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1 Introduction and Main Result

Intersection local time or self-intersection local time when the two processes are the
same are important subjects in probability theory and their derivatives have received
much attention recently, see, e.g., [9,11–13]. Jung and Markowsky [6,7] discussed
Tanaka formula and occupation time formula for derivative self-intersection local
time of fractional Brownian motions. On the other hand, several authors paid attention
to the renormalized self-intersection local time of fractional Brownian motions, see,
e.g., Hu et al. [3,4].

Motivated by Jung and Markowsky [6] and Hu [2], higher-order derivative of inter-
section local time for two independent fractional Brownian motions is studied in this
paper.

To state our main result we let BH1 = {BH1
t , t ≥ 0} and ˜BH2 = {˜BH2

t , t ≥ 0}
be two independent d-dimensional fractional Brownian motions of Hurst parameters
H1, H2 ∈ (0, 1), respectively. This means that BH1 and ˜BH2 are independent centered
Gaussian processes with covariance

E

[

BH1
s BH1

t

]

= 1

2

(

s2H1 + t2H1 − | s − t |2H1
)

(similar identity for B̃). In this paper we concern with the derivatives of intersection
local time of BH1 and ˜BH2 , defined by

α̂(k)(x) := ∂k

∂xk11 . . . ∂xkdd

∫ T

0

∫ T

0
δ
(

BH1
t − ˜BH2

s + x
)

dtds,

where k = (k1, . . . , kd) is a multi-index with all ki being nonnegative integers and δ

is the Dirac delta function of d-variables. In particular, we consider exclusively the
case when x = 0 in this work. Namely, we are studying

α̂(k)(0) :=
∫ T

0

∫ T

0
δ(k)

(

BH1
t − ˜BH2

s

)

dtds, (1.1)

where δ(k)(x) = ∂k

∂x
k1
1 ...∂x

kd
d

δ(x) is k-th order partial derivative of the Dirac delta

function. Since δ(x) = 0 when x �= 0 the intersection local time α̂(0) (when k = 0)
measures the frequency that processes BH1 and ˜BH2 intersect each other.

Since the Dirac delta function δ is a generalized function, we need to give ameaning
to α̂(k)(0). To this end, we approximate the Dirac delta function δ by

fε(x) := 1

(2πε)
d
2

e− |x |2
2ε = 1

(2π)d

∫

Rd
ei pxe− ε|p|2

2 dp, (1.2)
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where and throughout this paper, we use px = ∑d
j=1 p j x j and |p|2 = ∑d

j=1 p
2
j .

Thus, we approximate δ(k) by

f (k)
ε (x) := ∂k

∂xk11 . . . ∂xkdd
fε(x) = i k

(2π)d

∫

Rd
pk11 . . . pkdd ei pxe− ε|p|2

2 dp. (1.3)

We say that α̂(k)(0) exists (in L2) if

α̂(k)
ε (0) :=

∫ T

0

∫ T

0
f (k)
ε

(

BH1
t − ˜BH2

s

)

dtds (1.4)

converges to a random variable (denoted by α̂(k)(0)) in L2 when ε ↓ 0.
Here is the main result of this work.

Theorem 1 Let BH1 and ˜BH2 be two independent d-dimensional fractional Brownian
motions of Hurst parameter H1 and H2, respectively.

(i) Assume k = (k1, . . . , kd) is an index of nonnegative integers (meaning that
k1, . . . , kd are nonnegative integers) satisfying

H1H2

H1 + H2
(|k| + d) < 1, (1.5)

where |k| = k1 +· · ·+ kd . Then, the k-th order derivative intersection local time
α̂(k)(0) exists in L p(�) for any p ∈ [1,∞).

(ii) Assume condition (1.5) is satisfied. There is a strictly positive constant Cd,k,T ∈
(0,∞) such that

E

[

exp

{

Cd,k,T

∣

∣

∣̂α
(k)(0)

∣

∣

∣

β
}]

< ∞,

where β = H1+H2
2dH1H2

.

(iii) If α̂(k)(0) ∈ L1(�), where k = (0, . . . , 0, ki , 0, . . . , 0)with ki being even integer,
then condition (1.5) must be satisfied.

