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Abstract Two fundamental theorems by Spitzer–Erickson and Kesten–Maller on the
fluctuation-type (positive divergence, negative divergence or oscillation) of a real-
valued random walk (Sn)n≥0 with iid increments X1, X2, . . . and the existence of
moments of various related quantities like the first passage into (x,∞) and the last
exit time from (−∞, x] for arbitrary x ≥ 0 are studied in the Markov-modulated situ-
ation when the Xn are governed by a positive recurrent Markov chain M = (Mn)n≥0
on a countable state space S; thus, for a Markov random walk (Mn, Sn)n≥0. Our
approach is based on the natural strategy to draw on the results in the iid case for
the embedded ordinary random walks (Sτn(i))n≥0, where τ1(i), τ2(i), . . . denote the
successive return times of M to state i , and an analysis of the excursions of the walk
between these epochs. However, due to these excursions, generalizations of the afore-
mentioned theorems are surprisinglymore complicated and require the introduction of
various excursion measures so as to characterize the existence of moments of different
quantities.
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List of Symbols

N0 Set of nonnegative integers {0, 1, 2, . . .}
R> Positive halfline (0,∞)

R� Nonnegative halfline [0,∞)

S Countable state space of the driving chain
f (x) � g(x) Shorthand for lim supx→∞

f (x)
g(x) <∞

f (x) � g(x) Shorthand for lim infx→∞ f (x)
g(x) > 0

f (x) � g(x) Shorthand for f (x) � g(x) and f (x) � g(x)
A � (�)B Shorthand for A ≤ (≥)cB for some c ∈ R>

A � B Shorthand for A � B and A � B, thus c−1B ≤ A ≤ cB for some
c ∈ R>

(Mn)n≥0 Positive recurrent driving chain with transition matrix (pi j )i, j∈S and
stationary distribution π = (πi )i∈S

(#Mn)n≥0 Dual of (Mn)n≥0 with transition matrix (π j p ji/πi )i, j∈S
τ(i), τn(i) First, nth return epoch of the driving chain to state i , thus τ1(i) = τ(i)
#τ(i), #τn(i) Same as τ(i), τn(i) for the dual chain (#Mn)n≥0
υ = υ(i, j) inf{n ≥ 1 : τn(i) > τ( j)} = first return to state i after a visit to j .
(Sn)n≥0 (Additive part of the) MRW with driving chain (Mn)n≥0
Xn Sn − Sn−1 = nth increment of the MRW
(#Sn)n≥0 (Additive part of the) dual MRW with driving chain (#Mn)n≥0
σ> inf{n ≥ 1 : Sn > 0} = first strictly ascending ladder epoch of the

MRW
σ� inf{n ≥ 1 : Sn ≤ 0} = first weakly descending ladder epoch of the

MRW
(σ>

n )n≥1 Sequence of strictly ascending ladder epochs, thus σ>
1 = σ>

(σ
�
n )n≥1 Sequence of weakly descending ladder epochs, thus σ

�
1 = σ�

σ>(x) inf{n ≥ 1 : Sn > x} = level x first passage time, thus σ>(0) = σ>

σ>(x) inf{n > τ(M0) : Sn > x} = level x first passage time after first return
to initial state of the driving chain

ρ(x) sup{n ≥ 0 : Sn ≤ x} = level x last exit time
σmin inf{n ≥ 1 : Sn = mink≥1 Sk} = hitting of minimum epoch
N (x)

∑
n≥1 1{Sn≤x} = renewal counting process of the MRW

ν(i, x) inf{n ≥ 1 : Sτn(i) > x} = level x first passage time of (Sτn(i))n≥0
ζn(i) inf{k > ζn−1(i) : Sτk (i) > Sτζn−1(i)} for n ≥ 1, where ζ0(i) := 0
τ>
n (i) τζn(i) for n ≥ 1, and τ>(i) also used for τ>

1 (i) = ν(i, 0)
#τ>

n (i) Same as τ>
n (i) for the dual MRW (#Mn,

#Sn)n≥0
ν>(i, x) inf{n ≥ 1 : Sτ>

n (i) > x} = level x first passage time of (Sτ>
n (i))n≥0

Ai (x) Ei (S
+
τ(i) ∧ x)− Ei (S

−
τ(i) ∧ x) for x > 0

Ji (x)

{ x
E(S+

τ (i)∧x)
, if Pi (Sτ(i) > 0) > 0

x otherwise
for x > 0, and Ji (0) = 1
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Ji,γ (x) Same as Ji (x), but with [Ei (S
+
τ(i)∧ x)]γ in the denominator, γ ∈ [0, 1]

J>
i (x) Same as Ji (x), but with Ei (Sτ>(i) ∧ x) in the denominator, γ ∈ [0, 1]
Di
n maxτn−1(i)<k≤τn(i)(Sk − Sτn−1(i))

− for n ∈ N, = maximal down-
ward excursion of the MRW in the discrete stochastic time interval
{τn−1(i), . . . , τn(i)}, iid under Pi with generic copy Di

Di,>
n maxτ>

n−1(i)<k≤τ>
n (i)(Sk − Sτ>

n−1(i))
− for n ∈ N,

V
α
i ((x,∞)) Ei

(∑τ(i)
n=1 1{S−n >x}

)α , x ∈ R�, α > 0

Vi V
1
1

Σα(i, x)
∑

n≥1 nα−1
Pi (Sn ≤ x), x ∈ R�, α ≥ 0

1 Introduction

Classical fluctuation theory deals with the fine structure (to steal an expression used by
Chung in his textbook [20, Section 8.4]) of ordinary random walks on R, i.e., partial
sums Sn = ∑n

k=1 Xk of iid real-valued random variables X1, X2, . . . It comprises,
among others,

(1) the basic trichotomy regarding the almost sure behavior of Sn as n→∞,
(2) results about the existence of moments for related quantities like minn≥0 Sn or

the number of nonpositive sums N (0) =∑
n≥0 1{Sn≤0},

A short review of the results relevant for this article will be given in Sect. 3.
The present work aims at providing results of type (1) and (2) for the more gen-

eral situation when the increments X1, X2, . . . are modulated or driven by a positive
recurrent Markov chain M = (Mn)n≥0 with countable state space S. More precisely,
the Xn are conditionally independent given M, and

P((X1, . . . , Xn) ∈ · |M0 = i0, . . . , Mn = in) = Ki0i1 ⊗ · · · ⊗ Kin−1in

for all n ≥ 1, s0, . . . , sn ∈ S and some stochastic kernel K from S2 to R. Then
(Mn, Sn)n≥0, and sometimes also its additive part (Sn)n≥0, is called aMarkov random
walk (MRW) orMarkov additive process andM its driving chain. Let P = (pi j )i, j∈S
denote the transition matrix of M and π = (πi )i∈S its unique stationary distribution.
For any i ∈ S, put further Pi := P(·|M0 = i) and let (τn(i))n≥1 denote the renewal
sequence of successive return epochs to i .

The well-known fact that, for each i ∈ S, (Sτn(i))n≥0 with τ0(i) := 0 constitutes an
ordinary zero-delayed random walk under Pi suggests that results of the above kind
for (Sn)n≥0 should be obtainable by drawing on the known results for these embedded
walks. On the other hand, it should also be clear that the excursions between the
successive return epochs require additional analysis and may in fact be intriguing and
result in surprising effects. For instance, it is possible that Sτn(i) → ∞ a.s. for all
i ∈ S while (Sn)n≥0 is oscillating (see Example 7.2). Our main results will actually
show that the attempt to simply “lift” fluctuation-theoretic results for ordinary random
walks to the class of MRW is not at all straightforward and often even fails without
proper adjustments. In other words, despite the fact that (Sn)n≥0 can be viewed as the
(generally infinite) union of the ordinary random walks (Sτn(i))n≥0, i ∈ S, the way
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those are intertwined may lead to nontrivial complications that must be taken care of
in the analysis.

There is an extensive literature on MRW with discrete driving chain and finite
stationary drift Eπ X1, mostly within the framework of Markov renewal theory and
focussingon theMarkov renewal theoremand results derived therefrom.Çinlar [21,22]
provides good accounts of the early developments and references, while Asmussen’s
monography [14, Ch. XI] and [6] may be consulted for more recent treatments of some
aspects of the theory including the discreteMarkov renewal theorem, the dual process,
andWiener–Hopf factorization, for the latter see also [12,24,44]. The ladder variables
and the associated ladder chain of a MRW have been studied in [4,7], see also Sect. 4
for further information, an arcsine law for the number of positive sums is derived in
[8], and the topological recurrence of (Sn)n≥0 in the case when Eπ X1 = 0 is shown
in [5]. For conditional Markov renewal theorems in the case when S is countable, we
mention an article by Lalley [34]. Finally, there are two papers, by Newbould [40]
and Prabhu et al. [44], of closer relation to the present work by providing the basic
trichotomy for MRW, the first one in the case when the driving chain has finite state
space, the second onewithout this restriction and including a discussion of degeneracy.
We refer to Sect. 5 for further details.

Regarding the more general situation when the driving chain has continuous state
space and is positive Harris recurrent, we believe that an extension of our results is
possible, at least to some extent, but not without considerable additional work. To
explain, we note that the natural substitute in our approach for the return times τn(i)
to some state i , which are generally no longer a.s. finite, is a sequence of regeneration
epochs (τn)n≥1, marked by the successive epochs where the Harris chain returns
to some recurrent small set as defined by Meyn and Tweedie [39, Sect. 5.2] and
a regeneration occurs in the sense of Athreya and Ney [16,17] or Nummelin [42].
Unfortunately, the associated embedded random walk (Sτn )n≥1 has iid increments
only in special cases, namely when the bivariate chain (Mn, Xn)n≥0 satisfies a certain
Harris-type condition (see [15] and also [41]). In general, however, the increments are
1-dependent and stationary. Therefore, in all places where we have drawn on rather
deep fluctuation-theoretic results for ordinary RW due to Spitzer [46], Erickson [23],
and Kesten and Maller [33] (see Sect. 3 for further information) extensions to the case
of stationary, 1-dependent increments are needed. Since this cannot be done shortly,
we have restricted this work to the case when the driving chain has countable state
space.

Recently, results of similar type as in this article have been derived by the first
authorwith Iksanov andMeiners [10] for another generalization of ordinaryRW, called
perturbed randomwalks (PRW), which have interesting connections with perpetuities,
the Bernoulli sieve, regenerative and shot-noise processes (see their Sects. 1 and 3 for
further information). We refer to Sect. 12 for a more detailed discussion of how the
results here relate to those in [10].

Further organization: Three examples where MRW play a prominent role are
described in some detail in Sect. 2, in particular randomdifference equations inMarko-
vian environmentwhich have been amajormotivation for thiswork. Section 3 provides
a short survey of the relevant fluctuation-theoretic results for ordinary RW, followed
by a preliminary section giving some basic facts about MRW with discrete driving
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chain. A classification of MRW as to their fluctuation type, a short discussion of null-
homologous MRW, which are the counterpart to ordinary RW with zero increments,
and an extension of Kesten’s trichotomy to MRW (Theorem 5.5) form the content
of Sect. 5. All main results are presented in Sect. 6. For their proofs, provided in
Sect. 8, various quantities, defined as functions of i ∈ S, must be considered and
shown to share certain properties for all i . Such solidarity results will be collected in
Sect. 7. Section 9 is devoted to a further discussion of the level x first passage times
inf{n ≥ 1 : Sn > x} the behavior of which is more difficult to describe than for
ordinary RW. A short discussion of the strong law of large numbers can be found in
Sect. 10, while Sect. 11 collects some counterexamples that, as a supplement to our
main results, will show that various equivalences given in the theorems by Spitzer–
Erickson and Kesten–Maller for ordinary RWdo not carry over toMRW. Finally, Sect.
12 provides the above-mentioned discussion of PRW, followed by an Appendix con-
taining some auxiliary lemmata of purely technical nature and a Glossary providing a
comprehensive list of the most important notation used in this article.

2 Examples

Markov modulation forms a common tool in Applied Probability, for instance in
queuing, risk or reliability theory, to provide models of greater variability by allowing
input parameters (like interarrival or service times, claim sizes, lifetime distributions
or the type of agents in the model) to depend on the state of an underlying Markov
chain. Examples of this kind may be found, e.g., in the monographs by Asmussen
[13, Chs. VI and VIII], [14, Ch. 11], Prabhu [43, Part III] or Limnios and Oprişan
[37]. In the following, we give three examples where the occurrence of MRWmay be
less known and begin with one related to random difference equations (iterations of
random affine linear maps) that has been an area of very active research over the last
twenty years, see the recent monograph by Buraczewski et al. [19] and also [11].

2.1 Random Difference Equations (Perpetuities) in Markovian Environment

Amainmotivation for the present work originated from the question of convergence of
iterations of affine linear mapsΨn(x) = Anx+Bn , n = 1, 2, . . ., in the situation when
(An, Bn)n≥1 ofR2-valued randomvectors ismodulated by a positive recurrentMarkov
chain (Mn)n≥0 with countable state spaceS, see [9]. Thismeans that, conditioned upon
M0 = i0, M1 = i1, . . . for arbitrary i0, i1, . . . ∈ S,
• (A1, B1), (A2, B2), . . . are conditionally independent,
• the conditional law of (An, Bn) depends only on (in−1, in) and is temporally homo-
geneous, i.e.,

P((An, Bn) ∈ ·|Mn−1 = in−1, Mn = in) = Kin−1in

for a stochastic kernel K from S2 to R
2 and all n ≥ 1.
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The goal is to find necessary and sufficient conditions for the convergence in law of
the iterated function system

Rn := Ψn(Rn−1) = Ψn ◦ · · · ◦ Ψ1(R0), n = 1, 2 . . . , (2.1)

also called forward iterations, as well as such conditions for the convergence, almost
surely or in law, of the corresponding backward iterations

Zn = Ψ1 ◦ · · · ◦ Ψn(R0) = Πn R0 +
n∑

k=1
Πk−1Bk, n = 1, 2, . . . (2.2)

where

Π0 := 1 and Πn := A1A2 · · · An, n = 1, 2, . . .

and R0 is a real number (this can be generalized but is ignored here for simplicity).
Note that, if R0 = 0 and the a.s. limit of Zn exists, then it equals Z∞ =∑

n≥1 Πn−1Bn ,
called perpetuity.

In the case of iid (An, Bn), the aforementioned stability questions were finally
settled by Goldie and Maller [25, Theorems 2.1 and 3.1], based on earlier work by
Vervaat [48] and Grincevičius [26,27]. One of their central results reads as follows:
If

P(A1 = 0) = 0 and P(B1 = 0) < 1,

then Zn converges a.s. to Z∞ (regardless of the initial value Z0 = R0) iff

Πn → 0 a.s. and EJ (log+ |B|) < ∞, (2.3)

where, for x > 0,

J (0) := 1 and J (x) :=
⎧
⎨

⎩

x

E((log− |A|) ∧ x)
, if P(log |A| < 0) > 0,

x, otherwise.

Since Zn and Rn have obviously the same distribution for each n, we also infer the
convergence in law of Rn to Z∞. Let us note here in passing that this equality in law
does no longer generally hold in Markovian environment. According to Theorem 2.1
in [10], Condition (2.3) is equivalent to the negative divergence of the PRW

Wn = log |Πn−1| + log |Bn|, n ≥ 0,

which means that Wn → −∞ a.s. (see also Sect. 12). This equivalence in turn is
obtained by drawing on a fluctuation-theoretic result, stated as Theorem 3.1 in the
next section, due to Spitzer [46] and Erickson [23].
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In view of this, it can be expected that an extension of the Goldie-Maller theorem to
the Markov-modulated setup requires for an extension of the Spitzer–Erickson result
to MRW, this being so because (log |Πn|)n≥0 now forms a MRW with driving chain
(Mn)n≥0. The latter extension is indeed obtained here as Theorem 6.1 and utilized
for the proofs of some of the results in [9] (stated there in Sect. 3). For all further
details including relevant references, the interested reader is referred to that paper
which actually gives a complete description of necessary and sufficient conditions
for the convergence of forward and backward iterations. Unlike the iid case, this
requires the distinction of various additional subregimes related to the lattice-type of
(Mn, log |Πn|)n≥0.

2.2 Branching Random Walk in Random Environment

Recently, Mallein and Miłos [38] have studied the maximal displacement in a super-
critical branching random walk (BRW) in random environment, the latter given by a
sequence L = (Ln)n≥0 of iid point process laws on R. The basic assumptions about
these laws are

P(L0(number of points = 0)) = 0, (2.4)

P(L0(number of points > 1)) > 0. (2.5)

In other words, if Z = ∑N
k=1 δZk has law L0, then N ≥ 1 a.s. and P(N > 1) > 0.

Then a BRW in random environment L originates from an initial particle ∅ sitting
at the origin at time 0. At time 1, the particle dies while giving birth to a random
number of children with random positions relative to their mother in accordance with
the law L0. At time 2, these offspring particles die while independently giving birth to
a random number of children with random positions relative to their own position in
accordance with the lawL1. Generally, at time n all particles born at time n−1 die and
independently give birth to a randomnumber of childrenwith randompositions relative
to their own position in accordance with the law Ln−1. Due to the assumptions on L,
the genealogy of this process is described by an a.s. non-extinctive, thus supercritical
Galton–Watson tree T, say, in iid random environment. For v ∈ T, let S(v) denote the
position of the particle v. It is obtained by summing the relative displacements of all
particles along the unique path from the ancestor ∅ (root of T) to v. Then the maximal
displacement of the particles born at time n is defined by

Λn := max
v∈T,|v|=n S(v),

where |v| is the generation to which v belongs.
Next, let ϕn : R� → R∪ {∞} for n ∈ N0 denote the log-Laplace transform of the

random point process law Ln , thus

ϕn(θ) := logEL
∑

x∈Zn

eθx
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where Zn is a point process with law Ln under the conditional measure PL. Note that
ϕn(θ) > −∞ is guaranteed by (2.4) and that ϕ0, ϕ1, . . . are iid random functions. As
in [38], we further assume that ϕn(θ)−, the negative part of ϕn(θ), has finite mean
for all θ ≥ 0. Then ϕ : R� → R ∪ {∞}, θ �→ Eϕ0(θ) is well defined, and further a
smooth and convex function on int (D), the interior of D = {θ : ϕ(θ) < ∞}, if this
interval is nonempty which will also be assumed hereafter along with the existence of
θ∗ ∈ int (D) such that

θ∗ϕ′(θ∗)− ϕ(θ∗) = 0.

It then follows that ϕ′(θ∗) = Eϕ′0(θ∗) = ν, where

ν := inf
θ>0

ϕ(θ)

θ
.

Under these conditions and some further technical ones omitted here (see [38, (1.6)–
(1.8)]), the main result of Mallein and Miłos asserts that, for some β∗ > 0,

lim
n→∞PL

(

Λn − 1

θ∗
n−1∑

k=0
ϕk(θ

∗) ≥ −β log n

)

=
{
1, if β > β∗,
0, if β < β∗

in P-probability,

see [38, Theorem 1.1]), also for the definition of the threshold β∗. This result extends
earlier ones by Addario-Berry and Reed [1], Hu and Shi [30] and Aïdékon [2] for the
case of constant environment.

An essential tool in the study of the extremal behavior of BRW is the so-called
many-to-one lemma. In the present context of iid random environment, it renders the
connection with a MRW. Certain fluctuation-theoretic properties of this walk, see [38,
Section 3], are then used in the analysis of Mn . To see the connection, define the
stochastic kernel K by

K (�, (−∞, t]) := E

⎛

⎝
∑

x∈Z0

1(−∞,t](x)eθ∗x−ϕn(θ
∗)
∣
∣
∣
∣L0 = �

⎞

⎠

where Z0 is a point process with law � given L0 = �,L1,L2, . . . Let (Xn)n≥1 be
a sequence of real-valued random variables which, conditioned upon L, are condi-
tionally independent and such that the conditional law of Xn equals K (Ln, ·). Putting
Sn := ∑n

k=1 Xk and Wn := θ∗Sn −∑n
k=1 ϕk(θ

∗) for n ≥ 1 and S0 = W0 := 0, it
follows that (Ln, Sn)n≥0 as well as (Ln,Wn)n≥0 constitute MRW with driving chain
L. They fit into the framework of this article if further theLn take values in a countable
set. The many-to-one lemma for the given model now states the following, see [38,
Lemma 2.1]: For any n ∈ N and any nonnegative measurable function f on R

n , we
have
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EL

⎛

⎝
∑

|v|=n
f (S(v1), . . . , S(vn))

⎞

⎠ = EL
(
e−Wn f (S1, . . . , Sn)

)

or, equivalently,

EL

⎛

⎝
∑

|v|=n
f (W (v1), . . . ,W (vn))

⎞

⎠ = EL
(
e−Wn f (W1, . . . ,Wn)

)
,

where v0 = ∅ → v1 → · · · → vn−1 → vn = v denotes the unique path from
the root to v and W (u) := θ∗S(u) −∑|u|

k=1 ϕk(θ
∗) for u ∈ T. This means that, in

quenched regime (under PL), the average over all walks along the rays in T up to level
n is described by a MRW. The relevance of this walk for the asymptotic behavior of
Λn stems from the fact that, roughly speaking, it carries the main information of the
extremal paths in the BRW.

2.3 Superpositions of Renewal Processes

Consider a single-server queue with p ≥ 2 time-slotted input channels which are
described by independent, integrable and discrete renewal sequences (Sk,n)n≥0, k =
1, . . . , p taking values in N0. Thus,

Sk,n = Sk,0 + Xk,1 + · · · + Xk,n

for each n ≥ 1 and k = 1, . . . , p, where

• (Xk,n)n≥1, k = 1, . . . , p, are independent sequences of iid positive integer-valued
random variables with μk := EXk,1 <∞ for each k,

• S1,0, . . . , Sp,0 take values in N0 and are mutually independent as well as indepen-
dent of all Xk,n .

