w1 by 1, the next smallest by 2, and so on. Then

replace the smallest letter in w2 by d1 + 1, the next smallest by d1 + 2, and so on
for all wi .

4. Interleave these words uniformly (i.e. uniformly choose a permutation where the
letters 1, 2, . . . , d1 are in the same relative order as in the replaced w1, where
d1 + 1, d1 + 2, . . . , d1 + d2 are in the same relative order as in the replaced w2,
etc.).

As discussed in the previous four paragraphs and at the end of Sect. 3.3, the Hopf-
morphisms FSym ↪→ FQSym and FSym � Λ prove the following:

Theorem 3.11 Fix an integer n, and let P(D) be a probability distribution on the
weak-compositions of n. The P-shuffle-with-standardisation chain on the permuta-
tions Sn lumps weakly to the P-restriction-then-induction chain on partitions, via
taking the shape of the RSK insertion tableau, whenever the initial distribution is
constant on plactic classes. 
�

The next section deduces from this theorem a result of Fulman [31, Th. 3.1], that
the probability of obtaining a partition λ after t steps of P-restriction-then-induction,
starting from the partition with a single part, is the probability that the RSK shape
of a deck is λ after t iterations, starting from the identity, of a P analogue of the
top-to-random shuffle.

3.4.2 Other Lumpings of P-Shuffles-with-Standardisation, Strong and Weak

Return to the weak lumping of permutations to tableaux via RSK insertion (i.e. ignore
the second lumping to partitions). The P-shuffle-with-standardisation chain has many
weak lumpings in this style, thanks to the general construction in [40, Th. 31] [58]
of Hopf subalgebras of FQSym spanned by

∑
θ(σ )=T Fσ , for various functions θ .

The criteria on θ : �n Sn → C (the codomain C can be any graded set) is that its
extension to all words with distinct letters, defined via θ(σ ) = θ(std(σ )), should be
compatible with concatenation and alphabet restriction in the following sense:

1. if θ(σ1) = θ(τ1) and θ(σ2) = θ(τ2) then θ(σ1 · σ2) = θ(τ1 · τ2);
2. if θ(σ ) = θ(τ ), and σ←r (resp. σr→) contains the letters 1, 2, . . . , r (resp. r +

1, . . . , n) in the same order as in σ , and similarly for τ←r and τr→, then θ(σ←r ) =
θ(τ←r ) and θ(σr→) = θ(τr→).
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Many such θ can be expressed in terms of insertion algorithms similar to RSK. For
example, taking θ to be binary tree insertion [40, Algo. 17] generates the Loday–
RoncoHopf algebra [48]. Thus the P-shuffle-with-standardisation chain lumpsweakly
to a chain on binary trees, and [36] gives a variant with twin binary trees. Another
example is the rising sequence lengths, also known as the recoil or idescent set: θ(σ ) =
Des(σ−1), associated with the hypoplactic insertion of [45, Sec. 4.8]. Thus the P-
shuffle-with-standardisation chain lumpsweakly via the set of rising sequence lengths.

The dual of this general construction creates quotient algebras of the dual alge-
bra FQSym∗, which is isomorphic to FQSym via inversion of permutations. These
quotients satisfy the strong lumping criterion of Theorem 3.6, so the P-shuffles-
with-standardisation lump (strongly) via σ �→ θ(σ−1) for any θ satisfying the
conditions above. Examples of such strong lumping maps include RSK recording
tableau, decreasing binary tree (the map λ of [5], the “recording” part of the binary
tree algorithm), and descent set.

To see another example and non-example of lumpings induced from Hopf-
morphisms, consider the following commutative diagram from [57, Th. 4.3]:

FQSym, permutations QSym, compositions

FSym, standard tableaux Λ, partitions

Des

shape

The main example in Sects. 3.2, 3.3, 3.4 lifts a chain on partitions to a chain on
permutations via a chain on standard tableaux, on the bottom left. Let us see why
it is not possible to construct a lift via compositions, on the top right, instead. The
corresponding Hopf algebra here is the algebra of quasisymmetric functions [35].

There is no problem with the top Hopf-morphism, which sends a permutation
Fσ to the fundamental quasisymmetric function FDes(σ ) associated with its descent
composition. Since thismap sends a basis ofFQSym to a basis of QSym, Theorem 3.6
applies and P-shuffles-with-standardisation lump strongly via descent composition.

