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Abstract For arbitrary Borel probability measures with compact support on the real
line, characterizations are established of the best finitely supported approximations,
relative to three familiar probability metrics (Lévy, Kantorovich, and Kolmogorov),
given any number of atoms, and allowing for additional constraints regarding weights
or positions of atoms. As an application, best (constrained or unconstrained) approx-
imations are identified for Benford’s Law (logarithmic distribution of significands)
and other familiar distributions. The results complement and extend known facts in
the literature; they also provide new rigorous benchmarks against which to evaluate
empirical observations regarding Benford’s law.
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1 Introduction

Given real numbers b > 1 and x �= 0, denote by Sb(x) the unique number in [1, b[
such that |x | = Sb(x)bk for some (necessarily unique) integer k; for convenience, let
Sb(0) = 0. The number Sb(x) often is referred to as the base-b significand of x , a
terminology particularly well-established in the case of b being an integer. (Unlike
in much of the literature [2,4,18,28], the case of integer b does not carry special
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significance in this article.) A Borel probability measure μ on R is Benford base b, or
b-Benford for short, if

μ
({x ∈ R : Sb(x) ≤ s}) = log s

log b
∀s ∈ [1, b[; (1.1)

here and throughout, log denotes the natural logarithm. Benford probabilities (or ran-
dom variables) exhibit many interesting properties and have been studied extensively
[1,6,14,20,25,29]. They provide one major pathway into the study of Benford’s law,
an intriguing, multi-faceted phenomenon that attracts interest from a wide range of
disciplines; see, e.g., [4] for an introduction, and [21] for a panorama of recent devel-
opments. Specifically, denoting by βb the Borel probability measure with

βb([1, s]) = log s

log b
∀s ∈ [1, b[,

note that μ is b-Benford if and only if μ ◦ S−1
b = βb.

Historically, the case of decimal (i.e., base-10) significands has been the most
prominent, with early empirical studies on the distribution of decimal significands (or
significant digits) going back to Newcomb [23] and Benford [2]. If μ is 10-Benford,
note that in particular

μ
({x ∈ R : leading decimal digit of x = D}) = log(1 + D−1)

log 10
∀D = 1, . . . , 9.

(1.2)
For theoretical as well as practical reasons, mathematical objects such as random
variables or sequences, but also concrete, finite numerical data sets that conform, at
least approximately, to (1.1) or (1.2) have attracted much interest [10,20,28,29]. Time
and again, Benford’s law has emerged as a perplexingly prevalent phenomenon. One
popular approach to understand this prevalence seeks to establish (mild) conditions on
a probability measure that make (1.1) or (1.2) hold with good accuracy, perhaps even
exactly [7,12–14,25]. It is the goal of the present article to provide precise quantitative
information for this approach.

Concretely, notice that while a finitely supported probability measure, such as, e.g.,
the empirical measure associated with a finite data set [5], may conform to the first-
digit law (1.2), it cannot possibly satisfy (1.1) exactly. For such measures, therefore, it
is natural to quantify, as accurately as possible, the failure of equality in (1.1), that is,
the discrepancy between μ ◦ S−1

b and βb. Utilizing three different familiar metrics d∗
on probabilities (Lévy, Kantorovich, and Kolmogorov metrics; see Sect. 2 for details),
the article does this in a systematic way: For every n ∈ N, the value of minν d∗(βb, ν)

is identified, where ν is assumed to be supported on no more than n atoms (and may
be subject to further restrictions such as, e.g., having only atoms of equal weight, as
in the case of empirical measures); the minimizers of d∗(βb, ν) are also characterized
explicitly.

The scope of the results presented herein, however, extends far beyond Benford
probabilities. In fact, a general theory of best (constrained or unconstrained) d∗-
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approximations is developed. As far as the authors can tell, no such theories exist
for the Lévy and Kolmogorov metrics—unlike in the case of the Kantorovich metric
where it (mostly) suffices to rephrase pertinent known facts [16,30]. Once the gen-
eral results are established, the desired quantitative insights for Benford probabilities
are but straightforward corollaries. (Even in the context of Kantorovich distance, the
study of βb yields a rare new, explicit example of an optimal quantizer [16].) In par-
ticular, it turns out that, under all the various constraints considered here, the limit
Q∗ = limn→∞ nminν d∗(βb, ν) always exists, is finite and positive, and can be com-
puted more or less explicitly. This greatly extends earlier results, notably of [5], and
also suggests that n−1Q∗ may be an appropriate quantity against which to evaluate
the many heuristic claims of closeness to Benford’s law for empirical data sets found
in the literature [3,21,22].

The main results in this article, then, are existence proofs and characterizations for
the minimizers of d∗(μ, ν) for arbitrary (compactly supported) probability measures
μ, as provided by Theorems 3.5, 3.6, 4.1, 5.1, and 5.4 (where additional constraints
are imposed on the sizes or locations of the atoms of ν), as well as by Theorems
3.9 and 5.6 (where such constraints are absent). As suggested by the title, this work
aims primarily at a precise analysis of conformance to Benford’s law (or the lack
thereof). Correspondingly, much attention is paid to the special case of μ = βb,
leading to explicit descriptions of best (constrained or unconstrained) approximations
of the latter (Corollaries 3.10, 4.3, and 5.8) and the exact asymptotics of d∗(βb, ν). As
indicated earlier, however, the main results are much more general. To emphasize this
fact, two other simple but illustrative examples of μ are repeatedly considered as well
(though in less detail than βb), namely the familiar Beta(2, 1) distribution and the
(perhaps less familiar) inverse Cantor distribution. It turns out that while the former is
absolutely continuous (w.r.t. Lebesgue measure) and its best approximations behave
like those of βb in most respects (Examples 1, 3, 5, and 7), the latter is discrete and the
behavior of its best approximations is more delicate (Examples 2, 4, 6, and 8). Even
with only a few details mentioned, these examples will help the reader appreciate the
versatility of the main results.

The organization of this article is as follows: Sect. 2 reviews relevant basic prop-
erties of one-dimensional probabilities and the three main probability metrics used
throughout. Each of Sects. 3 to 5 then is devoted specifically to one single metric. In
each section, the problem of best (constrained or unconstrained) approximation by
finitely supported probability measures is first addressed in complete generality, and
then the results are specialized to βb as well as other concrete examples. Section 6
summarizes and discusses the quantitative results obtained, and also mentions a few
natural questions for subsequent studies.

2 Probability Metrics

Throughout, let I ⊂ R be a compact interval with Lebesgue measure λ(I) > 0, and
P the set of all Borel probability measures on I. Associate with every μ ∈ P its
distribution function Fμ : R → R, given by
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Fμ(x) = μ({y ∈ I : y ≤ x}) ∀ x ∈ R,

as well as its (upper) quantile function F−1
μ : [0, 1[ → R, given by

F−1
μ (x) =

{
min I if 0 ≤ x < μ({min I}) ,

sup{y ∈ I : Fμ(y) ≤ x} if μ({min I}) ≤ x < 1.
(2.1)

Note that Fμ and F−1
μ both are non-decreasing, right-continuous, and bounded. The

support of μ, denoted suppμ, is the smallest closed subset of I with μ-measure 1.
Endowed with the weak topology, the space P is compact and metrizable.

Three important different metrics on P are discussed in detail in this article; for a
panorama of other metrics, the reader is referred, e.g., to [15,27] and the references
therein. Given probabilities μ, ν ∈ P , their Lévy distance is

dL(μ, ν) = ω inf
{
y ≥ 0 : Fμ(· − y) − y ≤ Fν ≤ Fμ(· + y) + y

}
, (2.2)

withω = max{1, λ(I)}/λ(I); their Lr -Kantorovich (or transport)distance,with r ≥ 1,
is

dr (μ, ν) = λ(I)−1
(∫ 1

0

∣∣∣F−1
μ (y) − F−1

ν (y)
∣∣∣
r
dy

)1/r

= λ(I)−1‖F−1
μ − F−1

ν ‖r ;
(2.3)

and their Kolmogorov (or uniform) distance is

dK(μ, ν) = sup
x∈R

∣∣Fμ(x) − Fν(x)
∣∣ = ‖Fμ − Fν‖∞.

Henceforth, the symbol d∗ summarily refers to any of dL, dr , and dK. The (unusual)
normalizing factors in (2.2) and (2.3) guarantee that all three metrics are comparable
numerically in that supμ,ν∈P d∗(μ, ν) = 1 in either case. Note that

d1(μ, ν) = λ(I)−1
∫

I

∣∣Fμ(x) − Fν(x)
∣∣ dx ∀ μ, ν ∈ P,

by virtue of Fubini’s theorem. The metrics dL and dr are equivalent: They both metrize
the weak topology on P , and hence are separable and complete. By contrast, the
complete metric dK induces a finer topology and is non-separable. However, when
restricted to Pcts := {μ ∈ P : μ({x}) = 0 ∀ x ∈ I}, a dense Gδ-set in P , the metric
dK does metrize the weak topology on Pcts and is separable. The values of dL, dr , and
dK are not completely unrelated since, as is easily checked,

d1 ≤ 1 + λ(I)

ωλ(I)
dL , dr ≤ ds (if r ≤ s) , d1 ≤ dK , dL ≤ ωdK, (2.4)

and all bounds in (2.4) are best possible. Beyond (2.4), however, no relative bounds
exist between dL, dr , and dK in general: If ∗ �= 1, ∗ �= ◦, and (∗, ◦) /∈ {(L,K), (r, s)}
with r ≤ s then
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sup
μ,ν∈P :μ�=ν

d∗(μ, ν)

d◦(μ, ν)
= +∞.

