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Abstract We provide a perturbative expansion for the empirical spectral distribution
of aHermitianmatrix with large size perturbed by a randommatrixwith small operator
norm whose entries in the eigenvector basis of the first matrix are independent with a
variance profile. We prove that, depending on the order of magnitude of the perturba-
tion, several regimes can appear, called perturbative and semi-perturbative regimes.
Depending on the regime, the leading terms of the expansion are related either to the
one-dimensional Gaussian free field or to free probability theory.
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1 Introduction

It is a natural and central question, in mathematics and physics, to understand how
the spectral properties of an operator are altered when the operator is subject to a
small perturbation. This question is at the center of perturbation theory and has been
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studied in many different contexts. We refer the reader to Kato’s book [17] for a
thorough account on this subject. In this text, we provide a perturbative expansion for
the empirical spectral distribution of a Hermitian matrix with large size perturbed by a
random matrix with small operator norm whose entries in the eigenvector basis of the
first one are independent with a variance profile. More explicitly, let Dn be an n × n
Hermitian matrix, that, up to a change in basis, we suppose diagonal.1 We denote by
μn the empirical spectral distribution of Dn . This matrix is additively perturbed by
a random Hermitian matrix εn Xn whose entries are chosen at random independently
and scaled so that the operator norm of Xn has order one. We are interested in the
empirical spectral distribution με

n of

Dε
n := Dn + εn Xn

in the regime where the matrix size n tends to infinity and εn tends to 0. We shall
prove that, depending on the order of magnitude of the perturbation, several regimes
can appear. We suppose that μn converges to a limiting measure ρ(λ)dλ and that the
variance profile of the entries of Xn has a macroscopic limit σd on the diagonal and
σ elsewhere. We then prove that there is a deterministic function F and a Gaussian
random linear form dZ on the space of C6 functions on R, both depending only on
the limit parameters of the model ρ, σ and σd such that if one defines the distribution
dF : φ �−→ − ∫

φ′(s)F(s)ds, then, for large n:

με
n ≈ μn + εn

n
dZ if εn � n−1 (1)

με
n ≈ μn + εn

n
(cdF + dZ) if εn ∼ c

n
(2)

με
n ≈ μn + ε2ndF if n−1 � εn � 1 (3)

and if, moreover, n−1 � εn � n−1/3, then convergence (2) can be refined as follows:

με
n ≈ μn + ε2ndF + εn

n
dZ . (4)

In Sect. 3, several figures show a very good matching of random simulations with
these theoretical results. The definitions of the function F and of the process Z are
given below in (6) and (7). In many cases, the linear form dF can be interpreted as
the integration with respect to the signed measure F ′(x)dx . The function F is related
to free probability theory, as explained in Sect. 4 below, whereas the linear form dZ
is related to the so-called one-dimensional Gaussian free field defined, for instance,
at [14, Sect. 4.2]. If the variance profile of Xn is constant, then it is precisely the
Laplacian of the Gaussian free field, defined in the sense of distributions.

1 If the perturbing matrix belongs to the GOE or GUE, then its law is invariant under this change in basis,
hence our results in fact apply to any self-adjoint matrix Dn .
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The transition at εn ∼ n−1 is the well-known transition, in quantum mechanics,
where the perturbative regime ends. Indeed, one can distinguish the two following
regimes:

• The regime εn � n−1, called the perturbative regime (see [15]): the size of
the perturbation (i.e. its operator norm) is much smaller than the typical spacing
between two consecutive eigenvalues (level spacing), which is of order n−1 in our
setting.

• The regime n−1 � εn � 1, sometimes called the semi-perturbative regime,
where the size of the perturbation is not small compared to the level spacing. This
regime concerns many applications [1,19] in the context of covariance matrices
and applications to finance.

A surprising fact discovered during this study is that the semi-perturbative
regime n−1 � εn � 1 decomposes into infinitely many sub-regimes. In the
case n−1 � εn � n−1/3, the expansion of με

n − μn contains a single deter-
ministic term before the random term εn

n dZ . In the case n−1/3 � εn � n−1/5,
the expansion of με

n − μn contains two of them. More generally, for all posi-
tive integer p, when n−1/(2p−1) � εn � n−1/(2p+1), the expansion contains
p of them. For computational complexity reasons, the only case we state explic-
itly is the first one. We refer the reader to Sect. 6.5 for a discussion around this
point.

In the papers [1–4,23], Wilkinson, Walker, Allez, Bouchaud et al. have investi-
gated some problems related to this one. Some of these works were motivated by the
estimation of a matrix out of the observation of its noisy version. Our paper differs
from these ones mainly by the facts that firstly, we are interested in the perturbations
of the global empirical distribution of the eigenvalues and not of a single one, and
secondly, we push our expansion up to the random term, which does not appear in
these papers. Besides, the noises they consider have constant variance profiles (either
a Wigner-Dyson noise in the four first cited papers or a rotationally invariant noise
in the fifth one). The transition at εn ∼ n−1 between the perturbative and the semi-
perturbative regimes is already present in these texts. They also consider the transition
between the perturbative regime εn � 1 and the non-perturbative regime εn � 1. As
explained above, we exhibit the existence of an infinity of sub-regimes in this transi-
tion and focus on εn � 1 for the first order of the expansion and to εn � n−1/3 for the
second (and last) order. The study of other sub-regimes is postponed to forthcoming
papers.

The paper is organized as follows. Results, examples and comments are given
in Sects. 2–4, while the rest of the paper, including an appendix, is devoted to
the proofs, except for Sect. 6.5, where we discuss the sub-regimes mentioned
above.

Notations For an, bn some real sequences, an � bn (resp. an ∼ bn) means that

an/bn tends to 0 (resp. to 1). Also,
P−→ and

dist.−→ stand, respectively, for convergence
in probability and convergence in distribution for all finite marginals.

123



J Theor Probab (2019) 32:1220–1251 1223

2 Main Result

2.1 Definition of the Model and Assumptions

For all positive integer n, we consider a real diagonal matrix Dn = diag(λn(1), . . . ,
λn(n)), as well as a Hermitian random matrix

Xn = 1√
n
[xn

i, j ]1≤i, j≤n

and a positive number εn . The normalizing factor n−1/2 and our hypotheses below
ensure that the operator norm of Xn is of order one. We then define, for all n,

Dε
n := Dn + εn Xn .

We now introduce the probability measures μn and με
n as the respective uniform

distributions on the eigenvalues (with multiplicity) of Dn and Dε
n . Our aim is to give

a perturbative expansion of με
n around μn .

We make the following hypotheses:

(a) the entries xn
i, j of

√
nXn are independent (up to symmetry) random variables,

centered, with variance denoted by σ 2
n (i, j), such that E|xn

i, j |8 is bounded uni-
formly on n, i, j ,

(b) there are f, σd, σ real functions defined, respectively, on [0, 1], [0, 1] and [0, 1]2
such that, for each x ∈ [0, 1],

λn(�nx) −→
n→∞ f (x) and σ 2

n (�nx, �nx) −→
n→∞ σd(x)2

and for each x �= y ∈ [0, 1],

σ 2
n (�nx, �ny) −→

n→∞ σ 2(x, y).

We make the following hypothesis about the rate of convergence:

ηn : = max{nεn, 1} × sup
1≤i �= j≤n

(|σ 2
n (i, j)

−σ 2(i/n, j/n)| + |λn(i) − f (i/n)|) −→
n→∞ 0.

Let us now make some assumptions on the limiting functions σ and f :

(c) the function f is bounded and the push-forward of the uniform measure on [0, 1]
by the function f has a density ρ with respect to the Lebesgue measure on R and
a compact support denoted by S,
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(d) the variance of the entries of Xn essentially depends on the eigenspaces of Dn ,
namely there exists a symmetric function τ( · , · ) on R

2 such that for all x �= y,
σ 2(x, y) = τ( f (x), f (y)),

(e) the following regularity property holds: there exist η0 > 0, α > 0 and C < ∞
such that for almost all s ∈ R, for all t ∈ [s − η0, s + η0], |τ(s, t)ρ(t) −
τ(s, s)ρ(s)| ≤ C |t − s|α .