Remark 1 (i) When k = 0, we have that α̂(0)(0) is in L p for any p ∈ [1,∞) if
H1H2
H1+H2

d < 1. In the special case H1 = H2 = H , this condition becomes Hd < 2,
which is the condition obtained in Nualart et al. [8].

(ii) When H1 = H2 = 1
2 , we have the exponential integrability exponent β = 2/d,

which implies an earlier result [2, Theorem 9.4].
(iii) Part (iii) of the theoremstates that the inequality (1.5) is also a necessary condition

for the existence of α̂(k)(0). This is the first time for such a statement.

2 Proof of the Theorem

Proof of Parts (i) and (ii). This section is devoted to the proof of the theorem. We
shall first find a good bound for E

∣

∣α̂(k)(0)
∣

∣

n
which gives a proof for (i) and (ii)

simultaneously. We introduce the following notations.

123



J Theor Probab (2019) 32:1190–1201 1193

p j = (p1 j , . . . , pd j ), pkj =
(

pk11 j , . . . , p
kd
d j

)

, j = 1, 2, . . . , n;

p = (p1, . . . , pn), dp =
d
∏

i=1

n
∏

j=1

dpi j .

We also denote s = (s1, . . . , sn), t = (t1, . . . , tn), ds = ds1 . . . dsn and dt =
dt1 . . . dtn .

Fix an integer n ≥ 1. Denote Tn = {0 < t, s < T }n . We have

E

[∣

∣

∣̂α
(k)
ε (0)

∣

∣

∣

n] ≤ 1

(2π)nd

∫

Tn

∫

Rnd

∣

∣

∣

∣

E

[

exp
{

i p1
(

BH1
s1 − ˜BH2

t1

)

+ · · ·

+i pn
(

BH1
sn − ˜BH2

tn

)}]

∣

∣

∣

∣

exp

⎧

⎨

⎩

−ε

2

n
∑

j=1

| p j |2
⎫

⎬

⎭

n
∏

j=1

| pkj | dpdtds

= 1

(2π)nd

∫

Tn

∫

Rnd
exp

⎧

⎪

⎨

⎪

⎩

−1

2
E

⎡

⎣

n
∑

j=1

p j

(

BH1
s j − ˜BH2

t j

)

⎤

⎦

2
⎫

⎪

⎬

⎪

⎭

× exp

⎧

⎨

⎩

−ε

2

n
∑

j=1

| p j |2
⎫

⎬

⎭

n
∏

j=1

| pkj | dpdtds

≤ 1

(2π)nd

∫

Tn

∫

Rnd

d
∏

i=1

⎛

⎝

n
∏

j=1

| pkii j |
⎞

⎠ exp

{

−1

2
E

[

pi1B
H1,i
s1 + · · ·

+pin B
H1,i
sn

]2 − 1

2
E

[

pi1B
H2,i
t1 + · · · + pin B

H2,i
tn

]2
}

dpdtds.

The expectations in the above exponent can be computed by

E

[

pi1B
H1,i
s1 + · · · + pin B

H1,i
sn

]2 = (pi1, . . . , pin)Q1(pi1, . . . , pin)
T,

E

[

pi1 B̃
H2,i
s1 + · · · + pin B̃

H2,i
sn

]2 = (pi1, . . . , pin)Q2(pi1, . . . , pin)
T,

where

Q1 = E

(

BH1,i
j BH1,i

k

)

1≤ j,k≤n
and Q2 = E

(

B̃H2,i
j B̃H2,i

k

)

1≤ j,k≤n

denote, respectively, covariancematrices ofn-dimensional randomvectors (BH1,i
s1 , . . . ,

BH1,i
sn ) and that of (˜BH2,i

t1 , . . . , ˜BH2,i
tn ). Thus, we have

E

[∣

∣

∣̂α
(k)
ε (0)

∣

∣

∣

n] ≤ 1

(2π)nd

∫

Tn

d
∏

i=1

Ii (t, s)dtds, (2.1)
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where

Ii (t, s) :=
∫

Rn
| xki | exp

{

−1

2
xT (Q1 + Q2)x

}

dx .