Each metric d∗, therefore, captures a different aspect of P and deserves to be stud-
ied independently. To illustrate this further, let I = [0, 1], μ = δ0 ∈ P , and
μk = (1 − k−1)δ0 + k−1δk−2 for k ∈ N; here and throughout, δa denotes the Dirac
(probability) measure concentrated at a ∈ R. Then limk→∞ d∗(μ,μk) = 0, but the
rate of convergence differs between metrics:

dL(μ,μk) = k−2 , dr (μ,μk) = k−2−1/r , dK(μ,μk) = k−1 ∀ k ∈ N.

The goal of this article is first to identify, for each metric d∗ introduced earlier, the
best finitely supported d∗-approximation(s) of any given μ ∈ P . The general results
are then applied to Benford’s law, as well as other concrete examples. Specifically,
if μ = βb for some b > 1 then it is automatically assumed that I = [1, b]. The
following unified notation and terminology is used throughout: for every n ∈ N, let
Ξn = {x ∈ I

n : x,1 ≤ · · · ≤ x,n}, Πn = {p ∈ R
n : p, j ≥ 0,

∑n
j=1 p, j = 1}, and for

each x ∈ Ξn and p ∈ Πn define δ
p
x = ∑n

j=1 p, jδx, j . For convenience, x,0 := −∞
and x,n+1 := +∞ for every x ∈ Ξn, as well as P,i = ∑i

j=1 p, j for i = 0, . . . , n and

p ∈ Πn ; note that P,0 = 0 and P,n = 1. Henceforth, usage of the symbol δ
p
x tacitly

assumes that x ∈ Ξn and p ∈ Πn, for some n ∈ N either specified explicitly or else
clear from the context. Call δ px a best d∗-approximation of μ ∈ P , given x ∈ Ξn if

d∗
(
μ, δ

p
x
) ≤ d∗

(
μ, δ

q
x
) ∀ q ∈ Πn .

Similarly, call δ px a best d∗-approximation of μ, given p ∈ Πn if

d∗
(
μ, δ

p
x
) ≤ d∗

(
μ, δ

p
y
) ∀ y ∈ Ξn .

Denote by δ•
x and δ

p• any best d∗-approximation ofμ, given x and p, respectively. Best
d∗-approximations, given p = un = (n−1, . . . , n−1) are referred to as best uniform
d∗-approximations, and denoted δ

un• . Finally, δ px is a best d∗-approximation of μ ∈ P ,
denoted δ•,n• , if

d∗
(
μ, δ

p
x
) ≤ d∗

(
μ, δ

q
y
) ∀ y ∈ Ξn, q ∈ Πn .

Notice that usage of the symbols δ•
x , δ

p• , and δ•,n• always refers to a specific metric d∗
and probability measure μ ∈ P , both usually clear from the context.

Information theory sometimes refers to d∗(μ, δ•,n• ) as the n-th quantization error,
and to limn→∞ nd∗(μ, δ•,n• ), if it exists, as the quantization coefficient of μ; see,
e.g., [16]. By analogy, d∗(μ, δ

un• ) and limn→∞ nd∗(μ, δ
un• ), if it exists, may be

called the n-th uniform quantization error and the uniform quantization coefficient,
respectively.

123



1530 J Theor Probab (2019) 32:1525–1553

3 Lévy Approximations

This section identifies best finitely supported dL-approximations (constrained or
unconstrained) of a given μ ∈ P . To do this in a transparent way, it is helpful to
first consider more generally a few elementary properties of non-decreasing func-
tions. These properties are subsequently specialized to either Fμ or F−1

μ .

Throughout, let f : R → R be non-decreasing, and define f (±∞) =
limx→±∞ f (x) ∈ R, where R = R ∪ {−∞,+∞} denotes the extended real line
with the usual order and topology. Associate with f two non-decreasing functions
f± : R → R, defined as f±(x) = limε↓0 f (x ± ε). Clearly, f− is left-continuous,
whereas f+ is right-continuous, with f±(−∞) = f (−∞), f±(+∞) = f (+∞),
as well as f− ≤ f ≤ f+, and f+(x) ≤ f−(y) whenever x < y; in particular,
f−(x) = f+(x) if and only if f is continuous at x . The (upper) inverse function
f −1 : R → R is given by

f −1(t) = sup{x ∈ R : f (x) ≤ t} ∀ t ∈ R;

by convention, sup∅ := −∞ (and inf ∅ := +∞). Note that (2.1) is consistent with
this notation. For what follows, it is useful to recall a few basic properties of inverse
functions; see, e.g., [30, Sect. 3] for details.

Proposition 3.1 Let f : R → R be non-decreasing. Then f −1 is non-decreasing and
right-continuous. Also, ( f±)−1 = f −1, and ( f −1)−1 = f+.

Given two non-decreasing functions f, g : R → R, by a slight abuse of notation, and
inspired by (2.2), let

dL( f, g) = inf{y ≥ 0 : f ( · − y) − y ≤ g ≤ f ( · + y) + y} ∈ [0,+∞].

For instance, dL(μ, ν) = ωdL(Fμ, Fν) for all μ, ν ∈ P . It is readily checked that dL
is symmetric, satisfies the triangle inequality, and dL( f, g) > 0 unless f− = g−, or
equivalently, f+ = g+. Crucially, the quantity dL is invariant under inversion.

Proposition 3.2 Let f, g : R → R be non-decreasing. Then dL( f −1, g−1) =
dL( f, g).

Thus, for instance, dL(μ, ν) = ωdL(F−1
μ , F−1

ν ) for all μ, ν ∈ P . In general, the value
of dL( f, g) may equal +∞. However, if the set { f �= g} := {x ∈ R : f (x) �= g(x)}
is bounded then dL( f, g) < +∞. Specifically, notice that {Fμ �= Fν} ⊂ I and
{F−1

μ �= F−1
ν } ⊂ [0, 1[ both are bounded for all μ, ν ∈ P .

Given a non-decreasing function f : R → R, let I ⊂ R be any interval with the
property that

f−(sup I ),− f+(inf I ) < +∞, (3.1)

and define an auxiliary function 
 f,I : R → R as


 f,I (x) = inf{y ≥ 0 : f−(sup I − y) − y ≤ x ≤ f+(inf I + y) + y}.
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Note that for each x ∈ R, the set on the right equals [a,+∞[ with the appropriate
a ≥ 0, and hence simply 
 f,I (x) = a. Clearly, 
 f,J ≤ 
 f,I whenever J ⊂ I . Also,
for every a ∈ R, the function 
 f,{a} is non-increasing on ] − ∞, f−(a)], vanishes on
[ f−(a), f+(a)], and is non-decreasing on [ f+(a),+∞[. A few elementary properties
of 
 f,I are straightforward to check; they are used below to establish the main results
of this section.

Proposition 3.3 Let f : R → R be non-decreasing, and I ⊂ R an interval satisfying
(3.1). Then 
 f,I is Lipschitz continuous, and

0 ≤ 
 f,I (x) ≤ |x | + max{0, f−(sup I ),− f+(inf I )} ∀ x ∈ R.

Moreover, 
 f,I attains a minimal value


∗
f,I := min

x∈R 
 f,I (x) = min{y ≥ 0 : f−(sup I − y) − y

≤ f+(inf I + y) + y} ≥ 0

which is positive unless f−(sup I ) ≤ f+(inf I ).

For μ ∈ P , note that (3.1) automatically holds if f = Fμ, or if f = F−1
μ and

I ⊂ [0, 1]. In these cases, therefore, 
 f,I has the properties stated in Proposition 3.3,
and 
∗

f,I ≤ 1
2 .

When formulating the main results, the following quantities are useful: Given μ ∈
P , n ∈ N, and x ∈ Ξn , let

L•(x) = max
{

Fμ,[−∞,x,1](0), 
∗

Fμ,[x,1,x,2], . . . , 

∗
Fμ,[x,n−1,x,n ], 
Fμ,[x,n ,+∞](1)

}
;

similarly, given p ∈ Πn , let

L•(p) = maxnj=1 
∗
F−1

μ ,[P, j−1,P, j ].

To illustrate these quantities for a concrete example, consider μ = βb, where

∗
Fμ,[x, j ,x, j+1] is the unique solution of

b2
 = x, j+1 − 


x, j + 

j = 1, . . . , n − 1,

whereas 
Fμ,[−∞,x,1](0) and 
Fμ,[x,n ,+∞](1) solve b
 = x,1 − 
 and b
 = b/(x,n + 
),
respectively. (Recall that 1 ≤ x,1 ≤ · · · ≤ x,n ≤ b.) Similarly, 
∗

F−1
μ ,[P, j−1,P, j ] is the

unique solution of

2
 = bP, j−
 − bP, j−1+
 j = 1, . . . , n;
in particular, j �→ 
∗

F−1
μ ,[( j−1)/n, j/n] is increasing, and hence L•(un) is the unique

solution of
2L = b1−L − b1+L−1/n . (3.2)
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By using functions of the form 
 f,I , the value of dL(μ, ν) can easily be computed
whenever ν has finite support.