We add a last assumption which strengthens assumption (c) and makes it possible
to include the case where the set of eigenvalues of Dn contains some outliers:

(f) there is a real compact set S̃ such that

max
1≤i≤n

dist(λn(i), S̃) −→
n→∞ 0.

Remark 1 (About the hypothesis that Dn is diagonal)

(i) If the perturbing matrix Xn belongs to the GOE (resp. to the GUE), then its law is
invariant under conjugation by any orthogonal (resp. unitary) matrix. It follows
that in this case, our results apply to any real symmetric (resp. Hermitian) matrix
Dn with eigenvalues λn(i) satisfying the above hypotheses.

(ii) As explained after Proposition 2 below, we conjecture that when the variance
profile of Xn is constant, for εn � n−1, we do not need the hypothesis that
Dn is diagonal neither. However, if the perturbing matrix does not have a con-
stant variance profile, then for a non-diagonal Dn and εn � n−1, the spectrum
of Dε

n should depend heavily on the relation between the eigenvectors of Dn

and the variance profile, which implies that our results should not remain
true.

(iii) At last, it is easy to see that the random process (Zφ) introduced at (7) satisfies,
for any test function φ,

1

εn

n∑

i=1

(

φ(λn(i) + εn√
n

xii ) − φ(λn(i))

)
dist.−→

n→∞ Zφ.

Thus, regardless of the variance profile, the convergence of (8) rewrites, informally,

με
n = 1

n

n∑

i=1

δλn(i)+(εn/
√

n)xii
+ o(εn/n). (5)

A so simple expression, up to a o(εn/n) error, of the empirical spectral distribution
of Dε

n , with some independent translations εn√
n

xii , should not remain true without
the hypothesis that Dn is diagonal or that the distribution of Xn is invariant under
conjugation.
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2.2 Main Result

Recall that the Hilbert transform, denoted by H [u], of a function u, is the function

H [u](s) := p. v.
∫

t∈R
u(t)

s − t
dt

and define the function

F(s) = −ρ(s)H [τ(s, ·)ρ(·)](s). (6)

Note that, by assumptions (c) and (e), F is well defined and supported byS. Besides,
for any φ supported on an interval where F is C1,

−
∫

φ′(s)F(s)ds =
∫

φ(s)dF(s),

where dF(s) denotes the measure F ′(s)ds.
We also introduce the centered Gaussian field, (Zφ)φ∈C6 , indexed by the set of C6

complex functions on R, with covariance defined by

EZφ Zψ =
∫ 1

0
σd(t)

2φ′( f (t))ψ ′( f (t))dt and Zψ = Zψ. (7)

Note that the process (Zφ)φ∈C6 can be represented, for (Bt ) is the standard one-
dimensional Brownian motion, as

Zφ =
∫ 1

0
σd(t)φ

′( f (t))dBt .

Theorem 1 For all compactly supported C6 function φ on R, the following conver-
gences hold:

Perturbative regime if εn � n−1, then,

nε−1
n (με

n − μn)(φ)
dist.−→

n→∞ Zφ. (8)

Critical regime if εn ∼ c/n, with c constant, then,

nε−1
n (με

n − μn)(φ)
dist.−→

n→∞ −c
∫

φ′(s)F(s)ds + Zφ. (9)

Semi-perturbative regime if n−1 � εn � 1, then,

ε−2
n (με

n − μn)(φ)
P−→

n→∞ −
∫

φ′(s)F(s)ds, (10)
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and if, moreover, n−1 � εn � n−1/3, then,

nε−1
n

(

(με
n − μn)(φ) + ε2n

∫
φ′(s)F(s)ds

)
dist.−→

n→∞ Zφ. (11)

Remark 2 (Sub-regimes for n−1/3 � εn � 1) In the semi-perturbative regime, the
reason why we provide an expansion up to a random term, only for εn � n−1/3, is
that the study of the regime n−1/3 � εn � 1 up to such a precision requires further
terms in the expansion of the resolvent of Dε

n that make appear, beside dF , additional
deterministic terms of smaller order, which are much larger than the probabilistic term
containing Zφ . The computation becomes rather intricate without any clear recursive
formula. As we will see in Sect. 6.5, there are infinitely many regimes. Precisely, for
any positive integer p, when n−1/(2p−1) � εn � n−1/(2p+1), there are p deterministic
terms in the expansion before the term in Zφ .

Remark 3 (Local law) The approximation

με
n(I ) ≈ μn(I ) + ε2n

∫

I
dF

of (10) should stay true even for intervals I with size tending to 0 as the dimension n
grows, as long as the size of I stays much larger than the right-hand side term of (30),
as can be seen from Proposition 5.

Remark 4 The second part of Hypothesis (b), concerning the speed of convergence
of the profile of the spectrum of Dn as well as of the variance of its perturbation, is
needed in order to express the expansion ofμε

n −μn in terms of limit parameters of the
model σ and ρ. We can remove this hypothesis and get analogous expansions where
the terms dF and dZ are replaced by their discrete counterparts dFn and dZn , defined
thanks to the “finite n” empirical versions of the limit parameters σ and ρ.

3 Examples

3.1 Uniform Measure Perturbation by a Band Matrix

Here, we consider the case where f (x) = x , σd(x) ≡ m and σ(x, y) = 1|y−x |≤�, for
some constants m ≥ 0 and � ∈ [0, 1] (the relative width of the band). In this case,
τ( · , · ) = σ( · , · )2, hence

F(s) = 1(0,1)(s) p. v.
∫

t

τ(s, t)

s − t
dt = −1(0,1)(s) log

� ∧ (1 − s)

� ∧ s
(12)

and (Zφ)φ∈C6 is the centered complex Gaussian process with covariance defined by

EZφ Zψ = m2
∫ 1

0
φ′(t) ψ ′(t) dt and Zψ = Zψ.
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Fig. 1 Deforming the uniform distribution by a bandmatrix. Cumulative distribution function of ε−2
n (με

n −
μn) (in blue) and function F( · ) of (12) (in red). The non-smoothness of the blue curves results of the noise
term Zφ in Theorem 1. Each graphic is realized thanks to one single matrix (no averaging) perturbed by a

real Gaussian band matrix. a n = 104, εn = n−0.4, � = 0.2, b n = 104, εn = n−0.4, � = 0.8 (Color figure
online)

Theorem 1 is then illustrated in Fig. 1, where we plotted the cumulative distribution
functions.

3.2 Triangular Pulse Perturbation by a Wigner Matrix

Here, we consider the case where ρ(x) = (1− |x |)1[−1,1](x), σd ≡ m, for some real
constant m, and σ ≡ 1 (what follows can be adapted to the case σ(x, y) = 1|y−x |≤�,
with a bit longer formulas). In this case, thanks to the formula (9.6) of H [ρ( · )] given
p. 509 of [18], we get

F(s) = (1 − |s|)1[−1,1](s) {(1 − s) log(1 − s) − (1 + s) log(1 + s) + 2s log |s|} ,

(13)
and the covariance of (Zφ)φ∈C6 is given by

EZφ Zψ = m2
∫ 1

−1
(1 − |t |) φ′(t) ψ ′(t) dt and Zψ = Zψ.

