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1 Introduction and Main Result

Intersection local time or self-intersection local time when the two processes are the
same are important subjects in probability theory and their derivatives have received
much attention recently, see, e.g., [9,11-13]. Jung and Markowsky [6,7] discussed
Tanaka formula and occupation time formula for derivative self-intersection local
time of fractional Brownian motions. On the other hand, several authors paid attention
to the renormalized self-intersection local time of fractional Brownian motions, see,
e.g., Huetal. [3,4].

Motivated by Jung and Markowsky [6] and Hu [2], higher-order derivative of inter-
section local time for two independent fractional Brownian motions is studied in this
paper.

To state our main result we let B = (B! 1 > 0} and B¥2 = (B 1 > 0}
be two independent d-dimensional fractional Brownian motions of Hurst parameters
Hi, H, € (0, 1), respectively. This means that B! and B2 are independent centered
Gaussian processes with covariance

E[Bf‘ BtH‘] = (s”’l + 2 s~ |2H1)

1
2

(similar identity for B ). In this paper we concern with the derivatives of intersection
local time of B! and B2, defined by

ak T pT -
W) = / / 5 (B,H1 — B +x) drds,
dx; ...0x," Jo Jo

where k = (kq, ..., kg) is a multi-index with all k; being nonnegative integers and §
is the Dirac delta function of d-variables. In particular, we consider exclusively the
case when x = 0 in this work. Namely, we are studying

T T ~
a®(0) = / / 5 (Bf" — BI") ards, (1.1)
0 0

where §®) (x) = ﬁﬁ (x) is k-th order partial derivative of the Dirac delta
.Xl .X'd

function. Since §(x) = 0 when x # 0 the intersection local time @(0) (when k = 0)
measures the frequency that processes B! and B™2 intersect each other.

Since the Dirac delta function § is a generalized function, we need to give a meaning
to @ (0). To this end, we approximate the Dirac delta function 8§ by

1 _k2 1 inx el
fe(x) = e 2 = e'P*e” 2 dp, (1.2)
(27‘[8)% (27-[)d R4
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where and throughout this paper, we use px = Z?:l pjxjand |p|*> = Z?:l p?.
Thus, we approximate §%) by

ak ik el
(k) — - _ - ki ka ipx ,—EE
[ (x) = 8x]f1...8x§dfg(x)_ @) Adpl ...pyeteT " z0dp. (1.3)
We say that &) (0) exists (in L?) if
T ,T -
a®(0) = f / £ (B[" - BfZ) drds (1.4)
0 0

converges to a random variable (denoted by &®(0)) in L? when ¢ 0.
Here is the main result of this work.

Theorem 1 Let BH! and B™ be two independent d-dimensional fractional Brownian
motions of Hurst parameter Hy and Ha, respectively.

(1) Assume k = (ky,...,kq) is an index of nonnegative integers (meaning that
ki, ..., kq are nonnegative integers) satisfying
H\H»
— (k| +d) < 1, 1.5
H H2(| | +d) (1.5)

where |k| = ki + - - -+ kg. Then, the k-th order derivative intersection local time
a®(0) exists in L (2) for any p € [1, 00).

(i1) Assume condition (1.5) is satisfied. There is a strictly positive constant Cq i, T €
(0, 00) such that

=k |°

E|expyCak.T ‘a (O)) < 00,
where B = 21;1111_1"’1[1322 .

(iii) If&(k) ) e L! (), wherek = (0, ...,0,k;,0,...,0)withk; being even integer,
then condition (1.5) must be satisfied.

Remark 1 (i) When k = 0, we have that @©(0) is in L? for any p € [1,00) if
IZL_HéZ d < 1.1Inthe special case H] = H, = H, this condition becomes Hd < 2,
which is the condition obtained in Nualart et al. [8].

(i) When H) = H, = %, we have the exponential integrability exponent § = 2/d,
which implies an earlier result [2, Theorem 9.4].

(iii) Part (iii) of the theorem states that the inequality (1.5) is also anecessary condition

for the existence of &*) (0). This is the first time for such a statement.

2 Proof of the Theorem
Proof of Parts (i) and (ii). This section is devoted to the proof of the theorem. We

shall first find a good bound for E |52(k) (O)|" which gives a proof for (i) and (ii)
simultaneously. We introduce the following notations.
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k k .
pj=(Pij..... pdj)s p'}:(pl},...,pd‘}), j=12,...,n;

d n
p=Pis--s Pn) dp=1_[1_[dp,-j.

i=1j=1

We also denote s = (s1,...,8,), t = (11, 1), ds
dty ...dt,.