Lemma 3.4 Let μ ∈ P and n ∈ N. For every x ∈ Ξn and p ∈ Πn,

dL
(
μ, δ

p
x
) = ωmaxnj=0 
Fμ,[x, j ,x, j+1](P, j ) = ωmaxnj=1 
F−1

μ ,[P, j−1,P, j ](x, j ). (3.3)

Proof Label x ∈ Ξn uniquely as

x, j0+1 = · · · = x, j1 < x, j1+1 = · · · = x, j2 < x, j2+1 = · · ·
< · · · = x, jm−1 < x, jm−1+1 = . . . = x, jm ,

with integers i ≤ ji ≤ n for 1 ≤ i ≤ m, and j0 = 0, jm = n, and define y ∈ Ξm

and q ∈ Πm as y,i = x, ji and q,i = P, ji − P, ji−1 , respectively, for i = 1, . . . ,m. For
convenience, let I j = [x, j , x, j+1] for j = 0, . . . , n, and Ji = [y,i , y,i+1] = I ji for
i = 0, . . . ,m. With this, δqy = δ

p
x , and

ω−1dL
(
μ, δ

p
x
) = dL(Fμ, Fδ

q
y
)

= inf{t ≥ 0 : Fμ−(y,i+1 − t) − t

≤ Q,i ≤ Fμ(y,i + t) + t ∀ i = 0, . . . ,m}
=maxmi=0 
Fμ,Ji (Q,i )

≤maxnj=0 
Fμ,I j (P, j ).

To prove the reverse inequality, pick any j = 0, . . . , n. If x, j < x, j+1 then I j = Ji and
P, j = Q,i , with the appropriate i , and hence 
Fμ,I j (P, j ) = 
Fμ,Ji (Q,i ). If x, j = x, j+1
then I j = {y,i } for some i . In this case either P, j < Fμ−(y,i ) and Q,i−1 ≤ P, j , and
hence


Fμ,I j (P, j ) = 
Fμ,{y,i }(P, j ) ≤ 
Fμ,{y,i }(Q,i−1) ≤ 
Fμ,Ji−1(Q,i−1);

or Fμ−(y,i ) ≤ P, j ≤ Fμ(y,i ), and hence 
Fμ,I j (P, j ) = 
Fμ,{y,i }(P, j ) = 0; or P, j >

Fμ(y,i ) and Q,i ≥ P, j , and hence


Fμ,I j (P, j ) = 
Fμ,{y,i }(P, j ) ≤ 
Fμ,{y,i }(Q,i ) ≤ 
Fμ,Ji (Q,i ).

In all three cases, therefore, ω−1dL(μ, δ
p
x ) ≥ maxnj=0 
Fμ,I j (P, j ), which establishes

the first equality in (3.3). The second equality, a consequence of Proposition 3.2, is
proved analogously. ��

Utilizing Lemma 3.4, it is straightforward to characterize the best finitely supported
dL-approximations of μ ∈ P with prescribed locations.

Theorem 3.5 Let μ ∈ P and n ∈ N. For every x ∈ Ξn, there exists a best dL-
approximation of μ, given x. Moreover, dL(μ, δ

p
x ) = dL(μ, δ•

x ) if and only if, for
every j = 0, . . . , n,
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x, j < x, j+1 �⇒ 
Fμ,[x, j ,x, j+1](P, j ) ≤ L•(x), (3.4)

and in this case dL(μ, δ
p
x ) = ωL•(x).

Proof Fix μ ∈ P , n ∈ N, and x ∈ Ξn . As in the proof of Lemma 3.4, write I j =
[x, j , x, j+1] for convenience. By (3.3), for every p ∈ Πn ,

dL
(
μ, δ

p
x
) = ωmaxnj=0 
Fμ,I j (P, j )

≥ ωmax{
Fμ,I0(0), 

∗
Fμ,I1 , . . . , 


∗
Fμ,In−1

, 
Fμ,In (1)} = ωL•(x).

As seen in the proof of Lemma3.4, validity of (3.4) implies 
Fμ,[x, j ,x, j+1](P, j )≤ L•(x)
for all j = 0, . . . , n. Thus δ

p
x is a best dL-approximation ofμ, given x , whenever (3.4)

holds, i.e., the latter is sufficient for optimality. On the other hand, consider q ∈ Πn

with

Q, j = 1

2

(
Fμ−

(
x, j+1 − L•(x)

) + Fμ

(
x, j + L•(x)

)) ∀ j = 1, . . . , n − 1.

Note that q is well-defined, since j �→ Q, j is non-decreasing, and 0 ≤ Q, j ≤ 1 for
all j = 1, . . . , n − 1. Moreover, by the definition of L•(x),


Fμ,I j

(
Q, j

) ≤ L•(x) ∀ j = 0, . . . , n,

and hence dL
(
δ
q
x , μ

) = ωL•(x). This shows that best dL-approximations of μ, given
x , do exist, and (3.4) also is necessary for optimality. ��

Best finitely supported dL-approximations of any μ ∈ P with prescribed weights
can be characterized in a similar manner. By virtue of (3.3), the proof of the following
is completely analogous to the proof of Theorem 3.5.

Proposition 3.6 Let μ ∈ P and n ∈ N. For every p ∈ Πn, there exists a best dL-
approximation of μ, given p. Moreover, dL(μ, δ

p
x ) = dL(μ, δ

p• ) if and only if, for
every j = 1, . . . , n,

P, j−1 < P, j �⇒ 
F−1
μ ,[P, j−1,P, j ](x, j ) ≤ L•(p), (3.5)

and in this case dL
(
μ, δ

p
x
) = ωL•(p).

Remark 1 (i) With f, I as in Proposition 3.3, for every a ∈ R the set {
 f,I ≤ a}
is a (possibly empty or one-point) interval. Thus, conditions (3.4) and (3.5) are
very similar in spirit to the requirements of [30, Thm. 5.1 and 5.5], restated in
Proposition 4.1, though the latter may be quite a bit easier to work with in concrete
calculations.

(ii) Note that if n = 1 then (3.4) holds automatically, whereas (3.5) shows that
dL(μ, δa) is minimal precisely if the function 
F−1

μ ,[0,1] attains its minimal value
at a.
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As a corollary, Proposition 3.6 identifies all best uniform dL-approximations of βb

with b > 1. Recall that I = [1, b], and hence ω = max{b, 2} − 1

b − 1
=: ωb in this case.

Corollary 3.7 Let b > 1 and n ∈ N. Then δ
un
x is a best uniform dL-approximation of

βb if and only if

b j/n−L − L ≤ x, j ≤ b( j−1)/n+L + L ∀ j = 1, . . . , n,

where L is the unique solution of (3.2); in particular, #supp δ
un• = n. Moreover,

dL(βb, δ
un• ) = ωbL, and

lim
n→∞ ndL

(
βb, δ

un•
) = max{b, 2} − 1

2b − 2
· b log b

1 + b log b
.

Example 1 Consider the Beta(2, 1) distribution on I = [0, 1], i.e., let Fμ(x) = x2

for all x ∈ I. Given n ∈ N, it is straightforward to check that, analogously to (3.2),
L•(un) is the unique solution of

L

√
2

n
− 4L2 = 1

2n
− L , (3.6)

and δ
un
x with x ∈ Ξn is a best uniform dL-approximation of μ if and only if

√
j

n
− L − L ≤ x, j ≤

√
j − 1

n
+ L + L ∀ j = 1, . . . , n.

Moreover, dL(μ, δ
un• ) = L , and (3.6) yields that limn→∞ ndL(μ, δ

un• ) = 1
2 . Unlike in

the case of βb, it is possible to have #supp δ
un• < n whenever n ≥ 10.

Example 2 Let again I = [0, 1] and considerμ ∈ P withμ({i2−m}) = 3−m for every
m ∈ N and every odd 1 ≤ i < 2m . Thus μ is a discrete measure with suppμ = I. In
fact,μ simply is the inverse Cantor distribution, in the sense that F−1

μ (x) = Fν(x) for
all x ∈ I, where ν is the log 2/ log 3-dimensional Hausdorff measure on the classical
Cantor middle-thirds set. Given n ∈ N, Proposition 3.6 guarantees the existence of a
best uniform dL-approximation of μ, though the explicit value of L•(un) is somewhat
cumbersome to determine. Still, utilizing the self-similarity of F−1

μ , one finds that

1

216
≤ lim inf

n→∞ ndL
(
μ, δun•

) ≤ 1

3
, lim sup

n→∞
ndL

(
μ, δun•

) = 1

2
. (3.7)

Thus (n−1) is the precise rate of decay of
(
dL(μ, δ

un• )
)
, just as in the case of βb and

Beta(2, 1), but unlike for the latter, limn→∞ ndL(μ, δ
un• ) does not exist.

By combining Theorem 3.5 and Proposition 3.6, it is possible to characterize the
best dL-approximations of μ ∈ P as well, that is, to identify the minimizers of ν �→
dL(μ, ν) subject only to the requirement that #supp ν ≤ n. To this end, associate
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with every non-decreasing function f : R → R and every number a ≥ 0 a map
T f,a : R → R, according to

T f,a(x) = f+( f −1(x + a) + 2a) + a ∀ x ∈ R.

For every n ∈ N, denote by T [n]
f,a the n-fold composition of T f,a with itself. The

following properties of T f,a are readily verified.

Proposition 3.8 Let f : R → R be non-decreasing, a ≥ 0, and n ∈ N. Then T [n]
f,a

is non-decreasing and right-continuous. Also, a �→ T [n]
f,a(x) is increasing and right-

continuous for every x ∈ R, and if x ≤ a + f (+∞) then the sequence (T [k]
f,a(x)) is

non-decreasing.

To utilize Proposition 3.8 for the dL-approximation problem, let f = Fμ with
μ ∈ P . Then (T [k]

Fμ,a(0)) is non-decreasing; in fact, limk→∞ T [k]
Fμ,a(0) = a+ 1. On the

other hand, given n ∈ N, clearly T [n]
Fμ,a(0) ≥ 1 for all a ≥ 1, and hence

L•,n• := min
{
a ≥ 0 : T [n]

Fμ,a(0) ≥ 1
}

< +∞.

