

Asymptotic Behavior of Weighted Power Variations of Fractional Brownian Motion in Brownian Time

Raghid Zeineddine¹

Received: 12 April 2016 / Revised: 14 November 2016 / Published online: 10 March 2017 © Springer Science+Business Media New York 2017

Abstract We study the asymptotic behavior of weighted power variations of fractional Brownian motion in Brownian time $Z_t := X_{Y_t}, t \geq 0$, where *X* is a fractional Brownian motion and *Y* is an independent Brownian motion.

Keywords Weighted power variations · Limit theorem · Malliavin calculus · Fractional Brownian motion · Fractional Brownian motion in Brownian time

Mathematics Subject Classification 2010 60F05 · 60G15 · 60G22 · 60H05 · 60H07

1 Introduction

Our aim in this paper is to study the asymptotic behavior of weighted power variations of the so-called *fractional Brownian motion in Brownian time* defined as

$$
Z_t=X_{Y_t},\quad t\geqslant 0,
$$

where *X* is a two-sided fractional Brownian motion, with Hurst parameter $H \in (0, 1)$, and *Y* is a standard (one-sided) Brownian motion independent of *X*. It is a self-similar process (of order *H*/2) with stationary increments, which is not Gaussian. When $H = 1/2$, one recovers the celebrated *iterated Brownian motion*.

In the present paper we follow and we are inspired by the previous papers $[2,4,5,9]$ $[2,4,5,9]$ $[2,4,5,9]$ $[2,4,5,9]$ $[2,4,5,9]$, and our work may be seen as a natural follow-up of [\[4](#page-50-1),[9\]](#page-50-3).

 \boxtimes Raghid Zeineddine raghid.z@hotmail.com

¹ Research Training Group 2131, Fakultät Mathematik, Technische Universität Dortmund, Dortmund, Germany

Let $f : \mathbb{R} \to \mathbb{R}$ be a function belonging to C_b^{∞} , the class of those functions that are C^{∞} and bounded together with their derivatives. Then, for any $t \geq 0$ and any integer $p \geq 1$, the weighted *p*-variation of *Z* is defined as

$$
R_n^{(p)}(t) = \sum_{k=0}^{\lfloor 2^n t \rfloor - 1} \frac{1}{2} (f(Z_{k2^{-n}}) + f(Z_{(k+1)2^{-n}})) (Z_{(k+1)2^{-n}} - Z_{k2^{-n}})^p.
$$

After proper normalization, we may expect the convergence (in some sense) to a non-degenerate limit (to be determined) of

$$
S_n^{(p)}(t) = 2^{nk} \sum_{k=0}^{\lfloor 2^n t \rfloor - 1} \frac{1}{2} (f(Z_{k2^{-n}}) + f(Z_{(k+1)2^{-n}})) [(Z_{(k+1)2^{-n}} - Z_{k2^{-n}})^p
$$

$$
-E[(Z_{(k+1)2^{-n}} - Z_{k2^{-n}})^p]],
$$
(1.1)

for some κ to be discovered. Due to the fact that one cannot separate *X* from *Y* inside *Z* in the definition of $S_n^{(p)}$, working directly with [\(1.1\)](#page-1-0) seems to be a difficult task (see also [\[3](#page-50-4), Problem 5.1]). This is why, following an idea introduced by Khoshnevisan and Lewis [\[2\]](#page-50-0) in a study of the case $H = 1/2$, we will rather analyze $S_n^{(p)}$ by means of certain stopping times for *Y* . The idea is: by stopping *Y* as it crosses certain levels, and by sampling *Z* at these times, one can effectively separate *X* from *Y* . To be more specific, let us introduce the following collection of stopping times (with respect to the natural filtration of *Y*), noted