Here we recall x = (x1, . . . , xn) and xki = xki1 . . . xkin . For each fixed i let us compute
integral Ii (t, s) first. Denote B = Q1 + Q2. Then B is a strictly positive definite
matrix, and hence

√
B exists. Making substitution ξ = √

Bx . Then

Ii (t, s) =
∫

Rn

n
∏

j=1

| (B− 1
2 ξ) j |ki exp

{

−1

2
| ξ |2

}

det(B)−
1
2 dξ.

To obtain a nice bound for the above integral, let us first diagonalize B:

B = QΛQ−1,

where Λ = diag{λ1, . . . , λn} is a strictly positive diagonal matrix with λ1 ≤ λ2 ≤
· · · ≤ λd and Q = (qi j )1≤i, j≤d is an orthogonal matrix. Hence, we have det(B) =
λ1 . . . λd . Denote

η = (η1, η2, . . . , ηn
)T = Q−1ξ,

Hence,

B− 1
2 ξ = QΛ−1/2Q−1ξ = QΛ−1/2η

= Q

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ
− 1

2
1 η1

λ
− 1

2
2 η2
...

λ
− 1

2
n ηn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

q1,1 q1,2 · · · q1,n
q2,1 q2,2 · · · q2,n
...

... · · · ...

qn,1 qn,2 · · · qn,n

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ
− 1

2
1 η1

λ
− 1

2
2 η2
...

λ
− 1

2
n ηn .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Therefore, we have

| (B− 1
2 ξ) j | =

∣

∣

∣

∣

∣

n
∑

k=1

q jkλ
− 1

2
k ηk

∣

∣

∣

∣

∣

≤ λ
− 1

2
1

n
∑

k=1

| q jkηk |

≤ λ
− 1

2
1

(

n
∑

k=1

q2jk

) 1
2
(

n
∑

k=1

η2k

) 1
2

≤ λ
− 1

2
1 | η |2= λ

− 1
2

1 | ξ |2 .

Since both Q1 and Q2 are positive definite, we see that

λ1 ≥ λ1(Q1), and λ1 ≥ λ1(Q2),

where λ1(Qi ) is the smallest eigenvalue of Qi , i = 1, 2. This means that

λ1 ≥ λ1(Q1)
ρλ1(Q2)

1−ρ for any ρ ∈ [0, 1].
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This implies

| (B− 1
2 ξ) j |≤ λ1(Q1)

− 1
2ρλ1(Q2)

− 1
2 (1−ρ) | ξ |2 .

Consequently, we have

Ii (t, s) = det(B)−
1
2 λ1(Q1)

− 1
2ρki λ1(Q2)

− 1
2 (1−ρ)ki

∫

Rn
| ξ |ki2 exp

{

−1

2
| ξ |2

}

dξ, (2.2)

for any ρ ∈ [0, 1].
Now we are going to find a lower bound for λ1(Q1) (λ1(Q2) can be dealt with the

same way. We only need to replace s by t). Without loss of generality we can assume
0 ≤ s1 < s2 < · · · < sn ≤ T . From the definition of Q1 we have for any vector
u = (u1, . . . , ud)T ,

uT Q1u = Var
(

u1B
H1
s1 + u2B

H1
s2 + · · · + un B

H1
sn

)

= Var
(

(u1 + · · · + un)B
H1
s1 + (u2 + · · · + un)

(

BH1
s2 − BH1

s1

)

+ · · · + (un−1 + un)
(

BH1
sn−1

− BH1
sn−2

)

+ un
(

BH1
sn − BH1

sn−1

))

Now we use Proposition 1 in “Appendix” to conclude

uT Q1u ≥ cn
(

(u1 + · · · + un)
2s2H1

1 + (u2 + · · · + un)
2(s2 − s1)

2H1

+ · · · + (un−1 + un)
2(sn−1 − sn−2)

2H1 + u2n(sn − sn−1)
2H1
)

≥ cn min
{

s2H1
1 , (s2 − s1)

2H1 , . . . , (sn − sn−1)
2H1
}

·
[

(u1 + · · · + un)
2 + (u2 + · · · + un)

2 + · · · + (un−1 + un)
2 + u2n

]

.