Note that L•,n• only depends on μ and n. The sequence
(
L•,n•

)
is non-increasing, and

nL•,n• ≤ 1
2 for every n. Also, L•,n• = 0 if and only if #suppμ ≤ n.

For a concrete example, consider μ = βb with a < 1
2 (b − 1), where

TFμ,a(x) =
⎧
⎨

⎩

a if x < − a ,

a + logb(b
x+a + 2a) if − a ≤ x < − a + logb(b − 2a) ,

a + 1 if x ≥ − a + logb(b − 2a),

from which it is easily deduced that L•,n• is the unique solution of

b2nL = 2L + b(bL − b−L)

2L + bL − b−L
. (3.8)

As the following result shows, the quantity L•,n• always plays a central role in identi-
fying best (unconstrained) dL-approximations of a given μ ∈ P .

Theorem 3.9 Let μ ∈ P and n ∈ N. There exists a best dL-approximation of μ, and
dL(μ, δ•,n• ) = ωL•,n• . Moreover, for every x ∈ Ξn and p ∈ Πn, the following are
equivalent:

(i) dL(μ, δ
p
x ) = dL(μ, δ•,n• );

(ii) all implications in (3.4) are valid with L•(x) replaced by L•,n• ;
(iii) all implications in (3.5) are valid with L•(p) replaced by L•,n• .

Proof To see that best dL-approximations of μ do exist, simply note that the set
{ν ∈ P : #supp ν ≤ n} is compact, and the function ν �→ dL(μ, ν) is continuous,
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hence attains a minimal value for some ν = δ
p
x with x ∈ Ξn and p ∈ Πn . Clearly,

any such δ
p
x also is a best approximation of μ, given p. By Proposition 3.6, therefore,

dL(μ, δ
p
x ) = ωL•(p), as well as

F−1
μ−

(
P, j − L•(p)

) − L•(p) ≤ x, j ≤ F−1
μ

(
P, j−1 + L•(p)

) + L•(p)

whenever P, j−1 < P, j , and indeed for every j = 1, . . . , n. It follows that P, j ≤
TFμ,L•(p)(P, j−1) for all j , and hence 1 = P,n ≤ T [n]

Fμ,L•(p)(0), that is, L
•,n• ≤ L•(p).

This shows that dL(μ, δ
p
x ) ≥ ωL•,n• . To establish the reverse inequality, let

m = min
{
i ≥ 1 : T [i]

Fμ,L•,n•
(0) ≥ 1

}
.

Clearly, 1 ≤ m ≤ n, and L•,m• = L•,n• . Define q ∈ Πm via

Q,i = T [i]
Fμ,L•,n•

(0) ∀ i = 1, . . . ,m − 1.

Note that i �→ Q,i is non-decreasing, and 0 ≤ Q,i ≤ 1, so q is well-defined. Also,
consider y ∈ Ξm with

y,i = 1

2

(
F−1

μ−(Q,i − L•,m• ) + F−1
μ (Q,i−1 + L•,m• )

) ∀ i = 1, . . . ,m.

By the definitions of L•,m• , q, and y,


F−1
μ ,[Q,i−1,Q,i ](y,i ) ≤ L•,m• ∀i = 1, . . . ,m,

and hence

dL
(
μ, δ

p
x
) ≤ dL

(
μ, δ

q
y
) = ωmaxni=1 
F−1

μ ,[Q,i−1,Q,i ](y,i ) ≤ ωL•,m• = ωL•,n• .

This shows that indeed dL(μ, δ
p
x ) = ωL•,n• and also proves (i)⇒ (iii). The implica-

tion (i)⇒ (ii) follows by a similar argument. That, conversely, either of (ii) and (iii)
implies (i) is evident from (3.3), together with the fact that, as seen in the proof of
Lemma 3.4, validity of (3.4) and (3.5) implies maxnj=0 
Fμ,[x, j ,x, j+1](P, j ) ≤ L•(x)
and maxnj=1 
F−1

μ ,[P, j−1,P, j ](x, j ) ≤ L•(p), respectively. ��
Remark 2 (i) The proof of Theorem 3.9 shows that in fact

L•,n• = min
x∈Ξn

L•(x) = min
p∈Πn

L•(p).

(ii) Theorem 3.9 is similar to classical one-dimensional quantization results as pre-
sented, e.g., in [16, Sect. 5.2]. What makes the theorem (and its analogue,
Theorem 5.6 in Sect. 5) particularly appealing is that its conditions (ii) and (iii)
not only are necessary for optimality, but also sufficient. By contrast, it is well

123



J Theor Probab (2019) 32:1525–1553 1537

Fig. 1 ThebestdL-approximation (solid red line) ofβ10 is unique,whereas best uniformdL-approximations
(broken red lines) are not; see Corollaries 3.10 and 3.7, respectively (Color figure online)

known that sufficient conditions for best d∗-approximations may be hard to come
by in general; see, e.g., [16, Sect. 4.1], and also Proposition 4.1(iii), regarding the
case of ∗ = 1.

When specialized to μ = βb, Theorem 3.9 yields the best finitely supported dL-
approximations of Benford’s law; see also Fig. 1.

Corollary 3.10 Let b > 1 and n ∈ N. Then the best dL-approximation of βb is δ
p
x ,

with

x, j = b(2 j−1)L + 2L
b2 j L − 1

b2L − 1
− L = bP, j−L − L ,

P, j = 1

log b
log

(
b(2 j−1)L + 2L

b2 j L − 1

b2L − 1

)
+ L = log(x, j + L)

log b
+ L ,

for all j = 1, . . . , n,where L is the unique solution of (3.8); in particular, #supp δ•,n• =
n. Moreover, dL(βb, δ

•,n• ) = ωbL, and

lim
n→∞ ndL

(
βb, δ

•,n•
) = max{b, 2} − 1

2b − 2
· log(1 + b log b) − log(1 + log b)

log b
.

To compare this to Corollary 3.7, note that P, j �≡ j/n whenever n ≥ 2, and then
the n-th quantization error dL(βb, δ

•,n• ) is smaller than the n-th uniform quantization
error dL(βb, δ

un• ). The dL-quantization coefficient of βb also is smaller than its uniform
counterpart, since

log(1 + b log b) − log(1 + log b)

log b
<

b log b

1 + b log b
∀ b > 1.

Example 3 Forμ = Beta(2, 1), Theorem 3.9 yields a unique best dL-approximation.
Although the equation determining L•,n• is less transparent than (3.8), it can be shown
that limn→∞ ndL(μ, δ•,n• ) = 1

4 (2 − log 3) < 1
4 .
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Example 4 For the inverse Cantor distribution, a best dL-approximation exists by
Theorem 3.9, and utilizing the self-similarity of F−1

μ , it is possible to derive estimates
such as

1

216
≤ nlog 3/ log 2dL

(
μ, δ•,n•

) ≤ 3 ∀n ∈ N, (3.9)

which shows that
(
dL(μ, δ

un• )
)
decays like (n− log 3/ log 2), and hence faster than in the

case of βb and Beta(2, 1).

4 Kantorovich Approximations

This section studies best finitely supported dr -approximations of Benford’s law.
Mostly, the results are special cases of more general facts taken from the authors’
comprehensive study on dr -approximations [30].

4.1 d1-Approximations

With dL replaced by d1, the main results of the previous section have the following
analogues, stated here for the reader’s convenience; see [30, Sect. 5] for details.

Proposition 4.1 Let μ ∈ P and n ∈ N.

(i) For every x ∈ Ξn, there exists a best d1-approximation of μ, given x. Moreover,
d1(μ, δ

p
x ) = d1(μ, δ•

x ) if and only if, for every j = 0, . . . , n,

x, j < x, j+1 �⇒ Fμ−
( 1
2 (x, j + x, j+1)

) ≤ P, j ≤ Fμ

( 1
2 (x, j + x, j+1)

)
. (4.1)

(ii) For every p ∈ Πn, there exists a best d1-approximation of μ, given p. Moreover,
d1(μ, δ

p
x ) = d1(μ, δ

p• ) if and only if, for every j = 1, . . . , n,

P, j−1 < P, j �⇒ F−1
μ−

( 1
2 (P, j−1 + P, j )

) ≤ x, j ≤ F−1
μ

( 1
2 (P, j−1 + P, j )

)
.

(4.2)
(iii) There exists a best d1-approximation of μ, and if d1(μ, δ

p
x ) = d1(μ, δ•,n• ) then

(4.1) and (4.2) are valid for every j = 1, . . . , n.

Remark 3 Though the phrasing of Proposition 4.1 emphasizes its analogy to Theo-
rem 3.5 (and also to Theorem 5.1), there nevertheless is a subtle difference: While in
(3.4) and (5.1) it can equivalently be stipulated that, respectively, 
Fμ,[x, j ,x, j+1](P, j ) ≤
L•(x) and Fμ−(x, j+1)−K•(x) ≤ P, j ≤ Fμ(x, j )+K•(x) for all j = 0, . . . , n, simple
examples show that the “only if” part of Proposition 4.1(i) may fail, should (4.1) be
replaced by

Fμ−
( 1
2 (x, j + x, j+1)

) ≤ P, j ≤ Fμ

( 1
2 (x, j + x, j+1)

) ∀ j = 0, . . . , n.