Further defining the residual waiting time sequences (Rk,n)n≥0 by

Rk,n := min{Sk,l − n : Sk,l ≥ n, l ≥ 0}

for k = 1, . . . , p, it is a well-known fact from renewal theory that these sequences
constitute independent discrete Markov chains on N0 with stationary distributions
λk,• := (λk,n)n≥0, where

λk,n = μ−1k P(Xk,1 > n),

see, for example, [29, Theorem6.2 on p. 62].As a consequence, the p-variate sequence

Rn := (R1,n, . . . , Rp,n), n ≥ 0
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forms a positive discrete Markov chain on N
p
0 , its stationary distribution being the

product of the λk,•, i.e., λ = λ1,•⊗· · ·⊗λp,•. Let (Mn)n≥0 be the associated hit chain
of the set

S := {
(n1, . . . , n p) ∈ N

p
0 : nk = 0 for some 1 ≤ k ≤ p

}
,

thus Mn := Rτn for n ≥ 0 with τ0 := 0 and τn := inf{k > τn−1 : Rk ∈ S} for n ≥ 1.
Its stationary distribution equals π := λ(·∩S)/λ(S). Note that an arrival in one of the
channels occurs iff theMarkov chain (Rn)n≥0 hits the setS. Now the aggregated arrival
process (Sn)n≥0, where simultaneous arrivals from different channels are viewed as
one arrival epoch, is obtained as the superposition of the (Sk,n)n≥0 (that is, the order
statistics of the sample {Sk,n : k = 1, . . . , p, n ≥ 0} with multiple points aggregated
into one) and can be shown to constitute a Markov random walk with driving chain
(Mn)n≥0. For more details see [3] where this has been verified for the (more difficult)
case when the renewal sequences are continuous and, as a consequence, the driving
chain has continuous state space. We also refer to this article and [36] for further
results on (Sn)n≥0 by making use of Markov renewal theory.

3 Ordinary Random Walks

It is a well-known fact that any ordinary random walk (Sn)n≥0 in R whose iid
increments X1, X2, . . . are not degenerate at 0 exhibits exactly one of the following
behaviors:

(PD) Positive divergence: limn→∞ Sn = ∞ a.s.
(ND) Negative divergence: limn→∞ Sn = −∞ a.s.
(Osc) Oscillation: lim infn→∞ Sn = −∞ and lim supn→∞ Sn = ∞ a.s.

Let X denote a generic copy of the Xn and suppose that EX exists, i.e., EX− <∞ or
EX+ <∞. Then

(PD)⇔ EX− < EX+ ≤ ∞,

(ND)⇔ EX+ < EX− ≤ ∞,

(Osc)⇔ EX− = EX+ <∞, i.e., EX = 0,

see Chung [20, Theorem 8.3.4]. Moreover, if E|X | = ∞, thus EX− ∨ EX+ = ∞,
then Kesten [32] showed that the above trichotomy even holds with n−1Sn instead of
Sn . We refer to this result as Kesten’s trichotomy.

Suppose S0 = 0 hereafter. Many authors have dealt with the problem of relating the
three fundamental types with other quantities of interest related to (Sn)n≥0, notably
the level x first passage times

σ>(x) := inf{n ≥ 1 : Sn > x},
σ�(−x) := inf{n ≥ 1 : Sn ≤ −x}

123



2276 J Theor Probab (2018) 31:2266–2342

for x ∈ R�, the level x last exit time

ρ(x) := sup{n ≥ 0 : Sn ≤ x}

for x ∈ R, the hitting of the minimum epoch

σmin := inf

{

n ≥ 1 : Sn = inf
k≥1 Sk

}

,

the renewal counting process

N (x) :=
∑

n≥1
1{Sn≤x}

for x ∈ R, and the weighted renewal (or occupation) measures

∑

n≥1
nα−1

P(Sn ≤ x) = E

⎛

⎝
∑

n≥1
nα−11{Sn≤x}

⎞

⎠

for x ∈ R and α ≥ 0. The following theorem, treating the positive divergent case, is a
blend of results due to Spitzer [46, Theorem 4.1 on p. 331] and Erickson [23] (see also
[33, Theorem 2.1 with α = 0]). Let A(x) := E(X+ ∧ x) − E(X− ∧ x) for x ∈ R�,
and

J (0) := 1 and J (x) :=
⎧
⎨

⎩

x

E(X+ ∧ x)
, if P(X > 0) > 0

x, otherwise
, x > 0.

Theorem 3.1 The following assertions are equivalent:

(a) limn→∞ Sn = ∞ a.s.
(b) A(x) > 0 for all sufficiently large x and EJ (X−) <∞.
(c)

∑
n≥1 n−1P(Sn ≤ x) <∞ for some/all x ∈ R�.

(d) Eσ>(x) <∞ for some/all x ∈ R�.

Remark 3.2 Erickson [23, Corollary 1] actually showed that, if E|X | = ∞, then the
positive divergenceof (Sn)n≥0 is already entailed byEJ (X−) <∞ alone, i.e., onemay
dispense with A(x) > 0 for all sufficiently large x . On the other hand, if E|X | < ∞,
then J (x) = O(x) as x →∞ and thereforeEJ (X−) <∞. Consequently, (b) reduces
to 0 < EX = limx→∞ A(x) in this case.

Due to the fluctuation-type trichotomy of nontrivial RW, each ofP(σmin <∞) = 1,
P(ρ(x) < ∞) = 1 for some/all x ∈ R�, P(N (x) < ∞) = 1 for some/all x ∈ R�,
and P(σ�(−x) = ∞) > 0 for some/all x ∈ R� is immediately seen to be also
equivalent to the positive divergence of (Sn)n≥0.

Plainly, the corresponding result for negative divergent (Sn)n≥0 can be read off
directly from the previous one by replacing (Sn)n≥0 with (−Sn)n≥0, and the result for
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oscillating (Sn)n≥0 then follows by contraposition. Let us also note that the function
J (x) in (b) may be replaced with x A(x)−1, see [33, proof of Lemma 3.1], for A(x)
and E(X+∧ x) are of the same order of magnitude as x →∞. The series occurring in
(d) is the harmonic renewal function of (Sn)n≥0 and its evaluation at 0 is often called
Spitzer series.

Kesten andMaller [33, Theorem2.1 andp. 27] generalized the above result, stated as
Theorem3.3 below, by establishing equivalent conditions for the finiteness ofmoments
of σ>(x), ρ(x), N (x),minn≥0 Sn , and σmin. In the case when 0 < EX ≤ E|X | <∞,
this had already been done by other authors, most notably Gut [28] and Janson [31],
the last one by providing a comprehensive result with a total of ten equivalences and
economical proofs. For a good survey of the relevant literature, the reader is referred
to Gut’s monography [29, Ch. 3].

Theorem 3.3 Given a positive divergent RW (Sn)n≥0, the following conditions are
equivalent for α > 0:

(a) EJ (X−)1+α <∞.
(b) Eρ(x)α <∞ for some/all x ∈ R�.
(c) Eσα

min <∞.
(d) Eσ�(−x)α1{σ�(−x)<∞} <∞ for some/all x ∈ R�.

(e)
∑

n≥1 nα−1
P(Sn ≤ x) <∞ for some/all x ∈ R�.

(f) EN (x)α <∞ for some/all x ∈ R�.
(g) Eσ>(x)1+α <∞ for some/all x ∈ R�.

Putting S∗n := max0≤k≤n Sk for n ∈ N0, Kesten and Maller [33, Theorem 2.2]
further showed that

∑

n≥1

1

n
P
(
S∗n ≤ x

) �
∑

n≥1

1

n
P(Sn ≤ x) � log J (x) (3.1)

holds under the conditions of Theorem 3.1, and

Eρ(x)α � EN (x)α �
∑

n≥1
nα−1

P
(
S∗n ≤ x

) �
∑

n≥1
nα−1

P(Sn ≤ x) � J (x)α

(3.2)
for α > 0 under the conditions of Theorem 3.3. Here f (x) � g(x) means that f and
g are of the same order of magnitude as x →∞, viz.

0 < lim inf
x→∞

f (x)

g(x)
and lim sup

x→∞
f (x)

g(x)
< ∞. (3.3)

We also write f (x) � g(x) and f (x) � g(x) as shorthand for the left and the right
relation in (3.3), respectively. Finally, given two expressions A, B (series or integrals),
A � B, A � B and A � B will be used if, for some c ∈ R>, c−1B ≤ A ≤ cB,
A ≤ cB and A ≥ cB, respectively. Note that {σ>(x) > n} = {S∗n ≤ x} for all x ∈ R�
and n ∈ N0 implies
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∑

n≥1
nα−1

P
(
S∗n ≤ x

) �
{

E log σ>(x), if α = 0,

Eσ>(x)α, if α > 0.

Regarding the finiteness of E|minn≥0 Sn|α for α > 0, an equivalent condition of
similar type as Theorem 3.3(a) has also been given in [33, Proposition 4.1], but is
actually stronger unless EX+ is finite and thus EX > 0.

Theorem 3.4 Given a positive divergent RW (Sn)n≥0, the following conditions are
equivalent for α > 0:

(a) E(X−)α J (X−) <∞.
(b) E|minn≥0 Sn|α <∞.
(c) E|Sσ�(−x)|α1{σ�(−x)<∞} <∞ for some/all x ∈ R�.

4 Preliminaries

We return to the Markov-modulated setup and suppose for the rest of this article a
MRW (Mn, Sn)n≥0 be given which has positive recurrent discrete driving chain with
stationary distribution π = (πi )i∈S . For any distribution λ = (λi )i∈S on S, put
Pλ :=∑

i∈S λiPi . Since πi = (Eiτ(i))−1 > 0 for all i ∈ S, it follows that “Pπ -a.s.”
means the same as “Pi -a.s. for all i ∈ S ,” and this will henceforth be abbreviated by
“a.s.”

Due to its particularMarkovian structure, (Mn, Xn)n≥1 forms a stationary sequence
under Pπ , and for any measurable function f : S × R → R satisfying

Eπ f −(M1, X1) <∞ or Eπ f +(M1, X1) <∞

we have the useful occupation measure formula

Eπ f (M1, X1) = 1

Eiτ(i)
Ei

⎛

⎝
τ(i)∑

n=1
f (Mn, Xn)

⎞

⎠ , (4.1)

valid for any i ∈ S. As a particular consequence,

Eπ X1 = 1

Eiτ(i)
Ei Sτ(i) = πi Ei Sτ(i) (4.2)

whenever Eπ X1 exists, i.e., (Eπ X
−
1 ) ∧ (Eπ X

+
1 ) <∞. Note, however, that the right-

hand side in (4.2) may be finite for all i ∈ S even if Eπ X1 does not exist. In other
words, Pπ -integrability of the Sτ(i) does not generally imply the very same for X1
(see Example 10.2).

Ladder variables are well known to form an important tool in the analysis of random
walks. We define

σ> = σ>
1 := inf{n ≥ 1 : Sn > 0}, σ� = σ

�
1 := inf{n ≥ 1 : Sn ≤ 0},
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thus σ> = σ>(0) and σ� = σ�(0), and then recursively for n ≥ 2

σ>
n := inf

{
k > σ>

n−1 : Sk > Sσ>
n−1

}
, σ�

n := inf
{
k > σ

�
n−1 : Sk ≤ Sσ>

n−1

}
.

We further put M>
n := Mσ>

n
1{σ>

n <∞} + Mσ>∗ 1{σ>
n =∞}, where σ>∗ := sup{σ>

n : σ>
n <

∞}.
The dual of (Mn, Sn)n≥0, denoted (#Mn,

#Sn)n≥0 hereafter, is again aMRWand its
driving chain (#Mn)n≥0 the time reversal of (Mn)n≥0 under Pπ with transition matrix

#P =
(

π j p ji

πi

)

i, j∈S
.

Moreover,

P

(
#X1 ∈ · |#M0 = i, #M1 = j

)
= K ji

for all i, j ∈ S. More generally, the duality relation

πi Pi ((Mk, Xk)0≤k≤n ∈ · , Mn = j)

= π j P j

((
#Mn−k, #Xn−k

)

0≤k≤n ∈ · ,
#Mn = i

)
(4.3)

holds true for all i, j ∈ S and n ∈ N0. Considering a doubly infinite extension
(Mn, Xn)n∈Z of the stationary unilateral chain (Mn, Xn)n≥1 under Pπ and putting
S0 := 0 and Sn := Sn−1 + Xn for n �= 0, thus

Sn :=

⎧
⎪⎨

⎪⎩

X1 + · · · + Xn, if n ≥ 1,

0, if n = 0,

−X0 − · · · − Xn+1, if n ≤ −1,

one can easily verify that the laws of the dual and of (M−n,−S−n)n≥0 are the
same under Pπ , thus (#Mn,

#Xn)n≥1 has the law of (M−n, X−n+1)n≥1 under Pπ .
Let #σ>

n , #σ
�
n denote the counterparts of σ>

n , σ
�
n for (#Mn,

#Sn)n≥0. For later use,
we quote from [7] the following result about the positive recurrence of the ladder
chain (M>

n )n≥0.

Proposition 4.1 Given a MRW (Mn, Sn)n≥0 with positive recurrent driving chain,
suppose that the dual sequence (#Sn)n≥0 is positive divergent, that is #Sn →∞ a.s.
Then the ladder chain (M>

n )n≥0 has the unique stationary law

π>
i = πiPi (

#σ� = ∞)

Pπ (#σ� = ∞)
, i ∈ S,

and is positive recurrent on S> = {i : π>
i > 0} = {i : Pπ (#σ� = ∞) > 0}.
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Later, we will also need the strictly ascending ladder epochs of (Sτn(i))n≥0, denoted
(τ>

n (i))n≥0 and defined by τ>
0 (i) := 0, τ>

n (i) := τζn (i) for n ≥ 1, where

ζ1 = ζ1(i) := inf{k ≥ 1 : Sτk (i) > 0} (4.4)

and

ζn = ζn(i) := inf{k > ζn−1(i) : Sτk (i) > Sτ>
n−1(i)}

for n ≥ 2. Put τ>(i) := τ>
1 (i). Finally, let

ν(x) = ν(i, x) := inf{n ≥ 1 : Sτn(i) > x},
ν>(x) = ν>(i, x) := inf{n ≥ 1 : Sτ>

n (i) > x} (4.5)

for x ∈ R� and notice that ν(0) = ζ1, ν(x) = ζν>(x), σ>(x) ≤ τν(x) = τ>
ν>(x) a.s.

5 Null-Homology and Classification of Markov Random Walks

A natural starting point for our analysis is to provide the basic classification of MRW
as to their divergence type. Unlike ordinary RW, which can be bounded only if their
increments are a.s. 0 (trivial case), there is an infinite subclass of MRW exhibiting
this kind of behavior. After a short discussion in this section, those will therefore be
ruled out from the subsequent analysis. For the remaining ones, the same trichotomy
as for ordinary RW holds true (Proposition 5.4). This was shown by Newbould [40,
Theorem 1] for finite S and by Prabhu et al. [44, Theorem 7] in the general situation.

Following Lalley [35], we call a MRW (Mn, Sn)n≥0 null-homologous hereafter if
there exists a function g : S → R such that

Xn = g(Mn)− g(Mn−1) Pπ -a.s. (5.1)

or, equivalently,
Sn = g(Mn)− g(M0) Pπ -a.s. (5.2)

for all n ∈ N. Otherwise, the MRW is called nontrivial. Obviously, (Sn)n≥0 fluctuates
within a compact subset of R if g is a bounded function. The following two lemmata
show that all embedded RW (Sτn(i))n≥0, i ∈ S, of a null-homologous MRW are
trivial and that the finiteness of one of lim infn→∞ Sn or lim supn→∞ Sn entails null-
homology. A complete classification of null-homologous MRW as to their asymptotic
behavior is then very easy and stated without proof as Proposition 5.3. The result
is preceded by the following two lemmata the first of which was again obtained by
Prabhu et al. [44, Theorem 2] regarding the equivalence of (b) and (c).

Lemma 5.1 Given a MRW (Mn, Sn)n≥0, the following assertions are equivalent:

(a) (Mn, Sn)n≥0 is null-homologous.
(b) (Sτn(i))n≥0 has zero increments for some i ∈ S.
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(c) (Sτn(i))n≥0 has zero increments for all i ∈ S.
Proof Only “(c)⇒(a)” remains to be proved, for “(a)⇒(c)” is trivial. Let ψi j be the
characteristic function of Sτ( j) under Pi for i, j ∈ S. Since (Sτn(i))n≥0 has zero
increments, we easily find that

ψi i1(t)ψi1i2(t) · · ·ψin−1in (t)ψin i (t) = 1

for all t ∈ R, n ≥ 2 and i1, . . . , in ∈ S, in particular |ψi j | = |ψi jψ j i | ≡ 1 for all
i, j ∈ S. Therefore, with i := √−1, we have ψi j (t) = eih(i, j)t for some function
h : S2 → R and

eih( j,i)t = ψ j i (t) = ψi j (t) = e−ih(i, j)t ,

thus h( j, i) = −h(i, j) and particularly h(i, i) = 0 for all i, j ∈ S. Finally, fix any
i ∈ S, define g( j) := h(i, j) for j ∈ S and use ψi jψ jkψki ≡ 1 to infer

0 = h(i, j)+ h( j, k)+ h(k, i) = h(i, j)+ h( j, k)− h(i, k)

= g( j)+ h( j, k)− g(k),

i.e., h( j, k) = g(k)− g( j) for all j, k ∈ S. But the latter means that Sτ(k) = g(k)−
g( j) P j -a.s., and therefore,

P j (X1 = g(M1)− g(M0)) =
∑

k∈S
P j (X1 = g(k)− g( j), M1 = k)

=
∑

k∈S
P j (Sτ(k) = g(k)− g( j), τ (k) = 1)

=
∑

k∈S
P j (τ (k) = 1) = 1

for all j, k ∈ S which shows that (Mn, Sn)n≥0 is indeed null-homologous. ��
Lemma 5.2 If lim infn→∞ Sn or lim supn→∞ Sn is Pi -a.s. finite for some i ∈ S, then
(Mn, Sn)n≥0 is null-homologous.

Proof First observe that, if Y is a copy of lim infn→∞ Sn or lim supn→∞ Sn and is
independent of Sτ(i) under Pi for each i , then the stochastic fixed point equation

Y
d= Sτ(i) + Y under Pi (5.3)

holds for all i ∈ S, where d= means equality in law. This follows from

lim inf
n→∞ Sn = Sτ(i) + lim inf

n→∞ (Sn − Sτ(i)) Pi -a.s.

and a similar equation for lim supn→∞ Sn .
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Now if lim infn→∞ Sn or lim supn→∞ Sn is a.s. real-valued with respect to some
Pi , then (5.3) has a real-valued solution which in turn entails Sτ(i) = 0 Pi -a.s. as
one can easily check by using characteristic functions. By Lemma 5.1, we infer that
(Mn, Sn)n≥0 is null-homologous. ��

Here is the classification result for null-homologous MRW, the straightforward
proof of which can be omitted.

Proposition 5.3 If (Mn, Sn)n≥0 is null-homologous with g as in (5.1), then exactly
one of the following five alternatives holds true:

(NH-1) g ≡ 0 and Sn = 0 a.s. for all n ≥ 1.
(NH-2) 0 �= supi∈S |g(i)| <∞ and

−∞ < lim inf
n→∞ Sn ≤ lim sup

n→∞
Sn < ∞ Pπ -a.s.

(NH-3) −∞ = inf i∈S g(i) < supi∈S g(i) <∞ and

lim inf
n→∞ Sn = −∞ and lim sup

n→∞
Sn ∈ R Pπ -a.s.

(NH-4) −∞ < inf i∈S g(i) < supi∈S g(i) = ∞ and

lim inf
n→∞ Sn ∈ R and lim sup

n→∞
Sn = ∞ Pπ -a.s.

(NH-5) inf i∈S g(i) = −∞, supi∈S g(i) = ∞ and

lim inf
n→∞ Sn = −∞ and lim sup

n→∞
Sn = ∞ Pπ -a.s.

Moreover, whenever σ
†
n < ∞ a.s. for some † ∈ {>,<} and all n ≥ 0, then the

associated ladder chain (M†
n )n≥0 is transient, that is

Pi

(
M†

n = i infinitely often
)

< 1

for all i ∈ S.
Notice that alternatives (NH-3)–(NH-5) are only possible if S is infinite. We also

point out that the null-homology of (Mn, Sn)n≥0 (with g as in (5.1)) and its dual (with
−g) are equivalent as following immediately from the fact that (#Mn,

#Xn)n≥1 and
(M−n, X−n+1)n≥1 are equal in law under Pπ (see Sect. 4).

With the help of Lemma 5.2, it is easy to prove the following zero-one law which
in turn entails the announced trichotomy for nontrivial MRW, Proposition 5.4 below.
Recall that S∗n = max0≤k≤n Sk for n ∈ N.
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Proposition 5.4 For the additive part of a nontrivial MRW (Mn, Sn)n≥0, exactly one
of the three alternatives (PD), (ND), or (Osc) occurs a.s.

Proof We first show that Y ∈ {lim supn→∞ Sn, lim infn→∞ Sn} satisfies

Pi (Y = ∞) = 1− Pi (Y = −∞) ∈ {0, 1}

for all i ∈ S. Fixing any i , it suffices to consider Y = lim supn→∞ Sn . Put κ :=
Pi (Y = ∞) and τ ∗n (i) := inf{τk(i) : τk(i) ≥ n} for n ≥ 0. Then

κ = lim
m→∞ Pi

(
Y = ∞, S∗m > t

)

= lim
m→∞ Pi

(

lim sup
n→∞

(
Sn − Sτ∗m (i)

) = ∞, S∗m > t

)

= Pi (Y = ∞) lim
m→∞ Pi

(
S∗m > t

)

= κ Pi

(

sup
n≥0

Sn > t

)

for all t ∈ R>. Hence, either κ = 0, or supn≥0 Sn = ∞Pi -a.s. and thus κ = 1.
Now if (Mn, Sn)n≥0 is nontrivial, thenLemma5.2 implies that anyof lim infn→∞ Sn

and lim supn→∞ Sn equals one of the values −∞ or +∞ with probability one under
Pπ . Hence, if (ND) and (Osc) fail to hold, (PD) remains as the only alternative. ��

An analog of Kesten’s trichotomy in the case when Ei |Sτ(i)| = ∞ for some i ∈ S
can also be given and will be proved in Sect. 10.2. On the other hand, Example 7.2
will show that the more natural, but weaker condition Eπ |X1| = ∞ is not sufficient
for this result.

Theorem 5.5 If Ei |Sτ(i)| = ∞ for some/all i ∈ S, then exactly one of the following
three alternatives holds true:

(PD+) limn→∞ n−1Sn = ∞ a.s.
(ND+) limn→∞ n−1Sn = −∞ a.s.
(Osc+) lim infn→∞ n−1Sn = −∞ and lim supn→∞ n−1Sn = ∞ a.s.

