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Abstract In this paper, we consider a large class of subordinate random walks X on
the integer lattice Zd via subordinators with Laplace exponents which are complete
Bernstein functions satisfying some mild scaling conditions at zero. We establish esti-
mates for one-step transition probabilities, the Green function and the Green function
of a ball, and prove the Harnack inequality for nonnegative harmonic functions.
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1 Introduction

Let (Yk)k�1 be a sequence of independent, identically distributed random variables
defined on a probability space (�,F ,P), taking values in the integer lattice Zd , with
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distribution P(Yk = ei ) = P(Yk = −ei ) = 1/2d, i = 1, 2, . . . , d, where ei is the
i-th vector of the standard basis for Rd . A simple symmetric random walk in Z

d

(d � 1) starting at x ∈ Z
d is a stochastic process Z = (Zn)n�0, with Z0 = x and

Zn = x + Y1 + · · · + Yn .
Let Z = (Zn)n�0 be a simple symmetric random walk in Zd starting at the origin.

Further, let

φ(λ) :=
∫

(0,∞)

(
1 − e−λt)μ(dt)

be a Bernstein function satisfying φ(1) = 1. Here μ is a measure on (0,∞) satisfying∫
(0,∞)

(1 ∧ t)μ(dt) < ∞ called the Lévy measure. For m ∈ N denote

cφ
m :=

∫
(0,∞)

tm

m!e
−tμ(dt) (1.1)

and notice that

∞∑
m=1

cφ
m =

∫
(0,∞)

(et − 1)e−tμ(dt) =
∫

(0,∞)

(1 − e−t )μ(dt) = φ(1) = 1.

Hence, we can define a random variable R with P(R = m) = cφ
m , m ∈ N. Now we

define the random walk T = (Tn)n�0 on Z+ by Tn := ∑n
k=1 Rk , where (Rk)k�1

is a sequence of independent, identically distributed random variables with the same
distribution as R and independent of the process Z . Subordinate random walk is a
stochastic process X = (Xn)n�0 which is defined by Xn := ZTn , n � 0. It is
straightforward to see that the subordinate random walk is indeed a random walk.
Hence, there exists a sequence of independent, identically distributed randomvariables
(ξk)k�1 with the same distribution as X1 such that

Xn
d=

n∑
k=1

ξk, n � 0. (1.2)

We can easily find the explicit expression for the distribution of the random variable
X1:

P(X1 = x) = P(ZT1 = x) = P(ZR1 = x) =
∞∑

m=1

P(ZR1 = x | R1 = m)cφ
m

=
∞∑

m=1

∫
(0,∞)

tm

m!e
−tμ(dt)P(Zm = x), x ∈ Z

d . (1.3)

We denote the transition matrix of the subordinate random walk X with P , i.e., P =
(p(x, y) : x, y ∈ Z

d), where p(x, y) = P(x + X1 = y).
Wewill impose some additional constraints on the Laplace exponent φ. First, φ will

be a complete Bernstein function [13, Definition 6.1.] and it will satisfy the following
lower scaling condition: there exist 0 < γ1 < 1 and a1 > 0 such that
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φ(R)

φ(r)
� a1

(
R

r

)γ1

, ∀ 0 < r � R � 1. (1.4)

Additionally, φ will satisfy upper scaling condition of the following shape: there
exist γ1 � γ2 < 1 and a2 > 0 such that

φ(R)

φ(r)
� a2

(
R

r

)γ2

, ∀ 0 < r � R � 1. (1.5)

However, it is well known that, if φ is a Bernstein function, then φ(λt) � λφ(t)
for all λ � 1, t > 0, implying φ(v)/v � φ(u)/u, 0 < u � v. Using these two facts,
proof of the next lemma is straightforward.

Lemma 1.1 If φ is a Bernstein function, then for all λ, t > 0, 1∧ λ � φ(λt)/φ(t) �
1 ∨ λ.

Using Lemma 1.1 we get

φ(R)

φ(r)
� R

r
, ∀ 0 < r � R � 1,

and this looks like upper scaling condition with a2 = γ2 = 1. We will need (1.5) in
dimensions d � 2, but in dimensions d � 3 Lemma 1.1 will sometimes suffice so we
won’t need to additionally assume (1.5).

The main result of this paper is a scale-invariant Harnack inequality for subordinate
random walks. The proof will be given in the last section. Before we state the result,
we define the notion of harmonic function with respect to subordinate random walk
X .

Definition 1.2 We say that a function f : Zd → [0,∞) is harmonic in B ⊂ Z
d , with

respect to X , if

f (x) = P f (x) =
∑
y∈Zd

p(x, y) f (y), ∀ x ∈ B.

This definition is equivalent to the mean-value property in terms of the exit from
a finite subset of Zd : If B ⊂ Z

d is finite then f : Z
d → [0,∞) is harmonic in

B, with respect to X , if and only if f (x) = Ex [ f (XτB )] for every x ∈ B, where
τB := inf{n � 1 : Xn /∈ B}.

For x ∈ Z
d and r > 0 we define B(x, r) := {y ∈ Z

d : |y − x | < r}. We use
shorthand notation Br for B(0, r).

Theorem 1.3 (Harnack inequality) Let X = (Xn)n�0 be a subordinate random walk
inZd , d � 1, with φ a complete Bernstein function satisfying (1.4) and (1.5). For each
a < 1, there exists a constant ca < ∞ such that if f : Zd → [0,∞) is harmonic on
B(x, n), with respect to X, for x ∈ Z

d and n ∈ N, then

f (x1) � ca f (x2), ∀ x1, x2 ∈ B(x, an).
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Notice that the constant ca is uniform for all n ∈ N. That is why we call this result
scale-invariant Harnack inequality.

Some authors have already dealt with this problem and Harnack inequality was
proved for symmetric simple random walk in Z

d [9, Theorem 1.7.2] and random
walks with steps of infinite range, but with some assumptions on the Green function
and some restrictions such as finite second moment of the step [2,10].

Notion of discrete subordinationwas developed in [6] and it was discussed in details
in [4], but under different assumptions on φ than the ones we have. Using discrete
subordination, we can obtain random walks with steps of infinite second moment
(see Remark 3.3). Harnack inequality for specific random walks with steps of infinite
second moment was proved in [3] and the random walk considered there can also be
obtained using discrete subordination.

In Sect. 2 we state an important result about gamma function that we use later, we
discuss under which conditions subordinate randomwalk is transient andwe introduce
functions g and j and examine their properties. The estimates of one-step transition
probabilities of subordinate random walk are given in Sect. 3. In Sect. 4 we derive
estimates for the Green function. This is very valuable result which gives the answer
to the question related to the one posed in [5, Remark 1]. Using estimates developed
in Sect. 3 and 4 and following [11, Sect. 4], in Sect. 5 we find estimates for the Green
function of a ball. In Sect. 6 we introduce Poisson kernel and proveHarnack inequality.

Throughout this paper,d � 1 and the constantsa1, a2,γ1, γ2 andCi , i = 1, 2, . . . , 9
will be fixed. We use c1, c2, . . . to denote generic constants, whose exact values are
not important and can change from one appearance to another. The labeling of the
constants c1, c2, . . . starts anew in the statement of each result. The dependence of the
constant c on the dimension d will not be mentioned explicitly. We will use “:=” to
denote a definition, which is read as “is defined to be”. We will use dx to denote the
Lebesgue measure inRd . We denote the Euclidean distance between x and y inRd by
|x− y|. For a, b ∈ R, a∧b := min{a, b} and a∨b := max{a, b}. For any two positive
functions f and g, we use the notation f 
 g, which is read as “ f is comparable to
g”, to denote that there exist some constants c1, c2 > 0 such that c1 f � g � c2 f
on their common domain of definition. We also use notation f ∼ g to denote that
limx→∞ f (x)/g(x) = 1.