Similar observations pertain to Proposition 4.1(ii) vis-à-vis Proposition 3.6 and The-
orem 5.4.

Proposition 4.1 immediately yields the existence of unique best uniform d1-
approximations of βb; see also [5, Cor. 2.10].
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Corollary 4.2 Let b > 1 and n ∈ N. Then the best uniform d1-approximation of βb

is δ
un
x , with x, j = b(2 j−1)/(2n) for all j = 1, . . . , n, and #supp δ

un• = n. Moreover,

d1(βb, δ
un• ) = 1

log b
tanh

(
log b

4n

)
, and limn→∞ nd1

(
βb, δ

un•
) = 1

4 .

Proof By Proposition 4.1(ii), x, j = b(2 j−1)/(2n) for all j = 1, . . . , n, and

nd1
(
βb, δ

un•
) = n

b − 1

∑n

j=1

∫ j/n

( j−1)/n

∣∣
∣by − b(2 j−1)/(2n)

∣∣
∣ dy

= n
(
b1/(4n) − b−1/(4n)

)2

(b − 1) log b

∑n

j=1
b(2 j−1)/(2n)

= n

log b
tanh

(
log b

4n

)
n→∞−→ 1

4
.

��
Best (unconstrained) d1-approximations of βb exist and are unique, too, by virtue of
Proposition 4.1 and a direct calculation.

Corollary 4.3 Let b > 1 and n ∈ N. Then the best d1-approximation of βb is δ
p
x , with

x, j =
(
1 + j − 1

n

(
b1/2 − 1

)) (
1 + j

n

(
b1/2 − 1

))
,

P, j = 2

log b
log

(
1 + j

n

(
b1/2 − 1

))
,

for all j = 1, . . . , n; in particular, #supp δ•,n• = n. Moreover, d1(βb, δ
•,n• ) =

1

n log b
tanh

(
log b

4

)
.

Proof Let δ px be a best d1-approximation. Then, by Proposition 4.1(iii),

bP, j = x, j + x, j+1

2
∀ j = 1, . . . , n − 1,

but also x, j = b(P, j−1+P, j )/2 for all j = 1, . . . , n, and hence 2bP, j /2 = bP, j−1/2 +
bPj+1/2. Since P0 = 0, Pn = 1, it follows that bP, j /2 = 1 + j (b1/2 − 1)n−1 for all
j = 0, . . . , n. This yields the asserted unique δ

p
x , and

d1
(
βb, δ

•,n•
) = 1

b − 1

∑n

j=1

∫ P, j

P, j−1

|by − x, j | dy = b − x,n − (x,1 − 1)

(b − 1) log b

= 1

n log b
tanh

(
log b

4

)
,

via a straightforward calculation; see also Fig. 2. ��
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Fig. 2 The best (solid blue line) and best uniform (broken blue line) d1-approximations of β10 both are
unique; see Corollaries 4.3 and 4.2, respectively. Coincidentally, best uniform d1-approximations of β10
are best dK-approximations as well; see Corollary 5.8 (Color figure online)

Remark 4 (i) Due to the highly nonlinear nature of the optimality conditions (4.1)
and (4.2), best d1-approximations are rarely given by explicit formulae such as
those in Corollary 4.3. Aside from Benford’s law, the authors know of only two
other families of continuous distributions that allow for similarly explicit formulae,
namely uniform and (one- or two-sided) exponential distributions.

(ii) A popular family of metrics on P closely related to d1 are the so-called Fortet–
Mourier r -distances (1 ≤ r < +∞), given by

dFMr (μ, ν) =
∫

I

max{1, |y|}r−1|Fμ(y) − Fν(y)| dy.

Like the Lévy and Kantorovich metrics, the Fortet–Mourier r -distance also
metrizes the weak topology on P . The reader is referred to [24,26] for details
on the mathematical background of dFMr and its use for stochastic optimization.
Note that if I ⊂ [1,+∞[ then

dFMr (μ, ν) = λ
(
T (I)

)

r
d1

(
μ ◦ T−1, ν ◦ T−1

)
,

with the homeomorphism T : x �→ xr of [1,+∞[. For instance, βb ◦ T−1 =
βrb, and hence best (or best uniform) dFMr -approximations of βb can easily be
identified using Corollary 4.3 (or 4.2).

4.2 dr -Approximations (1 < r < +∞)

Similarly to the case of r = 1, [30, Thm. 5.5] guarantees that, given any n ∈ N, there
exists a (unique) best uniform dr -approximation δ

un• of βb. Except for r = 2, however,
no explicit formula seems to be available for δ

un• . It is desirable, therefore, to at least
identify asymptotically best uniform dr -approximations, that is, a sequence (xn) with
xn ∈ Ξn for all n ∈ N such that
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lim
n→∞

dr
(
βb, δ

un
xn

)

dr
(
βb, δ

un•
) = 1.

Usage of [30, Thm. 5.15] accomplishes this and also yields the uniform dr -quantiza-
tion coefficient of βb. (Notice that, as r ↓ 1, the latter is consistent with Corollary
4.2.)

Proposition 4.4 Let b, r > 1. Then
(
δ
un
xn

)
, with xn, j = b(2 j−1)/(2n) for all n ∈ N and

j = 1, . . . , n, is a sequence of asymptotically best uniform dr -approximations of βb.
Moreover,

lim
n→∞ ndr (βb, δ

un• ) = (log b)1−1/r

2(b − 1)

(
br − 1

r(r + 1)

)1/r

.

The remainder of this section studies best dr -approximations of βb. In general, the
question of uniqueness of best dr -approximations is a difficult one, for which only
partial answers exist; see, e.g., [16, Sec.5]. Specifically, βb does not seem to satisfy
any known condition (such as, e.g., log-concavity) that would guarantee uniqueness.
However, uniqueness can be established via a direct calculation.

Theorem 4.5 Let b, r > 1 and n ∈ N. There exists a unique best dr -approximation
δ•,n• of βb, and #supp δ•,n• = n.

Proof Existence follows as in Theorem 3.9; alternatively, see [16, Sect. 4.1] or
[30, Prop. 5.22]. To avoid trivialities, henceforth assume n ≥ 2. If dr

(
βb, δ

p
x
) =

dr
(
βb, δ

•,n•
)
, then by [30, Thm. 5.23],

bP, j = x, j + x, j+1

2
∀ j = 1, . . . , n − 1,

but also

∫ logb x, j

P, j−1

(
x, j − by

)r−1 dy =
∫ P, j

logb x, j

(
by − x, j

)r−1 dy ∀ j = 1, . . . , n. (4.3)

Eliminating P and substituting z = by/x, j in (4.3) yields n equations for x,1, . . . , x,n ,
namely

∫ x,1

1
(z − 1)r−1 dz

zr
= 21−r g0

(
x,2

x,1

)
,

gr

(
x, j

x, j−1

)
= g0

(
x, j+1

x, j

)
, ∀ j = 2, . . . , n − 1 , (4.4)

gr

(
x,n

x,n−1

)
= g0

(
2b − x,n

x,n

)
,
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where the smooth, increasing function ga , with a ∈ R, is given by

ga(x) =
∫ x

1

(z − 1)r−1

za(z + 1)
dz , x ≥ 1.

Assume that x̃ ∈ Ξn also solves (4.4). If x̃,1 > x,1 then x̃, j+1/x̃, j > x, j+1/x, j

and hence x̃, j+1 > x, j+1 for all j = 0, . . . , n − 1, but by the last equation in (4.4)
also 2b/x̃,n > 2b/x,n , an obvious contradiction. Similarly, x̃,1 < x,1 leads to a
contradiction. Thus, x̃,1 = x,1, and consequently x̃ = x . (If n = 1 then (4.4) reduces
to

∫ x,1

1
(z − 1)r−1 dz

zr
= 21−r g0

(
2b − x,1

x,1

)
,

which also has a unique solution since, as x,1 increases from 1 to b, the left side
increases from 0, whereas the right side decreases to 0.) In summary, therefore, x ∈ Ξn

and p ∈ Πn are uniquely determined by dr
(
βb, δ

p
x
) = dr

(
βb, δ

•,n•
)
. ��

As in the case of best uniform dr -approximations of βb, no explicit formula is
available for δ•,n• , not even when r = 2. Still, it is possible to identify asymptotically
best dr -approximations, that is, a sequence

(
δ
pn
xn

)
with xn ∈ Ξn and pn ∈ Πn for all

n ∈ N such that

lim
n→∞

dr
(
βb, δ

pn
xn

)

dr
(
βb, δ

•,n•
) = 1.

In addition, the dr -quantization coefficient ofβb can be computed explicitly; for details
see [30, Prop. 5.26] and the references given there. Notice that, as r ↓ 1, the result is
consistent with Corollary 4.3.

Proposition 4.6 Let b, r > 1. Then
(
δ
pn
xn

)
, with

xn, j =
(
1 + j

n + 1

(
br/(r+1) − 1

))1+1/r

, Pn, j = 1

log b
log

xn, j + xn, j+1

2
,

for all n ∈ N and j = 1, . . . , n − 1, and xn,n =
(
1 + (br/(r+1) − 1) n

n+1

)1+1/r
, is a

sequence of asymptotically best dr -approximations of βb. Moreover,

lim
n→∞ ndr (βb, δ

•,n• ) = r + 1

2(b − 1)(log b)1/r

(
br/(r+1) − 1

r

)1+1/r

.

