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Abstract We consider a method of obtaining non-closed solutions of the first and
second Kolmogorov equations for the exponential (double) generating function of
transition probabilities for quadratic death-processes of one, two and three dimensions.
We obtain a representation for the generating function of transition probabilities in
the form of a Fourier series, using generalized hypergeometric functions and Jacobi
polynomials.
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1 Introduction

Ananalyticalmethod for the study ofMarkov processeswith a finite or countable states
is based on consideration of the first (backward) and the second (forward) Kolmogorov
systems of differential equations for transition probabilities [1,10]. There are few cases
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in which an explicit solution can be found: the solutions are known for simple death-
process, pure birth-process, birth and death process of linear or Poisson type (see the
survey [12], Chap. 2, § 2.1.1), branching processes ([22], Chap. 1, § 8), and some of
their modifications.

Different methods have been considered for simple death-process equations, for
instance, in [4,10], etc, operational calculus has been used. The expressions for tran-
sition probabilities are cumbersome [10] and of little use for the study of asymptotic
properties of the random process.

Under special conditions on the Markov process, the second system of differential
equations can be combined into a partial differential equation for generating function
of transition probabilities [12]. In the case of a first-order equation,we have theMarkov
branching process [2,22].

Researching into Markov death-process of quadric type with the equation of the
second order was begun in [19], see also [5,6]. The method of separating variables
was used for the Kolmogorov second equation, and it obtained an expansion for the
function of transition probabilities into Fourier series with two separated variables in
which eigenfunctions are the Gegenbauer polynomials [19].

By the same method Letessier and Valent (see [16,24], the survey [17], etc) found
solutions for equations of second, third and fourth orders in the form of a Fourier
series of special functions. In papers [16,17], etc, spectrums and eigenfunctions were
obtained for some birth and death processes of quadratic, cubic and quartic types.
For the second equation of Kolmogorov, the authors build a series with more and
more complicated functions, when the equation for eigenfunction belong to the class
of hypergeometric equations (the Fuchs equation of second order with three singular
points) or is generalized a hypergeometric equation.

In [24] for the birth and death processes of quadratic type, the second equation
is solved in the form of a Fourier series with eigenvalues are expressed by elliptic
integral, and the equation for eigenfunction belongs to the class of Heun equations
(the Fuchs equation of the second order with four singular points, see [8], Chap. 15,
§ 3).

Numeric coefficients in [16,19,24], etc.,were expressed by integral formulas,which
are standard for the Fourier series theory, and remained uncalculated in many cases.
According to the series for transiting probabilities, any opportunity to make some
statements about asymptotic properties in considering Markov processes is unclear.
A construction of non-closed solutions of Kolmogorov equations is connected with
the spectrum-obtaining problem for these equations [15,17]. Examples of solutions
given in [16,17,19,24], etc, have a discrete spectrum; the construction of examples of
explicit solutions in the case of continuous spectrum is more challenging [1,15].

In the present paper, the development of separating variables method owed to Kol-
mogorov equations is based on the introduction of an exponential generating function
for transition probabilities [12] which allow combination of the first system of differ-
ential equations into the partial differential equation. At the same time using for first
and second equations, the Fourier method gives a series with three separated variables,
and coefficients are calculated by comparison with the exponent expansion known in
the special functions theory.
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We provide examples of the method used for equations of the quadratic death-
process on N , N 2 and N 3. The established series includes the generalized hypergeo-
metric functions and the Jacobi polynomials. In the last part of the paper, we discuss
potential transition from the non-closed solution of the first and second equations to
the integral represented solution.

2 Generalized Markov Death-Process of Quadratic Type

We consider a time-homogeneous Markov process

ξt , t ∈ [0,∞),

on the set of states

N = {0, 1, 2, . . .}

with transition probabilities

Pi j (t) = P{ξt = j | ξ0 = i}, i, j ∈ N .

Let us suppose that the transition probabilities have the following form as t → 0+
(λ ≥ 0, μ ≥ 0)

Pi,i−2(t) = p0i(i − 1)λt + o (t),

Pi,i−1(t) = (p1i(i − 1)λ + iμ)t + o (t),

Pii (t) = 1 − (i(i − 1)λ + iμ)t + o (t),

Pi j (t) = o (t), j �= i − 2, i − 1, i, (1)

where p0 ≥ 0, p1 ≥ 0, p0 + p1 = 1.
Let us introduce the generating functions of the trasition probabilities (|s| ≤ 1)

Fi (t; s) =
∞∑

j=0

Pi j (t)s
j , i ∈ N .

The second system of Kolmogorov differential equations for the transition proba-
bilities of the process ξt is equivalent to the partial differential equation [12]

∂Fi (t; s)
∂t

= λ
(
p0 + p1s − s2

)∂2Fi (t; s)
∂s2

+ μ(1 − s)
∂Fi (t; s)

∂s
, (2)

with initial condition Fi (0; s) = si .
Possible jumps for stochastic process ξt are shown in Fig. 1. The Markov process

stays at the initial state i during a random time τi with distribution P{τi ≤ t} =
1 − e−(i(i−1)λ+iμ)t . Then the process passes into the state i − 1 with the probability
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absorbing
state

0 1 2 i − 1 i

Fig. 1 Jumps for the generalized death-process

(p1i(i − 1)λ + iμ)/(i(i − 1)λ + iμ) or into the state i − 2 with the probability
p0i(i − 1)λ/(i(i − 1)λ + iμ), and so on. The state 0 is absorbing. Markov process
ξt is interpreted as a model of bimolecular chemistry reaction with kinetic scheme
2T → 0, T ; T → 0 [5,12,19].