Fix an integer n > 1. Denote 7, = {0 < ¢, s < T}". We have

E[“S n] = (27:)nd /T /R”d

+ipa (B — B2

= ds;...ds, and dt =

E [exp fipi (BI = Bf®) + -

expi—= Z | pj 12 H | Pk | dpdrds

2

1 H nH>
= Gy ), Jo 52| e (8 - )

n n
>
e E | pj 12 l_[ | p’j‘. | dpdtds
j=1 j=1

(Qﬂ)”d/ fRndn l_[ | pul | exp{—_E [PABH”

j=1
.12 . .
+p,~nBXIZl"] — EE [pilBtI;Iz” 4t metIZIz,l] } dpdeds.

The expectations in the above exponent can be computed by

Sn

E [Pilel’i + -+ pin B l] = (pits-- s Pin) Q1(Pit. - - Pin) "

I Y
E [PilBSI]IZ’l + - +Pin352”] = (pit. s Pin) Q2(Pit, - .. pin)

where

H1 i pHi,i nHy iy Hp i
L= ( B ) and 0y =E (B. B )
Q ko )i<jksn Q 7Tk Ji<jksn

H
denote, respectively, covariance matrices of n-dimensional random vectors ( By, " i

H' ') and that of (BH”,. , sz) Thus, we have
]E[ot

9 e ey

d
|= #/T [ 5. s)drds, @1
mi=1

@ Springer



1194 J Theor Probab (2019) 32:1190-1201

where
ki 1 7
Li(s) = | [ exp—2xT(Q1 4 Qo) pdx.
Rll

ki

Here we recall x = (x1, ..., x,) and x?‘ =x; .. .x,];i. For each fixed i let us compute
integral [; (¢, s) first. Denote B = Q1 + Q». Then B is a strictly positive definite

matrix, and hence /B exists. Making substitution £ = ~/Bx. Then
" 1 1 1
Ii(1.5) =/ [T @B 26); exp{—— | € |2}det<B>—zdss.
R ] 2

To obtain a nice bound for the above integral, let us first diagonalize B:

B=0AQ7",

where A = diag{A, ..., A,} is a strictly positive diagonal matrix with A; < X»
- < Ag and Q = (¢ij)1<i,j<a is an orthogonal matrix. Hence, we have det(B)

A1 ...Aq. Denote
T _
77:(’717’727»7771) :Q lgv

Hence,

B 1t = QA 207 = 0A7VY,

1 1

2 2

A 1’71 q1,1 q12 -+ qia A 1771

_ Xy 21 |2y w22 o @ Ay 21
=0 =1 . . . )
1 1

)»n 27’]n qn,1 qn,2 qn,n )\n 27’]n.

Therefore, we have

" _1
> gy

k=1

| (B™28); | =

1
<MYl
k=1

1

[ 5 LV ) 2 1 1
< (D oan) (Do) =a T Inh=2r7 16,

Since both Q1 and Q> are positive definite, we see that

A= 21(Q1), and  Ap > A1(Q2),

where 11(Q;) is the smallest eigenvalue of Q;,7 = 1, 2. This means that

A= A1(01)P21(Q2)'7F forany p € [0, 1].
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This implies
-1 ~5p ~3(1-p)
[ (B728); = 21(Q1) 27 A1(Q2) 2 & 12 .

Consequently, we have
I(t, 5) = det(B) ™2, (Q1) " 27% 11 (Qy) 2Pk

) 1
/ & [ exp{—z K |2}ds, 22)
Rn

for any p € [0, 1].