Example 5 For μ = Beta(2, 1), given any n ∈ N, a unique best uniform dr -
approximation exists for each r ≥ 1. The best uniform d1-approximations δ

un
x , where

x, j =
√

2 j−1
2n for j = 1, . . . , n, also constitute a sequence of asymptotically best
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uniform dr -approximations for 1 < r < 2, with

lim
n→∞ ndr (μ, δun• ) =

(
21−2r

(r + 1)(2 − r)

)1/r

, (4.5)

in analogy to Proposition 4.4. For r ≥ 2, however, this analogy breaks down, as

lim
n→∞

n√
log n

d2(μ, δun• ) = 1

4
√
3
,

and limn→∞ n1/2+1/r dr (μ, δ
un• ) is finite and positive whenever r > 2.

Since μ is log-concave, or by an argument similar to the one proving Theorem 4.5,
there exists a unique best dr -approximation of μ. While the authors do not know of an
explicit formula for δ•,n• , simple asymptotically best dr -approximations in the spirit
of Proposition 4.6 exist, and

lim
n→∞ ndr (μ, δ•,n• ) = 21/r−1 r + 1

(r + 2)1+1/r ∀r ≥ 1; (4.6)

see [30, Ex. 5.28]. Note that (4.6) is smaller than (4.5) for every 1 ≤ r < 2.

Example 6 For the inverse Cantor distribution, for every r ≥ 1 let αr = r−1 + (1 −
r−1) log 2/ log 3, and note that log 2/ log 3 < αr ≤ 1. With this, 3αr dr (μ, δ

u3n• ) =
dr (μ, δ

un• ) for all n ∈ N, and it is readily deduced that

22/r−43−3/r ≤ nαr dr (μ, δun• ) ≤ 21/r ∀n ∈ N.

Thus
(
nαr dr (μ, δ

un• )
)
is bounded below and above by positive constants. (The authors

suspect that this sequence is divergent for every r ≥ 1.)
Best dr -approximations also exist, and in a similar spirit it can be shown that(

nα̃r dr (μ, δ•,n• )
)
is bounded below and above by positive constants (and again, pre-

sumably, divergent), where α̃r = αr log 3/ log 2. Note that 1 < α̃r ≤ log 3/ log 2, and
hence

(
dr (μ, δ•,n• )

)
decays faster than (n−1) for every r ≥ 1.

5 Kolmogorov Approximations

This section discusses best finitely supported dK-approximations. Though ultimately
the results are true analogues of their counterparts in Sects. 3 and 4, the underlying
arguments are subtly different, which may be seen as a reflection of the fact that dK
metrizes a topology finer than the weak topology of P . (Recall, however, that dK does
metrize the weak topology on Pcts.)

Given μ ∈ P and n ∈ N, for every x ∈ Ξn, let

K•(x) = max

{
Fμ−(x,1),

1

2
maxn−1

j=1

(
Fμ−(x, j+1) − Fμ(x, j )

)
, 1 − Fμ(x,n)

}
.
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Note that K•(x) = dK(μ, δ
π(x)
x ) with Π(x), j = 1

2

(
Fμ(x, j ) + Fμ−(x, j+1)

)
for all

j = 1, . . . , n − 1. Existence and characterization of best dK-approximations with
prescribed locations are analogous to Theorem 3.5.

Theorem 5.1 Assume that μ ∈ P, and n ∈ N. For every x ∈ Ξn, there exists a best
dK-approximation of μ, given x .Moreover, dK

(
μ, δ

p
x
) = dK

(
μ, δ•

x

)
if and only if, for

every j = 0, . . . , n,

x, j < x, j+1 �⇒ Fμ−
(
x, j+1

) − K•(x) ≤ P, j ≤ Fμ

(
x, j

) + K•(x) (5.1)

and in this case dK
(
μ, δ•

x

) = K•(x).

Proof Given x ∈ Ξn and p ∈ Πn , let y ∈ Ξm and q ∈ Πm as in the proof of
Lemma 3.4. Then

dK
(
μ, δ

p
x
) = maxmi=0 sup

t∈[y,i ,y,i+1[
∣
∣Fμ(t) − Q,i

∣
∣

≥ max

{
Fμ−(y,1),

1

2
maxm−1

i=1

(
Fμ−(y,i+1) − Fμ(y,i )

)
, 1 − Fμ(y,m)

}

= max

{
Fμ−(x,1),

1

2
maxn−1

j=1

(
Fμ−(x, j+1) − Fμ(x, j )

)
, 1 − Fμ(x,n)

}

= K•(x).

This shows that δ
π(x)
x is a best dK-approximation, given x , and dK

(
μ, δ•

x

) = K•(x).
Moreover, dK

(
μ, δ

p
x
) = K•(x) if and only if

max
{∣∣Fμ−(y,i+1) − Q,i

∣∣ ,
∣∣Fμ(y,i ) − Q,i

∣∣} ≤ K•(x) ∀ i = 1, . . . ,m − 1,

that is,

Fμ−(y,i+1) − K•(x) ≤ Q,i ≤ Fμ(y,i ) + K•(x) ∀ i = 0, . . . ,m,

which in turn is equivalent to the validity (5.1) for every j . ��
To address the approximation problem with prescribed weights, an auxiliary func-

tion analogous to 
 f,I in Sect. 3 is useful. Specifically, given a non-decreasing function
f : R → R, let I ⊂ R be any bounded, non-empty interval, and define κ f,I : R → R

as

κ f,I (x) = max
{∣∣ f−(x) − inf I

∣∣,
∣∣ f+(x) − sup I

∣∣} .

A few basic properties of κ f,I are easily established.

Proposition 5.2 Let f : R → R be non-decreasing, and ∅ �= I ⊂ R a bounded
interval. Then, with s := f −1

( 1
2 (inf I + sup I )

)
, the function κ f,I is non-increasing

on ]−∞, s[, and non-decreasing on ]s,+∞[. Moreover, κ f,I attains a minimal value
whenever inf I ≤ 1

2

(
f−(s) + f+(s)

) ≤ sup I .

123



J Theor Probab (2019) 32:1525–1553 1545

It is worth noting that κ f,I may in general not attain its infimum, as the example of
f = 15Fμ, with μ = 1

15λ
∣∣[0,5] + 2

3δ5, and I = [6, 8] shows, for which s = 5, and
κ f,I (5−) = 3, κ f,I (5) = 7, κ f,I (5+) = 9; correspondingly, 1

2

(
f−(5) + f+(5)

)
/∈ I .

By using functions of the form κ f,I , the value of dK(μ, ν) can easily be bounded
above whenever ν has finite support. For convenience, for every n ∈ N let Ξ+

n ={
x ∈ Ξn : x,1 < . . . < x,n

}
. The proof of the following analogue of Lemma 3.4 is

straightforward.

Proposition 5.3 Let μ ∈ P and n ∈ N. For every x ∈ Ξn and p ∈ Πn,

dK
(
μ, δ

p
x
) ≤ maxnj=1 κFμ,[P, j−1,P, j ](x, j ), (5.2)

and equality holds in (5.2) whenever x ∈ Ξ+
n .

Consider for instanceμ = 1
6λ

∣∣[0,2] + 2
3δ1, and x = (1, 1). Then, for every p ∈ Π2,

clearly dK
(
μ, δ

p
x
) = 1

6 , whereas max2j=1 κFμ,[P, j−1,P, j ](x, j ) = 1
3 + ∣∣p,1 − 1

2

∣∣ ≥ 1
3 .

Thus the inequality (5.2) may be strict if x /∈ Ξ+
n . This, together with the fact that

a function κ f,I may not attain its infimum, suggests that dK-approximations with
prescribed weights are potentially somewhat fickle. Still, best approximations do exist
and can be characterized in a spirit similar to Sects. 3 and 4. To this end, given μ ∈ P
and n ∈ N, for every p ∈ Πn , let

K•(p) = dK
(
μ, δ

p
ξ(p)

)
with ξ(p), j = F−1

μ

(
1

2

(
P, j−1 + P, j

)) ∀ j = 1, . . . , n.

Note that K•(p) ≤ 1
2 maxnj=1 p, j , and in fact K•(p) = 1

2 maxnj=1 p, j whenever μ ∈
Pcts.

Theorem 5.4 Assume that μ ∈ P , and n ∈ N. For every p ∈ Πn, there exists a best
dK-approximation of μ, given p. Moreover, dK

(
μ, δ

p
x
) = dK

(
μ, δ

p•
)
if and only if,

for every j = 1, . . . , n,

P, j−1 < P, j �⇒ F−1
μ−

(
P, j − K•(p)

) ≤ x, j ≤ F−1
μ

(
P, j−1 + K•(p)

)
, (5.3)

and in this case dK
(
μ, δ

p•
) = K•(p).

Proof Note first that deleting all zero entries of p does not change the value of K•(p),
and hence does not affect (5.3), nor of course the asserted existence of a best dK-
approximation, given p. Thus assume minnj=1 p, j > 0 throughout. For convenience,
write ξ(p) simply as ξ , and for every x ∈ Ξn , write Fδ

p
x
as G. To prove the existence

of a best dK-approximation of μ, given p, as well as dK
(
μ, δ

p•
) = K•(p), clearly it

suffices to show that

dK
(
μ, δ

p
x
) ≥ dK

(
μ, δ

p
ξ

)
∀ x ∈ Ξn . (5.4)
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Similarly to the proof of Lemma 3.4, label ξ uniquely as

ξ,1 = · · · = ξ, j1 < ξ, j1+1 = · · · = ξ, j2 < ξ, j2+1 = · · ·
< · · · = ξ, jm−1 < ξ, jm−1+1 = · · · = ξ, jm ,

with integers i ≤ ji ≤ m for 1 ≤ i ≤ m, and j0 = 0, jm = n, and define η ∈ Ξm and
q ∈ Πm as η,i = ξ, ji and q,i = P, ji − P, ji−1 , respectively. With this, δ pξ = δ

q
η , and by

Proposition 5.3,

K•(p) = dK
(
μ, δqη

)
= maxmi=1 κFμ,[Q,i−1,Q,i ]

(
η,i

)
.