Theorem 1 is then illustrated in Fig. 2 in the case where εn � n−1/2. In Fig. 2,
we implicitly use some test functions of the type φ(x) = 1x∈I for some intervals I .
These functions are not C6, and one can easily see that for εn � n−1/2, Theorem
1 cannot work for such functions. However, considering imaginary parts of Stieltjes
transforms, i.e. test functions

φ(x) = 1

π

η

(x − E)2 + η2
(E ∈ R, η > 0)

give a perfect matching between the predictions from Theorem 1 and numerical sim-
ulations, also for εn � n−1/2 (see Fig. 3, where we use Proposition 4 and (17) to
compute the theoretical limit).
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Fig. 2 Triangular pulse perturbation by aWigner matrix: density and cumulative distribution function. Top
left: cumulative distribution function of ε−2

n (με
n − μn)(in blue) and function F( · ) of (13) (in red). Top

right and bottom: density ρ (red dashed line), histogram of the eigenvalues of Dε
n (in black) and theoretical

density ρ + ε2n F ′(s) of the eigenvalues of Dε
n as predicted by Theorem 1 (in blue). Here, n = 104 and

εn = n−α , with α = 0.25 (up left), α = 0.4 (up right), 0.25 (bottom left) and 0.1 (bottom right) (Color
figure online)

Fig. 3 Triangular pulse perturbation by aWigner matrix: Stieltjes transform. Imaginary part of the Stieltjes
transform of ε−2

n (με
n − μn) (in blue) and of the measure dF (in red) at z = E + i as a function of the real

part E for different values of εn . Here, n = 104 and εn = n−α , with α = 0.2, 0.5 and 0.8 (from left to
right) (Color figure online)

3.3 Parabolic Pulse Perturbation by a Wigner Matrix

Here, we consider the case where ρ(x) = 3
4 (1− x2)1[−1,1](x), σd ≡ m, for some real

constant m, and σ ≡ 1 (again, this can be adapted to the case σ(x, y) = 1|y−x |≤�).
Theorem 1 is then illustrated in Fig. 4. In this case, thanks to the formula (9.10) of
H [ρ( · )] given p. 509 of [18], we get

F(s) = − 9

16
(1 − s2)1[−1,1](s)

{

2s − (1 − s2) ln

∣
∣
∣
∣
s − 1

s + 1

∣
∣
∣
∣

}

(14)
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Fig. 4 Parabolic pulse perturbation by a Wigner matrix. Top left: cumulative distribution function of
ε−2

n (με
n − μn)(in blue) and function F( · ) of (14) (in red). Top right and bottom: density ρ (red dashed

line), histogram of the eigenvalues of Dε
n (in black) and theoretical density ρ + ε2n F ′(s) of the eigenvalues

of Dε
n as predicted by Theorem 1 (in blue). Here, n = 104 and εn = n−α , with α = 0.25 (up left), α = 0.4

(up right), 0.2 (bottom left) and 0.18 (bottom right) (Color figure online)

and the covariance of (Zφ)φ∈C6 is given by

EZφ Zψ = 3m2

4

∫ 1

−1
(1 − t2) φ′(t) ψ ′(t) dt and Zψ = Zψ.

4 Relation to Free Probability Theory

Let us now explain how this work is related to free probability theory. If, instead of
letting εn tend to zero, one considers the model

Dt
n := Dn + √

t Xn

for a fixed t > 0, then, by [5,12,13,22], the empirical eigenvalue distribution of Dt
n

has a limit as n → ∞, that we shall denote here by μt . The law μt can be interpreted
as the law of the sum of two elements in a non-commutative probability space which
are free with an amalgamation over a certain sub-algebra (see [22] for more details).
The following proposition relates the function F from (6) to the first order expansion
of μt around t = 0.
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Proposition 2 For any z ∈ C\R, we have

∂

∂t |t=0

∫
dμt (λ)

z − λ
= −

∫
F(λ)

(z − λ)2
dλ = −

∫
F(λ)

∂

∂λ

(
1

z − λ

)

dλ.

This is related to the fact that in Eqs. (1)–(4), for εn large enough, the term ε2ndF
is the leading term.

In the particular case where Xn is a Wigner matrix, μt is the free convolution of
the measure ρ(λ)dλ with a semicircle distribution and admits a density ρt , by [8, Cor.
2]. Then, Theorem 1 makes it possible to formally recover the free Fokker–Planck
equation with null potential:

{
∂
∂t ρt (s) + ∂

∂s {ρt (s)H [ρt ](s)} = 0,

ρ0(s) = ρ(s),

where H [ρt ] denotes the Hilbert transform of ρt . This equation is also called McKean-
Vlasov (or Fokker–Planck) equation with logarithmic interaction (see [9–11]).

Note also that when Xn is a Wigner matrix, the hypothesis that Dn is diagonal is
not required to have the convergence of the empirical eigenvalue distribution of Dt

n to
μt as n → ∞. This suggests that, even for non-diagonal Dn , the convergence of (10)
still holds when Xn is a Wigner matrix.

Proof of Proposition 2 By [22, Th. 4.3], we have

∫
dμt (λ)

z − λ
=
∫ 1

x=0
Ct (x, z)dx, (15)

where Ct (x, z) is bounded by |Imz|−1 and satisfies the fixed-point equation

Ct (x, z) = 1

z − f (x) − t
∫ 1

y=0 σ 2(x, y)Ct (y, z)dy
.

Hence as t → 0, Ct (x, z) −→ 1
z− f (x)

uniformly in x . Thus

Ct (x, z) − 1

z − f (x)
= t

∫ 1
y=0 σ 2(x, y)Ct (y, z)dy

(z − f (x) − t
∫ 1

y=0 σ 2(x, y)Ct (y, z)dy)(z − f (x))

= t
1

(z − f (x))2

∫ 1

y=0
σ 2(x, y)Ct (y, z)dy + o(t)

= t
1

(z − f (x))2

∫ 1

y=0

σ 2(x, y)

z − f (y)
dy + o(t)
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where each o(t) is uniform in x ∈ [0, 1]. Then, by (15), we deduce that

∂

∂t |t=0

∫
dμt (λ)

z − λ
=
∫

(x,y)∈[0,1]2
σ 2(x, y)

(z − f (x))2(z − f (y))
dxdy.

The right-hand side term of the previous equation is precisely the number B(z)
introduced at (17) below. Then, one concludes using Proposition 4 from Sect. 6.1. ��

5 Strategy of the Proof

We shall first prove the convergence results of Theorem 1 for test functions φ of the
form ϕz(x) := 1

z−x . This is done in Sect. 6 by writing an expansion of the resolvent
of Dε

n .
Once we have proved that the convergences hold for the resolvent of Dε

n , we can
extend them to the larger class of compactly supported C6 functions on R.

In Sect. 7, we use the Helffer–Sjöstrand formula to extend the convergence in
probability in the semi-perturbative regime (10) to the case of compactly supported
C6 functions on R.

In Sect. 8, the convergences in distribution (8), (9) and (11) are proved in two steps.
The overall strategy is to apply an extension lemma of Shcherbina and Tirozzi which
states that a CLT that applies to a sequence of centered random linear forms on some
space can be extended, by density, to a larger space, as long as the variance of the
image of these random linear forms by a function φ of the larger space is uniformly
bounded by the norm of φ. Therefore, our task is twofold. We need first to prove
that the sequences of variables involved in the convergences (8), (9) and (11) can be
replaced by their centered counterparts nε−1

n (με
n(φ) − E[με

n(φ)]) (i.e. they differ by
o(1)). In a second step, we dominate the variance of these latter variables, in order to
apply the extension lemma which is precisely stated in Appendix as Lemma 10.

6 Stieltjes Transforms Convergence

As announced in the previous section, we start with the proof of Theorem 1 in the
special case of test functions of the type ϕz := 1

z−x . We decompose it into two propo-
sitions. Their statement and proof are the purpose of the three following subsections.
The two last Sects. 6.4 and 6.5 are devoted, respectively, to a local type convergence
result and to a discussion about the possibility of an extension of the expansion result
to a wider range of rate of convergence of εn , namely beyond n−1/3.

6.1 Two Statements

Let denote, for z ∈ C\R,

Z(z) := Zϕz for ϕz(x) := 1

z − x
(16)
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where (Zφ)φ∈C6 is theGaussianfieldwith covariance definedby (7).Wealso introduce,
for z ∈ C\R,

B(z) :=
∫

(s,t)∈[0,1]2
σ 2(s, t)

(z − f (s))2(z − f (t))
dsdt (17)

and

�Gn(z) := (με
n − μn)(ϕz) = 1

n
Tr

1

z − Dε
n

− 1

n
Tr

1

z − Dn
. (18)

Proposition 3 Under Hypotheses (a), (b), (f),

• if εn � n−1, then for all z ∈ C\R,

nε−1
n �Gn(z)

dist.−→
n→∞ Z(z) (19)

• if εn ∼ c/n, with c constant, then for all z ∈ C\R

nε−1
n �Gn(z)

dist.−→
n→∞ cB(z) + Z(z) , (20)

• if n−1 � εn � n−1/3, then for all z ∈ C\R

nε−1
n

(
�Gn(z) − ε2n B(z)

)
dist.−→

n→∞ Z(z) . (21)

• if n−1 � εn � 1, then for all z ∈ C\R,

ε−2
n �Gn(z) − B(z)

P−→
n→∞ 0 . (22)

Remark Note that (20) is merely an extension of (21) in the critical regime.
The following statement expresses B(z) as the image of a ϕz by a linear form. So,

in the expansion of the previous proposition, both quantities Z(z) and B(z) depend
linearly on ϕz . Note that as F vanishes at ±∞, Proposition 4 does not contradicts the
fact that as |z| gets large, B(z) = O(|z|−3).