6 Main Results

Our main results are generalizations of Theorems 3.1, 3.3 and 3.4 to nontrivial MRW
(Mn, Sn)n≥0. In order to state them, a number of quantities must be introduced. For
i ∈ S, n ∈ N and x ∈ R�, put
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Ai (x) := Ei

(
S+τ(i) ∧ x

)
− Ei

(
S−τ(i) ∧ x

)
,

Ji (0) := 1 and Ji (x) :=

⎧
⎪⎨

⎪⎩

x

Ei

(
S+τ(i) ∧ x

) , if Pi (Sτ(i) > 0) > 0

x, otherwise

, x > 0,

Di
n := max

τn−1(i)<k≤τn(i)

(
Sk − Sτn−1(i)

)−

and let Di be a copy of the iid Di
n under Pi which is independent of all other occurring

random variables. Note that the Di
n describe themaximal downward excursions within

the cycles of the driving chain determined by successive visits of state i . Their common
law, thus Pi (Di ∈ ·), is one of the relevant excursion measures that appear in our
results, but we also need the measures V

α
i , defined on R> by

V
α
i ((x,∞)) := Ei

⎛

⎝
τ(i)∑

n=1
1{S−n >x}

⎞

⎠

α

, x ∈ R�, (6.1)

for α > 0 and i ∈ S. They obviously satisfy

Pi (D
i > x) ≤ V

α
i ((x,∞)) ≤ Ei

(
τ(i)α1{Di>x}

)
(6.2)

for all x ∈ R� and have therefore heavier tails than Di under Pi . In the case α = 1,
we simply write Vi for V

1
i .

Theorem 6.1 For a nontrivial MRW (Mn, Sn)n≥0, consider the following assertions:
(a) (Mn, Sn)n≥0 is positive divergent, that is limn→∞ Sn = ∞ a.s.
(b) Ai (x) > 0 for all sufficiently large x and Ei Ji (Di ) <∞ for some/all i ∈ S.
(c)

∑
n≥1 n−1 Pi (Sn ≤ x) <∞ for some/all (i, x) ∈ S × R�.

(d) Eiσ
>(x) <∞ for all (i, x) ∈ S × R�.

Then (a)⇔ (b)�⇒ (c)�⇒ (d). Moreover, if Eiτ(i) log τ(i) <∞ for some/all i ∈ S
is assumed, then part (c) holds true iff

∫

log Ji (x) Vi (dx) < ∞ (6.3)

for some/all i ∈ S.
Remark 6.2 Using Erickson’s result mentioned in Remark 3.2, our proof will show
that, ifEi |Sτ(i)| = ∞ and thusEi S

+
τ(i)+Ei Di = ∞, then (a) follows from (b) without

the assumption of ultimate positivity of Ai (x). On the other hand, if Ei |Sτ(i)| < ∞
and thus Ji (x) = O(x) as x →∞, then (b) does not reduce to the ultimate positivity
of Ai (x) as in the case of ordinary random walks because Ei Di = ∞ is still possible.

Further conditions equivalent to (a) are Pi (σmin < ∞) = 1, Pi (ρ(x) < ∞) = 1
andPi (N (x) <∞) = 1 for some/all (i, x) ∈ S×R� and alsoPi (σ

�(−x) = ∞) > 0
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for some (i, x) ∈ S × R�. This follows, as for ordinary RW (see after Remark 3.2),
from the basic fluctuation-type trichotomy for nontrivial MRW. On the other hand, the
last condition does not need to be true for all (i, x). For instance, it is easy to provide an
example of a nontrivial positive divergent MRW (Mn, Sn)n≥0 with Pi (X1 ≤ −x) = 1
for some (i, x) ∈ S × R�, thus Pi (σ

�(−x) = 1) = 1.
Every ordinary random walk (Sn)n≥0 can be viewed as a MRW with single-state,

say 0, driving chain (Mn)n≥0, giving S+τ(0) = X+1 and D0
1 = X−1 . Therefore, assertion

(b) of Theorem 6.1 and of Theorem 3.1 are identical. On the other hand, parts (c) and
(d) of Theorem 6.1 are no longer sufficient for the positive divergence of (Sn)n≥0 as
will be shown in Example 7.2.

It would be desirable and is plausible to believe that fluctuation-theoretic properties
of (Sn)n≥0 are encoded in the stationary increment distribution Pπ (X1 ∈ ·). As for
Theorem 6.1, this could mean to replace Ei Ji (Di ) <∞ in part (b) with

∫

R>

x

Eπ

(
X+1 ∧ x

) Pπ

(
X−1 ∈ dx

)
< ∞

However, Example 11.3 will show that this fails to work in general. The tail behavior
of X±1 under Pπ can actually be very different from the tail behavior of S±τ(i) under Pi

in the strong sense that

lim
x→∞

Pπ

(
X±1 > x

)

Pi

(
S±τ(i) > x

) = ∞.

The occurrence of Di in Theorem 6.1 and also in some of the subsequent results
actually indicates that within a cycle between two successive visits to a state i of the
driving chain, it is the extremal behavior of the random walk rather than the average
one that determines some of its characteristic features.

The next four results combined provide the counterpart of Theorem 3.3 and once
again a more complex picture than in the case of ordinary random walks. For bet-
ter presentation, we call a MRW (Mn, Sn)n≥0 with positive recurrent driving chain
(Mn)n≥0 to be of type α for α > 0 if Eiτ(i)1+α <∞ for some/all i ∈ S.

Theorem 6.3 Let α > 0 and (Mn, Sn)n≥0 be a nontrivial, positive divergent MRW of
type α. Then the following assertions are equivalent:

(a) Ei Ji (Di )1+α <∞ for some/all i ∈ S.
(b) Eiρ(x)α <∞ for some/all (i, x) ∈ S × R�.
(c) Eiσ

α
min <∞ for some/all i ∈ S.

(d) For some/all i ∈ S, there exists x ∈ R� such that Pi (σ
�(−x) = ∞) > 0 and

Eiσ
�(−x)α1{σ�(−x)<∞} <∞. In this case, the last expectation is also finite for

any other x ∈ R�.

Theorem 6.4 Given a nontrivial MRW (Mn, Sn)n≥0 of type α > 0, the following
assertions are equivalent:
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(a) Ai (x) > 0 for all sufficiently large x, Ei Ji (S
−
τ(i))

1+α <∞ and

∫

Ji (x)
α

Vi (dx) < ∞ (6.4)

for some/all i ∈ S.
(b)

∑
n≥1 nα−1

Pi (Sn ≤ x) <∞ for some/all (i, x) ∈ S × R�.

As stated at the end of Theorem 6.1, the equivalence remains valid in the case α = 0
when replacing Ji (x)α with log Ji (x) in (6.4) and the assumption Eiτ(i)1+α < ∞
with Eiτ(i) log τ(i) <∞.

Theorem 6.5 Given a nontrivial, positive divergent MRW (Mn, Sn)n≥0 of type α,
consider the following assertions:

(a) Ei Ji (S
−
τ(i))

1+α <∞ and

∫

Ji (x) V
α
i (dx) < ∞ (6.5)

for some/all i ∈ S.
(b) Ei N (x)α <∞ for some/all (i, x) ∈ S × R�.

Then (a)⇔ (b) if α ≥ 1, and (a)⇒ (b) if 0 < α < 1.

Theorem 6.6 Given a nontrivial, positive divergent MRW (Mn, Sn)n≥0 of type α, the
following implications hold true:

α ≥ 1 : Theorem 6.3(a)–(d) �⇒ Theorem 6.4(a), (b) �⇒ Theorem 6.5(a), (b).

α ≤ 1 : Theorem 6.3(a)–(d) �⇒ Theorem 6.5(a), (b) �⇒ Theorem 6.4(a), (b).

Furthermore, any of the conditions in the aforementioned theorems implies

Eiσ
>(x)1+α <∞ for all (i, x) ∈ S × R� (6.6)

Again, the previous theorems are weaker than their counterpart in the iid case. For
α > 0, Eiσ

>(x)1+α < ∞ and the conditions provided in Theorems 6.4 and 6.5 are
only necessary for those in Theorem 6.3. Moreover, Theorem 6.6 holds the surprise
that Ei N (x)α < ∞ for all (i, x) ∈ S × R� implies

∑
n≥1 nα−1

Pi (Sn ≤ x) <∞ for
all (i, x) ∈ S ×R� if α ≤ 1, whereas the converse is true if α ≥ 1 (in the case α = 1
both assertions are obviously identical). Example 11.2 will show that equivalence of
all stated conditions generally fails to hold. In fact, the assertions of Theorem 6.4
for α ∈ (0, 1) may be valid although (Sn)n≥0 is not even positive divergent, thus
Pi (ρ(x) < ∞) = 0 for all i ∈ S and x ∈ R. We further point out that one cannot
generally dispense with

Eiτ(i)1+α <∞ (6.7)

for some/all i ∈ S. To see this, consider a MRW (Mn, Sn)n≥0 such that, for some
distribution F onR>, the conditional law of Xn given (Mn−1, Mn) equals F ifMn = i
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and δ0 otherwise. Then ρ(0) + 1 = N (0) + 1 = σ>(0) = τ(i) Pi -a.s. and thus
Eiρ(0)1+α <∞ is indeed equivalent to (6.7).

The counterpart of Theorem 3.4 is stated as the next theorem.

Theorem 6.7 For α > 0 and a positive divergent MRW (Mn, Sn)n≥0, consider the
following assertions:

(a) Ei (Di )α Ji (Di ) <∞ for some/all i ∈ S.
(b) Ei |minn≥0 Sn|α <∞ for some/all i ∈ S.
(c) Ei |Sσ�(−x)|α1{σ�(−x)<∞} for some/all (i, x) ∈ S × R�.

Then (a)⇔ (b) �⇒ (c).

Example 11.4 will show that (c) does not generally imply (b).
Despite the previous disclaiming remarks regarding the equivalence of all condi-

tions in the above theorems, it is natural to ask whether this is at least true in the case
when the driving chain has finite state space. The positive answer is provided by the
three subsequent theorems.

Theorem 6.8 Given the situation of Theorem 6.1 with finite state space S, all its
assertions (a)–(d) as well as

Aπ (x) > 0 for all sufficiently large x and Eπ Jπ (X−1 ) <∞ (6.8)

are equivalent, where Aπ (x) := Eπ (X1 ∧ x)+ − Eπ (X1 ∧ x)− and

Jπ (0) := 1 and Jπ (x) :=
⎧
⎨

⎩

x

Eπ (X1 ∧ x)+
, if Pπ (X1 > 0) > 0

x, otherwise
, x > 0.

Moreover, Di in 6.1(b) may be replaced with S−τ(i).

Theorem 6.9 Let (Mn, Sn)n≥0 be aMRWof type α andS be finite. Then all assertions
of Theorems 6.3, 6.4, 6.5 and also (6.6) are equivalent to

Eπ Jπ (X−)1+α <∞. (6.9)

Moreover, Di in 6.3(b) may be replaced with S−τ(i).

Theorem 6.10 Given the situation of Theorem 6.7 with finite state space S, all its
assertions (a)–(c) as well as (6.6) and

Eπ

(
X−1

)α
Jπ (X−) <∞. (6.10)

are equivalent. Moreover, Di in 6.7(b) may be replaced with S−τ(i).

Without the conditions (6.8), (6.9) and (6.10) involving Jπ , the last three results
would merely be corollaries to the previous ones. However, the inclusion of these
conditions will cause some extra work provided by Lemmata 8.16 and 8.17.
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7 Solidarity Results

Observe that the additive part of a nontrivialMRW (Mn, Sn)n≥0 is actually a countable
union of ordinary RW, namely

{Sn : n ≥ 1} =
⋃

i∈S

{
Sτn(i) : n ≥ 1

}
,

which are, however, randomly intertwined. The following simple solidarity lemma
shows that these embedded sequences share the fluctuation type, but the subsequent
counterexample will disprove the natural conjecture that this type is also shared by
(Sn)n≥0 itself. It further illustrates that the fluctuation types of (Sn)n≥0 and its dual
(#Sn)n≥0 may be different as well (Fig. 1).

Lemma 7.1 If (Mn, Sn)n≥0 is nontrivial, then all (Sτn(i))n≥0, i ∈ S, are nontrivial
and of the same fluctuation type (PD), (ND) or (Osc).

Proof All (Sτn(i))n≥0, i ∈ S, are nontrivial by Lemma 5.1. Fix any distinct i, j ∈ S.
Since lim supn→∞ Sτn(i) = x a.s. for x ∈ {±∞}, we can choose a subsequence
(τ ′n(i))n≥1 of (τn(i))n≥1 such that each τ ′n(i) is a stopping time for (Mn, Sn)n≥0 and
limn→∞ Sτ ′n(i) = x a.s. Now pick m ∈ N and t > 0 such that Pi (Mm = j, |Sm | ≤
t) > 0. We then infer by a geometric trials argument that

Pπ

(
Mτ ′n(i)+m = j, |Sτ ′n(i)+m − Sτ ′n(i)| ≤ t infinitely often

) = 1

and thus lim supn→∞ Sτn( j) ≥ lim supn→∞ Sτn(i) a.s. The reverse inequality and thus
equality follows by interchanging the roles of i and j . Finally, by switching to the
reflected MRW (Mn,−Sn)n≥0, we find lim infn→∞ Sτn( j) = lim infn→∞ Sτn(i) a.s.
as well. ��
Example 7.2 (MRWdriven by an infinite petal flower chain) Consider aMarkov chain
(Mn)n≥0 on the setN0 of nonnegative integerswhich,when in state 0, picks an arbitrary
i ∈ N with positive probability p0i and jumps back to 0, otherwise, thus pi0 = 1. If
we figure the i ∈ N being placed on a circle around 0, the transition diagram of this
chain looks like a flower with infinitely many petals, each of the petals representing a
transition from 0 to some i and back. With all p0i being positive, the chain is clearly
irreducible and positive recurrent with stationary probabilities π0 = 1

2 and

πi = 1

2
E0

⎛

⎝
τ(0)−1∑

n=0
1{Mn=i}

⎞

⎠ = 1

2
P0(M1 = i) = p0i

2
.

In fact, under P0, the chain consists of independent random variables which are 0 for
even n and iid with common distribution (p0i )i≥1 for odd n.

Turning to the additive component, we define the Xn by

Xn :=
{
−p−10i , if Mn−1 = 0, Mn = i,

2+ p−10i , if Mn−1 = i, Mn = 0
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for i, n ∈ N, i.e., K0i = δ−p−10i
and Ki0 = δ2+p−10i

. Then Eπ |X1| = ∞ and

Sn :=
{
n − 1− p−10Mn

, if n is odd,

n, if n is even
P0-a.s.

It follows that (Mn, Sn)n≥0 is oscillating, for

lim
n→∞

S2n
2n

= 1 (7.1)

and

lim inf
n→∞ S2n+1 = lim inf

n→∞

(

n − 1− 1

p0M2n+1

)

= −∞ P0-a.s.

The last assertion follows from the fact that, for any a > 0,

∑

n≥0
P0

(
1

p0M2n+1
> an

)

=
∑

n≥0
P0(X

−
1 > an) = E0X

−
1

a
= ∞

and an appeal to the Borel–Cantelli lemma, giving

P0

(
1

p0M2n+1
> an i.o.

)

= 1. (7.2)

On the other hand, (Sτn(0))n≥0, which equals (S2n)n≥0 under P0, is positive divergent,
whence the sameholds true for all other (Sτn(i))n≥0 byLemma7.1.RegardingTheorem

Fig. 1 Transition graph of an
infinite petal flower chain

0

1

2

3

4

5

6

7

8, . . .
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5.5, this example shows that Eπ |X1| = ∞ is not sufficient for Kesten’s trichotomy to
hold [see (7.1)].

Let us further point out that the dual (#Mn,
#Sn)n≥0 has increments

#Xn :=
{
2+ p−10i , if #Mn−1 = 0, #Mn = i,

−p−10i , if #Mn−1 = i, #Mn = 0

for n ≥ 1 and is therefore positive divergent, for

#Sn :=
{
n + 1+ p−1

0#Mn
, if n is odd,

n, if n is even
P0-a.s.

Regarding the strictly descending ladder epochs σ<
n and the associated ladder walk

(M<
n , S<

n )n≥0, the most notable consequence of the properties assessed before, espe-
cially (7.2), is that all σ<

n are a.s. finite, but the ladder chain M<
n must be transient,

for otherwise lim infn→∞ Sτn(i) = −∞ Pi -a.s. would hold for at least one i ∈ S.
If we alter the definition of the Xn by setting

Xn :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−p−10i , if Mn−1 = 0, Mn = i and i is even,

−p−10i , if Mn−1 = i, Mn = 0 and i is odd,

2+ p−10i , if Mn−1 = i, Mn = 0 and i is even,

2+ p−10i , if Mn−1 = 0, Mn = i and i is odd

for n ≥ 1, then even both, (Sn)n≥0 and its dual (#Sn)n≥0, are easily seen to be
oscillating despite still having positive divergent embedded randomwalks (Sτn(i))n≥0.
As a consequence, putting ν(x) = inf{n ≥ 1 : Sτn(i) > x} for x ∈ R�, we have that
Eiν(x) <∞ and then, by using Wald’s identity, also

Eiτν(x) <∞.

Since σ>(x) ≤ τν(x), we obtain Eiσ
>(x) < ∞ for all x ∈ R�, and this also ensures

E jσ
>(x) <∞ for all x ∈ R� and any other j ∈ S, because

∞ > Eiσ
>(x) ≥

∫

(−∞,x/2]
E jσ

>(x − y) Pi (Sτ( j) ∈ dy, σ>(x) > τ( j))

≥ P j (Sτ(i) ≤ x/2, σ>(x) > τ( j)) E jσ
>(x/2)

for all x ∈ R�. We have thus shown that Theorem 6.1(d) may hold although (Sn)n≥0
is oscillating. In fact, since E0τ(0) log τ(0) <∞ trivially holds and (6.3) for i = 0 is
readily verified to take the form
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E0 log
+ S−τ(0)−1 =

∑

i≥1
p0i | log p0i | < ∞,

we further see that Theorem 6.1(c) may or may not be valid, depending on whether or
not

∑
i≥1 p0i | log p0i | is finite. In other words, the two assertions (c) and (d) of that

theorem are only sufficient but not necessary for the positive divergence of (Sn)n≥0.

In view of the previous example, a nontrivial MRW (Mn, Sn)n≥0 is called regular
if it shares its fluctuation type with its dual (#Mn,

#Sn)n≥0 as well as all its embedded
random walks (Sτn(i))n≥0. Nonregularity can only occur if Eπ X

+
1 = Eπ X

−
1 = ∞ as

the next result shows.

Proposition 7.3 A nontrivial MRW (Mn, Sn)n≥0 is regular if its stationary drift μ =
Eπ X1 exists, i.e., Eπ X

+
1 <∞ or Eπ X

−
1 <∞.

Proof If μ = Eπ X1 exists, then Ei Sτ(i) = π−1i μ [see (4.2)] exists as well for any
i ∈ S. Now use Birkhoff’s ergodic theorem (see e.g., [18, Theorem 6.21]), applied to
the ergodic stationary sequences (Xn)n≥1 and (#Xn)n≥1 underPπ , to infer n−1Sn → μ

and n−1#Sn → μ a.s. Moreover, n−1Sτn(i) → π−1i μ a.s. for all i ∈ S by the strong
law of large numbers. But this shows that (Sn)n≥0, its dual and all embedded sequences
(Sτn(i))n≥0 do indeed share the fluctuation type. ��

For the proof of our main results, it is a crucial ingredient that the embedded RW
(Sτn(i))n≥0, i ∈ S, not only share their fluctuation type (Lemma 7.1) but also finite
power moments of the fluctuation-theoretic quantities we have introduced. In other
words, we need solidarity of these RW as to validity of Theorems 3.3 and 3.4 which
in turn follows if the respective criteria

Ei Ji
(
S−τ(i)

)1+α

< ∞ and Ei

(
S−τ(i)

)α

Ji
(
S−τ(i)

)
<∞ (7.3)

are valid for all i ∈ S if valid for some i . The simple observation that these criteria
may be rewritten as integrals involving the tail functions of S−τ(i) and S+τ(i) suggests to

arrive at this conclusion by showing Pi (S
±
τ(i) > y) � P j (S

±
τ( j) > y) as y → ∞ for

all i, j ∈ S (tail solidarity). Unfortunately, by another look at the previous example,
where P0(Sτ(0) > y) = 0 for y > 2 but Pi (Sτ(i) > y) > 0 for all y ∈ R� and any
i ∈ N, we see that this cannot generally hold. We will therefore resort to a weaker but
still sufficient kind of tail solidarity. The result will then be stated as Lemma 7.6.

For distinct i, j ∈ S, let

υ := υ(i, j) := inf{n ≥ 1 : τn(i) > τ( j)}

denote the first return time to i after the first visit to state j . Notice that Eiυ
1+α <∞

for any α ≥ 0 because Pi (υ > n) = Pi (τ (i) < τ( j))n for all n ≥ 1.
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Lemma 7.4 Let i, j ∈ S be distinct states.

(a) There exists x ∈ R� such that, as y →∞,

P j (Sτ( j) > y) � Pi (Sτυ(i) > y − x).

(b) P j (Sτ( j) > 0) > 0 implies Pi (Sτυ(i) > 0) > 0.

Proof (a) First note that

P j (Sτ( j) > y) = P j (Sτ( j) > y, τ (i) < τ( j)) + P j (Sτ( j) > y, τ (i) > τ( j)).

Regarding the first term on the right-hand side and using

Pi (Sτυ(i) − Sτ( j) ∈ ·) = P j (Sτ(i) ∈ ·),

we infer for any y ∈ R

P j (Sτ( j) > y, τ (i) < τ( j)) = P j (Sτ(i) + (Sτ( j) − Sτ(i)) > y, τ (i) < τ( j))

≤
∫

Pi (Sτ( j) > y − x) P j (Sτ(i) ∈ dx)

=
∫

Pi (Sτ( j) > y − x) Pi (Sτυ(i) − Sτ( j) ∈ dx)

= Pi (Sτυ(i) > y), (7.4)

and this proves the assertion if P j (τ (i) > τ( j)) = 0. Otherwise, pick x ∈ R� such
that

p1 := Pi (Sτ( j) ≥ −x/4, τ (i) > τ( j)) > 0 and p2 := P j (Sτ(i) ≥ −x/4) > 0

and note that q := Pi (τ (i) > τ( j)) > 0. Then we obtain with p := p1 p2q > 0

P j
(
Sτ( j) > y, τ (i) > τ( j)

)

= q−1 Pi
(
Sτ2( j) − Sτ( j) > y, τ (i) > τ2( j)

)

≤ q−1 Pi
(
Sτ2( j) − Sτ( j) > y, Mk �= i for τ( j) < k < τ2( j)

)

≤ p−1 Pi
(
Sτ(i) > y − x/2, Sτ( j) ≥ −x/4, Sτ(i) − Sτ2( j) ≥ −x/4, τ (i) > τ2( j)

)

≤ p−1 Pi
(
Sτ(i) > y − x/2

)
.
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Moreover,

Pi
(
Sτυ(i) > y − x

)

= Pi
(
Sτ(i) > y − x, υ = 1

) + Pi
(
Sτ(i) + (Sτυ(i) − Sτ(i)) > y − x, υ > 1

)

≥ Pi
(
Sτ(i) > y − x/2, υ = 1

)

+ Pi
(
Sτ(i) + (Sτυ(i) − Sτ(i)) > y − x, Sτυ(i) − Sτ(i) ≥ −x/2, υ > 1

)

≥ Pi
(
Sτ(i) > y − x/2, υ = 1

) + p1 p2 Pi
(
Sτ(i) > y − x/2, υ > 1

)

≥ p1 p2 Pi
(
Sτ(i) > y − x/2

)

which in combination with the previous estimate provides the assertion (with x as
chosen above) if P j (τ (i) > τ( j)) > 0.