Let F(t; z; s) be the exponential (double) generating function

F(t; z; s) =
∞∑

i=0

zi

i ! Fi (t; s) =
∞∑

i=0

∞∑

j=0

zi

i ! Pi j (t)s
j . (3)

The function F(t; z; s) is analytic in the domain |z| < ∞, |s| < 1.
The first (backward) and the second (forward) systems of Kolmogorov differential

equations for the transition probabilities for the considered Markov process have the
form [12]

∂F
∂t

= λz2
(
p0F + p1

∂F
∂z

− ∂2F
∂z2

)
+ μz

(
F − ∂F

∂z

)
, (4)

∂F
∂t

= λ
(
p0 + p1s − s2

)∂2F
∂s2

+ μ(1 − s)
∂F
∂s

, (5)

with initial condition F(0; z; s) = ezs . The linear equations in partial derivatives of
the second order (4), (5) are solving by separating variables method.

Furthermore, we need some special functions (see [7,8,14,21], etc). The confluent
hypergeometric function is defined by the series (b �= 0,− 1,− 2, . . .)

1F1(a; b; z) = 1 +
∞∑

k=1

a(a + 1) . . . (a + k − 1)zk

b(b + 1) . . . (b + k − 1)k! (6)

and it satisfies the confluent hypergeometric equation

zy′′ + (b − z)y′ − ay = 0. (7)

The function (6) is analytic on the complex plane; at some values of the parameters,
it can be expressed by the modified Bessel function ([21], Formula 7.11.1.5)

1F1(a; 2a; z) = �
(
a + 1

2

) ( z
4

)1/2−a
ez/2 Ia−1/2

( z
2

)
,

where �(a) is the gamma function.
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The Jacobi polynomial of n-th order is defined by the formula ([7], § 10.8)

P(α,β)
n (x) =

n∑

k=0

(α + n − k + 1) . . . (α + n)(β + k + 1) . . . (β + n)

2nk!(n − k)!
× (x + 1)k(x − 1)n−k,

n = 0, 1, . . . , and it is the unique polynomial solution of the differential (hypergeo-
metric) equation

(1 − x2)y′′ + (β − α − (α + β + 2)x) y′ + n(n + α + β + 1)y = 0. (8)

The following exponent extension is needed for the sequel [[7], § 10.20, For-
mula (4)]

ezx =
∞∑

n=0

�(n + α + β + 1)

�(2n + α + β + 1)
(2z)ne−z

1F1(n+β +1; 2n+α+β +2; 2z)P(α,β)
n (x).

(9)

Theorem 1 For the Markov process ξ(t) on the set of states N under conditions (1)
the double generating function of transition probabilities is as follows (λ > 0,μ ≥ 0)

F(t; z; s) =
∞∑

n=0

�(n − 1 + μ/λ)

�(2n − 1 + μ/λ)

× ((1 + p0)z)
ne−p0z

1F1 (n + μ/λ; 2n + μ/λ; (1 + p0)z)

× P(−1,μ/λ−1)
n

(
2s − 1 + p0

1 + p0

)
e−(n(n−1)λ+nμ)t , (10)

where �(a) is the gamma function, 1F1(a, b; z) is the confluent hypergeometric func-
tion, P(−1,β)

n (x) are the Jacobi polynomials.

Proof We look for the solution of the system of Eqs. (4), (5) in a form of the series
with three separating variables (|s| < 1)

F(t; z; s) =
∞∑

n=0

AnC̃n(z)Cn(s)e
−λn t . (11)

After substitution (11) into (4) and (5), we get the following equations for the functions
C̃n(z) and Cn(s):

λz2
(
p0C̃n(z) + p1C̃

′
n(z) − C̃ ′′

n (z)
) + μz

(
C̃n(z) − C̃ ′

n(z)
) + λnC̃n(z) = 0; (12)

λ
(
p0 + p1s − s2

)
C ′′
n (s) + μ(1 − s)C ′

n(s) + λnCn(s) = 0, n = 0, 1, . . . . (13)
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The differential equations (2) and (13) was investigated in [19] under conditions
μ = 0, and p0 = 0 or p0 = 1. Following [19] we can establish that the Eq. (13)
gets the additional boundary condition ‘Cn(s) is polynomial’. Then, the sequence of
‘eigenvalues’ λn = n(n − 1)λ + nμ, n = 0, 1, . . . (cf. [14], Vol. II, Chap. 3, § 9.7).
Substituting x = (2s−1+ p0)/(1+ p0) in (13) and denotingCn(s) = y(x)we obtain
the following equation of type (8),

(1 − x2)y′′ +
(μ

λ
− μ

λ
x
)
y′ + n

(
n − 1 + μ

λ

)
y = 0.