$$
\mathcal{T}_n = \{T_{k,n} : k \geq 0\}, \quad n \geq 0,\tag{1.2}
$$

which are in turn expressed in terms of the subsequent hitting times of a dyadic grid cast on the real axis. More precisely, let $\mathscr{D}_n = \{j2^{-n/2} : j \in \mathbb{Z}\}, n \geq 0$, be the dyadic partition (of R) of order $n/2$. For every $n \geq 0$, the stopping times $T_{k,n}$, appearing in [\(1.2\)](#page-1-1), are given by the following recursive definition: $T_{0,n} = 0$, and

$$
T_{k,n} = \inf \{ s > T_{k-1,n} : Y(s) \in \mathcal{D}_n \setminus \{ Y_{T_{k-1,n}} \}, k \geq 1.
$$

Note that the definition of $T_{k,n}$, and therefore of \mathcal{T}_n , only involves the one-sided Brownian motion *Y*, and that, for every $n \geq 0$, the discrete stochastic process

$$
\mathscr{Y}_n = \{Y_{T_{k,n}} : k \geqslant 0\}
$$

defines a simple and symmetric random walk over \mathscr{D}_n . As shown in [\[2](#page-50-0)], as *n* tends to infinity the collection ${T_{k,n} : 1 \leq k \leq 2^n t}$ approximates the common dyadic partition $\{k2^{-n}: 1 \leq k \leq 2^n t\}$ of order *n* of the time interval [0, *t*] (see [\[2](#page-50-0), Lemma 2.2] for a precise statement). Based on this fact, one can introduce the counterpart of (1.1) based on \mathcal{T}_n , namely,

$$
\tilde{S}_n^{(p)}(t) = 2^{-n\tilde{\kappa}} \sum_{k=0}^{\lfloor 2^n t \rfloor -1} \frac{1}{2} (f(Z_{T_{k,n}}) + f(Z_{T_{k+1,n}}))[(2^{\frac{nH}{2}} (Z_{T_{k+1,n}} - Z_{T_{k,n}}))^p - \mu_p],
$$

for some $\tilde{\kappa} > 0$ to be discovered and with $\mu_p := E[N^p]$, where $N \sim \mathcal{N}(0, 1)$. At this stage, it is worthwhile noting that we are dealing with symmetric weighted *p*-variation of *Z*, and symmetry will play an important role in our analysis as we will see in Lemma [3.1.](#page-11-0)

In the particular case where $H = \frac{1}{2}$, that is when *Z* is the *iterated Brownian motion*, the asymptotic behavior of $\tilde{S}_n^{(p)}(\cdot)$ has been studied in [\[4](#page-50-1)]. In fact, one can deduce the following two finite-dimensional distributions (f.d.d.) convergences in law from [\[4,](#page-50-1) Theorem 1.2].

1) For $f \in C_b^2$ and for any integer $r \ge 1$, we have

$$
\left(2^{-\frac{3n}{4}}\sum_{k=0}^{\lfloor 2^n t \rfloor -1} \frac{1}{2} (f(Z_{T_{k,n}}) + f(Z_{T_{k+1,n}}))[(2^{\frac{n}{4}}(Z_{T_{k+1,n}} - Z_{T_{k,n}}))^{2r} - \mu_{2r}] \right)_{t \ge 0}
$$

$$
\xrightarrow[n \to \infty]{f.d.d.} \left(\sqrt{\mu_{4r} - \mu_{2r}^2} \int_{-\infty}^{+\infty} f(X_s) L_f^s(Y) dW_s \right)_{t \ge 0},
$$
 (1.3)

where $L_t^s(Y)$ stands for the local time of *Y* before time *t* at level *s*, *W* is a two-sided Brownian motion independent of (X, Y) and $\int_{-\infty}^{+\infty} f(X_s) L^s_t(Y) dW_s$ is the Wiener–Itô integral of $f(X) L_i(Y)$ with respect to *W*.