The problem is with the Hopf-morphism on the right - this inclusion is not induced
from a set map from compositions to partitions. Theorem 3.8 only applies if sλ =∑

θ(I )=λ FI for some function θ sending compositions to partitions. This condition
does not hold, as the same FI can occur in the expansion of multiple Schur functions:
s(3,1) = F(1,3) + F(2,2) + F(3,1), s(2,2) = F(1,2,1) + F(2,2).

3.5 Equidistribution of Shuffles from the Identity, with and without
standardisation

In this section, we relate the P-shuffles-with-standardisation of Definition 3.10, to
the “cut-and-interleave” shuffles of [19], which we call here P-shuffles-without-
standardisation for clarity.
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Definition 3.12 Fix an integer n, and let P(D) be a probability distribution on the
weak-compositions of n. Each step of the P-shuffle-without-standardisation Markov
chain on the permutations Sn (viewed in one-line notation) goes as follows:

1. Choose a weak-composition D of n with probability P(D).
2. Deconcatenate the current permutation into a word w1 of the first d1 letters, w2 of

the next d2 letters, and so on.
3. Interleave these words uniformly, i.e. uniformly choose a permutation where the

letters of each wi stay in the same relative order.

This chain comes from the descent operators m ◦ ΔP applied to the shuffle algebra
of Ree [53].

In [31], Fulman showed the following:

Theorem 3.13 [31, Th. 3.1] The probability of obtaining any partition as the RSK
shape after P-shuffling-without-standardisation t times, starting from the identity
permutation, is equal to its probability under t steps of P-restriction-then-induction,
started at the trivial representation (i.e. the partition with a single row).

Note that the result is only about the probabilities after all t steps of the chains;
nothing can be deduced about the probabilities at intermediate times. In particular, it
does not assert that P-shuffles-without-standardisation lumps, strongly or weakly, to
P-restriction-then-induction; this is false, see the discussion in the second paragraph
of the introduction to Sect. 3.

Fulman remarked that this connection is “surprising” and “quite mysterious”, and
perhaps a more enlightening proof is to combine Theorem 3.11 with the following.

Theorem 3.14 The distribution on permutations after t iterates of P-shuffles-
with-standardisation is the same as that after t iterates of P-shuffles-without-
standardisation, if both are started from the identity permutation.

The power of this theorem goes much beyond reproving Fulman’s “almost lift”: it
allows results about either type of P-shuffle to apply to the other type. For example,
[22, Ex. 5.8] showed that the expected number of descents after t riffle-shuffles of
n cards, starting at the identity, is

(
1 − 2−t

) n−1
2 , so this must also be the expected

number of descents after t riffle-shuffles-with-standardisation starting at the identity.
In the other direction, [54, Sec. 6] made the simple observation that, if one tracks only
the relative orders of the bottom k cards under top-to-random-with-standardisation,
then one sees a lazy version of top-to-random-with-standardisation on k cards, lazy
meaning that at each time step no move is made with probability n−k

n . (This is a strong
lumping, but not from Hopf algebras.) Thus the distribution of the relative orders of
the bottom k cards after t iterates of top-to-random-without-standardisation from the
identity is the distribution after t iterates of a lazy version of top-to-random-without-
standardisation on k cards.

Another use of Theorem 3.14 is to obtain many analogues of Theorem 3.13,
with various statistics in place of the RSK shape. This is because P-shuffles-with-
standardisation is associated with FQSym, which has many subquotients as noted in
Sect. 3.4.2, and hence has many strong and weak lumpings. Thus the probability dis-
tribution of the binary search tree, the decreasing tree, the rising sequence lengths, the
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descent set, and other statistics after t iterates of P-shuffles-without-standardisation
can all be calculated from m ◦ ΔP Markov chains on the statistics themselves. (As
Sect. 3.6 will explain, the descent set is actually a Markov statistic of P-shuffling-
without-standardisation.)