Consequently, each λn has the corresponding ‘eigenfunction’

Cn(s) = P(−1,μ/λ−1)
n

(
2s − 1 + p0

1 + p0

)
,

where

P(−1,μ/λ−1)
n (x) =

n∑

k=0

(n − k) . . . (n − 1) (μ/λ + k) . . . (μ/λ + n − 1)

2nk!(n − k)!
× (x + 1)k(x − 1)n−k . (14)

The Eq. (12) takes the form

λz2
(
p0C̃n(z) + p1C̃

′
n(z) − C̃ ′′

n (z)
) + μz

(
C̃n(z) − C̃ ′

n(z)
)

+ (n(n − 1)λ + nμ)C̃n(z) = 0,

it is to be the reduced form of the confluent hypergeometric equation (7) ([14], cf.
2.273(6) at a = −p1, b = μ/λ, α = −p0, β = −μ/λ, γ = −n(n − 1) − nμ/λ ).
According to the generation function properties, we are looking an analytic for all z1,
z2 solution; following [14], we get

C̃n(z) = ((1 + p0)z)
n e−p0z

1F1(n + μ/λ; 2n + μ/λ; (1 + p0)z),

where 1F1(a; b; z) is the confluent hypergeometric function.
Hence, the seeking series (11) is

F(t; z; s) =
∞∑

n=0

An ((1 + p0)z)
n e−p0z

1F1 (n + μ/λ; 2n + μ/λ; (1 + p0)z)

× P(−1,μ/λ−1)
n

(
2s − 1 + p0

1 + p0

)
e−(n(n−1)λ+nμ)t .
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The values An are obtained by comparing the initial conditions F(0; z; s) = ezs and
the exponent expanding [see (9)]

ezs =
∞∑

n=0

�(n−1+μ/λ)

�(2n−1+μ/λ)
((1+p0)z)

n e−p0z
1F1(n + μ/λ; 2n + μ/λ; (1 + p0)z)

× P(−1,μ/λ−1)
n

(
2s − 1 + p0

1 + p0

)
. (15)

We get

An = �(n − 1 + μ/λ)

�(2n − 1 + μ/λ)

and the formula (10). Convergence of the series (10) for all z, s and t ∈ [0,∞) follows
from the convergence of expansion (15). 
�

If t = 0, then the formula (10) is to be the expansion of the exponent ezs into series.
Ifμ > 0, p0 = 1, then we have the expansion into Jacobi polynomial series. Ifμ = 0,
p0 = 1, then we have the Sonine expansion [[7], § 7.10.1, Formula (5)].

By (6) we get 1F1(μ/λ;μ/λ; z) = ez = 1 + z + z2/2 + · · · , 1F1(1 + μ/λ; 2 +
μ/λ; z) = 1 + ((1 + μ/λ)/(2 + μ/λ))z + · · · , 1F1(2 + μ/λ; 4 + μ/λ; z) =
1 + · · · , by (14) we get P(−1,μ/λ−1)

0 (x) = 1, P(−1,μ/λ−1)
1 (x) = (μ/(2λ))(x − 1),

P(−1,μ/λ−1)
2 (x) = ((1 + μ/λ)/8)[(2 + μ/λ)x2 − (2μ/λ)x − 2 + μ/λ]. Substitut-

ing this expressions for (10) and equating the coefficients in the equal powers of
1, z, zs, z2, z2s, z2s2 to one another with (3), we obtain the transitions probabilities

P00(t) = 1; P10(t) = 1 − e−μt , P11(t) = e−μt ;
P20(t) = 1 − 2

[
1 + μ/λ

2 + μ/λ
(1 + p0) − p0

]
e−μt

+ 1

4

[−2 + μ/λ

2 + μ/λ
(1 + p0)

2

− 2μ/λ

2 + μ/λ
(−1 + p20) + (−1 + p0)

2
]
e−(2λ+2μ)t ,

P21(t) = 2

[
1 + μ/λ

2 + μ/λ
(1 + p0) − p0

]
e−μt

−
[

μ/λ

2 + μ/λ
(1 + p0) + 1 − p0

]
e−(2λ+2μ)t ,

P22(t) = e−(2λ+2μ)t .

This formulas for Pi j (t) may be obtained by direct solution of the system of Kol-
mogorov differential equations [10] for the considering generalized death-process.
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3 Quadratic Death-Process of Second Dimension

We consider a time-homogeneous Markov process

ξ(t) = (ξ1(t), ξ2(t)), t ∈ [0,∞),

on the set of states

N 2 = {(α1, α2), α1, α2 = 0, 1, . . .},

with transition probabilities

P(α1,α2)
(β1,β2)

(t) = P {ξ(t) = (β1, β2) | ξ(0) = (α1, α2)}

of the following form as t → 0+ (λ > 0)

P(α1,α2)
(α1−1,α2−1)(t) = p00α1α2λt + o (t),

P(α1,α2)
(α1,α2−1)(t) = p10α1α2λt + o (t),

P(α1,α2)
(α1−1,α2)

(t) = p01α1α2λt + o (t),

P(α1,α2)
(α1,α2)

(t) = 1 − α1α2λt + o (t), (16)

where p00 ≥ 0, p10 ≥ 0, p01 ≥ 0, p00+ p10+ p01 = 1. Using the generating function
(|s1| ≤ 1, |s2| ≤ 1)

F(α1,α2)(t; s1, s2) =
∞∑

β1,β2=0

P(α1,α2)
(β1,β2)

(t)sβ1
1 sβ2

2 , (α1, α2) ∈ N 2,

we can reduce the second system of differential equations for the transition probabil-
ities of the Markov process (ξ1(t), ξ2(t)) to the partial differential equation [12]

∂F(α1,α2)(t; s1, s2)
∂t

= λ(p00 + p10s1 + p01s2 − s1s2)
∂2F(α1,α2)(t; s1, s2)

∂s1∂s2
,

with initial condition F(α1,α2)(0; s1, s2) = sα1
1 sα2

2 .
In Fig. 2 we show an example of the realization of a process (ξ1(t), ξ2(t)).