Pick i such that κFμ,[Q,i−1,Q,i ]
(
η,i

) = K•(p), that is,

max
{∣∣Fμ−

(
η,i

) − Q,i−1
∣∣ ,

∣∣Fμ

(
η,i

) − Q,i
∣∣} = K•(p).

Clearly, to establish (5.4) it is enough to show that

max
{∣∣Fμ−

(
η,i

) − G−
(
η,i

)∣∣ ,
∣∣Fμ

(
η,i

) − G
(
η,i

)∣∣} ≥ K•(p) (5.5)

and this will now be done. To this end, notice that by the definition of η,

1

2

(
P, ji−1−1 + P, ji−1

) ≤ Fμ−
(
η,i

) ≤ 1

2

(
P, ji−1 + P, ji−1+1

)
, (5.6)

but also
1

2

(
P, ji−1 + P, ji

) ≤ Fμ

(
η,i

) ≤ 1

2

(
P, ji + P, ji+1

)
, (5.7)

with the convention that P,−1 = 0 and P,n+1 = 1.
Assume first that K•(p) = ∣

∣Fμ−(η,i ) − Q,i−1
∣
∣. If η,i ≤ x, ji−1 then G−

(
η,i

) ≤
P, ji−1−1, and hence Fμ−(η,i ) − G−

(
η,i

) ≥ Fμ−
(
η,i

) − P, ji−1 , but also, by (5.6),

Fμ−
(
η,i

) − G−
(
η,i

) ≥ Fμ−
(
η,i

) − P, ji−1 − (
2Fμ−

(
η,i

) − P, ji−1−1 − P, ji−1

)

= P, ji−1 − Fμ−
(
η,i

)
,

and consequently

Fμ−
(
η,i

) − G−
(
η,i

) ≥ ∣∣Fμ−
(
η,i

) − P, ji−1

∣∣ = ∣∣Fμ−
(
η,i

) − Q,i−1
∣∣ = K•(p).

If x, ji−1 < η,i ≤ x, ji−1+1 then G−
(
η,i

) = P, ji−1 and hence

∣∣Fμ−
(
η,i

) − G−
(
η,i

)∣∣ = K•(p).
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Finally, if η,i > x, ji−1+1 thenG−
(
η,i

) ≥ P, ji−1+1, and henceG−
(
η,i

)−Fμ−
(
η,i

) ≥
P, ji−1 − Fμ−

(
η,i

)
, but also, again by (5.6),

G−
(
η,i

) − Fμ−
(
η,i

) ≥ P, ji−1+1 − Fμ−
(
η,i

) − (
P, ji−1 + P, ji−1+1 − 2Fμ−

(
η,i

))

= Fμ−
(
η,i

) − P, ji−1 ,

and therefore

G−
(
η,i

) − Fμ−
(
η,i

) ≥ ∣
∣Fμ−

(
η,i

) − P, ji−1

∣
∣ = K•(p).

Thus (5.5) holds whenever K•(p) = ∣∣Fμ−
(
η,i

) − Q,i−1
∣∣.

Next assume that K•(p) = ∣∣Fμ

(
η,i

) − Q,i
∣∣. Utilizing (5.7) instead of (5.6), com-

pletely analogous arguments show that
∣∣Fμ

(
η,i

) − G
(
η,i

)∣∣ ≥ K•(p) in this case as
well, which again implies (5.5). The latter therefore holds in either case. As seen ear-
lier, this proves the existence of a best dK-approximation of μ, given p, and also that
dK

(
μ, δ

p•
) = K•(p).

Finally, with y ∈ Ξ+
m and p ∈ Πm as in the proof of Lemma 3.4, observe that

dK
(
μ, δ

p
x
) = K•(p) if and only if maxmi=1 κFμ,[Q,i−1,Q,i ](y,i ) = K•(p), by Proposi-

tion 5.3. As seen in the proof of Theorem 5.1, this means that

Fμ−(y,i+1) − K•(p) ≤ Q,i ≤ Fμ(y,i ) + K•(p) ∀ i = 0, . . . ,m,

or equivalently,

F−1
μ−

(
Q,i − K•(p)

) ≤ y,i ≤ F−1
μ

(
Q,i−1 + K•(p)

) ∀ i = 1, . . . ,m,

which in turn is equivalent to the validity of (5.3) for every j . ��
Corollary 5.5 Assume μ ∈ Pcts, and n ∈ N. Then dK

(
μ, δ

un
x

) ≥ 1
2n

−1 for all
x ∈ Ξn, with equality holding if and only if

F−1
μ−

(
2 j − 1

2n

)
≤ x, j ≤ F−1

μ

(
2 j − 1

2n

)
∀ j = 1, . . . , n.

By combining Theorems 5.1 and 5.4, it is possible to characterize best dK-
approximations of μ ∈ P as well. For this, associate with every non-decreasing
function f : R → R and every number a ≥ 0 a map S f,a : R → R, given by

S f,a(x) = f+
(
f −1(x + a)

)
+ a ∀ x ∈ R.

This map is a true analogue of T f,a in Sect. 3, and in fact, Proposition 3.8, with T f,a

replaced by S f,a , remains fully valid. Identical reasoning then shows that

K•,n• := min
{
a ≥ 0 : S[n]

Fμ,a(0) ≥ 1
}

< +∞;
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again,
(
K•,n•

)
is non-increasing, nK•,n• ≤ 1

2 for every n, and K•,n• = 0 if and only if
#suppμ ≤ n. Notice that if μ ∈ Pcts then

SFμ,a(x) =
⎧
⎨

⎩

a if x < −a,

2a + x if − a ≤ x < 1 − a,

a + 1 if x ≥ 1 − a,

from which it is clear that K•,n• = 1
2n

−1.

Theorem 5.6 Let μ ∈ P and n ∈ N. There exists a best dK-approximation of μ, and
dK

(
μ, δ•,n•

) = K•,n• . Moreover, for every x ∈ Ξn and p ∈ Πn, the following are
equivalent:

(i) dK
(
μ, δ

p
x
) = dK

(
μ, δ•,n•

)
;

(ii) all implications in (5.1) are valid with K•(x) replaced by K•,n• ;
(iii) all implications in (5.3) are valid with K•(p) replaced by K•,n• .

Proof Note that once the existence of a best dK-approximation ofμ is established, the
proof is virtually identical to that of Theorem 3.9. Thus, only the existence is to be
proved here. To this end, let a = infx∈Ξn ,p∈Πn dK

(
μ, δ

p
x
)
, and pick sequences (xk)

and (pk) in Ξn and Πn , respectively, with the property that limk→∞ dK
(
μ, δ

pk
xk

) = a.
By the compactness of Ξn , assume w.o.l.g. that limk→∞ xk = η ∈ Ξn . Since a ≤
K•(xk) ≤ dK

(
μ, δ

pk
xk

)
, it suffices to show that K•(η) ≤ a. To see the latter, assume

that η, j < η, j+1 for any j = 1, . . . , n − 1. Then xk, j < xk, j+1 for all sufficiently
large k, and hence by Theorem 5.1, Fμ−(xk, j+1) − Fμ(xk, j ) ≤ 2K•(xk), which in
turn implies

Fμ−(η, j+1) − Fμ(η, j ) ≤ lim inf
k→∞

(
Fμ−(xk, j+1) − Fμ(xk, j )

) ≤ 2a.

Since, similarly, Fμ−
(
η,1

) ≤ a and 1 − Fμ

(
η,n

) ≤ a, it follows that K•(η) ≤ a, as
claimed. ��
Corollary 5.7 Assume μ ∈ Pcts, and n ∈ N. Then K•,n• = K•(un) = 1

2n
−1, and δ

p
x

with x ∈ Ξn, p ∈ Πn is a best dK-approximation ofμ if and only if it is a best uniform
dK-approximation of μ.

Remark 5 (i) By Theorem 5.6, K•,n• = minx∈Ξn K
•(x) = minp∈Πn K•(p).

(ii) If μ has even a single atom, then K•,n• may be smaller than K•(un), and thus a
best uniform dK-approximation may not be a best dK-approximation. A simple
example illustrating this is μ = 3

4δ0 + 1
4λ

∣
∣[0,1] , where K•,n• = 1

4 (2n − 1)−1

whereas K•(un) = 1
2 max{n, 2}−1, and hence K•,n• < K•(un) for every n ≥ 2.

For Benford’s law, the best dK-approximations are the same as the best uniform
d1-approximations; see also Fig. 1.

Corollary 5.8 Assume b > 1, and n ∈ N. Then δ
un
xn with xn,i = b(2 j−1)/(2n) for

all j = 1, . . . , n is the unique best (uniform) dK-approximation of βb. Moreover,
dK

(
βb, δ

•,n•
) = 1

2n
−1.
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Fig. 3 The quantization (Q∗) and uniform quantization (Q∗,u ) coefficients of βb for d∗; see also Fig. 4

Example 7 Forμ = Beta(2, 1), both Fμ and F−1
μ are continuous. By Corollaries 5.5

and 5.7, the best (or best uniform) dK-approximation of μ is δ
un
x , with x, j =

√
2 j−1
2n

for j = 1, . . . , n, and dK(μ, δ
un• ) = dK(μ, δ•,n• ) = 1

2n
−1. With Examples 1, 3, and 5,

therefore, the sequences
(
nd∗(μ, δ•,n• )

)
all converge to a finite, positive limit, and so

do
(
nd∗(μ, δ

un• )
)
, provided that r < 2 in case ∗ = r .