(b) If P j (Sτ( j) > 0, τ (i) < τ( j)) > 0, the assertion follows immediately from
(7.4). Otherwise,

P j (Sτ( j) > ε, τ (i) > τ( j)) > 0

for some ε > 0. Then upon choosing x ∈ R� and p1, p2 > 0 as in (a), the assertion
follows from

Pi (Sτυ(i) > 0) ≥ p1 p2 P j (Sτn( j) > x/2, τ (i) > τn( j))

≥ p1 p2 P j (Sτ( j) > ε, τ (i) > τ( j))n > 0,

where n = �x/2ε�. ��
Defining, for i ∈ S, γ ∈ [0, 1] and x ∈ R�,

Ji,γ (x) :=
⎧
⎨

⎩

x

[Ei (S
+
τ(i) ∧ x)]γ , if Pi (Sτ(i) > 0) > 0

x, otherwise
,

where 0/[Ei (S
+
τ(i) ∧ 0)]γ := 1 if γ > 0, the expectations in (7.3) can be treated

hereafter in a unified manner because Ji (x) = Ji,1(x) and yα Ji (x) = Ji,1/(1+α)(x).
The next lemma collects some relevant properties of Ji,γ and Ai .

Lemma 7.5 The following assertions are true for any γ ∈ [0, 1]:
(a) Ji,γ is subadditive and nondecreasing for all i ∈ S.
(b) Ji,γ (y) � Ji,γ (x + y) as y →∞ for all (i, x) ∈ S × R.
(c) Ji,γ (y) � J j,γ (y) as y →∞ for all i, j ∈ S.
If the (Sτn(i))n≥0 are positive divergent, then furthermore

(d) Ai (y) > 0 for all sufficiently large y,
(e) Ai (y) � Ei (S

+
τ(i) ∧ y) � Ei (Sτ>(i) ∧ y) as y →∞

for all i ∈ S.
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Proof (a) Subadditivity follows from the monotonicity of the denominator in the
definition of Ji,γ and monotonicity from the identity

Ji,γ (y) = y1−γ

[
y−1

∫ y
0 Pi

(
S+τ(i) > x

)
dx

]γ = y1−γ

[∫ 1
0 Pi

(
Sτ(i) > xy

)
dx

]γ , y ∈ R�

(cf. the proof of [10, Lemma 5.4(a)]).
(b) follows immediately from the properties asserted in (a).
(c) Fix any distinct i, j ∈ S and then x ∈ R� such that Lemma 7.4(a) holds. The

assertion is obvious if we verify that

Ei

(
S+τ(i) ∧ y

)
� E j

(
S+τ( j) ∧ y

)

as y →∞. We obtain

E j (S
+
τ( j) ∧ y) =

∫ y

0
P j (Sτ( j) > z) dz �

∫ y

0
Pi (Sτυ(i) > z − x) dz

�
∫ y−x

0
Pi (Sτυ(i) > z) dz = Ei

[
S+τυ(i) ∧ (y − x)

]

=
∑

n≥1
Pi (υ = n) Ei

[
S+τn(i) ∧ (y − x)

∣
∣υ = n

]

≤
∑

n≥1
Pi (υ = n)

n∑

k=1
Ei

[
(Sτk (i) − Sτk−1(i))

+ ∧ (y − x)
∣
∣υ = n

]
,

where Lemma 7.4(b) has been utilized in the third step. Notice that assertion (b)
particularly yields

Ei

(
S+τ(i) ∧ (y − x)

)
� Ei

(
S+τ(i) ∧ y

)

as y →∞. Next, we have

Ei
[
(Sτn(i) − Sτn−1(i))

+ ∧ (y − x)
∣
∣υ = n

] = Ei [S+τ(i) ∧ (y − x)|τ(i) > τ( j)]
� Ei

[
S+τ(i) ∧ (y − x)

]
� Ei

(
S+τ(i) ∧ y

)

as y →∞ and, given Pi (τ (i) < τ( j)) > 0,

Ei
[
(Sτk (i) − Sτk−1(i))

+ ∧ (y − x)
∣
∣υ = n

] = Ei [S+τ(i) ∧ (y − x)|τ(i) < τ( j)]
� Ei (S

+
τ(i) ∧ y) as y →∞
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for 1 ≤ k < n. Consequently,

E j

(
S+τ( j) ∧ y

)
�

∑

n≥1
Pi (υ = n) n · Ei

(
S+τ(i) ∧ y

)
= Eiυ · Ei

(
S+τ(i) ∧ y

)
,

thus E j (S
+
τ( j) ∧ y) � Ei (S

+
τ(i) ∧ y). The reverse relation follows by symmetry of the

argument in i and j .
(d) and (e) can be extracted from [33, Lemma3.2, the proof of Lemma3.1 and (4.5)].

��
Lemma 7.6 The following assertions hold true either for all i ∈ S or none:

(a) Ei Ji (S
−
τ(i))

1+α <∞.

(b) Ei (S
−
τ(i))

α Ji (S
−
τ(i)) <∞.

(c) Ei S
−
τ(i) <∞.

By applying the lemma to the MRW (Mn,−Sn)n≥0, we see it remains valid with
S+τ(i) instead of S−τ(i), and a combination of both results shows that Ei |Sτ(i)| < ∞ is
either true for all i ∈ S or none.

Proof All parts follow if we can prove that, for any γ ∈ [0, 1], Ei Ji,γ (S−τ(i))
1+α <∞

is true either for all i ∈ S or none.
Suppose Ei Ji,γ (S−τ(i))

1+α < ∞ and pick an arbitrary j ∈ S \ {i}. An application
of Lemma 7.4(a) to (Mn,−Sn)n≥0 ensures the existence of x ∈ R� with

P j

(
S−τ( j) > y

)
� Pi

(
S−τυ(i) > y − x

)

as y →∞. Hence, by an appeal to Lemma 7.5(b), it suffices to prove

Ei Ji,γ
(
S−τυ(i)

)1+α

< ∞.

Setting Yk := Sτk (i) − Sτk−1(i) for k ≥ 1, subadditivity of Ji,γ yields

Ei Ji,γ (S−τυ(i))
1+α ≤ Ei

[
υ∑

k=1
Ji,γ

(
Y−k

)
]1+α

≤ Ei

[

υα
υ∑

k=1
Ji,γ

(
Y−k

)1+α

]

=
∑

n≥1
Pi (υ = n) nα

n∑

k=1
Ei

[
Ji,γ

(
Y−k

)1+α
∣
∣
∣υ = n

]
.

Now use

Ei

[
Ji,γ

(
Y−n

)1+α
∣
∣
∣υ = n

]
= Ei

(
Ji,γ (S−τ(i))

1+α
∣
∣τ(i) > τ( j)

) =: c1 < ∞

and, given Pi (τ (i) < τ( j)) > 0,

Ei

[
Ji,γ

(
Y−k

)1+α
∣
∣
∣υ = n

]
= Ei

(
Ji,γ (S−τ(i))

1+α
∣
∣τ(i) < τ( j)

) =: c2 < ∞
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for 1 ≤ k < n to arrive at the desired conclusion

Ei Ji,γ
(
S−τυ (i)

)1+α ≤ (c1 ∨ c2) Eiυ
1+α < ∞.

��
The next solidarity lemma is of similar kind, but for Di instead of S−τ(i).

Lemma 7.7 The following assertions hold either for all i ∈ S or none:

(a) Ei Ji (Di )1+α <∞.
(b) Ei (Di )α Ji (Di ) <∞.
(c) Ei (Di )1+α <∞.

Proof Again, it suffices to prove that, for any γ ∈ [0, 1], Ei Ji,γ (Di )1+α < ∞ holds
either for all i ∈ S or none.

Suppose Ei Ji,γ (Di )1+α < ∞ for some i ∈ S and γ ∈ [0, 1]. Pick an arbitrary
j ∈ S\{i}, define

Dυ := max
1≤k≤τυ(i)

S−k

and use Dυ ≤ ∑υ
k=1 Di

k to infer Ei Ji,γ (Dυ)1+α < ∞ in the same manner as the
finiteness of Ei Ji,γ (S−τυ(i))

1+α in the proof of Lemma 7.6. Then put

υ2 := inf{n ≥ 1 : τn(i) > τ2( j)} and Dυ2 := max
1≤k≤τυ2 (i)

S−k

and notice that

Dυ2 ≤ Dυ + max
τυ(i)<k≤τυ2 (i)

(Sk − Sτυ(i))
−.

The second summand on the right-hand side is 0 if τυ(i) = τυ2(i) and an independent
copy of Dυ otherwise. Hence, in both cases one easily obtains Ei Ji,γ (Dυ2)

1+α <∞.
Picking x ∈ R� with Pi (Sτ( j) ≤ x) > 0, we finally infer with the help of Lemma 7.5

∞ > Ei Ji,γ (Dυ2)
1+α �

∫

(0,∞)

Ji,γ (y)1+α
Pi (Dυ2 ∈ dy |Sτ( j) ≤ x)

≥
∫

(0,∞)

Ji,γ (y)1+α
Pi

(
max

τ1( j)<k≤τ2( j)
S−k ∈ dy

∣
∣
∣Sτ1( j) ≤ x

)

≥
∫

(0,∞)

Ji,γ (y)1+α
Pi

(
max

τ1( j)<k≤τ2( j)
(Sk − Sτ1( j))

− − x ∈ dy
∣
∣
∣Sτ1( j) ≤ x

)

=
∫

(0,∞)

Ji,γ (y)1+α
P j

(
D j
1 − x ∈ dy

)

� E j J j,γ (D j )1+α.

��
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Our final solidarity lemma provides sufficient conditions for the existence of power
moments of σ>, see Sect. 9. Note that a geometric number of cycles marked by
successive visits to a state j �= i contains a visit to i ∈ S. Hence, Eiτ(i)1+α < ∞ is
satisfied either for all i ∈ S or none.

Lemma 7.8 Let α ≥ 0 and Eiτ(i)1+α < ∞ for some/all i ∈ S. The following
conditions are equivalent:

(a) Eiτν(x)(i)1+α <∞ for some/all (i, x) ∈ S × R�.
(b) Ai (x) > 0 for all sufficiently large x andEi Ji (S

−
τ(i))

1+α <∞ for some/all i ∈ S.
In particular, these conditions imply (6.6).

Proof By Lemmata 7.1, 7.6 and Theorem 3.1, (b) holds true either for all i ∈ S or
none. Moreover, (6.6) follows from τν(x)(i) ≥ σ>(x).

Suppose Eiτν(x)(i)1+α <∞ for some (i, x) ∈ S ×R�. Since τν(x)(i) ≥ ν(x), we
obtain Eiν(x)1+α <∞ which is equivalent to (b) by Theorems 3.1 and 3.3.

Since Eiτ(i)1+α <∞, the reverse implication follows directly from Eiν(x)1+α <

∞ and [29, Theorem 1.5.4]. ��

8 Proofs of the Main Results

For ease of notation, we write τ, τn,
#τ, τ>, etc., for τ(i), τn(i), #τ(i), τ>(i), etc., in

all subsequent proofs when a fixed i ∈ S is considered. We further put

Σα(i, x) :=
∑

n≥1
nα−1

Pi (Sn ≤ x)

for α ∈ R� and (i, x) ∈ S × R�. In analogy to Ji , let J>
i be defined by

J>
i (0) := 1 and J>

i (x) := x

Ei (Sτ>(i) ∧ x)
for x > 0,

and put

Di,>
n := max

τ>
n−1(i)<k≤τ>

n (i)

(
Sk − Sτ>

n−1(i)
)−

for n ∈ N. Let Di,> denote a generic copy of these iid random variables under Pi

which is independent of all other occurring random variables. Note that

Di
1 ≤ Di,>

1 ≤
ζ1∑

k=1
Di
k,

where τ>(i) = τζ1(i) with ζ1 = inf{n ≥ 1 : Sτn(i) > 0} should be recalled from the
end of Sect. 4. Then use Lemma 7.5(e), giving Ji (x) � J>

i (x), in combination with
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the monotonicity and subadditivity of Ji and Theorem 1.5.4 in [29] to infer that, if
(Sτn(i))n≥0 is positive divergent, then

Ei J
>
i (Di,>)1+β < ∞ ⇐⇒ Ei Ji (D

i )1+β < ∞ (8.1)

for any β ∈ R�.

8.1 Proof of Theorem 6.1

The Proof of Theorem 6.1 can be found at the end of this subsection after some
auxiliary lemmata. We start by quoting the following straightforward generalization
of a result by Erickson [23, Lemma 4].

Lemma 8.1 Let (Xn,Yn)n≥1 be a sequence of iid pairs of nonnegative random vari-
ables with generic copy (X,Y ) and EX + EY = ∞. Then

lim sup
n→∞

Yn+1
∑n

k=1 Xk
= 0 or = ∞ a.s.

according as

∫

R>

y

E(X ∧ y)
P(Y ∈ dy) <∞ or = ∞.

Proof (of Theorem 6.1) “(a)⇒(b).” Suppose that (Sn)n≥0 is positive divergent. Noting
that, for any i ∈ S, (Sτn − Di

n+1)n≥0 forms a subsequence of (Sn)n≥0 in the sense that
the former sequence equals (Sξn )n≥0 for an increasing random sequence (ξn)n≥0, we
see that Sn →∞ a.s. ensures Sτn − Di

n+1 →∞ a.s., hence Sτn →∞ a.s. and

lim sup
n→∞

Di
n+1∑n

k=1(Sτk − Sτk−1)
+ ≤ lim sup

n→∞
Di
n+1
Sτn

< ∞ a.s.

Consequently, Ei Ji (Di ) < ∞ follows by Erickson’s Lemma 8.1. Finally, Ai (x) > 0
for all sufficiently large x can now be inferred from Lemma 3.2 by Kesten and Maller
[33].

“(b)⇒(a).” Fix an arbitrary i ∈ S and consider two cases.
Case 1. If Ei S+τ + Ei Di < ∞, then 0 < limy→∞ Ai (y) = Ei S+τ < ∞ ensures

the positive divergence of (Sτn )n≥0 and limn→∞ n−1Sτn = Ei Sτ a.s. Moreover,

∑

n≥1
Pi

(
Di
n > n

)
≤ Ei D

i < ∞
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entails limn→∞ n−1Di
n = 0 a.s. As a consequence,

lim
n→∞ Sn ≥ lim

n→∞
(
SτΛ(n)

− Di
Λ(n)+1

)

≥ lim
n→∞Λ(n)

(

Ei Sτ(i) −
Di

Λ(n)+1
Λ(n)

)

= ∞ a.s.,

where Λ(x) := sup{n ≥ 0 : τn ≤ x}.
Case 2. If Ei S+τ +Ei Di = ∞, then, again by Erickson’s Lemma 8.1, Ei Ji (Di ) <

∞ is equivalent to

Qn :=
Di
n+1∑n

k=1(Sτk − Sτk−1)
+

n→∞−→ 0 a.s. (8.2)

Therefore, by invoking a result of Pruitt [45, Lemma 8.1], we also have the equivalence
of Ei Ji (Di ) <∞ with

Rn :=
∑n

k=1(Sτk − Sτk−1)
−

∑n
k=1(Sτk − Sτk−1)

+
n→∞−→ 0 a.s. (8.3)

Now we arrive at the desired conclusion via

Sn ≥
Λ(n)∑

k=1
(Sτk − Sτk−1)

+ −
Λ(n)∑

k=1
(Sτk − Sτk−1)

− − Di
Λ(n)+1

=
Λ(n)∑

k=1
(Sτk − Sτk−1)

+ (
1− RΛ(n) − QΛ(n)

) n→∞−→ ∞ a.s.

Note that Ai (x) > 0 for all sufficiently large x has not been used here.
Lemma 8.2 below establishes “(b)⇒(c).” For “(c)⇔(6.3)” under the additional

condition on τ(i), we refer to the Proof of Theorem 6.4 for the case α = 0. Left with
“(c)⇒(d),” Lemma 13.3 in the Appendix provides us with

∑

n≥1

1

n
Pi (Sτn ≤ x) � Ei

(
1

τn
1{Sτn≤x}

)

≤ Σ0(i, x) < ∞,

for all x ∈ R�, which entails Sτn →∞ a.s. andEiν(x) <∞ by Theorem 3.1. Finally,
use Wald’s equation to conclude

Eiσ
>(x) ≤ Eiτν(x) = Eiτ Eiν(x) < ∞ (8.4)

for any x ∈ R�. ��
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Lemma 8.2 Given a nontrivial MRW (Mn, Sn)n≥0, positive divergence implies
Σ0(i, x) < ∞ for some/all (i, x) ∈ S × R�, and the converse is also true provided
that Eπ X1 exists.

Proof Suppose that Sn → ∞ a.s. Fixing any (i, x) ∈ S × R� and recalling that
Eiτ

> <∞, we obtain

Σ0(i, x) =
∑

n≥1
Ei

⎛

⎝
τ>
n∑

k=τ>
n−1+1

1

k
1{

Sτ>
n−1+

(
Sk−Sτ>

n−1
)
≤x

}

⎞

⎠

≤
∑

n≥1
Ei

⎛

⎝ 1

τ>
n−1 + 1

min(2τ>
n−1,τ>

n )
∑

k=τ>
n−1+1

1{
Sτ>

n−1−Di,>
n ≤x

}

⎞

⎠

+
∑

n≥1
Ei

⎛

⎝
τ>
n∑

k=2τ>
n−1+1

1

k
1{τ>

n −τ>
n−1>τ>

n−1
}

⎞

⎠

≤
∑

n≥0
Pi

(
Sτ>

n
− Di,>

n+1 ≤ x
)
+

∑

n≥1
Ei

⎛

⎝
τ>
n∑

k=2τ>
n−1+1

1

k
1{τ>

n −τ>
n−1>τ>

n−1
}

⎞

⎠ .

Finiteness of the first series will be established in the subsequent Lemma 8.3. As for
the second one, notice that Sτn →∞Pi -a.s. ensures Eiτ

> <∞. Therefore,

∑

n≥1
Ei

⎛

⎝
τ>
n∑

k=2τ>
n−1+1

1

k
1{τ>

n −τ>
n−1>τ>

n−1
}

⎞

⎠

≤
∑

n≥1

∑

k≥1
Ei

[
1

2τ>
n−1 + k

1{τ>
n −τ>

n−1≥n−1+k

]

≤
∑

n≥1

∑

k≥n

1

k
Pi (τ

> ≥ k) =
∑

n≥1
Pi (τ

> ≥ n) = Eiτ
> <∞

as claimed.
Now suppose that Eπ X1 exists and, furthermore, that (Sn)n≥0 is not positive diver-

gent which, by Proposition 7.3, entails that the same holds true for any (Sτn(i))n≥0,
i ∈ S and hence

∑
n≥1 n−1Pi (Sτn(i) ≤ x) = ∞ for all x ∈ R�. Now use Lemma

13.3 to conclude

∞ = Ei

⎛

⎝
∑

n≥1

1

τn(i)
1{Sτn (i)≤x}

⎞

⎠ ≤ Σ0(i, x)

for all x ∈ R�. ��
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Lemma 8.3 Given a nontrivial MRW (Mn, Sn)n≥0, positive divergence implies

∑

n≥1
Pi

(
Sτ>

n (i) − Di,>
n+1 ≤ x

)
< ∞

for all (i, x) ∈ S × R�.

Proof Fix any (i, x) ∈ S × R�. We have already proved that Sn → ∞ a.s. implies
Ei Ji (Di ) <∞ and thus alsoEi J>

i (Di,>) <∞ by (8.1). By combining this fact with

∑

n≥1
Pi

(
Sτ>

n
≤ x + y

) � J>
i (x + y)

as y →∞ [see (3.2)], we obtain

∑

n≥1
Pi

(
Sτ>

n
− Di,>

n+1 ≤ x
)
= Ei J

>
i (x + Di,>) � Ei J

>
i (Di,>) < ∞

which proves the assertion. ��

8.2 Proof of Theorem 6.7

Since (c) is a direct consequence of (b) when noting that

|Sσ�(−x)|1{σ�(−x)<∞} ≤ |min
n≥0 Sn|

for all x ∈ R�,wemust only show the equivalence of (a) and (b)which is accomplished
by the subsequent lemma.

Lemma 8.4 Let (Mn, Sn)n≥0 be positive divergent and α > 0. Then

Ei (D
i )α Ji (D

i ) < ∞ (8.5)

and

Ei

∣
∣
∣min
n≥0 Sn

∣
∣
∣
α

< ∞ (8.6)

are equivalent conditions and, if valid for one i ∈ S, actually hold for all i .