Now we are going to find a lower bound for A1 (Q1) (A1(Q2) can be dealt with the
same way. We only need to replace s by ¢). Without loss of generality we can assume
0<s1 <8 < -+ < s, <T.From the definition of Q; we have for any vector
u=(ui, ...,ud)T,

uTQlu = Var (ullef] + ung‘ + -+ unBSI:‘)
= Var ((m +otu) B 4 ua + 4 uy) (sz’l -~ Bs’fl)
o (U1 Fup) (Bf;l'_l - B;"_z) + upn (BS[:‘ - BSI:‘_]»
Now we use Proposition 1 in “Appendix” to conclude
ul Quu > " ((Ml +-t “n)2512Hl + (2 + -+ ) (52 — 51)*M
o et 4 ) (a1 — sn-2)* 1) (s, — Snf])ZHl)
> ¢ min HSIZH', (52 —s)?M L G5y — spp) ]
) ) e )l

Consider the function

@, tg) = @+ A u)?+ Wt A )+ A g +un)? +u?
= (U1, u)Gur, ),
where
1
0
G =
000 - 1

It is easy to see that the matrix G’ G has a minimum eigenvalue independent of .
Thus, this function f attains its minimum value fni, independent of n on the sphere
u% + -+ u% = 1. It is also easy to see that fu,i, > O.
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As a consequence we have

Q1) = inf u” Qu

lul=1
> ¢" min {sfH], (s2 — s, o (sp — su)* } |Li¢1\1=fl fluy, ..., uy)
> " fmin min {s%Hl, (s2 = s (sn — sn_l)zHl}
> Ke"min {57, (52 = 502, (5 = s ] 2.3)

In a similar way we have
Q) = K min {1, (12 =)™, =) 24)

The integral in (2.2) can be bounded as

1
122=/ & [k eXP{—Elélz}dé
Rn
ki

k; 1 2
<n / max |sj|’exp{——|5| }ds
R 2

nd 1<j<n
kl n ‘. 1 5
<t [ Z|s,-|fexp{—§|5| }ds
R <
j=1
L) ki |
<n2 &1 17 expi—5 1§17 dé
Rr 2
< p o+ o <cn. (2.5)
Substitute (2.3)-(2.5) into (2.2) we obtain

Ii(t,s) < Cndet(B)—% n;lin (sj — ;1) PHki

o

J
. Irllin (fj _ tj_l)—(l—p)szi
=1,..,n

for possibly a different constant C, independent of n.
Next we obtain a lower bound for det(B). According to [2, Lemma 9.4]

det(Q1 + Q2) > det(Q1)"det(Q2)' 77,

for any two symmetric positive definite matrices Q1 and Q> and for any y € [0, 1].
Now it is well known that (see also the usages in [2—4]).

det(Q1) =C"s™M (s — s)?M1 - (5 — 5,12
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and
det(Q2) = C"i7™2 (1 — )2 o (1, — 1, 1) 2.

As a consequence, we have

Li(t,s) < C" min (s; —sj_1) PHk _min_ (1 —tj_p) " UmP ki
n Jj=1,...n

,,,,,

[s162 = 51) - (sn = 500 " [ = 11) ooty — 1) ]

Thus,

E [’aék)(o)‘n] < (n!)2C”/ _nllin (sj — sj_l)—PHl\kI
= n

p —(1—p)Ha |k —yHid
min (1 — 1) P 51652 = s1) G = s
n

—(1—y)Had
[t — 1) .oty — ti—1)] U= 445

n
<@mH*cr > /Z(Si — si—1) P
A

i,j=1Y"%n

,,,,,

. —yHid
(tj — 1;- )" TP [y (55 —s1) o (sp = su)]

—(I—y)Had
[t — 1) .ty — ta—)] U=t g4,

where A, = {0 <s] <--- <, < T} denotes the simplex in [0, T]". We choose
to obtain

N ¢ )
P=Y = H+m

n
n
]EH&S‘)(O)‘ ] <)*C" Y Bils,
ij=1
where

_ H{Hy ‘k‘ _ HyHy d
L= | (—tj-) TR 1t — 1) ... (th — tn—)] 72 d1,
Ap

By Lemma 4.5 of [5], we see that if

i (k| +d) <1
Hy+ H -
then

« n_Hle\k\
C"'T 1 H\+H,)

r (n/q — If'féz k| + l)

I; <
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where

dH| H»

Ki=1— ——.
Hy + H,

Substituting this bound we obtain

|

2H) Hy k|
2k1n— H +Hy

a® 0] = n?myer

re (n/q — Hf,lfgz |k| + 1)

2H| Hylk|
Tz"l"_ H +H,

< (nh*c"

2
(rmer = 42281k + 1)

< CT (n!)Z—ZKl ch TZKI",

where C is a constant independent of 7" and n and Cr is a constant independent of n.
For any 8 > 0, the above inequality implies