2 Preliminaries

In this section, we first state an important result about the ratio of gamma functions
that is needed later. Secondly, we discuss under which conditions subordinate random
walk is transient. At the end of this section, we define functions g and j that we use
later and we prove some of their properties.
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2.1 Ratio of Gamma Functions

Lemma 2.1 Let �(x, a) = ∫∞
a t x−1e−t dt . Then

lim
x→∞

�(x + 1, x)

�(x + 1)
= 1

2
. (2.1)

Proof Using a well-known Stirling’s formula

�(x + 1) ∼ √
2πx xxe−x , x → ∞ (2.2)

and [1, Formula 6.5.35] that states

�(x + 1, x) ∼
√
2−1πx xxe−x , x → ∞

we get

lim
x→∞

�(x + 1, x)

�(x + 1)
= lim

x→∞

√
2−1πx xxe−x

√
2πx xxe−x

= 1

2
.

�

2.2 Transience of Subordinate Random Walks

Our considerations only make sense if the random walk that we defined is transient.
In the case of a recurrent random walk, the Green function takes value +∞ for every
argument x . We will use Chung–Fuchs theorem to show under which condition sub-
ordinate random walk is transient. Denote with ϕX1 the characteristic function of one
step of a subordinate random walk. We want to prove that there exists δ > 0 such that

∫
(−δ,δ)d

Re

(
1

1 − ϕX1(θ)

)
dθ < +∞.

The law of variable X1 is given with (1.3).We denote one step of the simple symmetric
random walk (Zn)n�0 with Y1 and the characteristic function of that random variable
with ϕ. Assuming |θ | < 1 we have

ϕX1(θ) = E

[
eiθ ·X1

]
=
∑
x∈Zd

eiθ ·x
∞∑

m=1

∫
(0,+∞)

tm

m!e
−tμ(dt)P(Zm = x)

=
∞∑

m=1

∫
(0,+∞)

tm

m!e
−tμ(dt)

∑
x∈Zd

eiθ ·x
P(Zm = x)

=
∞∑

m=1

∫
(0,+∞)

tm

m!e
−tμ(dt)(ϕ(θ))m
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=
∫

(0,+∞)

(
etϕ(θ) − 1

)
e−tμ(dt)

= φ(1) − φ(1 − ϕ(θ)) = 1 − φ(1 − ϕ(θ)).

From [9, Sect. 1.2, page 13] we have

ϕ(θ) = 1

d

d∑
m=1

cos(θm), θ = (θ1, θ2, . . . , θm).

That is function with real values so

∫
(−δ,δ)d

Re

(
1

1 − ϕX1(θ)

)
dθ =

∫
(−δ,δ)d

1

φ(1 − ϕ(θ))
dθ.

From Taylor’s theorem it follows that there exists a � 1 such that

|ϕ(θ)| = ϕ(θ) � 1 − 1

4d
|θ |2, θ ∈ B(0, a). (2.3)

Now we take δ such that (−δ, δ)d ⊂ B(0, a). From (2.3), using the fact that φ is
increasing, we get

1

φ (1 − ϕ(θ))
� 1

φ
(|θ |2/4d) , θ ∈ B(0, a).

Hence,

∫
(−δ,δ)d

1

φ(1 − ϕ(θ))
dθ �

∫
(−δ,δ)d

1

φ
(|θ |2/4d)dθ �

∫
B(0,a)

φ(|θ |2)
φ
(|θ |2/4d)

1

φ(|θ |2)dθ

� a2(4d)γ2
∫
B(0,a)

1

φ(|θ |2)dθ = c1(4d)γ2
∫ a

0

rd−1

φ(r2)
dr

= c1(4d)γ2

φ(a)

∫ a

0
rd−1 φ(a)

φ(r2)
dr

� c1a2(4ad)γ2

φ(a)

∫ a

0
rd−2γ2−1dr

and the last integral converges for d − 2γ2 − 1 > −1. So, subordinate random walk
is transient for γ2 < d/2. Notice that in the case when d � 3 we have γ2 < d/2
even when γ2 = 1. That is the reason why we sometimes do not need (1.5) in proving
results in dimensions higher than or equal to 3. We will always state whether we need
(1.5) for all dimensions or only for dimensions d � 2.
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2.3 Properties of Functions g and j

Let g : (0,+∞) → (0,+∞) be defined by

g(r) = 1

rdφ(r−2)
(2.4)

and let j : (0,+∞) → (0,+∞) be defined by

j (r) = r−dφ(r−2). (2.5)

We use these functions in numerous places in our paper. In this section, we present
some of their properties that we need later.

Lemma 2.2 Assume (1.5), if d � 2, and let 1 � r � q. Then g(r) � a−1
2 g(q).

Proof Using (1.5) and the fact that d > 2γ2 we have

g(r) = 1
rd

qd
qdφ(q−2)

φ(r−2)

φ(q−2)

� 1

a2

(q
r

)d−2γ2
g(q) � 1

a2
g(q).

�
We prove similar assertion for the function j .

Lemma 2.3 Assume (1.4) and let 1 � r � q. Then j (r) � a1 j (q).

Proof Using (1.4) we have

j (r) = r−d

q−d
q−dφ(q−2)

φ(r−2)

φ(q−2)
� a1

(q
r

)d+2γ1
j (q) � a1 j (q).

�
Using (1.4), (1.5) and Lemma 1.1, we can easily prove a lot of different results

about functions g and j . We will state only those results that we need in the remaining
part of our paper. For the first lemma, we do not need any additional assumptions on
the function φ. For the second one we need (1.4) and for the third one we need (1.5).

Lemma 2.4 Let r � 1. If 0 < a � 1 then

j (ar) � a−d−2 j (r), (2.6)

g(ar) � a−d+2g(r). (2.7)

If a � 1 then
j (ar) � a−d−2 j (r). (2.8)
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Lemma 2.5 Assume (1.4) and let 0 < a � 1 and r � 1 such that ar � 1. Then

g(ar) � g(r)

a1ad−2γ1
. (2.9)

Lemma 2.6 Assume (1.5) and let r � 1. If 0 < a � 1 such that ar � 1 then

g(ar) � g(r)

a2ad−2γ2
. (2.10)

If a � 1 then

g(ar) � a2
ad−2γ2

g(r). (2.11)

3 Transition Probability Estimates

In this section, we will investigate the behavior of the expression P(X1 = z). We will
prove that P(X1 = z) 
 j (|z|), z �= 0. First we have to examine the behavior of the
expression cφ

m .

Lemma 3.1 Assume (1.4) and (1.5) and let cφ
m be as in (1.1). Then

cφ
m 
 φ(m−1)

m
, m ∈ N. (3.1)

Proof Since φ is a complete Bernstein function, there exists completely monotone
density μ(t) such that

cφ
m =

∫ ∞

0

tm

m!e
−tμ(t)dt, m ∈ N.