The Markov process stays in its initial state (α1, α2) for random time τ(α1,α2) with
P{τ(α1,α2) ≤ t} = 1−e−α1α2λt . Then,with the probability p10, the process passes to the
state (α1, α2−1), with the probability p00 the process passes to the state (α1−1, α2−1)
or with the probability p01 the process passes to the state (α1 − 1, α2). The further
evolution of the process is similar. The states {(γ1, 0), (0, γ2), γ1, γ2 = 0, 1, 2, . . .}
are absorbing. For the process (ξ1(t), ξ2(t)) ‘embedded Markov chain’ is a random
walk on N 2.

123



J Theor Probab (2019) 32:163–182 171

Fig. 2 Realization of a
two-dimensional death-process (α1, α2)

(0, γ2)

The Markov process (ξ1(t), ξ2(t)) is a model of a population with male individuals
and female individuals [11]. The state (α1, α2) is interpreted as the existence of a group
α1 of particles of type T1 and α2 particles of type T2; in a random time there is an
interaction of a pairs of particles, which are transformed into new groups of particles.
The main assumptions of the model are as follows: any pair of individuals T1 + T2
in the population generates descendants independently of the others; the frequency of
acts of generation of new individuals is proportional both to the number of individuals
of type T1 and to the number of individuals of type T2.

Using the exponential generating function

F(t; z1, z2; s1, s2) =
∞∑

α1,α2=0

zα11 zα22
α1!α2! F(α1,α2)(t; s1, s2)

we can reduce the first and the second system of differential equations for the transition
probabilities of the Markov process to the form of partial differential equations [12]

∂F
∂t

= λz1z2

(
p00F + p10

∂F
∂z1

+ p01
∂F
∂z2

− ∂2F
∂z1∂z2

)
, (17)

∂F
∂t

= λ (p00 + p10s1 + p01s2 − s1s2)
∂2F

∂s1∂s2
, (18)

with initial condition F(0; z1, z2; s1, s2) = ez1s1+z2s2 .
The generalized hypergeometric function is defined by the series

0F1(b; z) = 1 +
∞∑

k=1

zk

b(b + 1) . . . (b + k − 1)k! ; (19)

0F1(b; z) is a solution of the equation

zy′′ + by′ − y = 0.

123



172 J Theor Probab (2019) 32:163–182

The function (19) can be expressed by the modified Bessel function ([21], Formula
7.13.1.1),

0F1(b; z) = �(b)z(1−b)/2 Ib−1(2
√
z).

Theorem 2 Let a Markov process on the state space N 2 be given by the densities of
transition probabilities (16). The double generating function of the transitions prob-
abilities is (p10 < 1, p01 < 1)

F(t; z1, z2; s1, s2) = ep01z1+p10z2
∞∑

α1,α2=0

α1 + α2

max(α1, α2)

((1 − p01)z1)α1((1 − p10)z2)α2

(α1 + α2)!
× 0F1(α1 + α2 + 1; (1 − p01)(1 − p10)z1z2)

×
(
sσ − pσ

1 − pσ

)|α1−α2|
P(−1,|α1−α2|)
min(α1,α2)

(
2
s1 − p01
1 − p01

s2 − p10
1 − p10

− 1

)

× e−α1α2λt , (20)

where 0F1(b; z) is the generalized hypergeometric function, P(−1,β)
n (x) are the Jacobi

polynomials; ifα1 ≥ α2, then sσ = s1, pσ = p01; ifα1 < α2, then sσ = s2, pσ = p10;
if α1 = 0, α2 = 0 then the expression (α1 + α2)/max(α1, α2) is to be equal to 1.

Proof Consider the equation in partial derivatives (17), (18). We are looking for the
solution in a form of the series (|s1| < 1, |s2| < 1)

F(t; z1, z2; s1, s2) =
∞∑

α1,α2=0

Aα1α2 C̃α1α2(z1, z2)Cα1α2(s1, s2)e
−λα1α2 t . (21)

Substituting (21) in (17) and (18), we get the equations for the functions C̃α1α2(z1, z2)
and Cα1α2(s1, s2):

λz1z2

(
p00C̃α1α2 + p10

∂C̃α1α2

∂z1
+ p01

∂C̃α1α2

∂z2
− ∂2C̃α1α2

∂z1∂z2

)
+ λα1α2 C̃α1α2 = 0;

(22)

λ(p00 + p10s1 + p01s2 − s1s2)
∂2Cα1α2

∂s1∂s2
+ λα1α2Cα1α2 = 0; α1, α2 = 0, 1, . . . .