Consider the function

f (u1, . . . , un) = (u1 + · · · + un)
2 + (u2 + · · · + un)

2 + · · · + (un−1 + un)
2 + u2n

= (u1, . . . , un)G(u1, . . . , un)
T,

where

G =

⎛

⎜

⎜

⎜

⎝

1 1 1 · · · 1
0 1 1 · · · 1
...

...
... · · · ...

0 0 0 · · · 1

⎞

⎟

⎟

⎟

⎠

.

It is easy to see that the matrix GTG has a minimum eigenvalue independent of n.
Thus, this function f attains its minimum value fmin independent of n on the sphere
u21 + · · · + u2n = 1. It is also easy to see that fmin > 0.
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As a consequence we have

λ1(Q1) = inf|u|=1
uT Q1u

≥ cn min
{

s2H1
1 , (s2 − s1)

2H1 , . . . , (sn − sn−1)
2H1
}

inf|u|=1
f (u1, . . . , un)

≥ cn fmin min
{

s2H1
1 , (s2 − s1)

2H1, . . . , (sn − sn−1)
2H1
}

≥ Kcn min
{

s2H1
1 , (s2 − s1)

2H1, . . . , (sn − sn−1)
2H1
}

. (2.3)

In a similar way we have

λ1(Q2) ≥ Kcn min
{

t2H2
1 , (t2 − t1)

2H2 , . . . , (tn − tn−1)
2H2
}

. (2.4)

The integral in (2.2) can be bounded as

I2 :=
∫

Rn
| ξ |ki exp

{

−1

2
| ξ |2

}

dξ

≤ n
ki
2

∫

Rnd
max
1≤ j≤n

| ξ j |ki exp
{

−1

2
| ξ |2

}

dξ

≤ n
ki
2

∫

Rn

n
∑

j=1

| ξ j |k j exp
{

−1

2
| ξ |2

}

dξ

≤ n
ki
2 +1

∫

Rn
| ξ1 |ki exp

{

−1

2
| ξ |2

}

dξ

≤ n
ki
2 +1Cn ≤ Cn . (2.5)

Substitute (2.3)-(2.5) into (2.2) we obtain

Ii (t, s) ≤ Cndet(B)−
1
2 min

j=1,...,n
(s j − s j−1)

−ρH1ki

min
j=1,...,n

(t j − t j−1)
−(1−ρ)H2ki

for possibly a different constant C , independent of n.
Next we obtain a lower bound for det(B). According to [2, Lemma 9.4]

det(Q1 + Q2) ≥ det(Q1)
γ det(Q2)

1−γ ,

for any two symmetric positive definite matrices Q1 and Q2 and for any γ ∈ [0, 1].
Now it is well known that (see also the usages in [2–4]).

det(Q1) ≥Cns2H1
1 (s2 − s1)

2H1 · · · (sn − sn−1)
2H1 .

123
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and
det(Q2) ≥ Cnt2H2

1 (t2 − t1)
2H2 · · · (tn − tn−1)

2H2 .

As a consequence, we have

Ii (t, s) ≤ Cn min
j=1,...,n

(s j − s j−1)
−ρH1ki min

j=1,...,n
(t j − t j−1)

−(1−ρ)H2ki

[

s1(s2 − s1) . . . (sn − sn−1)
]−γ H1

[

t1(t2 − t1) . . . (tn − tn−1)
]−(1−γ )H2

Thus,

E

[∣

∣

∣̂α
(k)
ε (0)

∣

∣

∣

n] ≤ (n!)2Cn
∫

�2
n

min
j=1,...,n

(s j − s j−1)
−ρH1|k|

min
j=1,...,n

(t j − t j−1)
−(1−ρ)H2|k| [s1(s2 − s1) . . . (sn − sn−1)