Proof of Theorem 3.14 The case of t = 1 is clear, since performing a single P-shuffle-
with-standardisation, starting from the identity permutation, does not actually require
any standardisation. The key to showing this result for larger t is to express t iterates
of a P-shuffle, with- or without-standardisation, as the same P ′′-shuffle, performed
only once. This uses the (vector space) isomorphism identifying the descent operator
m ◦ ΔD with the homogeneous non-commutative symmetric function SD [54, Sec.
2.5]. (See [34] for background on non-commutative symmetric functions.) Write SP

for the non-commutative symmetric function associated with m ◦ ΔP .
On a commutative Hopf algebra, such as the shuffle algebra, the composition

(m ◦ ΔP ) ◦ (m ◦ ΔP ′) corresponds to the internal product of non-commutative
symmetric functions SP ′

SP [55, Th. II.7]. So t iterates of a P-shuffle-without-
standardisation correspond to

(
SP
)t
.

Now consider the P-shuffles-with-standardisation, on the algebra FQSym. Note
that the coproduct of the identity permutation is

Δ(1, . . . , n) =
n∑

r=0

(1, . . . , r) ⊗ (1, . . . , n − r), (3.2)

and each tensor-factor is an identity permutation of shorter length. Thus the subalge-
bra of FQSym generated by identity permutations of varying length is closed under
coproduct, and P-shuffling-with-standardisation from the identity stays within this
sub-Hopf-algebra. Equation 3.2 shows that this sub-Hopf-algebra is cocommutative,
so a composition of descent operators (m ◦ ΔP ) ◦ (m ◦ ΔP ′) corresponds to the inter-
nal product of non-commutative symmetric functions SP SP ′

[55, Th. II.7]. Despite
this product being in the opposite order from the shuffle algebra case, t iterates of
P-shuffles-with-standardisation are also described by

(
SP
)t
. 
�

It would be interesting to find a bijective proof of this equidistribution after t steps,
i.e. to find a bijection between trajectories, starting at the identity, under P-shuffling-
with- and P-shuffling-without-standardisation that have the same endpoint. Since the
products of the associatednon-commutative symmetric functions are in opposite orders
for the two chains, such a bijection should probably be “order reversing” in some way.
For example, the trajectory below of top-to-random-without-standardisation comes
from inserting first in position 4, and then in position 2.

(1, 2, 3, 4, 5) (2, 3, 4, 1, 5) (3, 2, 4, 1, 5)

(2, 3, 4, 5) (3, 4, 1, 5)
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Apossible trajectory of top-to-random-with-standardisation that has the sameendpoint
is to insert first in position 2 + 1 = 3 and then in position 4:

(1, 2, 3, 4, 5) (2, 3, 1, 4, 5) (3, 2, 4, 1, 5)

(1, 2, 3, 4) (2, 1, 3, 4)

Here, the “order reversal”makes intuitive sense, becausewhen there is standardisation,
1marks themost recentlymoved card, whereas in the shuffles-without-standardisation
1 is the first card moved.

To close this section, here are some similarities and differences between the P-
shuffleswith- and P-shuffles-without- standardisation. Since both are descent operator
chains, by [54, Th. 3.5] they have the same eigenvalues, but different multiplicities.
(Strictly speaking, the case without standardisation requires a multigraded version of
this theorem.) For example, the eigenvalues for both top-to-random chains are j

n for
j = 0, 1, 2, . . . , n − 3, n − 2, n. Their multiplicities for the without-standardisation
chain are the number of permutations with j fixed points [19, Th. 4.1] [41, Sec.
4.6], whilst, for the chains with standardisation, they are the number of permuta-
tions fixing 1, 2, . . . , j but not j + 1 (see Theorem 3.4 above). Hence in general the
smaller eigenvalues have higher multiplicities in the chain with standardisation. The
P-shuffles-without-standardisation are diagonalisable (because the shuffle algebra
is commutative), and so are the top-to-random-with-standardisation and bottom-to-
random-with-standardisation (because of a connection with dual graded graphs, see
theRemark in [54, Sec. 4.2]), but Sage computer calculations show that the P-shuffles-
with-standardisation are generally non-diagonalisable.

3.6 Lumping Card Shuffles by Descent Set

This section addresses an example separate from the long example of the previous
sections. The goal is to apply amild adaptation of Theorem3.6 to reprove the following
theorem of Athanasiadis and Diaconis:

Theorem 3.15 [9, Ex. 5.8] The P-shuffles (without standardisation) lump via descent
set.

A weaker version of this result, for riffle-shuffles only, was announced in [51],
along with eigenvectors of the lumped chain on compositions. The proof below is
reproduced from the thesis [52, Sec. 6.3].