Proposition 4 Under Hypotheses (c), (d), (e), for any z ∈ C\S, for F defined by (6),

B(z) = −
∫

F(s)

(z − s)2
ds = −

∫
ϕ′

z(s)F(s)ds.

6.2 Proof of Proposition 3

The proof is based on a perturbative expansion of the resolvent 1
n Tr 1

z−Dε
n
. To make

notations lighter, we shall sometimes suppress the subscripts and superscripts n, so
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that Dε
n , Dn , Xn and xn

i, j will be, respectively, denoted by Dε, D, X and xi, j . Let us

fix z ∈ C\S̃ . We can deduce from the expansion of the resolvent of Dε:

�Gn(z) = An(z) + Bn(z) + Cn(z) + Rε
n(z),

with

An(z) := εn

n
Tr

1

z − D
X

1

z − D
= εn

n

1√
n

n∑

i=1

xi,i

(z − λn(i))2

Bn(z) := ε2n

n
Tr

1

z − D
X

1

z − D
X

1

z − D
= ε2n

n2

∑

i, j

|xi, j |2
(z − λn(i))2(z − λn( j))

Cn(z) := ε3n

n
Tr

1

z − D
X

1

z − D
X

1

z − D
X

1

z − D

= ε3n

n5/2

n∑

i, j,k=1

xi, j x j,k xk,i

(z − λn(i))2 (z − λn( j)) (z − λn(k))

Rε
n(z) := ε4n

n
Tr

1

z − D
X

1

z − D
X

1

z − D
X

1

z − D
X

1

z − Dε
.

The purpose of the four following claims is to describe the asymptotic behavior of
each of these four terms.

Claim 1 The finite dimension marginals of the centered process

(nε−1
n An(z))z∈C\S̃

converge in distribution to those of the centered Gaussian process (Z(z))z∈C\S̃ .

Besides, there is C > 0 such that for any z ∈ C\S̃ ,

E[|nε−1
n An(z)|2] ≤ C

dist(z, S̃)4
. (23)

Proof Estimate (23) follows from

E[|An(z)|2] = ε2n

n3

n∑

i=1

E
[|xi,i |2

]

|z − λn(i)|4 ≤ ε2n

n3

n∑

i=1

σ 2
n (i, i)

dist(z, S̃)4

and from the existence of a uniform upper bound for σ 2
n (i, i) which comes from

Hypothesis (a) which stipulates that the 8-th moments of the entries xi, j are uniformly
bounded.

We turn now to the proof of the convergence in distribution of nε−1
n An(z) which

actually does not depend on the sequence (εn). For all α1, β1, . . . , αp, βp ∈ C and for
all z1, . . . , z p ∈ C\S̃,
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p∑

i=1

αi

(
nε−1

n An(zi )
)

+ βi

(
nε−1

n An(zi )
)

= 1√
n

n∑

j=1

x j, j

( p∑

i=1

ξn(i, j)

)

for ξn(i, j) = αi

(zi − λn( j))2
+ βi

(zi − λn( j))2
.

On one the hand, by dominated convergence, the covariance matrix of the above
two dimensional random vector converges.

On the other hand, E|xi, j |4 is uniformly bounded in i , j and n, by Hypothesis (a).
Moreover, for n large enough, for all i, j ,

|ξn(i, j)| ≤ 2 max
1≤i≤p

(|αi | + |βi |) × ( min
1≤i≤p

dist(zi ,S))−1.

Hence, the conditions of Lindeberg central limit theorem are satisfied and the finite
dimension marginals of the process (nε−1

n An(z))z∈C\S̃ converge in distribution to
those of the centered Gaussian process (Zz)z∈C\S̃ defined by its covariance structure

E

(
Z(z)Z(z′)

)
= lim

n→∞ E

[(
nε−1

n An(z)
)

.
(

nε−1
n An(z′)

)]

= lim
n→∞

1

n

n∑

i, j=1

E
[
xi,i x j, j

]

(z − λn(i))2 (z′ − λn( j))2

=
∫ 1

0

σd(t)2

(z − f (t))2 (z′ − f (t))2
dt

and by the fact that Z(z) = Z(z) which comes from An(z) = An(z). ��

Claim 2 There is a constant C such that, for ηn as in Hypotheses (b),

• if εn � n−1, then

E[|nε−1
n Bn(z)|2] ≤ C(nεn)2

dist(z, S̃)6
+ Cη2n

dist(z, S̃)8
,

• if εn ∼ c/n or if n−1 � εn � 1, then

E[|nε−1
n (Bn(z) − ε2n B(z))|2] ≤ Cε2n

dist(z, S̃)6
+ Cη2n

dist(z, S̃)8
.

Proof Remind that,

Bn(z) = ε2n

n2

∑

i, j

|xi, j |2
(z − λn(i))2(z − λn( j))

.
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Introduce the variable b◦
n(z) obtained by centering the variable nε−2

n Bn(z):

b◦
n(z) := nε−2

n (Bn(z) − EBn(z)) = 1

n

∑

i, j

|xi, j |2 − σ 2
n (i, j)

(z − λn(i))2(z − λn( j))

and the defect variable

δn(z) := ε−2
n EBn(z) − B(z)

= 1

n2

∑

i, j

σ 2
n (i, j)

(z − λn(i))2(z − λn( j))
−
∫

(s,t)∈[0,1]2
σ 2(s, t)

(z − f (s))2(z − f (t))
dsdt.

In the two regimes εn � n−1 and εn ≥ c/n, we want to dominate the L2 norms,
respectively, of nε−1

n Bn(z) = εnb◦
n(z) + nεn(δn(z) + B(z)) and nε−1

n (Bn(z) −
ε2n B(z)) = εnb◦

n + nεnδn(z).
For this purpose, we successively dominate b◦

n , δn(z) and B(z).
Using the independence of the xi, j ’s, the fact that they are bounded in L4 and the

fact that z stays at a macroscopic distance of the λn(i)’s, we can write for all z ∈ C\S̃

E[|b◦
n(z)|2] = 1

n2 Var

⎛

⎝
∑

i≤ j

(
|xi, j |2 + 1i �= j xi, j

2
) 1

(z − λn(i))2(z − λn( j))

⎞

⎠

= 1

n2

∑

i≤ j

Var

((
|xi, j |2 + 1i �= j xi, j

2
) 1

(z − λn(i))2(z − λn( j))

)

≤ C dist(z, S̃)−6 . (24)

Now, the term δn(z) rewrites

δn(z) = O(n−1)

+
∫

(s,t)∈[0,1]2
1�ns�=�nt

(
σ 2

n (�ns, �nt)
(z − λn(�ns))2(z − λn(�nt))

− σ 2(s, t)

(z − f (s))2(z − f (t))

)

dsdt.

Since, for Mσ := sup0≤x �=y≤1 σ(x, y)2 and for any fixed z /∈ S̃ , the function

ψz : (s, λ, λ′) ∈ [0, Mσ + 1] × {x ∈ R ; dist(x, S̃)

≤ dist(z, S̃)/2}2 �−→ s

(z − λ)2(z − λ′)

is C dist(z, S̃)−4-Lipschitz, for C a universal constant, by Hypothesis (b),

δn(z) = O(n−1) + O (ηn)

max{nεn, 1} dist(z, S̃)4
. (25)
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Finally, the expression of B(z) given in (17) implies,

B(z) ≤ C

dist(z, S̃)3
(26)

Collecting estimations (24), (25) and (26), we conclude. ��
Claim 3 There is a constant C such that for any z ∈ C\S̃,

E[|nε−1
n Cn(z)|2] ≤ Cε4n

dist(z, S̃)8
.