]−γ H1d

[

t1(t2 − t1) . . . (tn − tn−1)
]−(1−γ )H2d dtds

≤ (n!)2Cn
n
∑

i, j=1

∫

�2
n

(si − si−1)
−ρH1|k|

(t j − t j−1)
−(1−ρ)H2|k| [s1(s2 − s1) . . . (sn − sn−1)

]−γ H1d

[

t1(t2 − t1) . . . (tn − tn−1)
]−(1−γ )H2d dtds,

where �n = {0 < s1 < · · · < sn ≤ T } denotes the simplex in [0, T ]n . We choose
ρ = γ = H2

H1+H2
to obtain

E

[∣

∣

∣̂α
(k)
ε (0)

∣

∣

∣

n] ≤ (n!)2Cn
n
∑

i, j=1

I3,i I3, j ,

where

I3, j =
∫

�n

(t j − t j−1)
− H1H2

H1+H2
|k| [

t1(t2 − t1) . . . (tn − tn−1)
]− H1H2

H1+H2
d
dt,

By Lemma 4.5 of [5], we see that if

H1H2

H1 + H2
(|k| + d) ≤ 1,

then

I3, j ≤ CnT
κ1n− H1H2 |k|

H1+H2

Γ
(

nκ1 − H1H2
H1+H2

|k| + 1
) ,

123
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where

κ1 = 1 − dH1H2

H1 + H2
.

Substituting this bound we obtain

E

[∣

∣

∣̂α
(k)
ε (0)

∣

∣

∣

n] ≤ n2(n!)2Cn T
2κ1n− 2H1H2 |k|

H1+H2

Γ 2
(

nκ1 − H1H2
H1+H2

|k| + 1
)

≤ (n!)2Cn T
2κ1n− 2H1H2 |k|

H1+H2

(

�(nκ1 − H1H2
H1+H2

|k| + 1)
)2

≤ CT (n!)2−2κ1CnT 2κ1n,

where C is a constant independent of T and n and CT is a constant independent of n.
For any β > 0, the above inequality implies

E

[

∣

∣

∣̂α
(k)(0)

∣

∣

∣

nβ
]

≤ CT (n!)β(2−2κ1)CnT 2βκ1n

From this bound we conclude that there exists a constant Cd,T,k > 0 such that

E

[

exp

{

Cd,T,k

∣

∣

∣̂α
(k)(0)

∣

∣

∣

β
}]

=
∞
∑

n=0

Cn
d,T,k

n! E

∣

∣

∣̂α
(k)(0)

∣

∣

∣

nβ

≤ CT

∞
∑

n=0

Cn
d,T,k(n!)β(2−2κ1)−1CnT 2βκ1n < ∞,

when Cd,T,k is sufficiently small (but strictly positive), where β = H1+H2
2dH1H2

. 	

Proof of part (iii). Without loss of generality, we consider only the case k =
(k1, 0, . . . , 0) and we denote ki by k. By the definition of k-order derivative local
time of independent d-dimensional fractional Brownian motions, we have

E

[

α̂(k)
ε (0)

]

= 1

(2π)d

∫ T

0

∫ T

0

∫

Rd
E

[

ei〈ξ,B
H1
t −˜BH2

s 〉
]

e− ε|ξ |2
2 | ξ1 |k dξdtds

= 1

(2π)d

∫ T

0

∫ T

0

∫

Rd
e−(ε+t2H1+s2H2 )

|ξ |2
2 | ξ1 |k dξdtds.

Thus, we have

E

[

α̂(k)(0)
]

= 1

(2π)d

∫ T

0

∫ T

0

∫

Rd
e−(t2H1+s2H2 )

|ξ |2
2 | ξ1 |k dξdtds.

123
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Integrating with respect to ξ , we find

E

[

α̂(k)(0)
]

= ck,d

∫ T

0

∫ T

0
(t2H1 + s2H2)−

(k+d)
2 dtds

for some constant ck,d ∈ (0,∞).
We are going to deal with the above integral. Assume first 0 < H1 ≤ H2 < 1.