From [8, Proposition 2.5] we have

μ(t) � (1 − 2e−1)−1t−1φ(t−1) = c1t
−1φ(t−1), t > 0 (3.2)

and
μ(t) � c2t

−1φ(t−1), t � 1. (3.3)

Inequality (3.3) holds if (1.4) and (1.5) are satisfied and for inequality (3.2) we do not
need any scaling conditions. Using monotonicity of μ, (2.1) and (3.3) we have

cφ
m � μ(m)

m!
∫ m

0
tme−tdt = μ(m)

(
1 − �(m + 1,m)

�(m + 1)

)
� 1

4
μ(m) � c2

4

φ(m−1)

m

for m large enough. On the other side, using inequality (3.2), monotonicity of μ and
Lemma 1.1, we get
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cφ
m � 1

m!
∫ m

0
tme−t c1

φ(t−1)

t
dt + μ(m)

m!
∫ ∞

m
tme−tdt

� c1
m!φ(m−1)

∫ m

0
tm−1e−t φ(t−1)

φ(m−1)
dt + μ(m)

m!
∫ ∞

0
tme−tdt

� c1φ(m−1)
1

�(m)

∫ ∞

0
tm−2e−tdt + μ(m) = c1φ(m−1)

�(m − 1)

�(m)
+ μ(m)

� c3
φ(m−1)

m
+ c1

φ(m−1)

m
= c4

φ(m−1)

m
.

Hence, we have
c2
4

φ(m−1)

m
� cφ

m � c4
φ(m−1)

m
for m large enough, but we can change constants and get (3.1). �

We are now ready to examine the expression P(X1 = z).

Proposition 3.2 Assume (1.4) and (1.5). Then

P(X1 = z) 
 |z|−dφ(|z|−2), z �= 0.

Proof Using (1.3) and the fact that P(Zm = z) = 0 for |z| > m, we have

P(X1 = z) =
∑
m�|z|

cφ
mP(Zm = z).

To get the upper bound for the expression P(X1 = z) we will use [7, Theorem 2.1]
which states that there are constants C ′ > 0 and C > 0 such that

P(Zm = z) � C ′m− d
2 e− |z|2

Cm , ∀ z ∈ Z
d , ∀m ∈ N. (3.4)

Together with (3.1) this result yields

P(X1 = z) �
∑
m�|z|

c1
φ(m−1)

m
C ′m− d

2 e− |z|2
Cm � c2

∫ ∞

|z|
φ(t−1)t−

d
2 −1e− |z|2

Ct dt

= c2

∫ |z|
C

0
φ(Cs|z|−2)

( |z|2
Cs

)− d
2 −1

e−s |z|2
Cs2

ds

= c3|z|−d

(∫ 1
C

0
φ(Cs|z|−2)s

d
2 −1e−sds +

∫ |z|
C

1
C

φ(Cs|z|−2)s
d
2 −1e−sds

)

=: c3|z|−d(I1(z) + I2(z)).

Let us first examine I1(z). Using (1.4), we get

I1(z) = φ(|z|−2)

∫ 1
C

0

φ(Cs|z|−2)

φ(|z|−2)
s
d
2 −1e−sds � c4φ(|z|−2).
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Using Lemma 1.1 instead of (1.4) and replacing the upper limit in the integral by ∞,
we get I2(z) � c5φ(|z|−2). Hence, P(X1 = z) � c6|z|−dφ(|z|−2).

In finding the matching lower bound for P(X1 = z), periodicity of a simple random
walk plays very important role. We write n ↔ x if n and x have the same parity, i.e.,
if n + x1 + x2 + · · · + xd is even. Directly from [9, Proposition 1.2.5], we get

P(Zm = z) � c7m
− d

2 e− d|z|2
2m (3.5)

for 0 ↔ z ↔ m and |z| � mα , α < 2/3. In the case when 1 ↔ z ↔ m we have

P(Zm = z) = 1

2d

d∑
i=1

[P(Zm−1 = z + ei ) + P(Zm−1 = z − ei )]. (3.6)

By combining (3.5) and (3.6), we can easily get

P(Zm = z) � c8m
− d

2 e− |z|2
cm , |z| � m

1
2 , 1 ↔ z ↔ m. (3.7)

We will find lower bound for P(X1 = z) when z ↔ 0 by using (3.5), the proof when
z ↔ 1 being analogous using (3.7). If z ↔ 0 then P(Zm = z) = 0 for m = 2l − 1,
l ∈ N. Hence,

P(X1 = z) �
∑

m�|z|2,m=2l

c9
φ(m−1)

m
m− d

2 e− −d|z|2
2m

= c9
∑

l�|z|2/2

φ((2l)−1)

2l
(2l)−

d
2 e− d|z|2

4l

� c10

∫ ∞

|z|2/2
φ((2t)−1)

2t
(2t)−

d
2 e− d|z|2

4t dt

= c10
2

∫ ∞

|z|2
φ(t−1)t−

d
2 −1e− d|z|2

2t dt

= c10
2

∫ d
2

0
φ

(
2s

d|z|2
)(

d|z|2
2s

)− d
2 −1

e−s d|z|2
2s2

ds

= c11|z|−dφ(|z|−2)

∫ d
2

0

φ
( 2s
d |z|−2

)
φ(|z|−2)

s
d
2 −1e−sds

� c11|z|−dφ(|z|−2)

∫ d
2

0

2

d
s
d
2 e−sds = c12|z|−dφ(|z|−2),

where in the last line we used Lemma 1.1. �
Remark 3.3 It follows immediately form Proposition 3.2 that the second moment of
the step X1 is infinite.
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4 Green Function Estimates

The Green function of X is defined by G(x, y) = G(y − x), where

G(y) = E

[ ∞∑
n=0

1{Xn=y}

]
.

We can rewrite that in the following way

G(y) =
∞∑
n=0

P(Xn = y) =
∞∑
n=0

P(ZTn = y) =
∞∑
n=0

∞∑
m=0

P(Zm = y)P(Tn = m)

=
∞∑

m=0

∞∑
n=0

P(Tn = m)P(Zm = y) =
∞∑

m=0

c(m)P(Zm = y) (4.1)

where

c(m) =
∞∑
n=0

P(Tn = m), (4.2)

and Tn is as before. Nowwewill investigate the behavior of the sequence c(m). Instead
of assuming that φ is a complete Bernstein function, we will assume that φ is only a
special Bernstein function. Using that assumption, we have

1

φ(λ)
=
∫

(0,∞)

e−λt u(t)dt (4.3)

for some non-increasing function u : (0,∞) → (0,∞) satisfying
∫ 1
0 u(t)dt < ∞,

see [13, Theorem 11.3.].