2) For $f \in C_b^2$ and for any integer $r \ge 2$, we have

$$
\left(2^{-\frac{n}{4}}\sum_{k=0}^{\lfloor 2^n t \rfloor -1} \frac{1}{2} (f(Z_{T_{k,n}}) + f(Z_{T_{k+1,n}}))(2^{\frac{n}{4}} (Z_{T_{k+1,n}} - Z_{T_{k,n}}))^{2r-1}\right)_{t \ge 0}
$$

$$
\xrightarrow[n \to \infty]{\text{f.d.d.}} \left(\int_0^{Y_t} f(X_s)(\mu_{2r} d^\circ X_s + \sqrt{\mu_{4r-2} - \mu_{2r}^2} dW_s\right)_{t \ge 0},
$$
 (1.4)

where for all $t \in \mathbb{R}$, $\int_0^t f(X_s) d^\circ X_s$ is the Stratonovich integral of $f(X)$ with respect to *X* defined as the limit in probability of $2^{-\frac{nH}{2}} W_n^{(1)}(f, t)$ as $n \to \infty$, with $W_n^{(1)}(f, t)$ defined in [\(3.3\)](#page-12-0), *W* is a two-sided Brownian motion independent of (X, Y) and for $u \in \mathbb{R}$, $\int_0^u f(X_s) dW_s$ is the Wiener–Itô integral of $f(X)$ with respect to *W* defined in [\(5.16\)](#page-24-0).

A natural follow-up of [\(1.3\)](#page-2-0) and [\(1.4\)](#page-2-1) is to study the asymptotic behavior of $\tilde{S}_n^{(p)}(\cdot)$ when $H \neq \frac{1}{2}$. In fact, the following more general result is our main finding in the present paper.

Theorem 1.1 *Let* $f : \mathbb{R} \to \mathbb{R}$ *be a function belonging to* C_b^{∞} *and let W denote a two-sided Brownian motion independent of* (*X*, *Y*)*.*

(1) *For* $H > \frac{1}{6}$ *, we have*

$$
\sum_{k=0}^{\lfloor 2^n t \rfloor - 1} \frac{1}{2} (f(Z_{T_{k,n}}) + f(Z_{T_{k+1,n}})) (Z_{T_{k+1,n}} - Z_{T_{k,n}}) \xrightarrow[n \to \infty]{P} \int_0^{Y_t} f(X_s) d^\circ X_s,
$$
\n(1.5)

where for all $t \in \mathbb{R}$, $\int_0^t f(X_s) d^\circ X_s$ *is the Stratonovich integral of* $f(X)$ *with respect to X defined as the limit in probability of* $2^{-\frac{nH}{2}} W_n^{(1)}(f, t)$ *as* $n \to \infty$ *, with* $W_n^{(1)}(f, t)$ *defined in* [\(3.3\)](#page-12-0)*. For* $H = \frac{1}{6}$ *, we have*

$$
\sum_{k=0}^{\lfloor 2^n t \rfloor -1} \frac{1}{2} (f(Z_{T_{k,n}}) + f(Z_{T_{k+1,n}})) (Z_{T_{k+1,n}} - Z_{T_{k,n}}) \xrightarrow[n \to \infty]{law} \int_0^{Y_t} f(X_s) d^* X_s,
$$
\n(1.6)

where for all $t \in \mathbb{R}$, $\int_0^t f(X_s) d^* X_s$ *is the Stratonovich integral of* $f(X)$ *with respect to X defined as the limit in law of* $2^{-\frac{nH}{2}} W_n^{(1)}(f, t)$ *as n* $\rightarrow \infty$ *.*