Proof We start by writing for all z ∈ C\S̃

E[|nε−1
n Cn(z)|2] = ε4n

n3 E

⎡

⎢
⎣

∣
∣
∣
∣
∣
∣

n∑

i, j,k=1

xi, j x j,k xk,i

(z − λn(i))2 (z − λn( j)) (z − λn(k))

∣
∣
∣
∣
∣
∣

2
⎤

⎥
⎦

= ε4n

n3

n∑

i, j,k,l,m,p=1

E
(
xi, j x j,k xk,i xl,m xm,p x p,l

)

(z − λn(i))2 (z − λn( j)) (z − λn(k)) (z − λn(l))2 (z − λn(m)) (z − λn(p))
.

Generically, the set of “edges” {(l, m), (m, p), (p, l)} must be equal to the set
{(i, j), ( j, k), (k, i)} in order to get a nonzero term. Therefore, the complexity of
the previous sum is O(n3). Note that other nonzero terms involving third or fourth
moments are much less numerous. Hence,

E[|nε−1
n Cn(z)|2] ≤ ε4n

n3 × O(n3)

dist(z, S̃)8
≤ Cε4n

dist(z, S̃)8

��
Claim 4 There is a constant C such that for any z ∈ C\R,

E[|nε−1
n Rε

n(z)|2] ≤ O(n2ε6n)

|Im(z)|2 dist(z, S̃)8
.

Proof Remind that,

Rε
n(z) := ε4n

n
Tr

1

z − D
X

1

z − D
X

1

z − D
X

1

z − D
X

1

z − Dε
.

Hence,

E[|nε−1
n Rε

n(z)|2] ≤ ε6n E

[∣
∣
∣
∣Tr

1

z − D
X

1

z − D
X

1

z − D
X

1

z − D
X

1

z − Dε

∣
∣
∣
∣

2
]

≤ ε6n E

⎡

⎣Tr

∣
∣
∣
∣
∣

(
1

z − D
X

)4
∣
∣
∣
∣
∣

2

× Tr

∣
∣
∣
∣

1

z − Dε

∣
∣
∣
∣

2
⎤

⎦

123



J Theor Probab (2019) 32:1220–1251 1237

≤ ε6n E

⎡

⎣Tr

⎛

⎝
(

1

z − D
X

)4
(

1

z − D
X

)4
⎞

⎠ n

|Im(z)|2

⎤

⎦

≤ nε6n

|Im(z)|2 E

⎡

⎣Tr

⎛

⎝
(

1

z − D
X

)4
(

1

z − D
X

)4
⎞

⎠

⎤

⎦

≤ nε6n

|Im(z)|2
O(n5)

n4 dist(z, S̃)8
≤ O(n2ε6n)

|Im(z)|2 dist(z, S̃)8
.

The inequality of the last line takes into account that

• the L8 norm of the entries of
√

nX is uniformly bounded
• the norm of the entries of X is of order n−1/2

• the norm of the coefficients of (z − D)−1 is smaller than dist(z, S̃)−1

• the complexity of the sum defining the trace is of order O(n5) since its non-null
terms are encoded by four edges trees which have therefore five vertices.

��
We gather now the results of the previous claims.

For any rate of convergence of εn , Claim1proves that the processnε−1
n An(z) converges

in distribution to the centered Gaussian variable Z(z). Moreover,

• if εn � n−1, then as Claims 2, 3 and 4 imply that the processes nε−1
n Bn(z),

nε−1
n Cn(z) and nε−1

n Rε
n(z) converge to 0 in probability, we can conclude, by

Slutsky’s theorem, that for any z ∈ C \ R:

nε−1
n �Gn(z)

dist−−−→
n→∞ Z(z)

• if εn ∼ c
n , then, as Claims 2, 3 and 4 imply that the processes nε−1

n Bn(z),
nε−1

n Cn(z) and nε−1
n Rε

n(z) converge, respectively, to cB(z), 0 and 0 in proba-
bility, we can conclude, by Slutsky’s theorem, that for any z ∈ C \ R:

nε−1
n �Gn(z)

dist−−−→
n→∞ Z(z) + cB(z)

• if n−1 � εn � n−1/3, then, as Claims 2, 3 and 4 imply that the three processes
nε−1

n (Bn(z) − ε2n B(z)), nε−1
n Cn(z) and nε−1

n Rε
n(z) converge to 0 in probability,

we can conclude, by Slutsky’s theorem, that for any z ∈ C \ R:
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nε−1
n

(
�Gn(z) − ε2n B(z)

)
dist.−→

n→∞ Z(z)

Regarding the convergence in probability (22), in the case n−1 � εn � 1, Claims
1, 2, 3 and 4 imply that the processes ε−2

n An(z), ε−2
n Bn(z) − B(z), ε−2

n Cn(z) and
ε−2

n Rε
n(z) converge to 0.

This finishes the proof of the convergences of Proposition 3. ��

6.3 Proof of Proposition 4

Recall that

B(z) =
∫

(s,t)∈[0,1]2
σ 2(s, t)

(z − f (s))2(z − f (t))
dsdt.

Recall that ρ is the density of the push-forward of the uniform measure on [0, 1]
by the map f .

Let τ be as in Hypothesis (d). We have

B(z) =
∫

R2

τ(s, t) ρ(s) ρ(t)

(z − s)2 (z − t)
dsdt.

By a partial fraction decomposition, we have for all a �= b

1

(z − a)2(z − b)
= 1

(b − a)2

(
1

z − b
− 1

z − a
− b − a

(z − a)2

)

.

Thus, as the Lebesgue measure of the set
{
(y1, y2) ∈ [0, 1]2 ; y1 = y2

}
is null,

we have

B(z) =
∫

R2

τ(s, t) ρ(s) ρ(t)

(t − s)2

(
1

z − t
− 1

z − s
− t − s

(z − s)2

)

dsdt.

Moreover, for ϕz the function ϕz : x �−→ 1
z−x , we obtain

B(z) =
∫

R2

τ(s, t) ρ(s) ρ(t)

(t − s)2
(
ϕz(t) − ϕz(s) − (t − s)ϕ′

z(s)
)
dsdt.

Now, we want to prove that B(z) = −
∫

R2

τ(s, t) ρ(s) ρ(t)

t − s
ϕ′

z(s) dsdt .

To do this, we will use a symmetry argument: in fact both terms in ϕz(t) and ϕz(s)
neutralize each other, and it remains only to prove that we did not remove ∞ to ∞
and that the remaining term has the desired form.

Let us define

Bη(z) :=
∫

|s−t |>η

τ(s, t) ρ(s) ρ(t)

(t − s)2
(
ϕz(t) − ϕz(s) − (t − s)ϕ′

z(s)
)
dsdt.
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By the Taylor–Lagrange inequality we obtain:

∣
∣
∣
∣
τ(s, t) ρ(s) ρ(t)

(t − s)2
(
ϕz(t) − ϕz(s) − (t − s)ϕ′

z(s)
)
∣
∣
∣
∣ ≤ ρ(s) ρ(t) ‖τ(·, ·)‖L∞ ‖ϕ′′

z ‖L∞

2
.

So that, since ρ is a density, by dominated convergence, we have

lim
η→0

Bη(z) = B(z).

Moreover, by symmetry, for any η,

Bη(z) =
∫

|s−t |>η

τ(s, t) ρ(s) ρ(t)

t − s
(−ϕ′

z(s))dsdt.

So

B(z) = lim
η→0

∫

|s−t |>η

τ(s, t) ρ(s) ρ(t)

t − s
(−ϕ′

z(s))dtds

= − lim
η→0

∫

s∈R
Fη(s)ϕ

′
z(s)ds (27)

where for η > 0 and s ∈ R, we define

Fη(s) := ρ(s)
∫

t∈R\[s−η,s+η]
τ(s, t) ρ(t)

t − s
dt.

Note that that by definition of the function F given at (6), for any s, we have

F(s) = lim
η→0

Fη(s). (28)

Thus by (27) and (28), to conclude the proof of Proposition 4, by dominated con-
vergence, one needs only to state that Fη is dominated, uniformly in η, by an integrable
function. This follows from the following computation.