Lemma 4.1 Let c(m) be as in (4.2). Then

c(m) = 1

m!
∫

(0,∞)

tme−t u(t)dt, m ∈ N0. (4.4)

Proof We follow the proof of [4, Theorem 2.3]. Define M(x) =∑m�x c(m), x ∈ R.
The Laplace transformation L(M) of the measure generated by M is equal to

L(M)(λ) =
∫

[0,∞)

e−λxdM(x) =
∞∑

m=0

c(m)e−λm =
∞∑

m=0

e−λm
∞∑
n=0

P(Tn = m)

=
∞∑
n=0

∞∑
m=0

e−λm
P(Tn = m)

=
∞∑
n=0

E[e−λTn ] =
∞∑
n=0

(
E[e−λR1 ]

)n = 1

1 − E[e−λR1 ] . (4.5)
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Now we calculate E[e−λR1 ]:

E[e−λR1 ] =
∞∑

m=1

e−λm
∫

(0,∞)

tm

m!e
−tμ(dt)

=
∫

(0,∞)

(
ete

−λ − 1
)
e−tμ(dt) = 1 − φ(1 − e−λ),

where we used φ(1) = 1 in the last equality. Hence, L(M)(λ) = 1/φ(1 − e−λ). On
the other hand

∞∑
m=0

1

m!
∫

(0,∞)

tme−t u(t)dt e−λm =
∫

(0,∞)

e−t
∞∑

m=0

(te−λ)m

m! u(t)dt

=
∫

(0,∞)

e−t (1−e−λ)u(t)dt = 1

φ(1 − e−λ)
. (4.6)

Since L(M)(λ) = 1/φ(1 − e−λ), from calculations (4.5) and (4.6) we have

∞∑
m=0

c(m)e−λm =
∞∑

m=0

1

m!
∫

(0,∞)

tme−t u(t)dt e−λm .

The statement of this lemma follows by the uniqueness of the Laplace transformation.
�

Lemma 4.2 Assume (1.4). Then

c(m) 
 1

mφ(m−1)
, m ∈ N.

Proof Let u be as in Lemma 4.1. From [8, Corollary 2.4.] we have

u(t) � (1 − e−1)−1t−1φ(t−1)−1 = c1t
−1φ(t−1)−1, t > 0. (4.7)

and
u(t) � c2t

−1φ(t−1)−1, t � 1. (4.8)

Inequality (4.8) holds if (1.4) is satisfied and for inequality (4.7) we do not need any
scaling conditions. Using monotonicity of u, (2.1) and (4.8), we get

c(m) � u(m)
1

m!
∫ m

0
tme−tdt

= u(m)

(
1 − �(m + 1,m)

�(m + 1)

)
� 1

4
u(m) � c3

mφ(m−1)
,
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for m large enough. Now we will find the upper bound for c(m).

c(m) � c1
m!
∫ m

0
tme−t 1

tφ(t−1)
dt + u(m)

m!
∫ ∞

0
tme−tdt

� c1
m!φ(m−1)

∫ m

0
tm−1e−tdt + u(m) � c4

mφ(m−1)

since φ is an increasing function. Hence,

c3
mφ(m−1)

� c(m) � c4
mφ(m−1)

for m large enough. We can now change constants in such a way that the statement of
this lemma is true for every m ∈ N. �
Theorem 4.3 Assume (1.4) and, if d � 2, assume additionally (1.5). Then

G(x) 
 1

|x |dφ(|x |−2)
, |x | � 1. (4.9)

Proof We assume |x | � 1 throughout the whole proof. In (4.1) we showed that
G(x) = ∑∞

m=1 c(m)p(m, x), where p(m, x) = P(Zm = x). Let q(m, x) =
2 (d/(2πm))

d
2 e− d|x |2

2m and E(m, x) = p(m, x) − q(m, x). By [9, Theorem 1.2.1]

|E(m, x)| � c1m
− d

2 /|x |2. (4.10)

Since p(m, x) = 0 for m < |x |, we have

G(x) =
∑

m>|x |2
c(m)p(m, x) +

∑
|x |�m�|x |2

c(m)p(m, x) =: J1(x) + J2(x).

First we estimate

J1(x) =
∑

m>|x |2
c(m)q(m, x) +

∑
m>|x |2

c(m)E(m, x) =: J11(x) + J12(x).

By Lemma 4.2, (4.10) and (1.5)

|J12(x)| � c2
∑

m>|x |2

1

mφ(m−1)

m− d
2

|x |2 = c2
|x |2φ(|x |−2)

∑
m>|x |2

φ(|x |−2)

φ(m−1)
m− d

2 −1

� c3|x |−2γ2

|x |2φ(|x |−2)

∫ ∞

|x |2
tγ2−

d
2 −1dt = c4

|x |2
1

|x |dφ(|x |−2)
.

Now we have
lim|x |→∞ |x |dφ(|x |−2)|J12(x)| = 0.
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By Lemma 4.2, (1.4) and (1.5)

J11(x) 

∫ ∞

|x |2
1

tφ(t−1)
t−

d
2 e− d|x |2

2t dt = 1

φ(|x |−2)

∫ ∞

|x |2
φ(|x |−2)

φ(t−1)
t−

d
2 −1e− d|x |2

2t dt


 |x |−2γi

φ(|x |−2)

∫ ∞

|x |2
tγi−

d
2 −1e− d|x |2

2t dt

= 1

|x |dφ(|x |−2)

∫ d
2

0
s
d
2 −γi−1e−sds 
 1

|x |dφ(|x |−2)
,

where the last integral converges because of the condition γ2 < d/2. We estimate
J2(x) using (3.4) and (1.4):

J2(x) � c5

∫ |x |2

|x |
t− d

2 −1

φ(t−1)
e− |x |2

Ct dt = c5
φ(|x |−2)

∫ |x |2

|x |
φ(|x |−2)

φ(t−1)
t−

d
2 −1e− |x |2

Ct dt

� c5|x |−2γ1

a1φ(|x |−2)

∫ |x |2

|x |
tγ1−

d
2 −1e− |x |2

Ct dt

= c5|x |−2γ1

a1φ(|x |−2)

∫ |x |
C

1
C

( |x |2
Cs

)γ1− d
2 −1

e−s |x |2
Cs2

ds

� c6
|x |dφ(|x |−2)

∫ ∞

0
s
d
2 −γ1−1e−sds = c7

|x |dφ(|x |−2)
.

Using J11(x) � (2c8)/(|x |dφ(|x |−2)) and J12(x)|x |dφ(|x |−2) � −c8 for |x | large
enough and for some constant c8 > 0, we get

G(x)|x |dφ(|x |−2) � J11(x)|x |dφ(|x |−2) + J12(x)|x |dφ(|x |−2) � 2c8 − c8 = c8

On the other hand

G(x)|x |dφ(|x |−2) � c9 + J12(x)|x |dφ(|x |−2) + c7 � 2c9 + c7 = c10.

Here we used J11(x) � c9/(|x |dφ(|x |−2)), J2(x) � c7/(|x |dφ(|x |−2)) and
J12(x)|x |dφ(|x |−2) � c9 for |x | large enough and for some constant c9 > 0. So,
we have c8 � G(x)|x |dφ(|x |−2) � c10 for |x | large enough. Now we can change the
constants c8 and c10 to get

G(x) 
 1

|x |dφ(|x |−2)
, for all |x | � 1.

�
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5 Estimates of the Green Function of a Ball

Let B ⊂ Z
d and define

GB(x, y) = Ex

[
τB−1∑
n=0

1{Xn=y}

]

where τB is as before. A well-known result about Green function of a set is formulated
in the following lemma.

Lemma 5.1 Let B be a finite subset of Zd . Then

GB(x, y) = G(x, y) − Ex
[
G(XτB , y)

]
, x, y ∈ B,

GB(x, x) = 1

Px (τB < σx )
, x ∈ B,

where σx = inf{n � 1 : Xn = x}.
Our approach in obtaining estimates for the Green function of a ball uses the max-

imum principle for the operator A that we define by

(A f )(x) := ((P− I ) f )(x) = (P f )(x)−(I f )(x) =
∑
y∈Zd

p(x, y) f (y)− f (x). (5.1)

Since
∑

y∈Zd p(x, y) = 1 and p(x, y) = P(X1 = y − x) we have

(A f )(x) =
∑
y∈Zd

P(X1 = y − x)( f (y) − f (x)).