(23)

From the assumptions given on the jumps of the process ξ(t), it follows that for
the Eq. (23) boundary condition ‘Cα1α2(s1, s2) is polynomial’. Then the sequence
‘eigenvalues’ λα1α2 = α1α2λ, α1, α2 = 0, 1, . . . , and from (23) it is not difficult to
obtain the corresponding ‘eigenfunction’

Cα1α2(s1, s2) =
(
sσ − pσ

1 − pσ

)|α1−α2|
P(−1,|α1−α2|)
min(α1,α2)

(
2
s1 − p01
1 − p01

s2 − p10
1 − p10

− 1

)
,
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where P(−1,β)
n (x) are Jacobi polynomials; sσ = s1, pσ = p01, if α1 ≥ α2 and sσ = s2,

pσ = p10, if α1 < α2.
Hence, the Eq. (22) has the form

z1z2

(
p00C̃α1α2 + p10

∂C̃α1α2

∂z1
+ p01

∂C̃α1α2

∂z2
− ∂2C̃α1α2

∂z1∂z2

)
+ α1α2C̃α1α2 = 0.

By the definition of the function F(t; z1, z2; s1, s2), it follows that the solution must
be analytic for all z1, z2, hence

C̃α1α2(z1, z2) = ((1 − p01)z1)
α1((1 − p10)z2)

α2ep01z1+p10z2

× 0F1(α1 + α2 + 1; (1 − p01)(1 − p10)z1z2),

where 0F1(b; z) is generalized hypergeometric function.
Aimed to get the values Aα1α2 let us consider the exponent ez1s1+z2s2 expansion.

From generalized hypergeometric function series (19), we obtain the equality

ez1+z2 = 0F1(1; z1z2) +
∞∑

k=1

( zk1
k! + zk2

k!
)
0F1(k + 1; z1z2). (24)

Considered special functions satisfies the formulas ([21], Formula 6.8.3.13):

0F1(1; zs) = 0F1(1; z) + 2
∞∑

l=1

zl

(2l)! 0F1(2l + 1; z)P(−1,0)
l (2s − 1); (25)

1

k! 0F1(k + 1; zs) =
∞∑

l=0

zl

(2l + k − 1)!(l + k)
0F1(2l + k + 1; z)P(−1,k)

l (2s − 1),

(26)

k = 1, 2, . . . Using (24), (25) and (26), we get the sequence of equalities

ez1s1+z2s2 = ep01z1+p10z2ez1(s1−p01)+z2(s2−p10)

= ep01z1+p10z2
{
0F1

(
1; (1 − p01)(1 − p10)z1z2

( s1 − p01
1 − p01

)( s2 − p10
1 − p10

))

+
∞∑

k=1

[
((1 − p01)z1)k

k!
( s1 − p01
1 − p01

)k + ((1 − p10)z2)k

k!
( s2 − p10
1 − p10

)k]

× 0F1
(
k + 1; (1 − p01)(1 − p10)z1z2

( s1 − p01
1 − p01

)( s2 − p10
1 − p10

))}

= ep01z1+p10z2
{
0F1(1; (1 − p01)(1 − p10)z1z2)

+ 2
∞∑

α1=1

((1 − p01)z1)α1((1 − p10)z2)α1

(2α1)!
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× 0F1(2α1 + 1; (1 − p01)(1 − p10)z1z2)

× P(−1,0)
α1

(
2
s1 − p01
1 − p01

s2 − p10
1 − p10

− 1

)

+
∞∑

k=1

∞∑

α2=0

((1 − p01)z1)α2+k((1 − p10)z2)α2

(2α2 + k − 1)!(α2 + k)

× 0F1(2α2 + k + 1; (1 − p01)(1 − p10)z1z2)

×
( s1 − p01
1 − p01

)k
P(−1,k)

α2

(
2
s1 − p01
1 − p01

s2 − p10
1 − p10

− 1
)

+
∞∑

k=1

∞∑

α1=0

((1 − p01)z1)α1((1 − p10)z2)α1+k

(2α1 + k − 1)!(α1 + k)

× 0F1(2α1 + k + 1; (1 − p01)(1 − p10)z1z2)

×
( s2 − p10
1 − p10

)k
P(−1,k)

α1

(
2
s1 − p01
1 − p01

s2 − p10
1 − p10

− 1
)}

. (27)

Comparing the series (21) at t = 0 with the exponent extension (27), we obtain

A00 = 1,

Aα1α2 = 1

α1(α1 + α2 − 1)! , α1 ≥ α2,

Aα1α2 = 1

α2(α1 + α2 − 1)! , α1 < α2;

we have the solution (20) of the system (17), (18). Absolute convergence of the
series (20) for all z1, z2, s1, s2 and t ∈ [0,∞) follows from (27). 
�

Now we shall give formulas for P(α1,α2)
(β1,β2)

(t) with initial conditions α1, α2, β1, β2.
Using (19), we have 0F1(1; z) = 1 + z + · · · , 0F1(2; z) = 1 + z/2 + · · · ,

0F1(3; z) = 1 + · · · , 0F1(4; z) = 1 + · · · , by (14) we obtain P(−1,0)
0 (x) = 1,

P(−1,1)
0 (x) = 1, P(−1,0)