Example 8 Even though the inverseCantor distribution is discretewith infinitelymany
atoms, a best uniform dK-approximation exists, by Theorem 5.4. Utilizing (2.4), a
tedious but elementary analysis of Fμ reveals that (3.7) is valid with dK instead of
dL. With Examples 2 and 6, therefore,

(
nd∗(μ, δ

un• )
)
is bounded below and above by

positive constants for ∗ = L, 1,K, but tends to +∞ for ∗ = r > 1 (Fig. 2).
Very similarly, a best dK-approximation exists, by Theorem 5.6, and the estimates

(3.9) hold with dK instead of dL. Thus,
(
nlog 3/ log 2d∗(μ, δ•,n• )

)
is bounded below and

above by positive constants for ∗ = L, 1,K, but tends to +∞ for ∗ = r > 1.

6 Conclusion

As the title of this article suggests, and the introduction explains, the general results
have been motivated by a quantitative analysis of Benford’s law, and the precise state-
ments regarding the latter are but simple corollaries of the former. In particular, Sects. 3
to 5 show that the quantization coefficients Q∗ = limn→∞ nd∗(βb, δ

•,n• ) and their uni-
form counterparts Q∗,u = limn→∞ nd∗(βb, δ

un• ) all are finite and positive for each
metric d∗ considered. Clearly, Q∗ ≤ Q∗,u for all b > 1. Also, note that

(
nd∗(βb, δ

•,n• )
)

is non-increasing, possibly constant, whereas
(
nd∗(βb, δ

un• )
)
is non-decreasing.

Figure 3 summarizes the results obtained earlier.
The dependence of Q∗ and Q∗,u on b is illustrated in Fig. 4. On the one hand,

QL and QL,u tend to 1
2 as b ↓ 1, but also as b → +∞, both attaining their

respective minimal value for b = 2. On the other hand, Qr and Qr,u both tend to
1
2 (r + 1)−1/r as b ↓ 1, whereas limb→+∞(log b)1/r Qr = 1

2 (r + 1)r−(r+1)/r and
limb→+∞(log b)1/r−1Qr,u = 1

2r
−1/r (r + 1)−1/r . Finally, QK = QK,u = 1

2 for all b.
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Fig. 4 Comparing the
quantization coefficients Q∗
(solid curves) and uniform
quantization coefficients Q∗,u
(broken curves) of βb , for ∗ = L
(red), ∗ = 1, 2 (blue), and ∗ = K
(black), respectively; see also
Fig. 3 (Color figure online)

Remark 6 In the context of Benford’s law, I = [1, b], and since Sb < b always, it
may seem more natural to study the approximation problem not on all of P , but rather
on the (dense) subset P̃ := {

μ ∈ P : μ({b}) = 0
}
. Clearly, dL and dr both metrize

the weak topology on P̃ but are not complete. (By contrast, dK is complete but not
separable, and induces a finer topology.) Since P̃ is a Gδ-set in P , a classical theorem
[11, Thm. 2.5.4] yields, for instance,

d̃(μ, ν) =
∫ 1

0

∣∣Gμ − Gν

∣∣ +
∞∑

k=1

2−k
∣∣∣
∫ 1
1−k−1

(
Gμ − Gν

)∣∣∣
∫ 1
1−k−1 Gμ

∫ 1
1−k−1 Gν +

∣∣∣
∫ 1
1−k−1

(
Gμ − Gν

)∣∣∣
,

with Gμ = b − F−1
μ , Gν = b − F−1

ν , as an equivalent complete, separable metric
on P̃ . However, d̃ appears to be quite unwieldy, and the authors do not know of an
equivalent complete metric on P̃ for which explicit results similar to those in Sects. 3
and 4 could be established.

Also, it is readily confirmed that, given any μ ∈ P̃ , there exists a best (or best
uniform) d∗-approximation δ•,n• ∈ P̃ (or δun• ∈ P̃), i.e., these approximation problems
always have a solution in

(P̃, d∗
)
, notwithstanding the fact that the latter space is not

complete (if ∗ = L, r ) or not separable (if ∗ = K).

For Benford’s law, as seen above, all best (or best uniform) approximations con-
sidered converge at the same rate, namely (n−1); the same is true for the Beta(2, 1)
distribution whenever 1 ≤ r < 2. These are not coincidences. Rather, for many other
probability metrics n−1 turns out to yield the correct order of magnitude of the n-th
quantization error as well. Specifically, consider a metric d on P for which

a1‖Fs1
μ − Fs1

ν ‖1 ≤ d(μ, ν)

≤ a2
(
ε‖Fs2

μ − Fs2
ν ‖∞

+ (1 − ε)‖F−1
μ − F−1

ν ‖∞
)

∀μ, ν ∈ P, (6.1)
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with positive constants a1, a2, s1, s2, and ε ∈ {0, 1}; see, e.g., [8,26,27] for examples
and properties of suchmetrics. Note that validity of (6.1) causes d tometrize a topology
at least as fine as the weak topology, and clearly (6.1) holds for any d = d∗. The latter
fact, together with [16, Thm. 6.2] yields a simple observation regarding the prevalence
of the rate (n−1).

Proposition 6.1 Let d be a metric on P satisfying (6.1). Then, for every μ ∈ P ,

lim sup
n→∞

n inf x∈Ξn ,p∈Πn d
(
μ, δ

p
x
)

< +∞,

and if μ is non-singular (w.r.t. λ) then also

lim inf
n→∞ n inf x∈Ξn ,p∈Πn d

(
μ, δ

p
x
)

> 0.

Remark 7 (i) Apart from d∗, examples of familiar probability metrics that satisfy
(6.1) include the discrepancy distance supI⊂R |μ(I ) − ν(I )| and the Lr -distance
‖Fμ − Fν‖r between distribution functions [26]. For the important Prokhorov
distance, validity of the right-hand inequality in (6.1) appears to be unknown [15],
but best approximations are suspected to converge at the rate

(
n−1

)
regardless [17,

Sec.4]. Also, (n−1) is established in [9] as the universal rate of convergence for
best approximations under Orlicz norms, which contains dr as a special case.

(ii) In [27, Sec.4.2], for any a ≥ 0, the a-Lévy distance

dLa (μ, ν) = inf
{
y ≥ 0 : Fμ(· − ay) − y ≤ Fν ≤ Fμ(· + ay) + y

}

is considered. Every dLa satisfies (6.1), and dL0 = dK, dL1 = ω−1dL. Usage of
a-Lévy distances may enable a unified treatment of the results in Sects. 3 and 5.

(iii) Under additional assumptions onμ, the value ofn inf x∈Ξn d(μ, δ
un
x ) can similarly

be bounded above and below by positive constants [30, Thm. 5.15].

Finally, it is worth pointing out that, though motivated here by Benford’s law,
compactness of the interval I was assumed largely for convenience, and can easily
be dispensed with for many of the general results in this article. For instance, if I

is (closed but) unbounded then (2.2), with ω = 1, still yields dL as a complete,
separable metric inducing the weak topology on P , though the latter no longer is
compact. Clearly, Theorem 3.5 is valid in this situation, as (3.1) holds for f = Fμ

and any interval I ⊂ R. Even though (3.1) may fail for f = F−1
μ when suppμ is

unbounded, it is readily checked that nevertheless the conclusions of Proposition 3.3
remain intact for 
F−1

μ ,I , provided that I ⊂ [0, 1] but I �= {0} and I �= {1}. With


∗
F−1

μ ,{0} := 
∗
F−1

μ ,{1} := 0, then, Proposition 3.6 holds verbatim, and so does Theorem

3.9. Analogously, Theorems 5.1, 5.4, and 5.6 all can be seen to be correct, with the
definition of K•(p) understood to assume that p,1 p,n > 0. By contrast, the classical
L1-Kantorovich distance d1(μ, ν) = ‖F−1

μ − F−1
ν ‖1 is defined only on the (dense)

subset P1 = {
μ ∈ P : ∫

I
|x | dμ(x) < +∞}

where it metrizes a topology finer than
the weak topology. Still, with P replaced by P1, Proposition 4.1 also remains intact;
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see, e.g., [30, Sec.5]. Note that the sequence
(
nd∗(μ, δ

un• )
)
is bounded when ∗ = L,K

because dL ≤ dK, whereas
(
nd1(μ, δ•,n• )

)
may decay arbitrarily slowly; see [30, Thm.

5.32]. For a simple application of these results to a probabilitymeasurewith unbounded
support, letμ be the standard exponential distribution, i.e., Fμ(x) = max{0, 1−e−x }.
Calculations quite similar to the ones shown earlier for Benford’s law yield

lim
n→∞ ndL

(
μ, δ•,n•

) = log 2

2
, lim

n→∞ ndL
(
μ, δun•

) = 1

2
,

whereas

lim
n→∞ nd1

(
μ, δ•,n•

) = 1 but lim
n→∞

n

log n
d1(μ, δun• ) = 1

4
,

and clearly ndK(μ, δ•,n• ) = ndK(μ, δ
un• ) = 1

2 for all n. Even though μ has finite
moments of all orders, there exist probability metrics d for which

(
nd(μ, δ•,n• )

)
is

unbounded; see [17, Ex. 5.1(d)].
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