Making substitution t = u
H2
H1 yields

I4 :=
∫ T

0

∫ T

0
(t2H1 + s2H2)−

(k+d)
2 dtds

=
∫ T

0

∫ T
H1
H2

0
(u2H2 + s2H2)−

k+d
2 u

H2
H1

−1
duds. (2.6)

Using polar coordinate u = r cos θ and s = r sin θ , where 0 ≤ θ ≤ π
2 and 0 ≤ r ≤ T

we have

I4 ≥
∫ π

2

0
(cos θ)

H2
H1

−1
(

cos2H2 θ + sin2H2 θ
)− (k+d)

2
dθ
∫ T

H1
H2

0
r
−(k+d)H2+ H2

H1 dr

(2.7)

since the planar domain

{

(r, θ), 0 ≤ r ≤ T ∧ T
H1
H2 , 0 ≤ θ ≤ π

2

}

is contained in the

planar domain

{

(s, u), 0 ≤ s ≤ T, 0 ≤ u ≤ T
H1
H2

}

. The integral with respect to r

appearing in (2.7) is finite only if −(k + d)H2 + H2
H1

> −1, namely only when
the condition (1.5) is satisfied. The case 0 < H2 ≤ H1 < 1 can be dealt similarly.
This completes the proof of our main theorem. 	


3 Appendix

In this section, we recall some known results that are used in this paper. The following
lemma is Lemma 8.1 of [1].

Lemma 1 Let X1, . . . , Xn be jointly mean zero Gaussian random variables, and let
Y1 = X1, Y2 = X2 − X1, . . . ,Yn = Xn − Xn−1. Then

Var

⎧

⎨

⎩

n
∑

j=1

v j Y j

⎫

⎬

⎭

≥ R
∏n

j=1 σ 2
j

1

n

n
∑

j=1

v2jσ
2
j ,
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where σ 2
j = Var(Y j ) and R is the determinant of the covariance matrix of {Xi , i =

1, . . . , n}, which is also given by the following product of conditional variances

R = Var(X1)Var(X2 | X1) . . .Var(Xn | X1, . . . , Xn−1).

The following lemma is from [4], Lemma A.1.

Lemma 2 Let (�,F , P) be a probability space and let F be a square integrable
random variable. Suppose that G1 ⊂ G2 are two σ -fields contained in F . Then

Var(F | G1) ≥ Var(F | G2).

The following is Lemma 7.1 of [10] applied to fractional Brownian motion.

Lemma 3 If (Bt , 0 ≤ t < ∞) is the fractional Brownian motion of Hurst H, then

Var(X (t)|X (s), |s − t | ≥ r) = cr2H .

Combining the above three lemmas we have the following

Proposition 1 Let (Bt , 0 ≤ t < ∞) be the fractional Brownian motion of Hurst H
and let 0 ≤ s1 < · · · < sn < ∞. Then there is a constant c independent of n such
that

Var
(

ξ1Bs1 + ξ2
(

Bs2 − Bs1

)+ · · · + ξn
(

Bsn − Bsn−1

) )

≥ cn
[

ξ21Var(Bs1) + ξ22Var
(

Bs2 − Bs1

)+ · · · + ξ2nVar
(

Bsn − Bsn−1

)

]

.

(3.1)

Proof Let Xi = Bsi − Bsi−1 (Bs−1 = 0 by convention). From Lemma 2 we see

Ri := Var(Xi | X1, . . . , Xi−1) ≥ Var(Bsi |Fsi−1)

≥ c|si − si−1|2H = cσ 2
i ,

where Ft = σ(Bs, s ≤ t). From the definition of R we see R ≥ cn
∏n

i=1 σ 2
i . The

proposition is proved by applying Lemma 1. 	

The following lemma is Lemma 4.5 of [5].

Lemma 4 Let α ∈ (−1 + ε, 1)m with ε > 0 and set | α |= ∑m
i=1 αi . Denote

Tm(t) = {(r1, r2, . . . , rm) ∈ R
m : 0 < r1 < · · · < rm < t}. Then there is a constant

κ such that

Jm(t, α) :=
∫

Tm (t)

m
∏

i=1

(ri − ri−1)
αi dr ≤ κmt |α|+m

�(| α | +m + 1)
,

where by convention, r0 = 0.
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