Proof We first point out that (8.5), if true for one i , is actually true for all i by Lemma
7.7. A similar solidarity holds for (8.6) because
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Ei

∣
∣
∣
∣min
n≥0 Sn

∣
∣
∣
∣

α

= Ei

∣
∣
∣
∣min
n≥1 Sn ∧ 0

∣
∣
∣
∣

α

≥ Ei

∣
∣
∣
∣

(

min
n≥τ(i)+1(Sn − Sτ(i))+ Sτ(i)

)

∧ 0

∣
∣
∣
∣

α

1{Sτ (i)≤x}

≥ pEi

∣
∣
∣
∣

(

min
n≥1 Sn + x

)

∧ 0

∣
∣
∣
∣

α

� Ei

∣
∣
∣
∣min
n≥0 Sn

∣
∣
∣
∣

α

,

where x ∈ R� is chosen so large that p := Pi (Sτ(i) ≤ x) > 0.
By the positive divergence of (Mn, Sn)n≥0, we can fix i such that p := Pi (σ

� =
∞) > 0. Again, we write τ, τn as shorthand for τ(i), τn(i), respectively. Define

η = η1 := inf
{
k ≥ 1 : Sτk−1 − Di

k < 0
}

and, recursively,

ηn := inf{k > ηn−1 : Sτk−1 − Sτηn−1 − Di
k < 0}

with the usual convention inf ∅ := ∞. Then

ν := inf{n ≥ 1 : ηn = ∞}

has a geometric distribution with parameter p. Moreover,

∣
∣
∣min
n≥0 Sn

∣
∣
∣ ≤

ν−1∑

n=1

∣
∣
∣Sτηn−1 − Sτηn−1 − Di

ηn

∣
∣
∣

with η0 := 0 and the fact that the Sτηk−1 − Sτηk−1 − Di
ηk

for k = 1, . . . , n are condi-
tionally iid given ν > n can be used as in [31, p. 871,(v)0 ⇒(vii)] to show that (8.6)
holds iff

Ei

∣
∣
∣Sτη−1 − Di

η

∣
∣
∣
α

1{η<∞} < ∞. (8.7)

Therefore, it suffices to show the equivalence of (8.7) and (8.5).
Use Lemma 13.1 to obtain

Fi (x) := Pi

(
−Sτη−1(i) + Di

η ≥ x, η <∞
)

=
∑

n≥1
Pi

(
−Sτn−1(i) + Di

n ≥ x, η = n
)

≤
∑

n≥1
Pi

(
Sτn−1(i) ≥ 0, −Sτn−1(i) + Di

n ≥ x
)
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=
∫

[x,∞)

∑

n≥1
Pi

(
0 ≤ Sτn−1(i) ≤ y − x

)
Pi (D

i ∈ dy)

�
∫

[x,∞)

Ji (y − x) Pi (D
i ∈ dy)

for x ∈ R�. Since Ji is nondecreasing, we then infer

Ei |Sτη−1(i) − Di
η|α 1{η<∞} �

∫ ∞

0
xα−1 Fi (x) dx

�
∫ ∞

0

(

xα−1
∫

[x,∞)

Ji (y − x) Pi (D
i ∈ dy)

)

dx

≤
∫ (∫ y

0
xα−1 Ji (y) dx

)

Pi (D
i ∈ dy)

�
∫

yα Ji (y) Pi (D
i ∈ dy)

= Ei (D
i )α Ji (D

i ).

the last integral being finite iff (8.5) holds.
On the other hand, Lemma 8.5 below (with α = 0) provides us with

Fi (x) =
∑

n≥1
Pi (−Sτn−1(i) + Di

n ≥ x, η = n)

=
∫

[x,∞)

∑

n≥1
Pi

(

Sτn−1 ≤ y − x, min
1≤k≤τn−1

Sk > 0

)

Pi (D
i ∈ dy)

�
∫

(x,∞)

Ji (y − x) Pi (D
i ∈ dy),

and this implies

Ei

∣
∣
∣Sτη−1 − Di

η

∣
∣
∣
α

1{η<∞} �
∫ ∞

1
xα−1

∫

(2x,∞)

Ji (y − x) Pi (D
i ∈ dy)dx

=
∫

(2,∞)

∫ y/2

1
xα−1 Ji (y − x) dx Pi (D

i ∈ dy)

� Ei (D
i )α Ji (D

i ).

We thus see that (8.7) and (8.5) are indeed equivalent. ��

The next lemma will also be needed in the next section (see Proof of Lemma 8.11).
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Lemma 8.5 Suppose that (Mn, Sn)n≥0 is positive divergent and let (i, x) ∈ S × R�
be such that Pi (σ

�(−x) = ∞) > 0. Then as y →∞,

Ji (y)
1+α � Ei

⎛

⎝
∑

n≥1
τn(i)

α 1{Sτn (i)≤y,min1≤k≤τn (i) Sk>−x}
⎞

⎠ (8.8)

for any α > 0.

Proof We begin with some preliminary considerations. Pick j ∈ S (possibly = i)
such that P j (σ

� = ∞) > 0. By Proposition 4.1, j is a recurrent state for the dual
ladder chain (#M>

n )n≥0. Hence, if κm denotes the mth strictly ascending ladder epoch
of (#Sn)n≥0 with #Mκm = j for eachm ∈ N, then these epochs are all Pi -a.s. finite and
(#Sκn )n≥0 forms a subsequence of (#S#τ>

n ( j))n≥0 and an ordinary RW with positive
increments. Moreover,

κ1 = #τ>
ϑ ( j)

for a stopping time ϑ with respect to the filtration

σ

(
#τ>

1 ( j), . . . , #τ>
n ( j),

(
#Mk,

#Sk
)

1≤k≤#τ>
n ( j)

)

, n ≥ 0,

and E jϑ ≤ E jκ1 <∞. As a consequence, by using Wald’s identity,

E j

(
#S+#τ( j)

∧ y
)
≤ E j

(
#Sκ1 ∧ y

)

≤ E j

(
ϑ∑

k=1

((
#S#τ>

k ( j) − #S#τ>
k−1( j)

)
∧ y

)
)

= E j

(
#S#τ>( j) ∧ y

)
E jϑ,

giving

E j

(
#Sκ1 ∧ y

)
� E j

(#S+#τ( j)
∧ y

) = E j
(
S+τ( j) ∧ y

)
(8.9)

when recalling Lemma 7.5(e) and observing that Sτ( j),
#S#τ( j) have the same distribu-

tion under P j . Finally, we infer with the help of (3.2) for the ordinary RW (#Sκm )m≥0
that

∑

m≥1
mα

P j

(
#Sκm ≤ y

)
�

(
y

E j
(
#Sκ1 ∧ y

)

)1+α

� J j (y)
1+α (8.10)

as y →∞.
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Nowwe are ready to prove (8.8). SincePi (σ
�(−x) = ∞) > 0, there exist x1 ∈ R�

and n1, n2 ∈ N such that

E :=
{

min
1≤k≤n1

Sk > −x, Sn1 ≤ x1, Mn1 = j, τn2 ≤ n1 < τn2+1
}

has positive probability under Pi .

Ei

⎛

⎝
∑

n≥1
τα
n 1{Sτn≤y,min1≤k≤τn Sk>−x}

⎞

⎠

≥ Ei

(

1E
∑

n>n2

τα
n 1{Sτn−Sn1≤y−x1,minn1<k≤τn (Sk−Sn1 )>0}

)

≥ Pi (E) E j

⎛

⎝
∑

n≥1
τα
n 1{Sτn≤y−x1,min1≤k≤τn Sk>0}

⎞

⎠

�
∑

m,n≥1
mαam,n

where

am,n := P j
(
Sτn ≤ y − x1, min

1≤k≤τn
Sk > 0, τm( j) ≤ τn < τm+1( j)

)
.

Now use the duality relation [see (4.3)]

am,n = πi

π j
Pi

(
y − x1 ≥ #S#τm+1( j) > #Sk for 0 ≤ k < #τm+1( j),

#τn−1 ≤ #τm+1( j) < #τn
)

= πi

π j

m+1∑

l=1
Pi

(#Sκl ≤ y − x1,
#τn−1 ≤ κl < #τn,

#τm+1( j) = κl
)

and choose x2 so large that Pi (
#Sκ1 ≤ x2) > 0. Then

∑

m,n≥1
mαam,n ≥ πi

π j

∑

m,n≥1

m+1∑

l=1
lα Pi

(#Sκl ≤ y − x1,

#τn−1 ≤ κl < #τn,
#τm+1( j) = κl

)

= πi

π j

∑

l≥1
lα Pi

(#Sκl ≤ y − x1
)

�
∑

l≥1
lα P j

(#Sκl ≤ y − x1 − x2
) � J j (y − x1 − x2),

123



2306 J Theor Probab (2018) 31:2266–2342

where (8.10) has been used for the last relation. The proof is herewith complete because
J j (y − x1 − x2) � J j (y) � Ji (y) as y →∞ by Lemma 7.5. ��

8.3 Proof of Theorem 6.3

We have organized the proof of the theorem as follows: After the auxiliary Lemma 8.6,
Lemmata 8.7 and 8.8 will establish “(a)⇒(b)” and its converse, respectively, the latter
even without the assumption that Eiτ(i)1+α <∞. Then “(c)⇒(d)” will be shown by
Lemma 8.10 and “(d)⇒(a)” by Lemma 8.11. Since (b)⇒(c)” is clear upon noting that
σmin ≤ ρ(0); this completes the proof of the equivalence of (a)–(d).

Lemma 8.6 Let (Mn, Sn)n≥0 be a nontrivial MRW with Eiτ(i)1+α < ∞ and T an
arbitrary nonnegative random variable. Then

Ei T
α <∞ iff

∑

n≥1
nα−1

Pi (T > τn(i)) <∞.

Proof Use (13.2) in Appendix (cf. Proof of Lemma 13.2) to infer

Ei T
α �

∑

n≥1
nα−1

Pi

(

T >
n

2Eiτ
, τn ≤ 2n Eiτ

)

�
∑

n≥1
nα−1

Pi (T > τn, τn ≤ 2n Eiτ)

�
∑

n≥1
nα−1

Pi (T > τn),

and thus the asserted equivalence. ��
Lemma 8.7 Let (Mn, Sn)n≥0 be a positive divergent MRW with Eiτ(i)1+α < ∞.
Then Ei Ji (Di )1+α < ∞ implies Eiρ(x)α < ∞ for all x ∈ R� and then also
E jρ(x)α <∞ for all ( j, x) ∈ S × R�.

Proof Under the stated assumptions, (Sn)n≥0 is positive divergent and either

Ei S
+
τ < ∞ and Ei Ji (D

i )1+α � Ei (D
i )1+α < ∞, (8.11)

or

Ei Ji (D
i )1+α < ∞ = Ei S

+
τ . (8.12)

These two cases will be treated separately hereafter.
Suppose (8.11) be true, in particular 0 < limy→∞ Ai (y) = Ei Sτ <∞, for (Sτn )n≥0

is positive divergent. Put μ := Ei Sτ /(2Eiτ). Then

Ei (Sτ − μτ) < ∞,
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and since Eiτ
1+α <∞, we have

Ei (D
i + μτ)1+α < ∞.

Consequently, we may use Theorem 6.7 for the MRW (Mn, Sn − μn)n≥0 to infer

Ei

∣
∣
∣
∣min
n≥0 (Sn − μn)

∣
∣
∣
∣

α

< ∞.

Now Eiρ(x) <∞ for all x ∈ R� follows from

μρ(x) ≤ x − (
Sρ(x) − μρ(x)

) ≤ x −min
n≥0 (Sn − μn)

(see [31, p. 871,(i)⇒(ii)]).
Assuming (8.12), it suffices to prove Ei ρ̂i (x)α <∞ for all x ∈ R� and

ρ̂i (x) := sup
{
n ≥ 0 : Sτn − Di

n+1 ≤ x
}

because {ρ(x) > τn} = {ρ̂i (x) ≥ n} for all n ≥ 1 and an appeal to Lemma 8.6. Put
X̂n := Sτn − Sτn−1 for n ≥ 1 and observe that

Sτn − Di
n+1 =

n∑

k=1
X̂+k −

n∑

k=1
X̂−k − Di

n+1 ≥
n∑

k=1
X̂+k −

n+1∑

k=1
Di
k

≥
∑

ε∈{0,1}

(
n∑

k=1
Rε
k +

(
Rε
n+1

)−
)

, (8.13)

where

R0
n := X̂+k 1{θk=1} − Di

k1{θk=0} and R1
n := X̂+k 1{θk=0} − Di

k1{θk=1}

for a sequence (θn)n≥1 of iid symmetric Bernoulli variables which are independent
of all other occurring random variables. Notice that (

∑n
k=1 Rε

k )n≥0 forms an ordinary
random walk for each ε ∈ {0, 1}. We claim that its last level x exit time ρε(x) is the
same as

ρ′ε(x) := sup

{

n ≥ 0 :
n∑

k=1
Rε
k −

(
Rε
n+1

)− ≤ x

}

.

Indeed, ρ′ε(x) ≥ ρε(x) is obvious. For the reverse inequality, suppose ρ′ε(x) = n and
thus

n∑

k=1
Rε
k −

(
Rε
n+1

)− ≤ x . (8.14)
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Then Rε
n+1 ≥ 0 entailsρε(x) ≥ n, while Rε

n+1 < 0 entails x ≥∑n
k=1 Rε

k−(Rε
n+1)− =∑n+1

k=1 Rε
k and therefore ρε(x) ≥ n + 1.

Now (8.13) implies ρ(x) ≤ ρ0(x) ∨ ρ1(x). Since

(
Rε
1

)+ = S+τ 1{θ1=ε} and
(
Rε
1

)− = Di
11{θ=1−ε},

we have, by (8.12), that

C(β) :=
∫

⎛

⎝ y

Ei

((
Rε
1

)+ ∧ y
)

⎞

⎠

1+β

Pi

((
Rε
1

)− ∈ ds
)

< ∞

for any β ∈ [0, α] and Ei |Rε
1| ≥ Ei (Rε

1)
+ = Ei S+τ /2 = ∞. The latter in combination

with C(0) <∞ ensures the positive divergence of (
∑n

k=1 Rε
k )n≥0 for each ε ∈ {0, 1}

as pointed out in Remark 3.2. Consequently, Eiρ(x)α ≤ Ei (ρ0(x) ∨ ρ1(x))α < ∞,
and the extension of the last conclusion to all i ∈ S follows because Eiτ(i)1+α <∞
and Ei Ji (Di )1+α < ∞ are all solidarity properties (for the last two assertion use
Lemma 7.7 with γ = 1). ��
Lemma 8.8 If Eiρ(x)α < ∞ for some (i, x) ∈ S × R� and α > 0, then
Ei Ji (Di )1+α <∞.

Proof Since (Sn)n≥0 is positive divergent under the proviso, there exists x0 > 0 such
that Pi (σ

�(−x0) = ∞) =: p > 0. Plainly, Eiρ(−x0)α ≤ Eiρ(x)α <∞. Use

{ρ(−x0) > n/2} ⊃
⋃

n/2<k≤n

{
Sτ>

k
≤ Di,>

k+1 − x0
}

⊃
⋃

n/2<k≤n

{

Sτ>
k
≤ Di,>

k+1 − x0, inf
l≥k+1

(
Sτ>

l
− Di,>

l+1
)

> −x0
}

⊃
⋃

n/2<k≤n

{

Sτ>
k
≤ Di,>

k+1 − x0, inf
l≥τ>

k+1

(
Sl − Sτ>

k+1

)
> −x0

}

to infer that

Pi (ρ(−x0) > n/2) ≥ pn

3
Pi

(
Sτ>

n
≤ Di,>

n+1 − x0
)

and thereupon

∑

n≥1
nα

Pi

(
Sτ>

n
≤ Di,>

n+1 − x0
)

�
∑

n≥1
nα−1

Pi (ρ(−x0) > n/2) < ∞,

as Eiρ(−x0)α <∞. Now use (3.2) for the ordinary RW (Sτ>
n
)n≥0 to infer

∑

n≥1
nα

Pi
(
Sτ>

n
≤ y

) � J>
i (y)1+α
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and thereupon

∞ >
∑

n≥1
nα

Pi
(
Sτ>

n
≤ Di,>

n+1 − x0
) �

∫

[x0,∞)

J>
i (y − x0)

1+α
Pi (D

i,> ∈ dy).

Finally, Lemma 7.5(e) provides us with

J>
i (y − x0) � Ji (y)

for all y ∈ R�, and since these functions are nondecreasing in x and Di ≤ Di,>, we
see that Ei Ji (Di )1+α <∞ as claimed. ��
Lemma 8.9 For any i ∈ S, Eiρ(0)α <∞ implies Eiσ

α
min <∞.

Proof The assertion follows directly from ρ(Sτ ) − τ
d= ρ(0) under Pi and ρ(Sτ ) ≥

σmin Pi -a.s. ��
Lemma 8.10 Let α > 0 and i ∈ S. Then Eiσ

α
min <∞ implies

Eiσ
�(−x)α1{σ�(−x)<∞} < ∞

for all x ∈ R� as well as Pi (σ
�(−x) = ∞) > 0 for all sufficiently large x.

Proof The first assertion follows from the obvious inequality

σ�(−x)α1{σ�(−x)<∞} ≤ σmin1{σ�(−x)<∞}

��
for any x ∈ R�, while the second one must hold because σmin < ∞ Pi -a.s. entails
the positive divergence of (Sn)n≥0. ��
Lemma 8.11 If, for some (i, x) ∈ S × R�, Eiσ

�(−x)α1{σ�(−x)<∞} < ∞ and

Pi (σ
�(−x) = ∞) > 0, then Ai (y) > 0 for all sufficiently large y andEi Ji (Di )1+α <

∞.

Proof First, Pi (σ
�(−x) = ∞) > 0 implies Sn →∞ Pi -a.s. and thus Ai (y) > 0 for

all sufficiently large y by Theorem 6.1. Next, we infer

∞ > Eiσ
�(−x)α1{σ�(−x)<∞} = Ei

⎛

⎝
∑

n≥1
nα 1{σ�(−x)=n}

⎞

⎠

≥ Ei

⎛

⎝
∑

n≥1

τn+1∑

k=τn+1
kα 1{σ�(−x)=k}

⎞

⎠
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≥ Ei

⎛

⎝
∑

n≥1
τα
n 1{τn<σ�(−x)≤τn+1}

⎞

⎠

=
∫

Ei

⎛

⎝
∑

n≥1
τα
n 1{Sτn≤y−x,min1≤k≤τn Sk>−x}

⎞

⎠ Pi (D
i ∈ dy),

and then Ei Ji (Di )1+α <∞ by an appeal to Lemma 8.5. ��

8.4 Proof of Theorem 6.4

We first point out that if Σα(i, 0) < ∞ for some i ∈ S, then Σα( j, 0) < ∞ for all
j ∈ S. To see this, we note that

∑

n≥1
nα−1

Pi (Sτn(i) ≤ x) � Ei

⎛

⎝
∑

n≥1
τn(i)

α−11{Sτn (i)≤x}

⎞

⎠ ≤ Σα(i, x) < ∞

(8.15)

(seeLemma13.3(b) inAppendix) in combinationwithTheorem3.3 implies Ai (x) > 0
for all sufficiently large x andEi Ji (S

−
τ(i)) <∞. In particular, we obtainEiτ

>(i)1+α <

∞ and then also E jτ
>(i)1+α <∞ by a straightforward argument. Now

Σα(i, 0) ≤ E j

⎛

⎝
2τ>(i)∑

n=1
nα−1 +

∑

n≥1
(τ>(i)+ n)α−1 1{(Sτ>(i)+n−Sτ>(i))+Sτ>(i)≤0}

⎞

⎠

� E jτ
>(i)1+α + E j

⎛

⎝
∑

n≥1
(2n)α−1 1{Sτ>(i)+n−Sτ>(i)≤0}

⎞

⎠

≤ E jτ
>(i)1+α + 2α−1Σα(i, 0)

In order to prove Theorem 6.4, it is therefore enough to show that, for any fixed
(i, x) ∈ S × R� (and with τn = τn(i) and τ> = τ>(i)),

Σα(i, x) �
∫ ∑

n≥1
nα−1

Pi (Sτn ≤ x + y) Vi (dy) (8.16)

where

∑

n≥1
nα−1

Pi (Sτn ≤ x + y) �
{
log Ji (x + y) � log Ji (y), if α = 0,

Ji (x + y)α � Ji (y)α, if α > 0,
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as y → ∞ should be recalled [see Lemma 13.3, (3.2) and the subsequent remark].
Note that we may replace Vi with Wi := Ei

(∑τ(i)
n=1 1{−Sn∈·}

)
in (8.16), for

∫ ∑

n≥1
nα−1

Pi (Sτn ≤ x + y) Vi (dy)

≤
∫ ∑

n≥1
nα−1

Pi (Sτn ≤ x + y) Wi (dy) + Vi ({0})
∑

n≥1
nα−1

Pi (Sτn ≤ x)

≤
∫ ∑

n≥1
nα−1

Pi (Sτn ≤ x + y) Vi (dy) + Vi ({0})
∑

n≥1
nα−1

Pi (Sτn ≤ x)

≤ 2
∫ ∑

n≥1
nα−1

Pi (Sτn ≤ x + y) Vi (dy).

We now distinguish between the cases 0 ≤ α ≤ 1 and α > 1 and put χn := τn − τn−1
for n ≥ 1 which are iid copies of τ = τ(i) under Pi .

Case 1. 0 ≤ α ≤ 1.
Using (τn−1 + k)α−1 ≤ nα−1 for k = 1, . . . , χn and n ≥ 1, we find

Σα(i, x) = Ei

⎛

⎝
∑

n≥1

χn∑

k=1
(τn−1 + k)α−11{Sτn−1+k≤x}

⎞

⎠

≤
∑

n≥1
nα−1

Wi ([y − x,∞)) Pi (Sτn−1 ∈ dy)

=
∫ ∑

n≥1
nα−1

Pi (Sτn−1 ≤ x + y) Wi (dy)

�
∫ ∑

n≥1
nα−1

Pi (Sτn ≤ x + y) Vi (dy).

For the reverse inequality note first that

Ei

⎛

⎝
∑

n≥1

χn∑

k=1
(τn−1 + k)α−11{τn−1>2n Ei τ }

⎞

⎠

� Ei

⎛

⎝
∑

n≥1
nα−1χn 1{τn−1>2n Ei τ }

⎞

⎠

= Eiτ
∑

n≥1
nα−1

Pi (τn−1 > 2n Eiτ) < ∞,
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the finiteness of the last series following from (13.2) in Appendix. We also need that

Ei

⎛

⎝
∑

n≥1
nα−1χn1{χn>n}

⎞

⎠ = Ei

⎛

⎝
∑

n≥1

χn∑

k=1
nα−11{χn>n}

⎞

⎠

≤ Ei

⎛

⎝
∑

n≥1

n∑

k=1
nα−11{χn>n}

⎞

⎠ + Ei

⎛

⎝
∑

n≥1

∑

k≥n
nα−11{χn>k}

⎞

⎠

�
∑

n≥1
nα

Pi (τ > n) +
∑

k≥1

k∑

n=1
nα−1

Pi (τ > k)

� Eiτ
1+α ∨ Ei (τ log τ) < ∞,

(8.17)

where
∑n

k=1 k−1 � log n and
∑n

k=1 nα−1 � nα for any α > 0 has been utilized for
the final estimate. With this at hand, we infer

Σα(i, x) = Ei

⎛

⎝
∑

n≥1

χn∑

k=1
(τn−1 + k)α−11{Sτn−1+k≤x}

⎞

⎠

≥ Ei

⎛

⎝
∑

n≥1

χn∑

k=1
(τn−1 + k)α−11{Sτn−1+k≤x, τn−1≤2n Ei τ }

⎞

⎠

� Ei

⎛

⎝
∑

n≥1

χn∑

k=1
(n + k)α−11{Sτn−1+k≤x, χn≤n}

⎞

⎠

�
∑

n≥1
nα−1

Ei

(
χn∑

k=1
1{Sτn−1+k≤x}

)

[here (8.17) enters]

�
∫ ∑

n≥1
nα−1

Pi (Sτn ≤ x + y) Vi (dy)

as required.