1 (x) = (1/2)(x − 1), P(−1,1)
1 (x) = x − 1. Substituting

this in (20), using the extension ep01z1+p10z2 = 1 + p01z1 + p10z2 + p201z
2
1/2 +

p01 p10z1z2 + p210z
2
2/2+ · · · , and equaling the coefficients at corresponding degrees

1, z1, z1s1, z2, z2s2, . . . , z1z22s
2
2 , z1z

2
2s1s

2
2 in the obtaining series and the double gen-

erating function of transitions probabilities, we have

P(0,0)
(0,0) (t) = 1;

P(1,0)
(0,0) (t) = 0, P(1,0)

(1,0) (t) = 1, P(0,1)
(0,0) (t) = 0, P(0,1)

(0,1) (t) = 1;
P(1,1)

(0,0) (t) = p00(1 − e−λt ), P(1,1)
(1,0) (t) = p10(1 − e−λt ),

P(1,1)
(0,1) (t) = p01(1 − e−λt ), P(1,1)

(1,1) (t) = e−λt ;
P(0,2)

(0,0) (t) = 0, P(0,2)
(0,1) (t) = 0, P(0,2)

(0,2) (t) = 1;
P(1,2)

(0,0) (t) = p00 p10(1 − 2e−λt + e−2λt ), P(1,2)
(1,0) (t) = p210(1 − 2e−λt + e−2λt ),
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P(1,2)
(0,1) (t) = p00 + p10 p01 − 2p10 p01e

−λt − (p00 − p10 p01)e
−2λt ,

P(1,2)
(1,1) (t) = 2p10(e

−λt − e−2λt ), P(1,2)
(0,2) (t) = p01(1 − e−2λt ), P(1,2)

(1,2) (t) = e−2λt .

4 Probabilistic Model of Bimolecular Reaction

We consider a time-homogeneous Markov process

ξ(t) = (ξ1(t), ξ2(t), ξ3(t)), t ∈ [0,∞),

on the set of states

N 3 = {(α1, α2, α3), α1, α2, α3 = 0, 1, . . .},

Let us suppose that the transition probabilities

P(α1,α2,α3)
(β1,β2,β3)

(t) = P{ξ(t) = (β1, β2, β3) | ξ(0) = (α1, α2, α3)}

have the following form as t → 0+ (λ > 0)

P(α1,α2,α3)
(α1−1,α2−1,α3+1)(t) = α1α2λt + o (t),

P(α1,α2,α3)
(α1,α2,α3)

(t) = 1 − α1α2λt + o (t). (28)

The second equation for the generating function of the transition probabilities
(|s1| ≤ 1, |s2| ≤ 1, |s3| ≤ 1)

F(α1,α2,α3)(t; s1, s2, s3) =
∞∑

β1,β2,β3=0

P(α1,α2,α3)
(β1,β2,β3)

(t)sβ1
1 sβ2

2 sβ3
3 ,

is
∂F(α1,α2,α3)(t; s1, s2, s3)

∂t
= λ(s3 − s1s2)

∂2F(α1,α2,α3)(t; s1, s2, s3)
∂s1∂s2

, (29)

with initial condition F(α1,α2,α3)(0; s1, s2, s3) = sα1
1 sα2

2 sα3
3 .

The process stays in the state (α1, α2, α3) for a random time τ(α1,α2,α3),
P{τ(α1,α2,α3) ≤ t} = 1−e−α1α2λt , and then it passes to the state (α1−1, α2−1, α3+1).
Realization of a process (ξ1(t), ξ2(t), ξ3(t)) with initial state (α1, α2, 0), is shown in
the Fig. 3. If α1 ≥ α2, then the process stops at the absorbing state (α1 − α2, 0, α2),
and if α2 ≥ α1, then it stops at (0, α2 − α1, α1).

The Markov process (ξ1(t), ξ2(t), ξ3(t)) is to be the model for chemical reaction
T1+T2 → T3 [19]. The state (α1, α2, α3) of the process is interpreted as the existence
of α1 elements of T1 type, α2 elements of T2 type, α3 elements of type T3; at random
time moments pair of elements T1 + T2 transformed into the element T3. In [19] the
connection between the second Eq. (29) and known in formal kinetics the law of active
mass is discussed, see also [20]. In [1] using the method of Laplace transformations
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Fig. 3 Realization of the
process T1 + T2 → T3 in case
α1 > α2

0 α1

α2

α3

(α1, α2, 0)

(α1 − α2, 0, α2)

the expression for the transition probabilities of the process is obtained, which are,
however, not convenient to use.

For the exponential generating function

F(t; z1, z2; s1, s2, s3) =
∞∑

α1,α2=0

zα11 zα22
α1!α2! F(α1,α2,0)(t; s1, s2, s3)

we can write the first and the second system of the Kolmogorov differential equations
in the following form [12]

∂F
∂t

= λz1z2

(
s3F − ∂2F

∂z1∂z2

)
, (30)

∂F
∂t

= λ(s3 − s1s2)
∂2F

∂s1∂s2
, (31)

with initial condition F(0; z1, z2; s1, s2, s3) = ez1s1+z2s2 .