Before proving the maximum principle, we will show that for the function η(x) :=
Ex [τBn ] we have (Aη)(x) = −1, for all x ∈ Bn . Let x ∈ Bn . Then

η(x) =
∑
y∈Zd

Ex [τBn | X1 = y]Px (X1 = y)

=
∑
y∈Zd

(1 + Ey[τBn ])P(X1 = y − x) = 1 + (Pη)(x)

and this is obviously equivalent to (Aη)(x) = −1, for all x ∈ Bn . It follows from
Definition 1.2 that f is harmonic in B ⊂ Z

d if and only if (A f )(x) = 0, for all x ∈ B.

Proposition 5.2 Assume that there exists x ∈ Z
d such that (A f )(x) < 0. Then

f (x) > inf
y∈Zd

f (y). (5.2)
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Proof If (5.2) is not true, then f (x) � f (y), for all y ∈ Z
d . In this case, we have

(P f )(x) =
∑
y∈Zd

P(X1 = y − x) f (y) � f (x)
∑
y∈Zd

P(X1 = y − x) = f (x).

This implies (A f )(x) = (P f )(x) − f (x) � 0 which is in contradiction with the
assumption that (A f )(x) < 0. �

Wewill now prove a series of lemmas and propositions in order to get the estimates
for the Green function of a ball. In all those results, we assume (1.4) and, if d � 2,
we additionally assume (1.5). When we use some results from Sect. 3, we need (1.5)
even when d � 3, but in other cases, we can use Lemma 1.1 instead. Throughout the
rest of this section, we follow [11, Sect. 4].

Lemma 5.3 There exist a ∈ (0, 1/3) and C1 > 0 such that for every n ∈ N

GBn (x, y) � C1G(x, y), ∀ x, y ∈ Ban . (5.3)

Proof From Lemma 5.1 we have

GBn (x, y) = G(x, y) − Ex [G(XτBn
, y)].

We will first prove this lemma in the case when x �= y. If we show that
Ex [G(XτBn

, y)] � c1G(x, y) for some c1 ∈ (0, 1)wewill have (5.3) with the constant
c2 = 1 − c1. Let a ∈ (0, 1/3) and x, y ∈ Ban . In that case, we have |x − y| � 2an.
Since XτBn

/∈ Bn , x �= y and (1 − a)/(2a) > 1 if and only if a < 1/3, we have

|y − XτBn
| � (1 − a)n = 1 − a

2a
2an � 1 − a

2a
|x − y| � 1. (5.4)

Using Theorem 4.3, (5.4), Lemma 2.2 and (2.11), we get

G(XτBn
, y) 
 g(|y − XτBn

|) � a2g

(
1 − a

2a
|x − y|

)

� a22

(
2a

1 − a

)d−2γ2
g(|x − y|) 
 a22

(
2a

1 − a

)d−2γ2
G(x, y).

Since 2a/(1 − a) −→ 0 when a → 0 and d > 2γ2, if we take a small enough and
then fix it, we have Ex [G(XτBn

, y)] � c1G(x, y) for c1 ∈ (0, 1) and that is what
we wanted to prove. Now we deal with the case when x = y. From Lemma 5.1 we
have GBn (x, x) = (P(τBn < σx ))

−1 and from the definition of the function G and the
transience of random walk we get G(x, x) = G(0) ∈ [1,∞). Now, we can conclude
that

GBn (x, x) � 1 = (G(0))−1G(0) = (G(0))−1G(x, x).

If we define C1 := min{c2, (G(0))−1} we have (5.3). �
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Using Lemma 5.3 we can prove the following result:

Proposition 5.4 There exists constant C2 > 0 such that for all n ∈ N

Ex [τBn ] � C2

φ(n−2)
, ∀ x ∈ Ban

2
, (5.5)

where a ∈ (0, 1/3) is as in Lemma 5.3.

Proof Let x ∈ Ban
2
. In that case,we have B(x, an/2) ⊆ Ban .We set b = a/2 for easier

notation. Notice that Ex [τBn ] = ∑
y∈Bn GBn (x, y). Using this equality, Lemma 5.3,

Theorem 4.3 and Lemma 1.1, we have

Ex [τBn ] �
∑

y∈B(x,bn)

GBn (x, y) �
∑

y∈B(x,bn)\{x}
C1G(x, y) 


∑
y∈B(x,bn)\{x}

g(|x − y|)



∫ bn

1
g(r)rd−1dr =

∫ bn

1

1

rφ(r−2)
dr = 1

φ(n−2)

∫ bn

1

1

r

φ(n−2)

φ(r−2)
dr

� 1

a2φ(n−2)n2γ2

∫ bn

1
r2γ2−1dr

= 1

2a2γ2φ(n−2)

[
b2γ2 − 1

n2γ2

]
� b2γ2

4a2γ2φ(n−2)
,

for n large enough. Hence, we can conclude that Ex [τBn ] � C2/φ(n−2), for all
x ∈ Ban

2
, for n large enough and for some C2 > 0. As usual, we can adjust the

constant to get the statement of this proposition for every n ∈ N. Notice that this is
true regardless of the dimension because here, we can always plug in γ2 = 1. �

Now we want to find the upper bound for Ex [τBn ].
Lemma 5.5 There exists constant C3 > 0 such that for all n ∈ N

Ex [τBn ] � C3

φ(n−2)
, ∀ x ∈ Bn . (5.6)

Proof We define the process M f = (M f
n )n�0 with

M f
n := f (Xn) − f (X0) −

n−1∑
k=0

(A f )(Xk)

where f is a function defined on Z
d with values in R, A is defined as in (5.1) and

X = (Xn)n�0 is a subordinate random walk. By [12, Theorem 4.1.2], the process M f

is a martingale for every bounded function f . Let f := 1B2n and x ∈ Bn . By the
optional stopping theorem, we have

Ex [M f
τBn

] = Ex

⎡
⎣ f (XτBn

) − f (X0) −
τBn−1∑
k=0

(A f )(Xk)

⎤
⎦ = Ex [M f

0 ] = 0.
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Hence

Ex
[
f (XτBn

) − f (X0)
] = Ex

⎡
⎣

τBn−1∑
k=0

(A f )(Xk)

⎤
⎦ . (5.7)

We now investigate both sides of the relation (5.7). For every k < τBn , Xk ∈ Bn , and
for every y ∈ Bn , using Proposition 3.2, (1.4) and (1.5), we have

(A f )(y) =
∑
u∈Zd

P(X1 = u − y)( f (u) − f (y)) 
 −
∑
u∈Bc

2n

|u − y|−dφ(|u − y|−2)


 −
∫ ∞

n
r−dφ(r−2)rd−1dr = −φ(n−2)

∫ ∞

n
r−1 φ(r−2)

φ(n−2)
dr


 −φ(n−2)

∫ ∞

n
r−1 n

2γi

r2γi
dr = −φ(n−2)n2γi

n−2γi

2γi

 −φ(n−2).