Case 2. α > 1.
Here, (τn−1 + k)α−1 ≥ nα−1 for k = 1, . . . , χn and n ≥ 1 implies

Σα(i, x) = Ei

⎛

⎝
∑

n≥1

χn∑

k=1
(τn−1 + k)α−11{

Sτn−1+k≤x
}

⎞

⎠

≥
∫ ∑

n≥1
nα−1

Pi (Sτn−1 ≤ x + y) Wi (dy)

�
∫ ∑

n≥1
nα−1

Pi (Sτn ≤ x + y) Vi (dy).
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For the reverse estimation, we embark on the inequality

Ei

⎛

⎝
∑

n≥1

χn∑

k=1
(τn−1 + k)α−11{

Sτn−1+k≤x
}

⎞

⎠ � I1 + I2,

where

I1 := Ei

⎛

⎝
∑

n≥1

χn∑

k=1
(n + k)α−11{

Sτn−1+k≤x
}

⎞

⎠

and

I2 := Ei

⎛

⎝
∑

n≥1

χn∑

k=1
(τn−1 + k)α−11{τn−1>2n Ei τ }

⎞

⎠ .

As for I1, we then obtain

I1 � Ei

⎛

⎝
∑

n≥1
nα−1

χn∑

k=1
1{Sτn−1+k≤x}

⎞

⎠

+ Ei

⎛

⎝
∑

n≥1

χn∑

k=1
(n + k)α−11{Sτn−1+k≤x, χn>n}

⎞

⎠

�
∫ ∑

n≥1
nα−1

Pi (Sτn ≤ x + y) Vi (dy) + Ei

⎛

⎝
∑

n≥1
χα
n 1{χn>n}

⎞

⎠

�
∫ ∑

n≥1
nα−1

Pi (Sτn ≤ x + y) Vi (dy) + Eiτ
α+1.

Finally, since (τn−1 + k)α−1 ≤ 2α−1(τα−1
n−1 + χα−1

n ) for k = 1, . . . , χn and n ≥ 1,

I2 � Ei

⎛

⎝
∑

n≥1

χn∑

k=1
(τα−1

n−1 + χα−1
n )1{τn−1>2n Ei τ }

⎞

⎠

� Ei

⎛

⎝
∑

n≥1
τα−1
n 1{τn>2n Ei τ }

⎞

⎠ + Ei

⎛

⎝
∑

n≥1
χα
n 1{τn−1>2n Ei τ }

⎞

⎠ ,

and the last two expectations are finite because Eiτ
α+1 < ∞ (for the second expec-

tation this is obvious, for the first one see Lemma 13.2 in Appendix).
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8.5 Proof of Theorem 6.5

Here, we start with two auxiliary lemmata.

Lemma 8.12 Let α > 0 and Eiτ(i)α <∞ for some/all i ∈ S. Then the set

{(i, x) ∈ S × R� : Ei N (x)α <∞}

is either empty or equal to S × R�.

Proof Suppose that Ei N (0)α <∞ for some i ∈ S, so that in particular

Ei

⎛

⎝
∑

n≥1
1{Sτn≤0}

⎞

⎠

α

< ∞,

which in turn is equivalent to Eiν(x)1+α <∞ for all x ∈ R� by Theorem 3.3. Using
[29, Theorem 1.5.1] for α ∈ (0, 1) and [29, Theorem 1.5.2] for α ≥ 1, we obtain

Eiτ
α
ν(x) � Eiτ

α · Eiν(x)1∨α < ∞

for all x ∈ R�. For arbitrary j ∈ S, pick x1 ∈ R� such that

0 < p := Pi (Sτ( j) ≤ x1, τ ≥ τ( j)).

It follows that

∞ > Eiτ
α
ν(x+x1) ≥ Eiτ

α
ν(x+x1) 1{Sτ ( j)≤x1, τ≥τ( j)} ≥ pE jτ

α
ν(x)

for all x ∈ R�. Now put

Ñ (0) :=
∑

n≥τν(x)+1
1{Sn−Sτν(x)≤0},

having the law Pi (N (0) ∈ ·) under any P j , and observe that N (x) ≤ τν(x) + Ñ (0)
P j -a.s. Therefore,

E j N (x)α � E jτ
α
ν(x) + Ei N (0)α < ∞

for all x ∈ R� which completes the proof because j ∈ S was arbitrarily chosen. ��
For the next result, recall that χn(i) = τn(i)− τn−1(i) for n ∈ N.

Lemma 8.13 For α > 0, let Eiτ(i)1+α <∞ and Ei Ji (S
−
τ(i))

1+α <∞. Then

Ei

⎛

⎝
∑

n≥1
χn(i) 1{Sτn−1(i)≤0}

⎞

⎠

α

< ∞.
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Proof Consider an auxiliary MRW (M ′
n, S

′
n)n≥0 such that M ′ = (M ′

n)n≥0 has state
space S ′ ⊂ {0} ∪ N

2, transition probabilities (with τ = τ(i) as usual)

p′0,(n,1) = Pi (τ = n), p′(n,n−1),0 = 1 and p′(n,k−1),(n,k) = 1

for n ∈ N and k = 2, . . . , n − 1, and the stationary distribution π ′0 = (Eiτ)−1,
π ′(n,k) = (Eiτ)−1Pi (τ = n) for n ∈ N and k = 1, . . . , n − 1. The conditional
increment distributions of (S′n)n≥0 are given by

P
(
S′1 ∈ ·|M ′

0 = j, M ′
1 = k

)

=
{

Pi (Sτ ∈ ·|τ = n), if j = (n, n − 1) for n ∈ N and k = 0,

δ0, otherwise.

Then τ ′ := inf{n ≥ 1 : M ′
n = 0} and D′ := max0≤k≤τ ′ S′k

− satisfy

P0
(
S′τ ′ ∈ ·

) = Pi (Sτ ∈ ·) and P0(D
′ ∈ ·) = P0

(
S′τ ′
− ∈ ·

)
,

where P0 := P(·|M ′
0 = 0). Hence, Theorem 6.3 for the given α applies to the MRW

(M ′
n, S

′
n)n≥0 and provides us with E0ρ

′(0)α < ∞ for ρ′(0) := sup{n ≥ 0 : S′n ≤ 0}.
Furthermore, one can easily infer from the definition of the S′n that

Ei

⎛

⎝
∑

n≥1
χn 1{Sτn−1≤0}

⎞

⎠

α

≤ E0

⎛

⎝
∑

n≥1
1{S′n≤0}

⎞

⎠

α

≤ E0ρ
′(0)α < ∞

which completes the proof. ��
Proof (of Theorem 6.5 ) By Lemma 8.12, it suffices to verify the equivalence of
Ei N (0)α <∞ with Ai (x) > 0 for all large x , Ei Ji (S

−
τ(i))

1+α <∞ and (6.5) for any
fixed i ∈ S. Let Ui denote the renewal measure of (Sτn )n≥0 under Pi and note that
Ui ((0, x]) � Ji (x) by Lemma 13.1 in Appendix. In the following, the cases α ≤ 1
and α > 1 are treated separately.

Case 1. 0 < α ≤ 1.
“(a)⇒(b)” Since

N (0) ≤
∑

n≥1
χn1{Sτn−1≤0} +

∑

n≥1

χn∑

k=1
1{Sτn−1+k≤0<Sτn−1 }

it suffices to show by the previous lemma that

I := Ei

⎛

⎝
∑

n≥1

χn∑

k=1
1{Sτn−1+k≤0<Sτn−1 }

⎞

⎠

α

< ∞. (8.18)
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Using the subadditivity of x �→ xα , this follows from

I ≤
∑

n≥1
Ei

(
χn∑

k=1
1{Sτn−1+k≤0<Sτn−1 }

)α

=
∫

R>

V
α
i ([y,∞)) Ui (dy)

=
∫

Ui ((0, y]) V
α
i (dy) �

∫

Ji (y) V
α
i (dy).

(8.19)

Case 2. α ≥ 1.
“(b)⇒(a)” IfEi N (0)α <∞ and thus (8.18) holds, then the superadditivity of x �→ xα

implies that (8.19) holdswith reverse inequality sign, giving (6.5).Moreover, N ′(0) :=∑
n≥1 1{Sτn≤0} ≤ N (0) a.s. entails Ei N ′(0)α <∞ and thus Ai (x) > 0 for all large x

and Ei Ji (S−τ )1+α <∞ by an appeal to Theorem 3.3. Note that this completes already
the proof in the case α = 1.
“(a)⇒(b)” Regarding the proviso, when stated as

∫
R>

V
α
i ([x,∞)) Ui (dx) < ∞ [see

(8.19)], we point out that it may be extended to

c :=
∫

R

V
α
i ([x,∞)) Ui (dx) < ∞,

for the integral over R� is bounded by Eiτ
α

Ui (R�) < ∞. As a consequence, we
also have

sup
β∈(0,α]

∫

R

V
β
i ([x,∞)) Ui (dx) = c.

Let q ∈ N and δ ∈ (0, 1] be such that α = q + δ. The subsequent inductive argument
(in m) will show that (a) for some α ≤ m ∈ N implies

Ei N (0)β < ∞ for all 0 ≤ β ≤ α. (8.20)

Since this has already been verified for m = 1, we proceed to the inductive step
m → m+ 1, assume q = m and (8.20) be true for α = m (inductive hypothesis). The
following argument is taken from [10] (see their Theorem 3.7). Defining

Nn(x) :=
∑

k≥τn+1
1{Sk−Sτn≤x} and Ln :=

χn∑

k=1
1{Sτn−1+k≤0}

for n ∈ N and x ∈ R, we obviously have

Ei

⎛

⎝
∑

n≥1
Lβ
n

⎞

⎠ ≤ Ei

⎛

⎝
∑

n≥1
V

β
i ([Sτn−1 ,∞))

⎞

⎠ ≤ c < ∞.
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Observe that Nn(0) and Ln are independent and

Pi (Nn(0) ∈ ·) = Pi (N (0) ∈ ·)

for all n ≥ 1. Moreover,

Nn(−Sτn ) = Ln+1 + Nn+1(−Sτn+1)

for all n ∈ N0. By making use of the inequality [10, Lemma 5.6]

(x + y)α ≤ xα + yα + α 2α−1(xyα−1 + xq yδ
)
,

valid for all x, y ∈ R� and α = q + δ ≥ 1, we infer

N (0)α = (L1 + N1(−Sτ ))
α

≤ Lα
1 + N1(−Sτ )

α + α 2α−1 (L1N1(−Sτ )
α−1 + Lq

1N1(−Sτ )
δ
)

.

Since Ei N (0) < ∞ and Sτn → ∞ a.s., we have Nn(−Sτn ) ≤ N (−Sτn ) → 0 a.s.
Therefore, by an iteration of the previous inequality, we find

N (0)α ≤
∑

n≥1
Lα
n + α 2α−1 ∑

n≥1

(
LnNn(−Sτn )

α−1 + Lq
n Nn(−Sτn )

δ
)

.

Using further

Nn(−Sτn ) ≤
∑

l≥n

χl+1∑

k=1

(
1{Sτl+k−Sτl≤−Sτl <0} + 1{Sτl+k−Sτl≤−Sτl , Sτl≤0}

)

≤ Nn(0) +
∑

n≥1
χn1{Sτn−1≤0},

Lemma 8.13 and the inductive hypothesis (8.20) yield upon taking means

Ei N (0)α � c
(
1+ α 2α−1 [

Ei N (0)α−1 + Ei N (0)δ
])

< ∞.

��

8.6 Proof of Theorem 6.6

The following two lemmata will easily establish the asserted implications of Theorem
6.6.

Lemma 8.14 Let α > 0 and Eiτ(i)1+α < ∞ for some i ∈ S. Then Ei Ji (Di )1+α <

∞ implies Ei Ji (S
−
τ(i))

1+α <∞ as well as (6.4) and (6.5).
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Proof The first implication is obvious because S−τ ≤ Di . Regarding the other two,
use (6.1) and Hölder’s inequality to infer

∫

R>

Ji (x)V
α
i (dx) �

∫

R>

J ′i (x) V
α
i ((x,∞)) dx

≤ Ei

(

τα

∫ Di

0
J ′i (x) dx

)

= Eiτ
α Ji (D

i )

≤
(
Eiτ

1+α
)α/(1+α) (

Ei Ji (D
i )1+α

)1/(1+α)

< ∞.

Similarly, one finds

∫

R>

Ji (x)
α
Vi (dx) �

∫

R>

J ′i (x)Ji (x)α−1 Vi ((x,∞)) dx = Eiτ Ji (D
i )α

≤
(
Eiτ

1+α
)1/(1+α) (

Ei Ji (D
i )1+α

)α/(1+α)

< ∞.

��
Lemma 8.15 Let α > 0, Eiτ(i)1+α < ∞ for some i ∈ S and x ∈ R�. If α ≥ 1,
then Σα(i, x) < ∞ implies Ei N (x)α < ∞, while the reverse implication holds true
if 0 < α ≤ 1.

Proof If α ≥ 1 and Σα(i, x) <∞, then

Ei (N (x) ∧ m)α ≤ Ei

⎛

⎝
∑

n≥1
(N (x) ∧ m)α−11{Sn≤x}

⎞

⎠

≤ Ei

⎛

⎝
∑

n≥1
(N (x) ∧ m)α−11{N (x)∧m≥2n}

⎞

⎠ + 2α−1Σα(i, x)

≤ 1

2
Ei (N (x) ∧ m)α + 2α−1Σα(i, x)

for all m ≥ 1, thus Ei N (x)α ≤ 2αΣα(i, x) <∞.
If 0 < α ≤ 1 and Ei N (x)α <∞, then

Ei N (x)α = Ei

⎛

⎝
∑

n≥1
N (x)α−11{Sn≤x}

⎞

⎠ ≥ Ei

⎛

⎝
∑

n≥1
N (x)α−11{N (x)≤n, Sn≤x}

⎞

⎠

≥ Ei

⎛

⎝
∑

n≥1
nα−11{N (x)≤n, Sn≤x}

⎞

⎠ ≥ Σα(i, x) − Ei

⎛

⎝
N (x)∑

n=1
nα−1

⎞

⎠

≥ Σα(i, x) − Ei N (x)α,

thus Σα(i, x) ≤ 2Ei N (x)α <∞. ��
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Proof (of Theorem 6.6) In view of the previous two lemmata, the stated implica-
tions between Theorems 6.3, 6.4 and 6.5 are now immediate. As for the finiteness of
Eiσ

>(x)1+α for all (i, x) ∈ S × R� and any given α > 0, fix i ∈ S and recall that
Theorem 6.4(b) entails

∑
n≥1 nα−1

Pi (Sτn ≤ x) < ∞ [see (8.15)] and that Theorem
6.5(b) trivially entails Ei (

∑
n≥1 1{Sτn≤x})

α < ∞ for all x ∈ R�. Hence, under any
of these conditions, we infer from Theorem 3.3, applied to the ordinary random walk
(Sτn )n≥0, that Eiτ

1+α
ν(x) < ∞ for all x ∈ R�. Since σ>(x) ≤ τν(x), this completes the

proof. ��

8.7 Proofs of Theorems 6.8 and 6.9

Throughout this subsection, the state space S of (Mn)n≥0 is assumed to be finite. It is a
well-known fact that the return times τ(i) then have exponentialmoments, in particular
Eiτ(i)1+α <∞ for all α ∈ R�. The proofs of the theorems will be furnished by two
subsequent lemmata.

Lemma 8.16 Given a MRW (Mn, Sn)n≥0 with finite state space S, the following
assertions hold true for all i ∈ S:
(a) There exists x ∈ R� such that Pi (S

±
τ(i) > y) � Pπ (X±1 > y + x) as y →∞.

(b) Eπ |X1| <∞ if and only if Ei |Sτ(i)| <∞.
(c) Ei (S

±
τ(i) ∧ y) � Eπ (X±1 ∧ y) as y →∞.

Proof We will prove (a) for (X−1 , S−τ(i)) and (c) for (X+1 , S+τ(i)) because this allows us
to directly refer to results stated in this paper. The other cases then follow by switching
to (Mn,−Sn)n≥0.

(a) Fixing an arbitrary i ∈ S, we will show that for all i, j ∈ S with pi j > 0, there
exists xi j ∈ R� such that

Pi

(
S−τ(i) > y

)
� Pi

(
X−1 > y + xi j |M1 = j

)
(8.21)

as y → ∞. Then by the finiteness of S, we can choose x := maxi, j∈S xi j < ∞ to
obtain the desired result

Pi

(
S−τ(i) > y

)
�

∑

i∈S
πi pi j Pi

(
X−1 > y + x |M1 = j

) = Pπ

(
X−1 > y + x

)

as y →∞.
For u ∈ S, define τ 0(u) := inf{n ≥ 0 : Mn = u}. Pick i, j ∈ S with pi j > 0.

There exist m1,m2 ∈ N0 and z ∈ R� such that

p1 := Pi

(
τ 0(i) = m1 < τ(i), |Sm1 | ≤ z

)
> 0

and

p2 := P j

(
τ 0(i) = m2, |Sm2 | ≤ z

)
> 0.
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With m := m1 + m2 + 1, it follows that

Pi

(
S−τ(i) > y

)

≥ Pi

(
τ 0( j) = m1, |Sm1 | ≤ z, Mm1+1 = j,

τ ( j) = m, |Sm − Sm1+1| ≤ z, S−τ(i) > y
)

≥ p1 p2 Pi
(
X−1 > y + 2z|M1 = j

) � Pi
(
X−1 > y + 2z|M1 = j

)
.

and this proves (8.21).
(b) By using (a) for the positive and the negative part, we infer that Ei |Sτ(i)| <∞

implies Eπ |X1| <∞. The reverse implication follows from (4.2).
(c) In view of (b), we must only consider the case when Eπ X

+
1 = ∞. Let x ∈ R�

be the constant provided by part (a) for (S+τ(i), X
+
1 ). Then

Ei

(
S+τ(i) ∧ y

)
=

∫ y

0
Pi

(
S+τ(i) > z

)
dz �

∫ y

0
Pπ

(
X+1 > z + x

)
dz

as y →∞, and the last integral is positive because Eπ X
+
1 = ∞. Therefore,

∫ y

0
Pπ

(
X+1 > z + x

)
dz �

∫ y+x

0
Pπ

(
X+1 > z

)
dz = Eπ

[
X+1 ∧ (y + x)

]

as y →∞. Using Eπ [X+1 ∧ (y+ x)] � Eπ (X+1 ∧ y) (cf. Lemma 7.5(b)), we arrive at
the conclusionEπ (X1∧ y) � Ei (S

+
τ(i)∧ y). For a reverse estimate, use the occupation

measure formula (4.1) to infer

Eπ

(
X+1 ∧ y

) = πi Ei

⎡

⎣
τ(i)∑

k=1

(
X+k ∧ y

)
⎤

⎦ ≥ πi Ei

⎡

⎣

⎛

⎝
τ(i)∑

k=1
X+k

⎞

⎠ ∧ y

⎤

⎦

≥ πi Ei

(
S+τ(i) ∧ y

)

for all y ∈ R�. ��

For γ ∈ [0, 1], let

Jπ,γ (x) :=
⎧
⎨

⎩

x
[
Eπ

(
X+1 ∧ x

)]γ , if Pπ (X1 > 0) > 0

x, otherwise
,

where 0/[Eπ (X+1 ∧0)]γ := 1 if γ > 0.Note that Jπ = Jπ,1. The second lemma relates
the moments of Ji,γ (S−τ(i)) and Ji,γ (Di ) to the respective moments of Jπ,γ (X−1 ).
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Lemma 8.17 Given a nontrivial MRW (Mn, Sn)n≥0 with finite state space S, the
following assertions are equivalent for any α ∈ R� and γ ∈ [0, 1].
(a) Ei Ji,γ (S−τ(i))

1+α <∞ for some/all i ∈ S.
(b) Ei Ji,γ (Di )1+α <∞ for some/all i ∈ S.
(c) Eπ Jπ,γ (X−1 )1+α <∞.

Proof IfEπ X
+
1 <∞, then, by another application of the occupation measure formula

(4.1),

Eπ X
+
1 = πi Ei

⎛

⎝
τ(i)∑

k=1
X+k

⎞

⎠ ≥ πi Ei S
+
τ(i)

and therefore Jπ,γ (y) � y � Ji,γ (y) as y → ∞. If Eπ X
+
1 = ∞, then Lemma

8.16(c) entails Jπ,γ (y) � Ji,γ (y) as y →∞. In any case, it therefore suffices prove
the lemma when replacing Ji,γ with Jπ,γ in (a) and (b). Let i ∈ S be an arbitrarily
chosen state hereafter.

“(b)⇒(a)” follows directly from Di ≥ S−τ(i).
“(a)⇒(c)” With x ∈ R� as provided by Lemma 8.16(a), we have Jπ,γ (y − x) �

Jπ,γ (y) and thus

∞ > Ei Jπ,γ

(
S−τ(i)

)1+α

� Eπ Jπ,γ

((
X−1 − x

)+)1+α � Eπ Jπ,γ

(
X−1

)1+α
.