(2) *For* $\frac{1}{6}$ < *H* < $\frac{1}{2}$ *and for any integer r* \geq 2, we have

$$
\left(2^{-\frac{n}{4}}\sum_{k=0}^{\lfloor 2^n t \rfloor -1} \frac{1}{2} (f(Z_{T_{k,n}}) + f(Z_{T_{k+1,n}})) (2^{\frac{nH}{2}} (Z_{T_{k+1,n}} - Z_{T_{k,n}}))^{2r-1} \right)_{t \ge 0}
$$
\n
$$
\xrightarrow[n \to \infty]{\text{f.d.d.}} \left(\beta_{2r-1} \int_0^{Y_t} f(X_s) dW_s \right)_{t \ge 0},
$$
\n(1.7)

where for $u \in \mathbb{R}$, $\int_0^u f(X_s) dW_s$ *is the Wiener–Itô integral of* $f(X)$ *with respect to W* defined in [\(5.16\)](#page-24-0), $\beta_{2r-1} = \sqrt{\sum_{l=2}^{r} \kappa_{r,l}^2 \alpha_{2l-1}^2}$, with α_{2l-1} defined in [\(2.18\)](#page-10-0) and $\kappa_{r,l}$ *defined in [\(3.4\)](#page-12-1).*

(3) *Fix a time t* $\geqslant 0$ *, for H* $> \frac{1}{2}$ *and for any integer r* $\geqslant 1$ *, we have*

$$
2^{-\frac{nH}{2}} \sum_{k=0}^{\lfloor 2^n t \rfloor - 1} \frac{1}{2} (f(Z_{T_{k,n}}) + f(Z_{T_{k+1,n}})) (2^{\frac{nH}{2}} (Z_{T_{k+1,n}} - Z_{T_{k,n}}))^{2r-1}
$$

$$
\xrightarrow[n \to \infty]{L^2} \frac{(2r)!}{r!2^r} \int_0^{Y_t} f(X_s) d^\circ X_s,
$$
 (1.8)

where for all $t \in \mathbb{R}$, $\int_0^t f(X_s) d^\circ X_s$ *is defined as in* [\(1.5\)](#page-3-0)*.*

−∞

(4) *For* $\frac{1}{4}$ < *H* \leq $\frac{1}{2}$ *and for any integer r* \geq 1*, we have*

$$
\left(2^{-\frac{3n}{4}}\sum_{k=0}^{\lfloor 2^n t \rfloor -1} \frac{1}{2} (f(Z_{T_{k,n}}) + f(Z_{T_{k+1,n}}))[(2^{\frac{nH}{2}}(Z_{T_{k+1,n}} - Z_{T_{k,n}}))^{2r} - \mu_{2r}]\right)_{t \ge 0}
$$

\n
$$
\xrightarrow[n \to \infty]{\text{f.d.d.}} \left(\gamma_{2r} \int_{-\infty}^{+\infty} f(X_s) L_i^s(Y) dW_s\right)_{t \ge 0},
$$
\n(1.9)

where
$$
\int_{-\infty}^{+\infty} f(X_s) L_t^s(Y) dW_s
$$
 is the Wiener–Itô integral of $f(X) L_t^1(Y)$ with respect to W , $\gamma_{2r} := \sqrt{\sum_{a=1}^r b_{2r,a}^2 \alpha_{2a}^2}$, with α_{2a} defined in (2.18) and $b_{2r,a}$ defined in (7.1).

 $t \geqslant 0$

Theorem [1.1](#page-2-2) is also a natural follow-up of [\[9,](#page-50-3) Corollary 1.2] where we have studied the asymptotic behavior of the power variations of the fractional Brownian motion in Brownian time. In fact, taking *f* equal to 1 in [\(1.8\)](#page-3-1), we deduce the following Corollary.

Corollary 1.2 *Assume that* $H > \frac{1}{2}$ *, for any t* ≥ 0 *and any integer r* ≥ 1 *, we have*

$$
2^{-\frac{nH}{2}}\sum_{k=0}^{\lfloor 2^n t \rfloor -1} (2^{\frac{nH}{2}} (Z_{T_{k+1,n}} - Z_{T_{k,n}}))^{2r-1} \xrightarrow[n \to \infty]{L^2} \frac{(2r)!}{r!2^r} Z_t,
$$

thus, we understand the asymptotic behavior of the signed power variations of odd order of the fractional Brownian motion in Brownian time, in the case $H > \frac{1}{2}$ *, which was missing in the first point in* [\[9,](#page-50-3) Corollary 1.2]*.*