Using the above estimate, we get

Ex

⎡
⎣

τBn−1∑
k=0

(A f )(Xk)

⎤
⎦ 
 Ex

⎡
⎣−

τBn−1∑
k=0

φ(n−2)

⎤
⎦ = −φ(n−2)Ex [τBn ]. (5.8)

Using (5.7), (5.8) and Ex [ f (XτBn
) − f (X0)] = Px (XτBn

∈ B2n) − 1 = −Px (XτBn
∈

Bc
2n), we get

Px (XτBn
∈ Bc

2n) 
 φ(n−2)Ex [τBn ]
and this implies

Ex [τBn ] �
C3Px (XτBn

∈ Bc
2n)

φ(n−2)
� C3

φ(n−2)
. (5.9)

�
In the next two results, we develop estimates for the Green function of a ball. We

define A(r, s) := {x ∈ Z
d : r � |x | < s} for r, s ∈ R, 0 < r < s.

Proposition 5.6 There exists constant C4 > 0 such that for all n ∈ N

GBn (x, y) � C4n
−dη(y), ∀ x ∈ Ban

4
, y ∈ A(an/2, n), (5.10)

where η(y) = Ey[τBn ] and a ∈ (0, 1/3) is as in Lemma 5.3.

Proof Let x ∈ Ban
4

and y ∈ A(an/2, n). We define function h(z) := GBn (x, z).
Notice that for z ∈ Bn \ {x} we have

h(z) = GBn (x, z) = GBn (z, x)

=
∑
y∈Zd

P(X1 = y − z)GBn (y, x) =
∑
y∈Zd

P(X1 = y − z)h(y).
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Hence, h is a harmonic function in Bn \ {x}. If we take z ∈ B(x, an/16)c then
|z − x | � an/16 � 1 for n large enough. Using Lemma 2.2 and Theorem 4.3 we get

g(an/16) � a−1
2 g(|z − x |) 
 G(x, z) � GBn (x, z) = h(z).

Hence, h(z) � kg(an/16) for z ∈ B(x, an/16)c and for some constant k > 0. Notice
that A(an/2, n) ⊆ B(x, an/16)c, hence y ∈ B(x, an/16)c. Using these facts together
with Proposition 3.2, we have

A(h ∧ kg(an/16))(y) = A(h ∧ kg(an/16) − h)(y)

=
∑
v∈Zd

P(X1 = v − y)(h(v) ∧ kg(an/16) − h(v) − h(y) ∧ kg(an/16) + h(y))



∑

v∈B(x,an/16)

j (|v − y|)(h(v) ∧ kg(an/16) − h(v))

� −
∑

v∈B(x,an/16)

j (|v − y|)h(v)

� −
∑

v∈B(x,an/16)

a−1
1 j (an/16)h(v) = −a−1

1 j (an/16)
∑

v∈B(x,an/16)

GBn (x, v)

� −a−1
1 j (an/16)η(x),

where in the last line we used Lemma 2.3 together with |v − y| � an/16 � 1 for v ∈
B(x, an/16) and for n large enough.Using (2.6)we get j (an/16) � (a/16)−d−2 j (n).
Hence, using (5.6), we have

A(h ∧ kg(an/16))(y) � −c1n
−dφ

(
n−2
)

η(x)

� −c1n
−dφ

(
n−2
)
C3

(
φ
(
n−2
))−1 = −c2n

−d

for some c2 > 0. On the other hand, using (2.9) and Proposition 5.4 we get

g(an/16) � a−1
1 (a/16)−d+2γ1g(n)

� (a1C2)
−1(a/16)−d+2γ1n−dη(z) = c3n

−dη(z), ∀z ∈ Ban/2.

Now we define C4 := (c2 ∨ kc3) + 1 and using

h(z) ∧ kg(an/16) � kg(an/16) � kc3n
−dη(z)

we get

C4n
−dη(z) − h(z) ∧ kg(an/16) � (C4 − kc3)n

−dη(z) � 0, ∀ z ∈ Ban/2.
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So, ifwedefineu(·) := C4n−dη(·)−h(·)∧kg(an/16),we showed thatu is nonnegative
function on Ban/2. It is obvious that it vanishes on Bc

n and for y ∈ A(an/2, n)we have

(Au)(y) = C4n
−d(Aη)(y) − A(h ∧ kg(an/16))(y) � −C4n

−d + c2n
−d < 0.

Since u � 0 on Ban/2 and u vanishes on Bc
n , if inf y∈Zd u(y) < 0 then there would

exist y0 ∈ A(an/2, n) such that u(y0) = inf y∈Zd u(y). But then, by Proposition 5.2,
(Au)(y0) � 0 which is in contradiction with (Au)(y) < 0 for y ∈ A(an/2, n). Hence,

u(y) = C4n
−dη(y) − h(y) ∧ kg(an/16) � 0, ∀ y ∈ Z

d

and then, because h(y) � kg(an/16) for y ∈ A(an/2, n) we get

GBn (x, y) = h(y) � C4n
−dη(y), ∀ x ∈ Ban

4
, y ∈ A(an/2, n).

�
Now we will prove a proposition that will give us the lower bound for the Green

function of a ball. We use the fact that |Bn ∩ Z
d | � cnd for some constant c > 0,

where | · | denotes the cardinality of a set.

Proposition 5.7 There exist C5 > 0 and b � a/4 such that for all n ∈ N

GBn (x, y) � C5n
−dη(y), ∀ x ∈ Bbn, y ∈ A(an/2, n), (5.11)

where a is as in Lemma 5.3 and η(y) = Ey[τBn ].
Proof Let a ∈ (0, 1/3) as in Lemma 5.3. Then there exists C1 > 0

GBn (x, v) � C1G(x, v), x, v ∈ Ban . (5.12)

From Proposition 5.6 it follows that there exists constant C4 > 0 such that

GBn (x, v) � C4n
−dη(v), x ∈ Ban/4, v ∈ A(an/2, n). (5.13)

From Lemma 5.5 we have

η(v) � C3

φ
(
n−2
) , v ∈ Bn, (5.14)

for some constant C3 > 0. By Theorem 4.3 and (2.4) there exists c1 > 0 such that
G(x) � c1g(|x |), x �= 0. Now we take

b � min

⎧⎨
⎩
a

4
,

(
C1c1

2a22C3C4

) 1
d−2γ2

⎫⎬
⎭
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and fix it. Notice that (C1c1)/(a22C3bd−2γ2) � 2C4. Let x ∈ Bbn , v ∈ B(x, bn). Since
b � a/4 we have x, v ∈ Ban . We want to prove that GBn (x, v) � 2C4n−dη(v). We
will first prove that assertion for x �= v. In that case we have 1 � |x − v|. Since
v ∈ B(x, bn), we have |x − v| � bn so we can use (5.12), Lemma 2.2 and (2.10) to
get

GBn (x, v) � C1G(x, v) � C1c1
a2

g(bn) � C1c1
a22b

d−2γ2
g(n) � 2C3C4

ndφ(n−2)
. (5.15)

Using (5.14) and (5.15), we get GBn (x, v) � 2C4n−dη(v) for x �= v. Now we will
prove that GBn (x, x) � 2C4n−dη(x), for x ∈ Bbn and for n large enough. First note
that

lim
n→∞ ndφ(n−2) = lim

n→∞ nd
φ(n−2)

φ(1)
� lim

n→∞ nd
1

a2n2γ2
= lim

n→∞
1

a2
nd−2γ2 = ∞,

since d − 2γ2 > 0. Therefore

2C4n
−dη(x) � 2C4C3

ndφ(n−2)
� 1 � GBn (x, x)

for n large enough. Hence,

C4n
−dη(v) � 1

2
GBn (x, v), ∀ x ∈ Bbn, v ∈ B(x, bn). (5.16)

Now we fix x ∈ Bbn and define the function

h(v) := GBn (x, v) ∧
(
C4n

−dη(v)
)

.