Recall from Example 3.1 that the P-shuffles (without standardisation) come from
the descent operators m ◦ΔP on the shuffle algebraS . Thus, to prove Theorem 3.15,
it suffices to construct a quotient Hopf algebra ofS such that, for each word w ∈ S
with distinct letters, the quotient map θ sends w to a basis element of the quotient
algebra indexed by Des(w). This quotient Hopf algebra is QSym, the quasisymmetric
functions of [35]. (Although QSym is a well-known Hopf algebra, the quotient map θ

is highly non-standard, in contrast to the Hopf-morphisms of previous sections.) The
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images under θ of the words with distinct letters will be the fundamental basis {FI },
but the proof below will also require the monomial basis {MI }. Since the product and
coproduct of QSym are fairly complicated, we omit the details here, and refer the
interested reader to [35].

Theorem 3.16 [52, Th. 6.2.1] There is amorphism ofHopf algebras θ : S → QSym
such that, if w is a word with distinct letters, then θ(w) = FDes(w).

Proof By [1, Th. 4.1], QSym is the terminal object in the category of combinatorial
Hopf algebras equipped with a multiplicative character. So, to define any Hopf-
morphism to QSym, it suffices to define the corresponding character ζ on the domain.
By [59, Th. 6.1.i], the shuffle algebra S is freely generated by Lyndon words [49,
Sec. 5.1], which are strictly smaller than all their cyclic rearrangements. Hence any
choice of the values of ζ on Lyndonwords extends uniquely to awell-defined character
onS . For Lyndon u, set

ζ(u) =
{
1 if u has all letters distinct and has no descents;
0 otherwise.

(3.3)

We claim that, consequently, (3.3) holds for all words with distinct letters, even if they
are not Lyndon. Assuming this for now, [1, Th. 4.1] defines

θ(w) =
∑

I�n
(ζ ⊗ · · · ⊗ ζ ) (ΔI (w)) MI

=
∑

I�n
ζ((w1, . . . , wi1))ζ((wi1+1, . . . , wi1+i2)) . . . ζ((wil(I )−1+1, . . . , wn))MI .

Ifw has distinct letters, then every consecutive subword (wi1+···+i j+1, . . . , wi1...+i j+1)

of w also has distinct letters, so

ζ((w1, . . . , wi1)) . . . ζ((wil(I )−1+1, . . . , wn)) =
{
1 if Des(w) ≤ I ;
0 otherwise.

Hence θ(w) = ∑
Des(w)≤I MI = FDes(w).

Now return to proving the claim that (3.3) holds whenever w has distinct letters.
Proceed by induction onw, with respect to lexicographic order. [59, Th. 6.1.ii], applied
to a word w with distinct letters, states that: if w has Lyndon factorisation w =
u1 · · · uk , then the product of these factors in the shuffle algebra satisfies

u1� . . .�uk = w +
∑

v<w

αvv

where αv is 0 or 1. The character ζ is multiplicative, so

ζ(u1) . . . ζ(uk) = ζ(w) +
∑

v<w

αvζ(v). (3.4)
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If w is Lyndon, then the claim is true by definition; this includes the base case for the
induction. Otherwise, k > 1 and there are two possibilities:

– None of the ui s have descents. Then the left-hand side of (3.4) is 1. Since the ui s
together have all letters distinct, the only way to shuffle them together and obtain
a word with no descents is to arrange the constituent letters in increasing order.
This word is Lyndon, so it is not w, and, by inductive hypothesis, it is the only v

in the sum with ζ(v) = 1. So ζ(w) must be 0.
– Some Lyndon factor ui has at least one descent. Then ζ(ui ) = 0, so the left-hand
side of (3.4) is 0. Also, no shuffle of u1, . . . , uk has its letters in increasing order.
Therefore, by inductive hypothesis, all v in the sum on the right-hand side have
ζ(v) = 0. Hence ζ(w) = 0 also.


�
Remark From the proof, one sees that the conclusion θ(w) = FDes(w) for w with
distinct letters relies only on the value of ζ on Lyndon words with distinct letters. The
proof took ζ(u) = 0 for all Lyndon u with repeated letters, but any other value would
also work. Alas, no definition of ζ will ensure that the images of all words are FI for
some I :

θ((1, 1)) = 1

2
θ((1)�(1)) = 1

2
θ(1)θ(1) = 1

2
M2

(1) = F(1,1) + F(2).
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