Remark 1.3 1. For $H = \frac{1}{6}$, it has been proved in [\[8,](#page-50-5) (3.17)] that

$$
\left(\sum_{k=0}^{\lfloor 2^n t\rfloor-1} \frac{1}{2} (f(Z_{T_{k,n}}) + f(Z_{T_{k+1,n}})) (Z_{T_{k+1,n}} - Z_{T_{k,n}})^3 \right)_{t \geq 0} \xrightarrow[n \to \infty]{f.d.d.} \left(\kappa_3 \int_0^{Y_t} f(X_s) dW_s\right)_{t \geq 0},
$$

with W a standard two-sided Brownian motion independent of the pair (X, Y) and $\kappa_3 \simeq 2.322$. Thus, [\(1.7\)](#page-3-2) continues to hold for $H = \frac{1}{6}$ and $r = 2$.

2. In the particular case where $H = 1/2$ (that is, when *Z* is the *iterated Brownian motion*), we emphasize that the fourth point of Theorem [1.1](#page-2-2) allows one to recover [\(1.3\)](#page-2-0). In fact, since $H = \frac{1}{2}$, then, for any integer $a \ge 1$, by [\(2.18\)](#page-10-0) and its related explanation, $\alpha_{2a}^2 = (2a)!$. So, using the decomposition [\(7.1\)](#page-35-0) and [\(2.3\)](#page-6-0), the reader can verify that $\sqrt{\mu_{4r} - \mu_{2r}^2}$ appearing in [\(1.3\)](#page-2-0) is equal to γ_{2r} appearing in [\(1.9\)](#page-4-0).

3. The limit process in [\(1.4\)](#page-2-1) is $\left(\int_0^{Y_t} f(X_s)(\mu_{2r} d^\circ X_s + \sqrt{\mu_{4r-2} - \mu_{2r}^2} dW_s\right)$ $t \geqslant 0$. Observe that $\mu_{2r} = E[N^{2r}] = \frac{(2r)!}{r!2^r}$ and since $H = \frac{1}{2}$, then, for any inte-

ger $l \ge 1$, by [\(2.18\)](#page-10-0) and its related explanation, $\alpha_{2l-1}^2 = (2l - 1)!$. So, using the decomposition [\(3.4\)](#page-12-1) and [\(2.3\)](#page-6-0), the reader can verify that $\sqrt{\mu_{4r-2} - \mu_{2r}^2}$ is equal to β_{2r-1} appearing in [\(1.7\)](#page-3-2). We deduce that the limit process in [\(1.4\)](#page-2-1) is $\left(\frac{(2r)!}{r!2^r} \int_0^{Y_t} f(X_s) d^\circ X_s + \beta_{2r-1} \int_0^{Y_t} f(X_s) dW_s\right)$ $t \geqslant 0$. Thus, one can say that, for any integer $r \ge 2$, the limit of the weighted $(2r - 1)$ -variation of *Z* for $H = \frac{1}{2}$ is intermediate between the limit of the weighted $(2r - 1)$ -variation of *Z* for $H > \frac{1}{2}$ and the limit of the weighted $(2r - 1)$ -variation of *Z* for $\frac{1}{6} < H < \frac{1}{2}$.

A brief outline of the paper is as follows. In Sect. [2,](#page-5-0) we give the preliminaries to the proof of Theorem [1.1.](#page-2-2) In Sect. [3,](#page-10-1) we start the preparation to our proof. In Sect. [4,](#page-12-2) we prove (1.5) and (1.6) . In Sects. [5,](#page-14-0) [6](#page-25-0) and [7](#page-33-0) we prove (1.7) , (1.8) and (1.9) . Finally, in Sect. [8,](#page-47-0) we give the proof of a technical lemma.