From (5.16) we have h(v) � 1
2GBn (x, v) for v ∈ B(x, bn). Recall that GBn (x, ·) is

harmonic in A(an/2, n). Using (5.13) we get h(y) = GBn (x, y) for y ∈ A(an/2, n).
Hence, for y ∈ A(an/2, n)

(Ah)(y) = A(h(·) − GBn (x, ·))(y)


∑
v∈Zd

j (|v − y|) (h(v) − GBn (x, v) − h(y) + GBn (x, y)
)

�
∑

v∈B(x,bn)

j (|v − y|) (h(v) − GBn (x, v)
)

� −(a1/2) j (2n)
∑

v∈B(x,bn)

GBn (x, v), (5.17)
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where we used Proposition 3.2 and Lemma 2.3 together with 1 � |v− y| � 2n. Using
(5.15) and |Bn ∩ Z

d | � c2nd , we get

∑
v∈B(x,bn)

GBn (x, v) � 2C3C4

ndφ
(
n−2
) |Bbn ∩ Z

d | � 2c2C3C4

ndφ
(
n−2
) (bn)d = c3

φ
(
n−2
) .
(5.18)

Using (2.8) we get j (2n) � 2−d−2 j (n). When we put this together with (5.17) and
(5.18), we get

(Ah)(y) � −c4n
−d .

Define u := h − κη, where

κ := min

{
c4
2

,
c5
2

,
C4

2

}
n−d ,

where c5 > 0 will be defined later. For y ∈ A(an/2, n)

(Au)(y) = (Ah)(y)−κ(Aη)(y) � −c4n
−d+κ � −c4n

−d+ c4
2
n−d = −c4

2
n−d < 0.

For x ∈ Bbn ⊆ Ban/2, v ∈ Ban/2 we have |x − v| � an � n. We will first assume that
x �= v so that we can use Theorem 4.3, Lemma 2.2 and (2.10). In this case, we have

GBn (x, v) � C1G(x, v) 
 g(|x − v|)
� 1

a2
g(an) � 1

a22a
d−2γ2

g(n) � 1

a22C3ad−2γ2
n−dη(v).

So, GBn (x, v) � c5n−dη(v) for some constant c5 > 0 and for x �= v. If x = v we
can use the same arguments that we used when we were proving that GBn (x, x) �
2C4n−dη(x) for n large enough to prove that GBn (x, x) � c5n−dη(x) for n large
enough. Hence, GBn (x, v) � c5n−dη(v) for all x ∈ Bbn and v ∈ Ban/2 and for n
large enough. Now we have

h(v) = GBn (x, v) ∧
(
C4n

−dη(v)
)

�
(
c5n

−dη(v)
)

∧
(
C4n

−dη(v)
)

= (C4 ∧ c5)n
−dη(v).

Hence,

u(v) = h(v) − κη(v) � (C4 ∧ c5)n
−dη(v) −

(
C4

2
∧ c5

2

)
n−dη(v) � 0.

Since u(v) � 0 for v ∈ Ban/2, u(v) = 0 for v ∈ Bc
n and (Au)(v) < 0 for

v ∈ A(an/2, n) we can use the same argument as in Proposition 5.6 to conclude
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by Proposition 5.2 that u(y) � 0 for all y ∈ Z
d . Since GBn (x, y) � C4n−dη(y) for

x ∈ Ban/4, y ∈ A(an/2, n) we have h(y) = GBn (x, y). Using that, we have

GBn (x, y) � κη(y) = C5n
−dη(y), x ∈ Bbn, y ∈ A(an/2, n),

for n large enough. As before, we can change the constant and get (5.11) for all n ∈ N.
�

Using last two propositions, we have the next corollary.

Corollary 5.8 Assume (1.4) and (1.5). Then there exist constants C6,C7 > 0 and
b1, b2 ∈ (0, 1

2 ), 2b1 � b2 such that

C6n
−d

Ey[τBn ] � GBn (x, y) � C7n
−d

Ey[τBn ], ∀ x ∈ Bb1n, y ∈ A(b2n, n).

(5.19)

Proof This corollary follows directly from Propositions 5.6 and 5.7. We can set b2 =
a/2 where a ∈ (0, 1/3) is as in Lemma 5.3 and b1 = b where b � a/4 is as in
Proposition 5.7. �

6 Proof of the Harnack Inequality

We start this section with the proof of the proposition that will be crucial for the
remaining part of our paper.

Proposition 6.1 Let f : Zd × Z
d → [0,∞) be a function and B ⊂ Z

d a finite set.
For every x ∈ B we have

Ex
[
f (XτB−1, XτB )

] =
∑
y∈B

GB(x, y)E
[
f (y, y + X1)1{y+X1 /∈B}

]
. (6.1)

Proof We have

Ex
[
f (XτB−1, XτB )

] =
∑

y∈B,z∈Bc

Px (XτB−1 = y, XτB = z) f (y, z).

Using (1.2), we get

Px (XτB−1 = y, XτB = z) =
∞∑

m=1

Px (XτB−1 = y, XτB = z, τB = m)

=
∞∑

m=1

P(x + Xm−1 + ξm = z, x + Xm−1 = y, X1, . . . , Xm−2 ∈ B − x)

=
∞∑

m=1

P(ξm = z − y)P(x + Xm−1 = y, X1, . . . , Xm−2 ∈ B − x)
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= P(ξ1 = z − y)
∞∑

m=1

Px (Xm−1 = y, X1, . . . , Xm−2 ∈ B)

= P(X1 = z − y)
∞∑

m=1

Px (Xm−1 = y, τB > m − 1)

= P(X1 = z − y)GB(x, y).

Hence,

Ex
[
f (XτB−1, XτB )

] =
∑

y∈B,z∈Bc

f (y, z)GB(x, y)P(y + X1 = z)

=
∑
y∈B

GB(x, y)E
[
f (y, y + X1)1{y+X1 /∈B}

]
.

�

Remark 6.2 Formula (6.1) can be considered as a discrete counterpart of the
continuous-time Ikeda–Watanabe formula. We will refer to it as discrete Ikeda–
Watanabe formula.

It can be proved that if f : Zd → [0,∞) is harmonic in B, with respect to X , then
{ f (Xn∧τB ) : n � 0} is a martingale with respect to the natural filtration of X (proof
is the same as [9, Proposition 1.4.1], except that we have a nonnegative instead of a
bounded function). Using this fact, we can prove the following lemma.

Lemma 6.3 Let B be a finite subset of Zd . Then f : Zd → [0,∞) is harmonic in B,
with respect to X, if and only if f (x) = Ex [ f (XτB )] for every x ∈ B.

Proof Let us first assume that f : Zd → [0,∞) is harmonic in B, with respect to
X . We take arbitrary x ∈ B. By the martingale property f (x) = Ex [ f (Xn∧τB )], for
all n � 1. First, by Fatou’s lemma we have Ex [ f (XτB )] � f (x) so f (XτB ) is a
Px -integrable random variable. Since B is a finite set, we have f � M on B, for some
constant M > 0, and Px (τB < ∞) = 1. Using these two facts, we get

f (Xn∧τB ) = f (Xn)1{n<τB } + f (XτB )1{τB�n} � M + f (XτB ).