Note first that by symmetry, we have

Fη(s) = ρ(s)
∫

t∈R\[s−η,s+η]
τ(s, t) ρ(t) − τ(s, s) ρ(s)

t − s
dt. (29)

Let M > 0 such that the support of the function ρ is contained in [−M, M]. Then, for
η0, α, C as in Hypothesis (e), using the expression of Fη(s) given at (29), we have

∣
∣Fη(s)

∣
∣ ≤ 2Cρ(s)

∫ s+η0

t=s
|t − s|α−1dt

+
∫

t∈[s−2M,s−η0]∪[s+η0,s+2M]

∣
∣
∣
∣
τ(s, t)ρ(s)ρ(t)

t − s

∣
∣
∣
∣ dt
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≤ 2Cρ(s)

α
ηα
0 + 1

η0

∫

t∈R
|τ(s, t)ρ(s)ρ(t)| dt

≤ 2Cρ(s)

α
ηα
0 + ‖τ(·, ·)‖L∞

η0
ρ(s).

��

6.4 A Local Type Convergence Result

One can precise the convergence (22) by replacing the complex variable z by a complex
sequence (zn)which converges slowly enough to the real axis. This convergence won’t
be used in the sequel. As it is discussed in [7], this type of result is a first step toward
a local result for the empirical distribution.

Proposition 5 Under Hypotheses (a), (b), (f), if n−1 � εn � 1, then for any non-real
complex sequence (zn), such that

Im(zn) � max

{

(nεn)−1/2 ,

(
ηn

nεn

)1/4

, ε
2/5
n

}

(30)

the following convergence holds

ε−2
n �Gn(zn) − B(zn)

P−→
n→∞ 0 .

Remark In the classical case where
ηn

nεn
= sup

i �= j
(|σ 2

n (i, j) − σ 2(i/n, j/n)| + |λn(i)

− f (i/n)|) is of order
1

n
, the above assumption boils down to Im(zn) �

max
{
(nεn)−1/2 , ε

2/5
n

}
.

Proof Assume n−1 � εn � 1. One can directly obtain, for all non-real complex
sequences (zn), that

• by Claim 1, if dist(zn, S̃) � (nεn)−1/2, then

E

[∣
∣
∣ε−2

n An(zn)

∣
∣
∣
2
]

≤ C

(nεn)2 dist(zn, S̃)4
−→
n→∞ 0,

• by Claim 2, if dist(zn, S̃) � max
{
n−1/3 , (ηn/(nεn))1/4

}
, then

E

[∣
∣
∣ε−2

n Bn(zn) − B(zn)

∣
∣
∣
2
]

≤ C

n2 dist(zn, S̃)6
+ Cη2n

(nεn)2 dist(zn, S̃)8
−→
n→∞ 0,
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• by Claim 3, if dist(zn, S̃) � (εn/n)1/4, then

E

[∣
∣
∣ε−2

n Cn(zn)

∣
∣
∣
2
]

≤ Cε2n

n2 dist(zn, S̃)8
−→
n→∞ 0,

• by Claim 4, if |Im(zn)| dist(zn, S̃)4 � ε2n , then

E

[∣
∣
∣ε−2

n Rε
n(zn)

∣
∣
∣
2
]

≤ O(ε4n)

|Im(zn)|2 dist(zn, S̃)8
−→
n→∞ 0.

Therefore, when

dist(zn, S̃) � max

{

(nεn)−1/2 , n−1/3 ,

(
ηn

nεn

)1/4

,
(εn

n

)1/4
}

and |Im(zn)| dist(zn, S̃)4 � ε2n,

the four processes, ε−2
n An(zn), ε−2

n Bn(zn) − B(zn), ε−2
n Cn(zn) and ε−2

n Rε
n(zn) con-

verge to 0 in probability. Since dist(zn, S̃) ≥ Im(zn), the above condition is implied
by

Im(zn) � max

{

(nεn)−1/2 , n−1/3 ,

(
ηn

nεn

)1/4

,
(εn

n

)1/4
, ε

2/5
n

}

.

Observing finally that the two terms n−1/3 and
(

εn
n

)1/4 are dominated by themaximum
of the three other ones, we conclude the proof. ��

6.5 Possible Extensions to Larger εn

The convergence in distribution result of Theorem 1 is valid for εn � n−1/3 but fails
above n−1/3. Let us consider, for example, the case where n−1/3 � εn � n−1/5. In
this case, the contribution of the first term An(z) in the expansion of �Gn(z) which
yields the random limiting quantity is dominated not only by the term Bn(z) as it
used to be previously. It is also dominated by a further and smaller term Dn(z) of the
expansion

�Gn(z) = An(z) + Bn(z) + Cn(z) + Dn(z) + En(z) + Rε
n,

with:

An(z) := εn

n
Tr

1

z − D
X

1

z − D
...
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En(z) := ε5n

n
Tr

1

z − D
X

1

z − D
X

1

z − D
X

1

z − D
X

1

z − D
X

1

z − D

Rε
n(z) := ε6n

n
Tr

1

z − D
X

1

z − D
X

1

z − D
X

1

z − D
X

1

z − D
X

1

z − D
X

1

z − Dε
.

In this case, the random term Z(z) is still produced by An(z) and has an order of
magnitude of εn/n. Meanwhile, the term Dn(z) writes

Dn(z) := ε4n

n3

n∑

i, j,k,l=1

xi, j x j,k xk,l xl,i

(z − λn(i))2 (z − λn( j)) (z − λn(k)) (z − λn(l))
.

All the indices satisfying j = l contribute to the previous sum, since they produce
a term in |xi,l |2|xk,l |2. Their cardinality is of order n3. Therefore, the term Dn(z) is of
order ε4n which prevails on the order εn/n of An(z), as soon as εn � n−1/3. One can
also observe that the odd terms Cn(z) and En(z) in the expansion are negligible with
respect to An(z) due to the fact that the entries xi, j are centered. One can then state
an analogous result to Proposition 3, but the deterministic limiting term D(z) arising
from Dn(z) does not find a nice expression as the image of ϕz by a linear form as it
was the case for B(z) in Proposition 4. Therefore, we did not state an extension of
Theorem 1.

More generally, for all positive integer p, when n−1/(2p−1) � εn � n−1/(2p+1),
the expansion will contain p deterministic terms, produced by the even variables,
Bn(z), Dn(z), Fn(z), Hn(z) . . . All the other odd terms, Cn(z), En(z), Gn(z) . . .

being negligible due to the centering of the entries. The limits of the even terms Bn(z),
Dn(z), Fn(z), Hn(z) . . . can be expressed thanks to operator-valued free probability
theory, using the results of [22] (namely Th. 4.1), but expressing these limits as the
images of ϕz by linear forms is a quite involved combinatorial problem that we did
not solve yet.

7 Convergence in Probability in the Semi-Perturbative Regime

Our goal now is to extend the convergence in probability result (22) of Proposition 3,
proved for test functions ϕz(x) := 1

z−x , to any C6 and compactly supported function
on R. We do it in the following lemma by using the Helffer–Sjöstrand formula which
is stated in Proposition 9 of Appendix.

Lemma 6 If n−1 � εn � 1, then, for any compactly supported C6 function φ on R,

ε−2
n (με

n − μn)(φ)
P−−−→

n→∞ −
∫

φ′(s)F(s) ds .

Proof Let us introduce the Banach space C1b,b of bounded C1 functions on R with
bounded derivative, endowed with the norm ‖φ‖C1

b,b
:= ‖φ‖∞ + ‖φ′‖∞.
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On this space, let us define the random continuous linear form

�n(φ) := ε−2
n (με

n − μn)(φ) +
∫

φ′(s)F(s) ds.

Convergence (22) of Proposition 3 can now be formulated as

∀z ∈ C \ R, �n(ϕz)
P−−−→

n→∞ 0.