2 Preliminaries

2.1 Elements of Malliavin Calculus

In this section, we gather some elements of Malliavin calculus we shall need in the sequel. The reader in referred to [\[6](#page-50-6)] for details and any unexplained result.

We continue to denote by $X = (X_t)_{t \in \mathbb{R}}$ a two-sided fractional Brownian motion with Hurst parameter $H \in (0, 1)$. That is, *X* is a zero mean Gaussian process, defined on a complete probability space (Ω, \mathscr{A}, P) , with covariance function,

$$
C_H(t,s) = E(X_t X_s) = \frac{1}{2} (|s|^{2H} + |t|^{2H} - |t - s|^{2H}), \quad s, t \in \mathbb{R}.
$$

We suppose that $\mathscr A$ is the σ -field generated by *X*. For all $n \in \mathbb N^*$, we let $\mathscr E_n$ be the set of step functions on $[-n, n]$, and $\mathscr{E} := \bigcup_n \mathscr{E}_n$. Set $\varepsilon_t = \mathbf{1}_{[0, t]}$ (resp. $\mathbf{1}_{[t, 0]}$) if $t \ge 0$ (resp. $t < 0$). Let *H* be the Hilbert space defined as the closure of *E* with respect to the inner product

$$
\langle \varepsilon_t, \varepsilon_s \rangle_{\mathscr{H}} = C_H(t, s), \quad s, t \in \mathbb{R}.
$$
 (2.1)

The mapping $\varepsilon_t \mapsto X_t$ can be extended to an isometry between \mathcal{H} and the Gaussian space \mathbb{H}_1 associated with *X*. We will denote this isometry by $\varphi \mapsto X(\varphi)$.

Let $\mathscr F$ be the set of all smooth cylindrical random variables, i.e., of the form

$$
F=\phi(X_{t_1},\ldots,X_{t_l}),
$$

where $l \in \mathbb{N}^*, \phi : \mathbb{R}^l \to \mathbb{R}$ is a C^∞ -function such that f and its partial derivatives have at most polynomial growth, and $t_1 < \ldots < t_l$ are some real numbers. The derivative of *F* with respect to *X* is the element of $L^2(\Omega, \mathcal{H})$ defined by

$$
D_s F = \sum_{i=1}^l \frac{\partial \phi}{\partial x_i} (X_{t_1}, \dots, X_{t_l}) \varepsilon_{t_i}(s), \quad s \in \mathbb{R}.
$$

In particular $D_s X_t = \varepsilon_t(s)$. For any integer $k \geq 1$, we denote by $\mathbb{D}^{k,2}$ the closure of *F* with respect to the norm

$$
||F||_{k,2}^{2} = E(F^{2}) + \sum_{j=1}^{k} E[||D^{j}F||_{\mathscr{H}^{\otimes j}}^{2}].
$$

The Malliavin derivative *D* satisfies the chain rule. If $\varphi : \mathbb{R}^n \to \mathbb{R}$ is C_b^1 and if *F*₁, ..., *F_n* are in $\mathbb{D}^{1,2}$, then $\varphi(F_1,\ldots,F_n) \in \mathbb{D}^{1,2}$ and we have

$$
D\varphi(F_1,\ldots,F_n)=\sum_{i=1}^n\frac{\partial\varphi}{\partial x_i}(F_1,\ldots,F_n)DF_i.
$$

We have the following Leibniz formula, whose proof is straightforward by induction on *q*. Let $\varphi, \psi \in C_b^q (q \geq 1)$, and fix $0 \leq u < v$ and $0 \leq s < t$. Then $(\varphi(X_s) +$ $\varphi(X_t)\big(\psi(X_u) + \psi(X_v)) \in \mathbb{D}^{q,2}$ and

$$
D^{q}((\varphi(X_{s}) + \varphi(X_{t}))(\psi(X_{u}) + \psi(X_{v})))
$$

\n
$$
= \sum_{l=0}^{q} {q \choose l} (\varphi^{(l)}(X_{s})\varepsilon_{s}^{\otimes l} + \varphi^{(l)}(X_{t})\varepsilon_{t}^{\otimes l}) \tilde{\otimes} (\psi^{(q-l)}(X_{u})\varepsilon_{u}^{\otimes (q-l)}
$$