E Ua@ (0)‘"’1 < Cp(n)P@-20 cnp2prin

From this bound we conclude that there exists a constant C4, 7 x > O such that
—~ B . . np
E [exp {Cd re[g0 ) H =Y LR[00
o n!
n=0
o0

S CT Z C(I}’T’k(n!)ﬂ(zle{l)flCnTzﬂKln < 00,
n=0

when Cy 7 is sufficiently small (but strictly positive), where 8 = 21311; Zzz . O

Proof of part (iii). Without loss of generality, we consider only the case k =
(k1,0,...,0) and we denote k; by k. By the definition of k-order derivative local
time of independent d-dimensional fractional Brownian motions, we have

1 T T ) H ~H- elgl?
E[&§k><0>]= f f / E |8 =B | =5 | g [k dedrds
@em)d Jo Jo Jra

T T
N (21)3/ f f eI g dards.
T 0 0 R4

Thus, we have

1 T T 2H| | 2H 5
5 (k) — — (" 45772) k
E [oz (O)] = 2y /(; /(; /]I;d e 2 | & |* dédreds.
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Integrating with respect to &, we find

T T .
E[&(")(O)] = Cra f / M 4 2y =52 g4
0 0

for some constant ¢ 4 € (0, 00).

We are going to deal with the above integral. Assume first 0 < H; < Hy < 1.
H:

Ha
Making substitution ¢ = u 1 yields

T T
I :=/ / @2 4 §2H) =52 414
0 0
THiZ Hy
=// @ g 2Hy =50 s (2.6)
0 0

Using polar coordinate u = r cos and s = rsinf, where0 <6 < Fand0 <r <T
we have

H
2 %—1 2H, - 2H, _@ T —(k+d)H2+H
Iy > (cosO) ™ (cos 0 + sin 0) do 1dr
0 0
2.7
since the planar domain {(r 0),0<r<TAT ”2 ,0<6 < } is contained in the

Hy
planar domain {(s, u),0<s<T,0<u<Th } The integral with respect to r

appearing in (2.7) is finite only if —(k + d)H> + % > —1, namely only when

the condition (1.5) is satisfied. The case 0 < Hy < H; < 1 can be dealt similarly.
This completes the proof of our main theorem. O

3 Appendix

In this section, we recall some known results that are used in this paper. The following
lemma is Lemma 8.1 of [1].

Lemma 1 Let Xy, ..., X, be jointly mean zero Gaussian random variables, and let
n=Xi, h=X,—Xy,....Y, =X, — X;,_1. Then
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where sz = Var(Y;) and R is the determinant of the covariance matrix of {X;,i =
1, ..., n}, which is also given by the following product of conditional variances

R = Var(X1)Var(Xa | X1)...Var(X, | X1, ..., Xn_1).

The following lemma is from [4], Lemma A.1.

Lemma 2 Let (2, F, P) be a probability space and let F be a square integrable
random variable. Suppose that Gy C G, are two o -fields contained in F. Then

Var(F | G1) = Var(F | G2).

The following is Lemma 7.1 of [10] applied to fractional Brownian motion.

Lemma 3 If (B;,0 <t < 00) is the fractional Brownian motion of Hurst H, then
Var(X ()X (s), |s —t] > r) = cr?H.

Combining the above three lemmas we have the following

Proposition 1 Ler (B;,0 <t < o0) be the fractional Brownian motion of Hurst H
andlet) < 51 < --- < sy < 00. Then there is a constant ¢ independent of n such
that

Var(gl By, + & (Bsz - le) +--+ & (Bs,, - Bsn_l))
> " [Slear(Bﬂ) +&2Var (By, — By) + -+ + £2Var (By, — BSH)] .
G.1)

Proof Let X; = By, — By, | (Bs;_, = 0 by convention). From Lemma 2 we see

R; = Var(X; | X1,..., Xi—1) = Var(By|F,_,)

> clsi —sim1 P = CU,-Z,

where F; = o(Bs, s < t). From the definition of R we see R > " []/_, al.z. The
proposition is proved by applying Lemma 1. O

The following lemma is Lemma 4.5 of [5].

Lemmad Let o« € (=1 + ¢, )" with e > 0 and set | « |= Y ., ;. Denote
T.(t) ={(r1,ra,...,71m) eR":0<ry <--- <ry <t}. Then there is a constant
K such that

m KmtlozH—m
Intayi= [ o =rnonar = o5
" mﬂ C F(la|+m+1)

where by convention, ro = 0.
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