Theorem 3 Let a Markov process on the state space N 3 be given by the densities of
transition probabilities (28). The double generating function of the transitions prob-
abilities is

F(t; z1, z2; s1, s2, s3) =
∞∑

α1,α2=0

α1 + α2

max(α1, α2)

zα11 zα22
(α1 + α2)! 0F1(α1 + α2 + 1; z1z2s3)

× s|α1−α2|
σ smin(α1,α2)

3 P(−1,|α1−α2|)
min(α1,α2)

(
2
s1s2
s3

− 1

)
e−α1α2λt ,

(32)

where 0F1(b; z) is the generalized hypergeometric function, P(−1,β)
n (x) are the Jacobi

polynomials; if α1 ≥ α2 then sσ = s1; if α1 < α2, then sσ = s2; if α1 = 0, α2 = 0,
then the expression (α1 + α2)/max(α1, α2) is to be equal to 1.

The proof of the Theorem 3 is similar to the Theorem 2 proof, in the same way the
system of Eqs. (30), (31) is solving by the separating variables method. In particular,
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by putting p10 = p01 = 0 (that is p00 = 1) in (20) and s3 = 1 in (32), we obtain the
coincident formulas.

5 Simple Death-Process. Nonlinear Branching Property of the
Transition Probabilities for the Death-Process of the Linear Type

We consider Markov process

ξt , t ∈ [0,∞),

on the state space

N = {0, 1, 2, . . .};

transition probabilities Pi j (t), i, j ∈ N , can be expressed in the following form [10],
as t → 0+,

Pi,i−1(t) = ϕi t + o (t),

Pii (t) = 1 − ϕi t + o (t), (33)

where ϕ0 = 0, ϕi > 0 at i = 1, 2, . . .
Stages for death-process ξt are shown in Fig. 4. The process stays at the initial state

i during a random time τi with distribution P{τi ≤ t} = 1 − e−ϕi t . At the time τi the
process passes to the state i − 1; and so on.

Using the double generating function (|s| ≤ 1),

F(t; z, s) =
∞∑

i=0

zi

ϕ1 . . . ϕi
Fi (t; s),

Fi (t; s) =
∞∑

j=0

Pi j (t)s
j , i ∈ N , (34)

we may reduce the first and the second systems of differential equations for transition
probabilities to [12]

absorbing
state

0 1 2 i − 3 i − 2 i − 1 i

Fig. 4 Simple death-process stages
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∂F
∂t

= z(F − Dz(F)), (35)

∂F
∂t

= (1 − s)Ds(F), (36)

with initial condition F(0; z; s) = e(zs). Here we use the Gel’fond–Leont’ev opera-
tor [9] of generalized differentiation

Dz

( ∞∑

i=0

ai z
i
)

=
∞∑

i=1

aiϕi z
i−1,

defined for analytic on zero-neighborhood functions. The function

e(z) = 1 +
∞∑

i=1

zi

ϕ1 . . . ϕi

is eigenfunction for the operator Dz ,

Dz(e(z)) = e(z).

Theorem 4 [12] Let a Markov death-process on the state space N be given by the
densities of transposition probabilities (33), ϕi+1 > ϕi , i ∈ N, and limi→∞ ϕi = ∞.
The double generating function of the transitions probabilities may be express as the
Fourier series

F(t; z; s) =
∞∑

n=0

1

ϕ1 . . . ϕn
C̃n(z)Cn(s)e

−ϕn t , (37)

where

C̃n(z) = zn +
∞∑

k=1

zn+k

(ϕn+1 − ϕn) . . . (ϕn+k − ϕn)
,

Cn(s) = sn +
n−1∑

k=0

ϕk+1 . . . ϕn

(ϕk − ϕn) . . . (ϕn−1 − ϕn)
sk .

The series (37) is absolutely convergent for all z, |s| < 1 and t ∈ [0,∞).

Proof This is the expressions for the simple death-process transition probabilities [10]:
P0 j (t) = δ0j , j ∈ N ; Pi j (t) = 0 at j > i ≥ 1; at j ≤ i
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Pi j (t) = ϕ j+1 . . . ϕi

i∑

n= j

e−ϕn t

(ϕi − ϕn) . . . (ϕn+1 − ϕn)(ϕn−1 − ϕn) . . . (ϕ j − ϕn)
. (38)

Following the definition of double generating function (34) and (38), we get

F(t; z; s) =
∞∑

i=0

∞∑

j=0

zi

ϕ1 . . . ϕi
Pi j (t)s

j

=
∞∑

i=0

i∑

j=0

i∑

n= j

zi

ϕ1 . . . ϕ j

e−ϕn t

(ϕi − ϕn) . . . (ϕn+1 − ϕn)(ϕn−1 − ϕn) . . . (ϕ j − ϕn)
s j

=
∞∑

n=0

e−ϕn t

ϕ1 . . . ϕn

(
zn +

∞∑

i=n+1

zi

(ϕn+1 − ϕn) . . . (ϕi − ϕn)

)

×
(
sn +

n−1∑

j=0

ϕ j+1 . . . ϕn

(ϕ j − ϕn) . . . (ϕn−1 − ϕn)
s j

)
.