“(c)⇒(b)”Let Fjk be the distribution function of X
−
1 givenM0 = j andM1 = k and

F−1jk its pseudo-inverse. Given a sequence (Un)n≥1 of iid uniformly distributed random
variables on (0, 1) which are independent of all other occurring random variables, the
sequence (Mn, X̂n)n≥1 with X̂n := F−1Mn−1,Mn

(Un) forms a distributional copy of

(Mn, X−n )n≥1. Put Ŝn =∑n
k=1 X̂k for n ≥ 1 and

G(y) := max
j,k∈S

P j
(
X−1 ≤ y|M1 = k

)
,

which is a proper distribution function as S is finite. Now (Wn)n≥1 := (G−1(Un))n≥1
forms an iid sequence independent of (Mn)n≥0 and with X̂n ≤ Wn for all n ≥ 1. Use
that Jπ,γ is a subadditive and nondecreasing to infer

Ei Jπ,γ (Di )1+α ≤ Ei Jπ,γ

⎛

⎝
τ(i)∑

k=1
X−k

⎞

⎠

1+α

= Ei Jπ,γ (Ŝτ(i))
1+α

≤ Ei

⎛

⎝
τ(i)∑

k=1
Jπ,γ (X̂k)

⎞

⎠

1+α

≤ E

⎛

⎝
τ(i)∑

k=1
Jπ,γ (Wk)

⎞

⎠

1+α

.
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By [29, Theorem 1.5.4], the upper bound is finite iff Eiτ(i)1+α and EJπ,γ (W1)
1+α

are both finite. We must only verify the finiteness of the second expectation which
follows from

∞ > Eπ Jπ,γ

(
X−1

)1+α =
∑

j,k∈S
π j p jk E j

(
Jπ,γ

(
X−1

)1+α |M1 = k
)

≥ c
∑

j,k∈S: p jk>0

∫

Jπ,γ (y)1+α
P j

(
X−1 ∈ dy|M1 = k

)

≥ cEJπ,γ (W )1+α,

where c := min{π j p jk : j, k ∈ S and p jk > 0}. ��

Proof of Theorem 6.8 By Lemma 8.17, we may replace Di with S−τ(i) in (b) which
is assumed hereafter. Let us establish the equivalence of this modified condition and
(6.8). If Eπ |X1| < ∞, then Ei |Sτ(i)| < ∞ by Lemma 8.16(b), and since, by another
use of (4.1), we then also have

πi lim
y→∞ Ai (y) = πi Ei Sτ(i) = Eπ X1 = lim

y→∞ Aπ (y),

the asserted equivalence follows. If Eπ |X1| = ∞ and thus Eπ |Sτ(i)| = ∞, then only
equivalence of Ei Ji (S

−
τ(i)) < ∞ and Eπ Jπ (X−1 ) < ∞ must be verified, as pointed

out in Remark 3.2. But this is ensured by the previous lemma for γ = 1.
It remains to verify that 6.1(d), i.e., Eiσ

>(x) <∞ for all (i, x) ∈ S×R�, implies
the modified condition 6.1(b). By Proposition 4.1 (note that the dual MRW is trivially
also positive divergent if |S| < ∞), the ladder chain (M>

n )n≥0 is positive recurrent
on some S> ⊂ S with unique stationary law π> vanishing outside S>. In particular,
κ(i) := inf{n : M>

n = s} has finite mean under Pi for each i ∈ S>. Moreover, the
sequence (M>

n , σ>
n )n≥0 forms a MRWwith Eπ>σ> <∞, for S is finite. Now fix any

i ∈ S> and recall that τ>(i) denotes the first ascending ladder epoch of (Sτn(i))n≥0.
Then we obviously have τ>(i) ≤ σκ(i) = inf{σ>

n : Mσ>
n
= s}, and thus, by making

use of the occupation measure formula (4.1)

Eiτ
>(i) ≤ Eiσκ(i) = Eπ>σ>

Eiκ(i) < ∞

which in turn implies the modified 6.1(b) by invoking Theorem 3.1 for the ordinary
random walk (Sτn(i))n≥0. ��

Proof of Theorem 6.9 ByLemmata8.17 and7.8, only “(6.6)⇒ Ei Ji (S
−
τ(i))

1+α <∞”
remains to be proved. On the other hand, this requires further results on the moments
of σ>(x), notably Proposition 9.4, and will therefore be postponed to the end of Sect.
9. ��
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9 A Closer Look at the Moments of σ>(x)

This section is devoted to a more detailed discussion of some aspects regarding the
moments of σ>(x) for which none of the conditions provided by Theorems 6.3(a),
6.4(a) and 6.5(a) appears to be necessary.

9.1 A Counterexample

We begin with an example that will actually show that, for any given α ≥ 0, we can
define a nontrivial oscillatingMRW (Mn, Sn)n≥0 having negative divergent embedded
RW (Sτn(i))n≥0 and yet Eiσ

>(x)1+α < ∞ for all (i, x) ∈ S × R�. In other words,
the last property does not entail the positive divergence of (Sn)n≥0 nor any of the other
assertions stated in the theorems of Sect. 6, which is in sharp contrast to the case of
ordinary RW.

Example 9.1 Let (Wn)n≥0 be an ordinary zero-delayed integer-valued random walk
with generic increment Y satisfying P(Y = −n) > 0 for all n ∈ N0,

P(Y− > n) = 1

n1+α
for all sufficiently large n ∈ N,

and P(Y+ ∈ ·) such that E
(
inf{n : Wn > 0})1+α = ∞ for any fixed α ≥ 0, a

particular choice being Y+ ≡ 0. Further defining f : R> → R> by f (x) := 2θx1+α

for some θ > 1+ α, we have f (x) ≥ x for all x ≥ 1 and also find that

lim
n→∞ n P( f (Y−) > c2n) = lim

n→∞ n P

(
Y− > f −1(c2n)

)

= lim
n→∞ n P

(

Y− >

(
n + log2 c

θ

)1/(1+α)
)

= θ

(9.1)

for all c ∈ R>.
Now consider a MRW (Mn, Sn)n≥0 such that (Mn)n≥0 has state space N0 and

transition probabilities p00 = P(Y ≥ 0), p0i = P(Y = −i) and pi0 = 1 for i ∈ N.
Furthermore,

K00 = P(Y ∈ · |Y ≥ 0), K0i = δ f (i) and Ki0 = δ− f (i)−i

for all i ∈ N. Notice that τ(0) ≤ 2 a.s. and that the law of (Sτn(0))n≥0 under P0 equals
the law of (Wn)n≥0.

Fixing any x > 0, the following property of the MRW under P0 is essential for our
considerations, namely

Xτn(0)+1 ≤ x �⇒ Sτn+1(0) − Sτn(0) ≥ −x .
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As a consequence of this property, we infer that

{σ>(x) > τ(0), M0 = 0} ⊂ {Sτ(0) ≥ −x, M0 = 0},
{σ>(x) > τ2(0), M0 = 0} ⊂ {Sτ(0) ≥ −x, Xτ(0)+1 ≤ 2x, M0 = 0}

⊂ {Sτ2(0) ≥ −3x, M0 = 0}

and then inductively

{σ>(x) > τn(0), M0 = 0} ⊂ {
Sτn(0) ≥ −(2n − 1)x, M0 = 0

}

for all n ∈ N. Defining σ̂ (x) := inf{n ≥ 1 : Xτn(0)+1 > x2n}, this implies σ>(x) ≤
σ̂ (x) and the subsequent argument will show that E0σ̂ (x)1+α < ∞ for all x ∈ R�,
giving

Eiσ
>(x)1+α ≤ E0[1+ σ>(x + i + f (i))]1+α < ∞

for all i ∈ N and x ∈ R� as desired.
Put F(x) := P0(X1 ≤ x) and note that

1− F(x) = P( f (Y−) > x)

for x ∈ R>. We start by pointing out that

E0σ̂ (x)1+α �
∑

n≥1
nα

P0(̂σ (x) > n) =
∑

n≥1
nα

n∏

k=1
F(x2k)

because the Xτn(0)+1 are iid under P0 with distribution function F . Put bn :=
nα

∏n
k=1 F(x2k) for n ∈ N. Now E0σ̂

1+α < ∞ follows by Raabe’s test (see, e.g.,
Stromberg [47, (7.16)]) if

lim inf
n→∞ n

(
bn
bn+1

− 1

)

> 1.

To this end, use (9.1) to obtain

n(1− F(x2n+1)) = n P( f (Y−) > x2n+1) = θ + o(1)

as n→∞ and then finally conclude

lim inf
n→∞ n

(
bn
bn+1

− 1

)

= lim inf
n→∞ n

(
nα − (n + 1)αF(x2n+1)

(n + 1)αF(x2n+1)

)

= lim inf
n→∞

n

F(x2n+1)

((

1+ 1

n

)−α

− F(x2n+1)
)
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= lim inf
n→∞ n

(

1− α

n
+ o

(
1

n

)

− F(x2n+1)
)

= θ − α > 1.

Finally, the finiteness of E0σ
>(x)1+α particularly entails lim supn→∞ Sn = ∞ a.s.

and thus confirms that (Sn)n≥0 is indeed oscillating. ��

9.2 Solidarity

It is clear thatEiσ
>(x)1+α <∞ for some (i, x) ∈ S×R� does not necessarily entail

Eiσ
>(x)1+α < ∞ for all (i, x) ∈ S × R�, (9.2)

as we may have Pi (σ
>(x) = 1) = 1 for some (i, x) even when (Mn, Sn)n≥0 is

negative divergent and thus P j (σ
>(y) = ∞) > 0 for some other ( j, y) ∈ S × R�.

The subsequent lemma provides sufficient conditions for (9.2). Consider the condition

q(i, x) := Pi (σ
>(x) > τ(i), Sτ(i) < 0) > 0 (9.3)

for some (i, x) ∈ S × R� and note that q(i, x) is nondecreasing in x .

Lemma 9.2 Let α ≥ 0 and (Mn, Sn)n≥0 be a nontrivial MRW. Then any of the fol-
lowing three assumptions implies (9.2).

(a) Eiσ
>(x)1+α <∞ for some i ∈ S and all x ∈ R�.

(b) Eiσ
>(x)1+α <∞ and q(i, x) > 0 for some (i, x) ∈ R�.

(c) Eiσ
>(0)1+α <∞ and Eiτ(i)1+α <∞ for all i ∈ S.

Proof (a) Pick any j �= i . Then there exists x0 ∈ R� such that

Pi (σ
>(2x) > τ( j), Sτ( j) ≤ x) ≥ Pi (σ

>(2x0) > τ( j), Sτ( j) ≤ x0) =: p > 0

for all x ≥ x0. For any such x , we now infer

∞ > Eiσ
>(2x)1+α ≥ Eiσ

>(2x)1+α1{σ>(2x)>τ( j), Sτ ( j)≤x}) ≥ pE jσ
>(x)1+α,

that is E jσ
>(x)1+α <∞. Since σ>(x) is nondecreasing in x , (9.2) follows.

(b) Since q(i, x) > 0, we can find h > 0 small enough such that

p(x) := Pi (σ
>(x) > τ(i), Sτ(i) ≤ −h) > 0.

Consequently,

∞ > Eiσ
>(x)1+α1{σ>(x)>τ(i),Sτ (i)≤−h} ≥ p(x) Eiσ

>(x + h)1+α.
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Since p(x + nh) ≥ p(x + (n − 1)h) for all n ∈ N, an induction over n provides us
with Eiσ

>(x + nh)1+α <∞, and this implies (9.2) by an appeal to (a).
(c) IfPi (Sτ(i) ≥ 0) = 1 for some i ∈ S and thusPi (Sτ(i) > 0) > 0 by nontriviality,

then the assertion follows easily from Lemma 7.8.
Left with the case Pi (Sτ(i) < 0) > 0 for all i ∈ S, fix i . If q(i, 0) > 0, then the

assertion follows from (b). Assuming q(i, 0) = 0 and thus Pi (σ
>(0) < τ(i), Sτ(i) <

0) > 0, we will show below that

qn( j, 0) := P j (σ
>(0) > τn( j), Sτn( j) < 0) > 0

for some j ∈ S and n ∈ N. Then (9.2) can be concluded in a similar manner as in (b).
Define

κ := inf

{

0 ≤ n < τ(i) : Sn = max
0≤k≤τ(i)

Sk

}

By assumption, there exists j ∈ S\{i} such that

Pi
(
Mκ = i, κ = τm( j) ≥ σ>(0), Sτ(i) < 0, τm+l( j) < τ(i) < τm+l+1( j)

)

=: p′ > 0

for some m ∈ N and l ∈ N0. Put E := {Sk ≤ 0 for 1 ≤ k ≤ τ(i), τl( j) < τ(i) <

τl+1( j)}.
Then

p′ = Pi
(
Sk < Sτm ( j) for 0 ≤ k < τm( j), Sτ(i) − Sτm ( j) ≤ −Sτm ( j),

Sτm ( j)+k − Sτm ( j) ≤ 0 for 1 ≤ k ≤ τ(i)− τm( j),

τm+l( j) < τ(i) < τm+l+1( j)
)

=
∫

R>

P j
(
E ∩ {Sτ(i) < −x}) Pi (Sτm ( j) ∈ dx, Sk < Sτm ( j) for 0 ≤ k < τm( j) < τ(i))

=
∫

R>

P j
(
E ∩ {Sτ(i) < −x})

× P j (Sτm+l ( j) − Sτ(i) ∈ dx, Sk < Sτm+l ( j) for τ(i) ≤ k < τm( j) < τ2(i))

= P j
(
E ∩ {Sτm+l ( j) < 0, Sk < Sτm+l ( j) for τ(i) ≤ k < τm+l( j) < τ2(i)}

)

≤ P j
(
Sτm+l ( j) < 0, Sk ≤ 0 for 1 ≤ k < τm+l( j)

)

= qm+l( j, 0)

hence qm+l( j, 0) > 0. ��

Remark 9.3 Returning to part (c) of the previous lemma, its proof holds the surprise
that Eiτ(i)1+α < ∞ is needed if Pi (Sτ(i) ≥ 0) = 1 for all i ∈ S, but not otherwise.
The following simple example illustrates that one cannot dispensewith this assumption

123



J Theor Probab (2018) 31:2266–2342 2327

there. Given any α ≥ 0, consider a Sisyphus chain on N0 with transition probabilities

p01 = 1 and pn,n+1 = 1− pn0 =
(

n

n + 1

)1+α

for n ≥ 1,

so that P0(τ (0) > n) = p01 · · · pn−1,n = n−1−α for n ≥ 1 and thus E0τ(0)1+α = ∞.
Further defining Xn = (Mn + 1)−2 > 0, we obviously have σ>(0) = 1 a.s. and

Sτ(0) = 1+
τ(0)−1∑

k=0

1

(Mk + 1)2
< 1+ π2

6
=: x P0-a.s.

Consequently, P0(σ
>(x) > τ(0)) = 1 and therefore E0σ

>(x)1+α = ∞.

9.3 Moment Result for a Modification of σ>(x)

In view of Example 9.1 and Lemma 9.2, a look at the stopping time

σ>(x) := inf{n > τ(M0) : Sn > x}

appears to be natural. When the driving chain has initial state i ∈ S, it is the post-τ(i)-
passage time of (Sn)n≥0 beyond x . Evidently, σ>(x) ≤ σ>(x) a.s. for all (i, x) ∈ S×
R�. The next result provides an equivalent condition for the finiteness ofEiσ

>(x)1+α .

Proposition 9.4 Let α ≥ 0 and (Mn, Sn)n≥0 be a nontrivial MRW with positive
divergent embedded RW (Sτn(i))n≥0 and Eiτ(i)1+α < ∞ for some/all i ∈ S. Then
Ai (x) is ultimately positive for all i ∈ S and the following assertions are equivalent:

(a) Ei Ji (S
−
τ(i))

1+α <∞ for some/all i ∈ S.
(b) Eiσ

>(x)1+α <∞ for some/all (i, x) ∈ S × R�.
(c) Eiτν(i,x)(i)1+α <∞ for some/all (i, x) ∈ S × R�.

Moreover, these conditions imply Eiσ
>(x)1+α <∞ for all (i, x) ∈ S × R�.

Proof Fix any i ∈ S and write again τ, τn, etc. as shorthand for τ(i), τn(i), etc.
Recalling ν(x) = inf{n ≥ 1 : Sτn > x}, observe also that σ>(x) ≤ τν(x) Pi -a.s.

“(a)⇒(b)” By Theorems 3.1 or 3.3, (a) ensures Eiν(x)1+α < ∞ for all x ∈ R�
which in combination with Eiτ

1+α < ∞ provides us with Eiτ
1+α
ν(x) < ∞ for all

x ∈ R� as pointed out earlier (use Wald’s equation for α = 0 and see the Proof of
Lemma 8.12 for α > 0). Hence, (b) follows from σ>(x) ≤ τν(x).

“(b)⇒(a)” Assuming Eiσ
>(0)1+α < ∞ and putting p := Pi (σ

>(0) = τ), we
distinguish the two cases p = 1 and p < 1.
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If p = 1 and thus σ>(0) = τν(0), then (a) follows by an appeal to Theorem 3.1 or
3.3. If p < 1, then we infer with the help of Lemma 9.5 below

∞ > Eiσ
>(0)1+α ≥ Eiσ

>(0)1+α1{σ>(0)>τ }
≥ Ei (σ

>(0)− τ)1+α1{σ>(0)>τ }

=
∫

Eiσ
>(y)1+α

Pi
(
S−τ ∈ dy, σ>(0) > τ

)

≥
∫

Eiσ
>(y)1+α

Pi
(
S−τ ∈ dy, Sτ < 0

)

�
∫

Ji (y)
1+α

Pi
(
S−τ ∈ dy

)

and thus the assertion.
“(a)⇔(c)” This follows directly from Lemma 7.8 when noting that its proviso in

(b), namely Ai (y) > 0 for all sufficiently large y, is guaranteed here by the positive
divergence of (Sτn )n≥0. ��

The following auxiliary lemma forms an extension of Lemma 3.5 in [33] to MRW
(Mn, Sn)n≥0, but we give the rather technical proof of the result only under the stronger
assumption of positive divergence of the (Sτn (i))n≥0 because this is enough for our
purposes.

Lemma 9.5 Let α ≥ 0 and (Mn, Sn)n≥0 be a nontrivial MRW such that Sτn(i) →∞
in probability for some i ∈ S. Then as x →∞,

∑

n≥1

1

n
P j

(
S∗n ≤ x

)
� log J j (x)

and

E jσ
>(x)α �

∑

n≥1
nα−1

P j
(
S∗n ≤ x

)
� J j (x)

α

for all j ∈ S and α > 0.

Proof By Theorem 3.1, positive divergence of the (Sτn(i))n≥0 ensures Ai (x) > 0 for
sufficiently large x and limn→∞ Pi (S∗n ≤ x) = 0 for all (i, x) ∈ S × R�, the latter
because σ>(x) ≤ τν(i,x)(i) <∞ a.s. Fix i ∈ S and define

mδ(x) := inf
{
n ≥ 1 : Pi

(
S∗n ≤ x

)
< 1− δ

}

for x ∈ R> and 0 < δ < 1 which are all finite with mδ(x) ↑ ∞ as x ↑ ∞. Then

∑

n≥1
nα−1

Pi
(
S∗n ≤ x

) ≥
mδ(x)∑

n=1
nα−1

Pi
(
S∗n ≤ x

) ≥
{

(1− δ) logmδ(x), if α = 0,

c(1− δ)mδ(x)α, if α > 0.
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for some c ∈ R>. Using Ji (x) ≤ x/Ai (x), it therefore remains to show that

x

Ai (x)
� mδ(x) as x →∞. (9.4)

Wewill nowassume that (9.4) fails and produce a contradiction. First note that under
this assumption, we find for all ε ∈ (0, 1) an increasing nonnegative and unbounded
sequence (xl)l≥1 (depending on ε) such that

sup
l≥1

2mδ(xl)
Ai (xl)

xl
≤ ε (9.5)

which may be restated as

(1− ε)xl + 2mδ(xl) ≤ xl for all l ≥ 1. (9.6)

Putting
Hi
n := max

τn−1<k≤τn
(Sk − Sτn )

+ (9.7)

for n ∈ N with generic copy Hi under Pi and writing ml as shorthand for mδ(xl), we
infer

A := Pi

(
S∗τml

> xl
)
= Pi

(

max
1≤k≤ml

(
Sτk−1 + Hi

k

)
> xl

)

=
ml∑

n=1
Pi

(

max
1≤k≤n−1

(
Sτk−1 + Hi

k

)
≤ xl < Sτn−1 + Hi

n

)

=
ml∑

n=1
Pi (En),

where Wj,k := Sτ j+k−1 − Sτ j and

En :=
{

max
1≤k≤n−1

(
W2ml−n+1,k + Hi

2ml−n+k+1
)
≤ xl < W2ml−n+1,n + Hi

2ml+1
}

.

Moreover, we have used that (Sτn − Sτn−1 , H
i
n)n≥1 forms a sequence of iid random

vectors under Pi . Since Sτn →∞ a.s., we can pick h > 0 and n0 ∈ N such that

Pi (H
i > h) <

δ

4
and θ := inf

n≥n0
Pi (Sτn > h) >

1

2
.
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Choosing l so large that ml > n0, we now further estimate

A ≤
ml∑

n=1
Pi (En)

1

θ
Pi (Sτ2ml−n+1 > h)

≤ 1

θ

ml∑

n=1
Pi

(
En ∩ {Sτ2ml

+ Hi
2ml+1 > xl + h})

≤ 1

θ
Pi

(
Sτ2ml

+ Hi
2ml+1 > xl + h

)

≤ 1

θ

(
Pi (Sτ2ml

> xl)+ Pi (H
i > h)

)

≤ 1

θ
Pi (Sτ2ml

> xl) + δ

2
.

Put ζk,l := [(Sτk − Sτk−1) ∨ (−xl)] ∧ xl and observe that Ai (xl) = Eiζk,l . Use (3.71)
in [33] to obtain

Pi (Sτ2ml
> xl) ≤ Pi

(2ml∑

k=1
ζk,l > xl

)

+ 2ml Pi (Sτ > xl).

Now use (9.6), Chebychev’s inequality and x2l Pi (Sτ > xl) ≤ Eiζ
2
1,l to obtain

Pi (Sτ2ml
> xl) ≤ Pi

(2ml∑

k=1

(
ζk,l − Ai (xl)

)
> (1− ε)xl

)

+ 2ml Pi (Sτ > xl)

≤ 2ml Eiζ
2
1,l

(1− ε)2x2l
+ 2ml Pi (Sτ > xl) ≤

4ml Eiζ
2
1,l

(1− ε)2x2l
.

for all l ≥ 1. By [33, Lemma 3.2], Eiζ
2
1,l ≤ 3xl Ai (xl) for all sufficiently large l which

in combination with (9.5) provides us with

Pi

(
S∗τ2ml

> xl
)
≤ 12ml Ai (xl)

(1− ε)2xl
≤ 6ε

(1− ε)2

for all such l. We have thus shown that

Pi

(
S∗τml

> xl
)
≤ 6ε

θ(1− ε)2
+ δ

2

for any ε ∈ (0, 1) and sufficiently large l (not depending on ε), say l ≥ l0. Finally, fix
any l ≥ l0 and choose ε so small that

6ε

θ(1− ε)2
<

δ

2
.
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Then we arrive at

δ > Pi

(
S∗τ2ml

> xl
)
≤ Pi

(
S∗ml

> xl
)

which contradicts our definition of ml = mδ(xl). ��
Proof (of Theorem 6.9,“(6.6) ⇒ Ei Ji (S

−
τ(i))

1+α < ∞”) Suppose (6.6) is true and
recall that S> denotes the set of recurrent states of the ladder chain (M>

n )n≥0. Positive
divergence ensures S> �= ∅. Pick any i ∈ S> and put κ := inf{n ≥ 0 : Sn = Hi

1},
Hi
1 as defined in (9.7), and σ̂ > := inf{n : Sκ+n − Sκ > 0}. Using |S>| <∞, we then

obtain

Eiσ
>(0)1+α ≤ Ei

⎛

⎝σ> 1{Hi
1=0

} + κ 1{Hi>0} +
∑

j∈S>

1{Mκ= j, Hi
1>0

} σ̂ >

⎞

⎠

1+α

≤ (|S>| + 2)α

⎛

⎝Ei (σ
>)1+α + Eiτ(i)1+α +

∑

j∈S>

E j (σ
>)1+α

⎞

⎠ <∞,

which is equivalent to (6.6) by Proposition 9.4. ��

10 Asymptotic Behavior of Sn/n

10.1 Strong Law of Large Numbers

It is well known that an ordinary random walk (Sn)n≥0 satisfies the strong law of
large numbers (SLLN), viz. n−1Sn → μ a.s. for some μ ∈ R, iff X1 is integrable
and μ = EX1. The natural substitute for the latter condition in the case of a MRW
(Mn, Sn)n≥0 is that X1 isPπ -integrable andEπ X1 = μ.However, this is only sufficient
but not necessary for the SLLN to hold as shown by the next theorem and a subsequent
example. For n ≥ 1, put

S⊕n :=
n∑

k=1
X+k and S!n :=

n∑

k=1
X−k

which are clearly again MRW with driving chain (Mn)n≥0.