Actually, we can be more precise by adding the upper bounds of Claims 1, 2, 3 and
4, and obtain, uniformly in z,

E

[
|�n(ϕz)|2

]
= E

[∣
∣
∣ε−2

n �Gn(z) − B(z)
∣
∣
∣
2
]

≤ (nεn)−2

min
(
dist(z, S̃)4 , dist(z, S̃)8 , |Im(z)|2 dist(z, S̃)8

) . (31)

Now, let φ be a compactly supported C6 function on R and let us introduce the
almost analytic extension of degree 5 of φ defined by

∀z = x + iy ∈ C, φ̃5(z) ..=
5∑

k=0

1

k! (iy)kφ(k)(x) .

An elementary computation gives, by successive cancellations, that

∂̄ φ̃5(z) = 1

2

(
∂x + i∂y

)
φ̃5(x + iy) = 1

2 × 5! (iy)5φ(6)(x). (32)

Furthermore, by Helffer–Sjöstrand formula (Proposition 9), for χ ∈ C∞
c (C; [0, 1])

a smooth cutoff function with value one on the support of φ,

φ(·) = − 1

π

∫

C

∂̄(φ̃5(z)χ(z))

y5
y5ϕz(·) d2z

where d2z denotes the Lebesgue measure on C.

Note that by (32), z �→ 1y �=0
∂̄(φ̃5(z)χ(z))

y5
is a continuous compactly supported

function and that z ∈ C �→ 1y �=0y5ϕz ∈ C1b,b is continuous, hence,

�n(φ) = 1

π

∫

C

∂̄(φ̃5(z)χ(z))

y5
y5�n(ϕz) d

2z.
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Therefore, using the Cauchy–Schwarz inequality and the fact that χ has compact
support at the second step, for a certain constant C , we have

E

(
|�n(φ)|2

)
= E

(∣
∣
∣
∣
1

π

∫

C

∂̄(φ̃5(z)χ(z))

y5
y5�n(ϕz) d

2z

∣
∣
∣
∣

2)

≤ CE

(∫

C

∣
∣
∣
∣
∂̄(φ̃5(z)χ(z))

y5
y5�n(ϕz)

∣
∣
∣
∣

2

d2z

)

= C
∫

C

∣
∣
∣
∣
∂̄(φ̃5(z)χ(z))

y5

∣
∣
∣
∣

2

y10 E

(
|�n(ϕz)|2

)
d2z .

Since the function
∣
∣
∣ ∂̄(φ̃5(z)χ(z))

y5

∣
∣
∣
2
is continuous and compactly supported and that,

by (31), for n−1 � εn � 1, uniformly in z,

y10 E

(
|�n(ϕz)|2

)
≤ y10

o(1)

min(y4, y10)
−→
n→∞ 0.

Thus, for any compactly supported C6 function on R,

E

(
|�n(φ)|2

)
≤ C

∫

C

∣
∣
∣
∣
∂̄(φ̃5(z)χ(z))

y5

∣
∣
∣
∣

2

y10 E

(
|�n(ϕz)|2

)
d2z −→

n→∞ 0

which implies that �n(φ) converges to 0 in probability. ��

8 Convergence in Distribution Toward the Gaussian Variable Zφ

The purpose of this section is to extend the convergences in distribution of Proposition
3, from test functions of the type ϕz := 1

z−x , to compactly supported C6 functions
on R. To do so, we will use an extension lemma of Shcherbina and Tirozzi, stated in
Lemma 10 of Appendix, which concerns the convergence of a sequence of centered
random fields with uniformly bounded variance. Hence, we need to show first that
our non-centered random sequence is not far from being centered, which is done in
Sect. 8.1 by using again the Helffer–Sjöstrand formula (9). In Sect. 8.2, we dominate
the variance of this centered random field thanks to another result of Shcherbina and
Tirozzi stated in Proposition 11 of Appendix. Section 8.3 collects the preceding results
to conclude the proof.

8.1 Coincidence of the Expectation of με
n with Its Deterministic Approximation

The asymptotic coincidence of the expectation of με
n with its deterministic approxi-

mation is the content of next lemma:
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Lemma 7 Let us define, for φ a C1 function on R,

�n(φ) :=

⎧
⎪⎨

⎪⎩

nε−1
n

(
E[με

n(φ)] − μn(φ)
)

if εn � n−1,

nε−1
n

(
E[με

n(φ)] − μn(φ) + ε2n
∫

φ′(s)F(s)ds
)

if εn ∼ c/n or n−1 � εn � n−1/3 .

Then, as n → ∞, for any compactly supported C6 function φ or any φ of the type
ϕz(x) = 1

z−x , z ∈ C\R, we have

�n(φ) −→
n→∞ 0.

Proof First note that, as the variables xi, j are centered, E[An(z)] = 0. Moreover, by
adding the renormalized upper bounds of Claims 2, 3 and 4 one can directly obtain
the two following inequalities for any z ∈ C \ R:

• If εn � n−1, then

|�n(ϕz)| = nε−1
n |E[�Gn(z)]|

≤ nε−1
n

(|E[An(z)]| + E[|Bn(z)|] + E[|Cn(z)|] + E[|Rε
n(z)|]

)

≤ C(nεn + ηn)

min
{
dist(z, S̃)3, dist(z, S̃)4, |Im(z)| dist(z, S̃)4

} −→
n→∞ 0 .

• If εn ∼ c/n or n−1 � εn � n−1/3, then

|�n(ϕz)| = nε−1
n |E[�Gn(z) − ε2n B(z)]|

≤ nε−1
n

(
|E[An(z)]|+E[|Bn(z) − ε2n B(z)|]+E[|Cn(z)|] + E[|Rε

n(z)|]
)

≤ C(εn + ηn + nε3n)

min
{
dist(z, S̃)3, dist(z, S̃)4, |Im(z)| dist(z, S̃)4

} −→
n→∞ 0 .

Hence, in all cases, �n(ϕz) −→
n→∞ 0.

The extension of this result to compactly supported C6 test functions on R goes the
same way as for �n in the proof of Lemma 6. ��

8.2 Domination of the Variance of με
n

The second ingredient goes through a domination of the variance of με
n(φ):

Lemma 8 Let s > 5. There is a constant C such that for each n and each φ ∈ Hs ,

Var
(

nε−1
n με

n(φ)
)

≤ C‖φ‖2Hs
.

123



1246 J Theor Probab (2019) 32:1220–1251

Proof By Proposition 11, it suffices to prove that

∫ ∞

y=0
y2s−1e−y

∫

x∈R
Var(ε−1

n Tr((x + iy − Dε
n)−1))dxdy

are bounded independently of n.
Note that for �Gn(z) defined in (18),

Var
(
ε−1

n Tr((z − Dε
n)−1)

)
= n2ε−2

n Var(�Gn(z)).

Moreover, the sum of the inequalities of Claims 1, 2, 3 and 4 yields

Var
(

nε−1
n �Gn(z)

)
≤ C

dist(z, S̃)4
+ C

|Im(z)|2 dist(z, S̃)8
.

Let M > 0 such that S̃ ⊂ [−M, M]. Then

dist(z, S̃) ≥
{

y if |x | ≤ M,√
y2 + (|x | − M)2 if |x | > M .

Thus dist(z, S̃) ≥ y if |x | ≤ M and, for |x | > M ,

1

dist(z, S̃)
≤ y−1
√
1 + ((|x | − M)/y)2

and for any y > 0,

∫

x∈R
Var(nε−1

n �Gn(x + iy))dx ≤ 2C M(y−10 + y−4)

+2C
∫ +∞

0

y−4

(1 + ( x
y )2)2

+ y−10

(1 + ( x
y )2)4

dx

≤ 2C M(y−10 + y−4) + C

(
π

2
y−3 + 5π

16
y−9

)

≤ k
(

y−10 + y−3
)

,

for a suitable constant k.
We deduce that, as soon as 2s − 10 > 0, i.e. s > 5,

∫ ∞

y=0
y2s−1e−y

∫

x∈R
Var

(
ε−1

n Tr((x + iy − Dε
n)−1)

)
dxdy

≤ k
∫ ∞

0
y2s−1e−y(y−10 + y−3)dy < ∞.

��
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8.3 Proof of the Convergences in Distribution of Theorem 1

Since we have proved in Lemma 7 that for all compactly supported C6 function φ, the
deterministic term μn(φ) could be replaced by E[με

n(φ)], we only have to prove, that
for all φ ∈ C6,

nε−1
n

(
με

n(φ) − E
[
με

n(φ)
]) dist.−→

n→∞ Zφ.