Since the right-hand side is Px -integrable, we can use the dominated convergence
theorem and we get

f (x) = lim
n→∞Ex [ f (Xn∧τB )] = Ex [ lim

n→∞ f (Xn∧τB )] = Ex [ f (XτB )].

On the other hand, if f (x) = Ex [ f (XτB )], for every x ∈ B, then for x ∈ B we
have
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f (x) =
∑
y∈Zd

Ex [ f (XτB ) | X1 = y ]Px (X1 = y)

=
∑
y∈Zd

p(x, y)Ey[ f (XτB )] =
∑
y∈Zd

p(x, y) f (y).

�

Hence, if we take B ⊂ Z
d finite and f : Zd → [0,∞) harmonic in B, with respect

to X , then by Lemma 6.3 and the discrete Ikeda–Watanabe formula, we get

f (x) = Ex
[
f (XτB )

] =
∑
y∈B

GB(x, y)E
[
f (y + X1)1{y+X1 /∈B}

]
. (6.2)

Let us define the discrete Poisson kernel of a finite set B ⊂ Z
d by

KB(x, z) :=
∑
y∈B

GB(x, y)P(X1 = z − y), x ∈ B, z ∈ Bc. (6.3)

If the function f is nonnegative and harmonic in Bn , with respect to X , from (6.2) we
have

f (x) =
∑
y∈Bn

GBn (x, y)
∑
z /∈Bn

E
[
f (y + X1)1{y+X1 /∈Bn } | X1 = z − y

]
P(X1 = z − y)

=
∑
z /∈Bn

∑
y∈Bn

GBn (x, y)E
[
f (y + z − y)1{y+z−y /∈Bn }

]
P(X1 = z − y)

=
∑
z /∈Bn

f (z)

⎛
⎝∑

y∈Bn
GBn (x, y)P(X1 = z − y)

⎞
⎠ =

∑
z /∈Bn

f (z)KBn (x, z). (6.4)

Now we are ready to show that the Poisson kernel KBn (x, z) is comparable to an
expression that is independent of x . When we prove that Harnack inequality will
follow immediately.

Lemma 6.4 Assume (1.4) and (1.5) and let b1, b2 ∈ (0, 1
2 ) be as in Corollary 5.8.

Then KBn (x, z) 
 l(z) for all x ∈ Bb1n, where

l(z) = j (|z|)
φ
(
n−2
) + n−d

∑
y∈A(b2n,n)

Ey[τBn ] j (|z − y|).

Proof Splitting the expression (6.3) for the Poisson kernel in two parts and using
Proposition 3.2, we get

KBn (x, z) 

∑

y∈Bb2n
GBn (x, y) j (|z − y|) +

∑
y∈A(b2n,n)

GBn (x, y) j (|z − y|).
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Since GBn (x, y) 
 n−d
Ey[τBn ] for x ∈ Bb1n , y ∈ A(b2n, n), for the second sum in

the upper expression we have

∑
y∈A(b2n,n)

GBn (x, y) j (|z − y|) 
 n−d
∑

y∈A(b2n,n)

Ey[τBn ] j (|z − y|). (6.5)

Now we look closely at the expression
∑

y∈Bb2n GBn (x, y) j (|z − y|). Using the fact

that y ∈ Bb2n , b2 ∈ (0, 1
2 ) and |z| � n because z ∈ Bc

n , we have

|z − y| � |z| + |y| � |z| + b2n � |z| + b2|z| � (1 + b2)|z| � 2|z|.

On the other hand

|z| � |z − y| + |y| � |z − y| + b2n � |z − y| + b2|z|. (6.6)

Hence,
1

2
|z| � (1 − b2)|z| � |z − y|. (6.7)

Combining (6.6), (6.7) and using Lemma 2.3, we have

1

a1
j

(
1

2
|z|
)

� j (|z − y|) � a1 j (2|z|).

Using (2.6), we get j ( 12 |z|) � 2d+2 j (|z|) = c1 j (|z|). Similarly, from (2.8), we get
j (2|z|) � 2−d−2 j (|z|) = c2 j (|z|). Hence, a1c2 j (|z|) � a1 j (2|z|) � j (|z − y|) �
a−1
1 j

( 1
2 |z|
)

� a−1
1 c1 j (|z|) for some c1, c2 > 0. Therefore,

j (|z − y|) 
 j (|z|), y ∈ Bb2n, z ∈ Bc
n . (6.8)

Using (6.8) we have

∑
y∈Bb2n

GBn (x, y) j (|z − y|) 

∑

y∈Bb2n
GBn (x, y) j (|z|) = j (|z|)

∑
y∈Bb2n

GBn (x, y).

Now we want to show that
∑

y∈Bb2n GBn (x, y) 
 1/φ
(
n−2
)
. Using the fact that GBn

is nonnegative function and that Ex [τBn ] � C3/φ
(
n−2
)
for x ∈ Bn we have

∑
y∈Bb2n

GBn (x, y) �
∑
y∈Bn

GBn (x, y) = Ex [τBn ] � C3

φ
(
n−2
) . (6.9)

Toprove the other inequalitywewill useLemma5.3,Theorem4.3,Lemma2.2 together
with 1 � |x − y| � 2b2n, |Bn ∩ Z

d | � c3nd and Lemma 1.1. Thus
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∑
y∈Bb2n

GBn (x, y) � C1

∑
y∈Bb2n\{x}

G(x, y) 

∑

y∈Bb2n\{x}
g(|x − y|)

� 1

a2
(|Bb2n ∩ Z

d | − 1)g(2b2n)

� 1

a2

c3
2

(b2n)d
1

2d(b2n)d

1

φ
(
n−2
) φ(n−2)

φ((2b2n)−2)

� c3
2a2

1

2dφ(n−2)
(2b2)

2 � c3(2b2)2

2d+1a2

1

φ
(
n−2
) .

Hence, ∑
y∈Bb2n

GBn (x, y) � c4
φ
(
n−2
) . (6.10)

From (6.9) and (6.10) we have

∑
y∈Bb2n

GBn (x, y) 
 1

φ
(
n−2
) . (6.11)

Finally, using (6.8) and (6.11) we have

∑
y∈Bb2n

GBn (x, y) j (|z − y|) 
 j (|z|)
φ
(
n−2
) . (6.12)

And now, from (6.12) and (6.5) we have the statement of the lemma. �
Lemma 6.4 basically states that there exist constants C8,C9 > 0 such that

C8l(z) � KBn (x, z) � C9l(z), x ∈ Bb1n, z ∈ Bc
n . (6.13)

Now we are ready to prove our main result.

Proof of Theorem 1.3 Notice that, because of the spatial homogeneity, it is enough to
prove this result for balls centered at the origin. We will prove the theorem for a = b1,
where b1 is as in Corollary 5.8. General case follows using the standard Harnack chain
argument. Let x1, x2 ∈ Bb1n . Using (6.13) we get

KBn (x1, z) � C9l(z) = C9

C8
C8l(z) � C9

C8
KBn (x2, z).

Now we can multiply both sides with f (z) � 0 and sum over all z /∈ Bn and we get

∑
z /∈Bn

f (z)KBn (x1, z) � C9

C8

∑
z /∈Bn

f (z)KBn (x2, z).

123



764 J Theor Probab (2019) 32:737–764

If we look at the expression (6.4) we see that this means

f (x1) � C9

C8
f (x2)

and that is what we wanted to prove. �
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project 3526.
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