Theorem 10.1 Given a MRW (Mn, Sn)n≥0, the following assertions are equivalent
for any μ ∈ R:

(a) X1 is Pπ -integrable and Eπ X1 = μ.
(b) n−1Sn → μ a.s. and Eπ X1 exists, i.e., Eπ X

−
1 <∞ or Eπ X

+
1 <∞.

(c) n−1S!n → μ−, n−1S⊕n → μ+ a.s. and μ+ − μ− = μ.
(d) τn(i)−1S!τn(i) → μ−, τn(i)−1S⊕τn(i) → μ+ Pi -a.s. for some/all i ∈ S and μ+ −

μ− = μ.
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(e) S!τ(i), S
⊕
τ(i) are Pi -integrable and Ei Sτ(i) = π−1i μ for some/all i ∈ S.

(f) Eπ X1 exists and
∑

n≥1 n−1Pi (|n−1Sn−μ| > ε) <∞ for all ε > 0 and some/all
i ∈ S.

Proof “(a)⇒(b)” Since (X−n )n≥1 and (X+n )n≥1 are ergodic stationary sequences under
Pπ with finite means μ− = Eπ X

−
1 and μ+ = Eπ X

+
1 , respectively, n

−1Sn → μ a.s.
with μ = μ+ − μ− follows from Birkhoff’s ergodic theorem.

“(b)⇒(c)” Suppose that μ+ := Eπ X1 < ∞. By using “(a)⇒(b)” for the MRW
(Mn, S⊕n )n≥0, we infer n−1S⊕n → μ+ a.s. and then further

n−1S!n = n−1
(
Sn − S⊕n

) → μ− μ+ =: μ− Pπ -a.s.

Assuming Eπ X
−
1 <∞, we may argue in a similar manner.

“(c)⇒(d)” is trivial.
“(d)⇒(e)” Since n−1τn(i)→ Eiτ(i) = π−1i Pi -a.s., we have that

n−1S!τn(i) → π−1i μ− and n−1S⊕τn(i) → π−1i μ+ Pi -a.s.

which implies the Pi -integrability of S
!
τ(i), S

⊕
τ(i) and

Ei Sτ(i) = Ei S
⊕
τ(i) − Ei S

!
τ(i) = π−1i (μ+ − μ−) = π−1i μ.

“(e)⇒(a)” If S!τ(i) is Pi -integrable, then Ei S
!
τ(i) = π−1i Eπ X

−
1 implies that X−1 is

Pπ -integrable. Similarly, the Pi -integrability of S⊕τ(i) implies the Pπ -integrability of

X+1 . Hence, we may use (4.2) to obtain

Eπ X1 Eiτ(i) = Ei Sτ(i) = μπ−1i

and thus Eπ X1 = μ.
“(b)⇒(f)” If n−1Sn → μ a.s., then, for any ε > 0, (Sn − (μ− ε)n)n≥0 is positive

divergent and (Sn − (μ+ ε)n)n≥0 negative divergent and hence

∑

n≥1

1

n
Pi (Sn ≤ (μ− ε)n) < ∞ and

∑

n≥1

1

n
Pi (Sn ≥ (μ+ ε)n) < ∞

for all i ∈ S by Theorem 6.1(c), which in turn yields the asserted finiteness of the
series

∑
n≥1 n−1Pi (|n−1Sn − μ| ≥ ε).

“(f)⇒(b)” If Eπ X1 exists, w.l.o.g. positive and then n−1Sn → Eπ X1 > 0 a.s.
Moreover,

∑
n≥1 n−1P(|n−1Sn − μ| ≥ ε) < ∞ for all ε > 0 in combination with a

simple Borel–Cantelli argument entails the positive divergence of (Sn−n(μ+ ε))n≥0
and the negative divergence of (Sn − n(μ− ε))n≥0 for any such ε. Consequently, by
another appeal to Birkhoff’s ergodic theorem, we infer

Eπ X1 − (μ+ ε) = lim
n→∞

Sn − n(μ− ε)

n
≥ 0 a.s.
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for all ε > 0 and thus Eπ X1 ≥ μ, and a similar argument for (Sn − n(μ − ε))n≥0
shows Eπ X1 ≤ μ. Hence, n−1Sn → μ a.s. as claimed. ��

It is readily seen that the above equivalences (a)-(e) remain valid if μ = Eπ X1 ∈
{±∞}.On theother hand, in contrast to ordinary randomwalkswith iid increments, one
cannot dispensewith the finiteness ofEπ X

−
1 orEπ X

+
1 in condition (b) as shown by the

following example, where n−1Sn converges a.s. to 0 although Eπ X
−
1 = Eπ X

+
1 = ∞.

Example 10.2 Let (Mn)n≥0 be a birth–death chain onN0 with transition probabilities

pi,i−1 = 1− pi,i+1 = i + 2

2(i + 1)
,

thus p01 = 1. The stationary distribution is given by

πi = p01 · · · pi−1,i
p10 · · · pi,i−1 π0 � 1

i2

for all i ∈ N0 and π0 such that
∑

i≥0 πi = 1. Define γ : N0 → R by γ (0) = 0 and

γ (2i) = −γ (2i − 1) := i

for i ≥ 1. Then since p2i−1 2i � 1
2 as i →∞, we obtain

Eπ X
+
1 ≥

∑

i≥1
π2i−1 · p2i−1 2i · E(X1|M0 = 2i − 1, M1 = 2i)

�
∑

i≥1

1

(2i)2
· 1
2
· 2i = ∞

andEπ X
−
1 = ∞ follows analogously, whereas each Sτ(i) is Pi -a.s. vanishing and thus

particularly integrable. Put Nn := inf{k : τk(0) ≥ n}. Since

|Sτn(0)+k | ≤ |Xτn(0)+k | ≤ k P0-a.s.

for all n ∈ N0 and τn(0) ≤ k < τn+1(0) and E0τ(0) <∞, we infer that

∣
∣
∣
∣
Sn
n

∣
∣
∣
∣ ≤

∣
∣
∣
∣
Xn

n

∣
∣
∣
∣ ≤

νNn

n
n→∞−→ 0 P0-a.s.

and then the same convergence a.s.
Now choosing any integrable sequence (Yn)n≥1 of nondegenerate iid random vari-

ables independent of (Mn)n≥0 and putting

Xn := Yn + γ (Mn)− γ (Mn−1)
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for n ≥ 1, the associatedMRW (Mn, Sn)n≥0 is easily seen to be regular with n−1Sn →
μ =: EY1 a.s., and

Ei Sτ(i) = Ei

⎛

⎝
τ(i)∑

k=1
Yk

⎞

⎠ = μ Eiτ(i) < ∞

for all i ∈ N0, although Eπ X1 does not exist.

10.2 Proof of Theorem 5.5 (Kesten Trichotomy)

Since (Xn)n≥0 forms an ergodic stationary sequence under Pπ ,

lim inf
n→∞ n−1 Sn and lim sup

n→∞
n−1 Sn

are both a.s. constants. Therefore, it suffices to prove the trichotomy under Pi for any
fixed i ∈ S. Note thatEi |Sτ(i)| = ∞ rules out that the givenMRWis null-homologous.

If (Sn)n≥0 is positive divergent, then (8.2) and (8.3) provide us with

lim inf
n→∞

Sn
n
≥ lim inf

n→∞
Sτn − Di

n+1
τn+1

= lim inf
n→∞

S+τn (1− o(1))

τn+1
= ∞ a.s.

and thus the desired result (PD+). In the negative divergent case, the same conclusion
holds for (−Sn)n≥0, thus giving (ND+).

If (Sn)n≥0 is oscillating, then Ei |Sτ(i)| = ∞ entails at least one of

lim inf
n→∞ n−1Sτn = −∞ or lim sup

n→∞
n−1Sτn = ∞ a.s.

by Kesten’s trichotomy for ordinary random walks, and thus also

lim inf
n→∞ n−1Sn = −∞ or lim sup

n→∞
n−1Sn = ∞ a.s.

W.l.o.g. assuming the second alternative, let c := lim infn→∞ n−1Sn ≤ 0 be finite.
Then lim infn→∞ n−1(Sn + n (c + 1)) = 1 > 0 which in turn entails the positive
divergence of (Sn + n(c + 1))n≥0 and so, by the first part of this proof,

∞ = lim inf
n→∞ n−1(Sn + n (c + 1)) = lim inf

n→∞ n−1Sn + c + 1 a.s.

which contradicts the finiteness of c. ��

123



J Theor Probab (2018) 31:2266–2342 2335

11 Counterexamples

11.1 Theorem 6.1: Eiτ(i) log τ(i) < ∞ is Necessary for the Equivalence of Part
(c) and (6.3)

Our first counterexamplewill show that one cannot dispensewithEiτ(i) log τ(i) <∞
for the equivalence of part (c) and the integral criterion (6.3) in Theorem 6.1, not even
when (Mn, Sn)n≥0 is positive divergent with finite stationary drift.

Example 11.1 The infinite petal flower chain from 7.2 may be generalized by having
excursions of variable length away from the central state 0. To bemore precise, suppose
that (Mn)n≥0 has state space S ⊂ {0} ∪ N

2 and satisfies

p0,(n,1) = P(Γ = n) and p(n,k),(n,k+1) = 1 = p(n,n−1),0

for all n ≥ 2 and k = 1, . . . , n−2, whereΓ denotes anN-valued random variable with
finite mean. In other words, whenever in state 0, the chain picks a state (n, n−1) with
probability P(Γ = n) and then moves deterministically through (n, n−2), . . . , (n, 1)
before returning to 0 and hence P0(τ (0) ∈ ·) = P(Γ ∈ ·).

Let Γ further be such that EΓ logΓ = ∞. Define the increments of (Mn, Sn)n≥0
by

Xn :=

⎧
⎪⎨

⎪⎩

−(k − 1), if Mn = (k, 1) for k ∈ N,

k, if Mn−1 = (k, k − 1), Mn = 0 for k ∈ N,

0, otherwise.

Again, we then have Sτ(0) = 1, in particular positive divergence of (Sτn(0))n≥0 and
also Eπ |X1| <∞, for

Eπ |X1| = 1

E0τ(0)

∑

n≥1
(2n − 1) P0(τ (0) = n) = 2E0τ(0)− 1

E0τ(0)
.

Hence, byProposition 7.3, (Mn, Sn)n≥0 is regular and therefore also positive divergent,
in particular Theorem6.1(c) holds true.On the other hand, using J0(x) � x as x →∞,
we find

∫

log J0(x) V0(dx) �
∫

log x V0(dx) = E0

⎛

⎝
τ(0)∑

n=1
log S−n

⎞

⎠

= E0(τ (0)− 1) log(τ (0)− 1)

= E(Γ − 1) log(Γ − 1) = ∞.

Here we have used that (4.1) and S−1 = · · · = S−τ(0)−1 = τ(0)− 1P0-a.s.
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11.2 The Integral Criteria 6.3(a), (6.4) and (6.5)

Let α > 0 and (Mn, Sn)n≥0 be such that Sτn(i) → ∞ a.s. and Ei Ji (S
−
τ(i))

1+α < ∞.
The following example shows that the integral criteria

(1) Ei Ji (Di )1+α <∞ (equivalent to Eiρ(0)α <∞),
(2)

∫
Ji (y)α V

1
i (dy) <∞ (equivalent to

∑
n≥1 nα−1

Pi (Sn ≤ 0) <∞),
(3)

∫
Ji (y) V

α
i (dy) <∞ (equivalent to Ei N (0)α <∞ for α ≥ 1)

are generally not equivalent.

Example 11.2 Let (Mn, Sn)n≥0 be a MRW with infinite petal flower driving chain
from Example 7.2 and

Xn :=
{
−xi , if Mn−1 = 0, Mn = i,

xi + 2, if Mn−1 = i, Mn = 0,
n ≥ 1,

for a sequence of positive numbers (xi )i≥1. Then τ(0) = 2 and thus, by (6.2),

V
α
0 ((y,∞)) � P0(D

0 > y)

for any α > 0.Moreover, Sτ(0) = 2, thus J0(x) � x , and D0
1 = xM1 P0-a.s. Therefore,

(1)–(3) for i = 0 may here be restated as

(1) E0(D0)1+α =∑
i≥1 p0i x

1+α
i <∞,

(2)
∫
yα

V
1
0(dy) = E0(D0)α =∑

i≥1 p0i xα
i <∞,

(3)
∫
y V

1
0(dy) = E0D0 =∑

i≥1 p0i xi <∞,

respectively, and it is now obvious that, by appropriate choice of the xi , any of the three
cases “only (3) holds,” “(2) and (3) hold, but (1) fails,” “(1)–(3) all fail to hold” may
occur while at the same time E0 J0(S−τ )β <∞ is obviously satisfied for all β ∈ R>.

11.3 Tail Comparison: Pπ (X1 ∈ ·) Versus Pi (Sτ(i) ∈ ·)

We show next that the tails of Pπ (X1 ∈ ·) versus Pi (Sτ(i) ∈ ·) can be very different.

Example 11.3 Let α ∈ (1, 2) and (Mn)n≥0 be the Sisyphus chain on N0 as introduced
in Remark 9.3. This chain has stationary probabilities

πn = cE0

⎛

⎝
τ(0)∑

k=1
1{Mk=n}

⎞

⎠ = c P0(τ (0) > n) = c

nα

with c = 1/E0τ(0). Define Xn = Mn and thus Sn = M1 + · · · + Mn for n ≥ 1.
Moreover, Sτ(0) = (τ (0)− 1)τ (0)/2 P0-a.s. and therefore

P0(Sτ(0) > n) = P((τ (0)− 1)τ (0) > 2n) � P(τ (0) > n1/2) � 1

nα/2

123



J Theor Probab (2018) 31:2266–2342 2337

as n→∞. On the other hand,

Pπ (X1 > n) = Pπ (M1 > n) =
∑

k>n

πk � 1

nα−1 .

As a consequence, E0(Sτ(0) ∧ x) = ∫ x
0 P(Sτ(0) > y) dy grows like x (2−α)/2, while

Eπ (X1 ∧ x) grows like x2−α , as x →∞.

11.4 Theorem 6.7: Part (c) Does Not Imply Part (b)

Our last example will provide an instance where Ei |Sσ�(−x)|α1{σ�(−x)<∞} <∞ for

all (i, x) ∈ S × R�, while Ei
∣
∣minn≥0 Sn

∣
∣α = ∞.

Example 11.4 Given any α > 1, let (Mn)n≥0 be the generalized infinite petal flower
chain from Example 11.1, but with Γ satisfying the moment conditions

EΓ 2(1+1/α) < ∞ = EΓ (1+α)(1+1/α) and EΓ 1+α <∞.

Define the increments of (Mn, Sn)n≥0 by

Xn :=
{
−l1/α, if Mn = (k, l) for k, l ∈ N,

1+∑k−1
l=1 l1/α, if Mn−1 = (k, k − 1), Mn = 0 for k ∈ N,

hence Sτ(0) = 1P0-a.s., in particular J0(x) � x as x →∞. Observe that

D0 =
τ(0)−1∑

k=1
k1/α � τ(0)1+1/α P0-a.s.

which, by construction, entails

E0D
0 ≤ E0(D

0)2 � E0τ(0)2(1+1/α) < ∞ = E0τ(0)(1+α)(1+1/α) � E0(D
0)1+α.

and thereupon the positive divergence of (Mn, Sn)n≥0 and Ei
∣
∣minn≥0 Sn

∣
∣α = ∞ for

all i ∈ N0 by invoking Theorem 6.7.
Finally, we prove E0|Sσ�(−x)|α1{σ�(−x)<∞} < ∞ for all x ∈ R� which easily

implies that Ei |Sσ�(−x)|α1{σ�(−x)<∞} <∞ for all (i, x) ∈ N0 × R�. Define

κ(x) := inf{n ≥ 1 : τn(0) ≥ σ�(−x)}

and notice that κ(x) ≤ σ�(−x) as well as

|Sσ�(−x)| ≤ τκ(x)(0)
1/α

P0-a.s. on {σ�(−x) <∞}.
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Consequently, by making use of Wald’s identity,

E0|Sσ�(−x)|α1{σ�(−x)<∞} ≤ E0τκ(x)(0)1{κ(x)<∞}
= E0τ(0) E0κ(x)1{κ(x)<∞} � E0σ

�(−x)1{σ�(−x)<∞}.

The last expectation is finite by an appeal to Theorem 6.3.

12 Comparison with Perturbed Random Walks

There is partial overlap of the present work with a recent article by the first author
with Iksanov and Meiners [10] on fluctuation theory for perturbed random walks
(PRW), defined by (

∑n−1
k=1 Zk + ηn)n≥1 for an iid R

2-valued sequence (Zn, ηn)n≥1.
Although MRW and PRW are quite different stochastic sequences, in some regards
and under additional assumptions, their study reduces to similar objects. For example,
positive divergence of a MRW (Mn, Sn)n≥0 discussed in this paper is equivalent to the
positive divergence of the PRW (Sτn−1(i) − Di

n)n≥1 for some/all i ∈ S. Moreover, if
Eiτ(i)1+α <∞, then Lemma 8.6 implies that Eiρ(i)α <∞ holds iff the α-moment
of the last exit time of (Sτn−1(i)−Di

n)n≥1 is finite. This indicates that one can translate
results for a MRW in terms of a suitable PRW and then draw on the fluctuation theory
for the latter class of sequences developed in [10]. The translation actually also goes
the other way when assuming the ηn to be integer-valued which is possible without
loss of generality for only the tails of their distribution matters here. On the other
hand, this correspondence has its limitations. There are in fact equivalences with no
counterpart for PRW where we have used the particular structure of a MRW, notably
its dual (#Mn,

#Sn)n≥0 and the ladder chain (M>
n )n≥0. Theorem 6.7 on the power

moments of ∣
∣
∣
∣min
n≥0 Sn

∣
∣
∣
∣ =

∣
∣
∣
∣min
n≥1 (Sτn−1(i) − Di

n)

∣
∣
∣
∣ Pi -a.s.

may serve as another example where we have benefitted from the use of MRW and
which has no counterpart in [10]. Last but not least, the study of power moments of
N (x) and of the weighted renewal measures

∑
n≥1 nα−1

Pi (Sn ≤ x) provide instances
where PRW cannot be used at all because the behavior of these quantities depends on
the entire excursions of the Sn between visits of the driving chain to a state i rather
than just their minima Di

n .

Acknowledgements Weare indebted to an anonymous referee formany constructive comments that helped
to improve the presentation of this article.

13 Appendix

Lemma 13.1 Let (Sn)n≥0 be a positive divergent random walk. Then as y →∞,

∑

n≥1
P(0 ≤ Sn ≤ y) � J (y).
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Proof If U
> denotes the renewal measure of the strictly ascending ladder height pro-

cess (Sσ>
n

)n≥0, then it is easily verified that

U
>([0, y])− 1 ≤

∑

n≥1
P(0 ≤ Sn ≤ y) ≤ Eσ>

U
>([0, y])

for all y ∈ R�. Now use (3.2) with α = 1 and E(Sσ> ∧ y) � E(S+1 ∧ y) (cf. [33,
Eq. (4.5)]) to infer

U
>([0, y]) =

∑

n≥0
P(Sσ>

n
≤ y) � y

E(Sσ> ∧ y)
� y

E(S+1 ∧ y)
= J (y)

as y →∞. ��

Lemma 13.2 Let α ∈ R� and (Mn, Sn)n≥0 be a nontrivial MRW such that
Eiτ(i)1+α <∞ for some/all i ∈ S. Then

∑

n≥1
Eiτn(i)

α−1 1{τn(i)>bn} < ∞, (13.1)

for all b > Eiτ(i) and i ∈ S.

Proof We start by pointing out that, for any b > Eiτ(i), (τn(i)− bn)n≥0 is negative
divergent which in combination with Eiτ(i)1+α <∞ implies

∑

n≥1
nα−1

Pi (τn(i) > bn) < ∞ (13.2)

by Theorem 3.1(c) (α = 0) or Theorem 3.3(e) (α > 0). Since τn(i) ≥ n for all n ∈ N,
this further implies (13.1) if 0 ≤ α ≤ 1.

Left with the case α > 1, we find

∑

n≥1
Eiτn(i)

α−1 1{τn(i)>bn}

�
∑

n≥1

∫ ∞

0
xα−2

Pi (τn(i) > bn ∨ x) dx

�
∑

n≥1
nα−1

Pi (τn(i) > bn) +
∑

n≥1

∑

k≥n

∫ b(k+1)

bk
xα−2

Pi (τn(i) > x) dx

so that, in view of (13.2), we must still verify finiteness of the second term. We infer
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∑

n≥1

∑

k≥n

∫ b(k+1)

bk
xα−2

Pi (τn(i) > x) dx �
∑

n≥1

∑

k≥n
kα−2

Pi (τn(i) > bk)

=
∑

k≥1

k∑

n=1
kα−2

Pi (τn(i) > bk) ≤
∑

k≥1
kα−1

Pi (τk(i) > bk),

and the last sum is again finite by (13.2). ��
Lemma 13.3 Let α ∈ R� and (Mn, Sn)n≥0 be a nontrivial MRW such that
Eiτ(i)1+α <∞ for some/all i ∈ S. Then

∑

n≥1
nα−1

Pi (Sτn(i) ≤ y) � Ei

⎛

⎝
∑

n≥1
τn(i)

α−11{Sτn (i)≤y}

⎞

⎠

for all i ∈ S.
Proof Using the previous lemma and (13.2), we obtain

Ei

⎛

⎝
∑

n≥1
τn(i)

α−11{Sτn (i)≤y}

⎞

⎠

� Ei

⎛

⎝
∑

n≥1
τn(i)

α−11{Sτn (i)≤y, n≤τn(i)≤2n Ei τ(i)}

⎞

⎠

� Ei

⎛

⎝
∑

n≥1
nα−11{Sτn (i)≤y, n≤τn(i)≤2n Ei τ(i)}

⎞

⎠

�
∑

n≥1
nα−1

Pi (Sτn(i) ≤ y)

as claimed. ��
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