Convergence for the series F(t; z; s) follows from the inequality

∣∣∣
∞∑

i=0

∞∑

j=0

zi

ϕ1 . . . ϕi
Pi j (t)s

j
∣∣∣ ≤

∞∑

i=0

∞∑

j=0

|z|i
ϕ1 . . . ϕi

|s| j ≤ 1

1 − |s|
∞∑

i=0

|z|i
ϕ1 . . . ϕi

< ∞,

for all z and |s| < 1. 
�
Thus, the solution (37) of the system of Kolmogorov equation (35), (36) is the series

with three separating variables. For t = 0 we get an expansion of the function

e(zs) =
∞∑

n=0

1

ϕ1 . . . ϕn
C̃n(z)Cn(s);

the functions C̃n(z) and Cn(s) are connected by an integral transformation.
We have an important particular case at ϕi = iμ, i ∈ N (μ > 0), this is the death-

process of a linear type. Here Dz = μ (d/dz) and the generating function of transition
probabilities Fi (t; s) satisfies the equation [1,2,22] (see Eq. (2) at λ = 0)

∂Fi (t; s)
∂t

= μ(1 − s)
∂Fi (t; s)

∂s
, (39)

with initial condition Fi (t; s) = si . For the process of linear type, it is easy to sum up
the series (37) and for F(t; z; s) we obtain

F(t; z; s) =
∞∑

n=0

(z/μ)n

n! ez/μ(s − 1)n e−nμt = e(z/μ)(1+(s−1)e−μt ). (40)
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From the definition F(t; z; s) = ∑∞
i=0(z

i/(μi i !))Fi (t; s) and the extension (40)
with respect to z, equating coefficients of zi , we obtain the branching property for the
transition probabilities ([22], Chap. 1)

Fi (t; s) = (1 − e−μt + s e−μt )i = Fi
1(t; s), i ∈ N . (41)

The straightforward solution of the linear first order partial equation (39) by a charac-
teristic method give us (41) (see, for instance, [1], § 3.2).

Accepting that the process has the nonlinear property of the transition probabilities
(41) then we can consider a death process for particles: at the time moment t = 0
there is i identical particles, each of them exists during a random time τ (k), P{τ (k) ≤
t} = 1 − e−μt ; values τ (k), k = 1, . . . , i , are independent (the death of one of them
means the passing of Markov process ξt from state i to i − 1; and so on).

6 Concluding Remarks

Powerful analytic methods [2,22] for the investigation of Markov processes with
branching property have been established. Therefore, for simple death-process, the
problemof proving the nonlinear property of transition probabilities can be formulated.
This problem generalizes the property (41), and it can be reduced to analytic problem
of the Fourier series summarized by (37)—under some assumptions concerning the
function ϕi = ϕ(i), i ∈ N .

For the quadratic death-processwithϕi = i(i−1)λ (Dz = λz (d2/dz2)), series (37)
(i.e., series (10) with λ > 0, μ = 0, p1 = 1) is summing in [12]. Using Gegen-
bauer’s addition theorem ([7], § 7.6.1), a closed representation of the double generating
function of transition probabilities F(t; z; s) was obtained. For Fi (t; s), an integral
representation was obtained which has similar structure (41).

For the generalized quadratic death-process (with λ > 0, μ > 0), it is possible
to obtain a closed solution of Kolmogorov equations (4), (5) by methods [12]. We
consider the series (10) with aim of summing and reducing nonlinear property for
transition probabilities

Fi (t; s) = E(Xt + sYt )
i , i ∈ N , (42)

where Xt ,Yt are mutually connected stochastic processes.
For the two-dimensional quadratic death-process, we consider the series (20) with

aim of summing up and reducing a closed solution of the system (17), (18) in form
similar to nonlinear property (41),

F(α1,α2)(t; s1, s2) = E(Xt + s1Yt )
α1(Zt + s2Ut )

α2 , (α1, α2) ∈ N 2, (43)

where Xt , Yt , Zt , Ut are mutually connected stochastic processes.
The opportunity for an integral representation in form (42), (43) is discussed in

details in Chapter 5 in [12]. Formulas, similar to (42), (43), are established for a
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epidemic process which is a Markov quadratic death-process on the set of states
N 2 [13] (see also [18]).

Given the above modification of the separating variables method, which is appli-
cable for the first and the second Kolmogorov equations, it may be useful to use other
Markov death-processes. For instance, we indicate the simple death-process of poly-
nomial type with ϕi = i(i − 1) . . . (i − k + 1)λ (k = 3, 4, . . .); equations for double
generating function has the following form

∂F
∂t

= λzk
(

∂k−1F
∂zk−1 − ∂kF

∂zk

)
,

∂F
∂t

= λ(sk−1 − sk)
∂kF
∂sk

,

with initial condition F(0; z; s) = ezs .
In the sameway by solving the first and second equations for transiting probabilities

for the pure birth-process and generalized birth-processes, we get a series with three
separated variables [23]. For instance, an interesting application of the quadratic pure
birth-process on N 2 [1,3] has the equations for double generating function of the
following form

∂F
∂t

= λz1z2

(
∂3F

∂z21∂z2
− ∂2F

∂z1∂z2

)
+ μz2

(
∂2F
∂z22

− ∂F
∂z2

)
,

∂F
∂t

= λ(s21s2 − s1s2)
∂2F

∂s1∂s2
+ μ(s22 − s2)

∂F
∂s2

,

with initial condition F(0; z1, z2; s1, s2) = ez1s1+z2s2 .
The problem of developing the discussed method in the case of Markov birth- and

death-processes is difficult.
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