For the time being, we know this result to be valid for functions φ belonging to the
spaceL1, defined as the linear span of the family of functions ϕz(x) := 1

z−x , z ∈ C\R.
By applying Lemma 10 to the centered fieldμε

n −E[με
n], we are going to extend the

result from the space L1 to the Sobolev space (Hs, ‖ · ‖Hs ) with s ∈ (5, 6). Note that,
since s < 6, this latter space contains the space of C6 compactly supported functions
(see [16, Sec. 7.9]).

It remains to check the two hypotheses of Lemma 10. First, the subspace L1 is
dense in every space (Hs, ‖ · ‖Hs ). This is the content of Lemma 13 of Appendix.
Second, by Lemma 8, since s > 5, Var(nε−1

n με
n(φ)) ≤ C‖φ‖2Hs

for a certain constant
C .

This concludes the proof.

Acknowledgements We thank Jean-Philippe Bouchaud, Guy David and Vincent Vargas for some fruitful
discussions. We are also glad to thank the GDR MEGA for partial support.

9 Appendix

The reader can find here the results we use along the paper, namely the Helffer–
Sjöstrand formula, the CLT extension lemma of Shcherbina and Tirozzi and a
functional density lemma with its proof.

9.1 Helffer–Sjöstrand Formula

The proof of the following formula can be found, e.g., in [7].

Proposition 9 (Helffer–Sjöstrand formula) Let n ∈ N and φ ∈ C p+1(R). We define
the almost analytic extension of φ of degree p through

φ̃p(x + iy) ..=
p∑

k=0

1

k! (iy)kφ(k)(x) .

Let χ ∈ C∞
c (C; [0, 1]) be a smooth cutoff function. Then for any λ ∈ R satisfying

χ(λ) = 1 we have

φ(λ) = 1

π

∫

C

∂̄(φ̃p(z)χ(z))

λ − z
d2z ,
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where d2z denotes the Lebesgue measure on C and ∂̄ ..= 1
2 (∂x + i∂y) is the antiholo-

morphic derivative.

9.2 CLT Extension Lemma

The following CLT extension lemma is borrowed from the paper of Shcherbina and
Tirozzi [20]. We state here the version that can be found in Appendix of [6].

Lemma 10 Let (L, ‖ · ‖) be a normed space with a dense subspace L1 and, for each
n ≥ 1, (Nn(φ))φ∈L a collection of real random variables such that:

• for each n , φ �−→ Nn(φ) is linear,
• for each n and each φ ∈ L, E[Nn(φ)] = 0,
• there is a constant C such that for each n and each φ ∈ L, Var(Nn(φ)) ≤ C‖φ‖2,
• there is a quadratic form V : L1 → R+ such that for any φ ∈ L1, we have the

convergence in distribution Nn(φ) −→
n→∞ N (0, V (φ)).

Then, V is continuous on L1, can (uniquely) be continuously extended to L and for
any φ ∈ L, we have the convergence in distribution Nn(φ) −→

n→∞ N (0, V (φ)).

One of the assumptions of previous lemma concerns a variance domination. The
next proposition provides a tool in order to check it. Let us first remind the definition
of the Sobolev space Hs . For φ ∈ L1(R, dx), we define

φ̂(k) :=
∫

eikxφ(x)dx (k ∈ R)

and, for s > 0,

‖φ‖Hs := ‖k �−→ (1 + 2|k|)s φ̂(k)‖L2 .

We define the Sobolev space Hs as the set of functions with finite ‖ · ‖Hs norm.
Let us now state Proposition 2 of the paper [21] of Shcherbina and Tirozzi.

Proposition 11 For any s > 0, there is a constant C = C(s) such that for any n, any
n × n Hermitian random matrix M, and any φ ∈ Hs , we have

Var(Tr φ(M)) ≤ C‖φ‖2Hs

∫ ∞

y=0
y2s−1e−y

∫

x∈R
Var(Tr((x + iy − M)−1))dxdy.

9.3 A Density Lemma

We did not find Lemma 13 in the literature, so we provide its proof. Recall that for
any z ∈ C\R,

ϕz(x) = 1

z − x
.
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Lemma 12 For any z ∈ C\R, we have, in the L2 sense,

ϕ̂z = (t �−→ − sgn(Imz)2π i1Im(z)t>0e
it z) (33)

and ϕz belongs to each Hs for any s ∈ R.

Proof It is well known that if Rez > 0, then
1

z
=
∫ +∞

t=0
e−t zdt.

Let z = E + iη, E ∈ R, η > 0. For any ξ ∈ R, we have

ϕz(ξ) = −i

i(ξ − z)
= −i

∫ +∞

t=0
e−it (ξ−z)dt = −i

∫ +∞

t=0
e−itξ eit zdt.

We deduce (33) for Imz > 0. The general result can be deduced by complex
conjugation. ��
Lemma 13 LetL1 denote the linear span of the functions ϕz(x) := 1

z−x , for z ∈ C\R.
Then the space L1 is dense in Hs for any s ∈ R.

Proof We know, by Lemma 12, thatL1 ⊂ Hs . Recall first the definition of the Poisson
kernel, for E ∈ R and η > 0,

Pη(E) = 1

π

η

E2 + η2
= 1

2iπ

(
ϕiη(E) − ϕ−iη(E)

)

and that, by Lemma 12,

P̂η(t) = e−η|t |.

Hence for any f ∈ Hs , we have

‖ f − Pη ∗ f ‖2Hs
=
∫

(1 + 2|x |)2s | f̂ (x)|2(1 − e−η|x |)2dx,

so that, by dominated convergence, Pη ∗ f −→ f inHs as η → 0.
To prove Lemma 13, it suffices to prove that any smooth compactly supported func-

tion can be approximated, inHs , by functions of L1. So let f be a smooth compactly
supported function. By what precedes, it suffices to prove that for any fixed η > 0,
Pη ∗ f can be approximated, inHs , by functions of L1. For x ∈ R,

Pη ∗ f (x) = 1

π

∫
f (t)

η

η2 + (x − t)2
dt

= − 1

π

∫
f (t)Im(ϕt+iη(x))dt

= 1

2π i

∫
f (t)(ϕt−iη(x) − ϕt+iη(x))dt.

123



1250 J Theor Probab (2019) 32:1220–1251

Without loss of generality, one can suppose that the support of f is contained in
[0, 1]. Then, for any n ≥ 1,

Pη ∗ f (x) = 1

2nπ i

n∑

k=1

f

(
k

n

)(
ϕ k

n −iη(x) − ϕ k
n +iη(x)

)
+ Rn(x) (34)

where for [t]n := �nt�/n,

Rn(x) = 1

2π i

∫
f (t)

(
ϕt−iη(x) − ϕt+iη(x)

)− f ([t]n)
(
ϕ[t]n−iη(x) − ϕ[t]n+iη(x)

)
dt.

The error term Rn(x) rewrites

Rn(x) = 1

2π i

∫
( f (t) − f ([t]n))(ϕt−iη − ϕt+iη)(x)dt

+ 1

2π i

∫
f ([t]n)(ϕt−iη − ϕ[t]n−iη + ϕt+iη − ϕ[t]n+iη)(x)dt.

Now, note that for any t ∈ R and η ∈ R\{0}, we have by Lemma 12,

ϕ̂t+iη = (x �→ − sgn(η)2π i1ηx>0 e
ixz),

so that when, for example, η > 0, for any t ∈ R,

‖ϕt+iη‖2Hs
= 4π2

∫ ∞

0
(1 + 2|x |)2se−2ηxdx

does not depend on t and for any t, t ′ ∈ R,

‖ϕt+iη − ϕt ′+iη‖2Hs
= 4π2

∫ ∞

0
(1 + 2|x |)2s |eit x − eit

′x |2e−2ηxdx

= 4π2
∫ ∞

0
(1 + 2|x |)2s |ei(t−t ′)x − 1|2e−2ηxdx

depends only on t ′ − t end tends to zero (by dominated convergence) when t ′ − t → 0.
We deduce that ‖Rn‖Hs −→ 0 as n → ∞, which closes the proof, by (34). ��
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