\n
$$
+ \psi^{(q-l)}(X_{v})\varepsilon_{v}^{\otimes (q-l)})
$$
\n(2.2)

where $\tilde{\otimes}$ stands for the symmetric tensor product and $\varphi^{(l)}$ (resp. $\psi^{(q-l)}$) means that φ is differentiated *l* times (resp. ψ is differentiated $q - l$ times). A similar statement holds fo $u < v \leq 0$ and $s < t \leq 0$.

If a random element $u \in L^2(\Omega, \mathcal{H})$ belongs to the domain of the divergence operator, that is, if it satisfies

$$
|E\langle DF, u \rangle_{\mathscr{H}}| \leqslant c_u \sqrt{E\left(F^2\right)} \text{ for any } F \in \mathscr{F},
$$

then $I(u)$ is defined by the duality relationship

$$
E(FI(u))=E(\langle DF, u\rangle_{\mathscr{H}}),
$$

for every $F \in \mathbb{D}^{1,2}$.

For every $n \geq 1$, let \mathbb{H}_n be the *n*th Wiener chaos of *X*, that is, the closed linear subspace of $L^2(\Omega, \mathcal{A}, P)$ generated by the random variables $\{H_n(X(h)), h \in$ $\mathcal{H}, \|h\|_{\mathcal{H}} = 1$, where H_n is the *n*th Hermite polynomial. Recall that $H_0 = 0$, $H_p(x) = (-1)^p \exp(\frac{x^2}{2}) \frac{d^p}{dx^p} \exp(-\frac{x^2}{2})$ for $p \ge 1$, and that

$$
E(H_p(M)H_q(N)) = \begin{cases} p!(E[MN])^p & \text{if } p = q, \\ 0 & \text{otherwise} \end{cases}
$$
 (2.3)

 \mathcal{D} Springer

for jointly Gaussian *M*, *N* and integers $p, q \ge 1$. The mapping

$$
I_n(h^{\otimes n}) = H_n(X(h)) \tag{2.4}
$$

provides a linear isometry between the symmetric tensor product $\mathcal{H}^{\odot n}$ and \mathbb{H}_n . For $H = \frac{1}{2}$, *I_n* coincides with the multiple Wiener–Itô integral of order *n*. The following duality formula holds

$$
E(FI_n(h)) = E(\langle D^n F, h \rangle_{\mathcal{H}^{\otimes n}}), \tag{2.5}
$$

for any element $h \in \mathcal{H}^{\odot n}$ and any random variable $F \in \mathbb{D}^{n,2}$.

Let $\{e_k, k \geq 1\}$ be a complete orthonormal system in *H*. Given $f \in \mathcal{H}^{\odot n}$ and $g \in \mathcal{H}^{\odot m}$, for every $r = 0, \ldots, n \wedge m$, the contraction of f and g of order r is the element of $\mathcal{H}^{\otimes (n+m-2r)}$ defined by

$$
f \otimes_r g = \sum_{k_1,\dots,k_r=1}^{\infty} \langle f, e_{k_1} \otimes \cdots \otimes e_{k_r} \rangle_{\mathscr{H}^{\otimes r}} \otimes \langle g, e_{k_1} \otimes \cdots \otimes e_{k_r} \rangle_{\mathscr{H}^{\otimes r}}.
$$

Finally, we recall the following product formula: If $f \in \mathcal{H}^{\odot n}$ and $g \in \mathcal{H}^{\odot m}$, then

$$
I_n(f)I_m(g) = \sum_{r=0}^{n \wedge m} r! \binom{n}{r} \binom{m}{r} I_{n+m-2r}(f \otimes_r g).
$$
 (2.6)

2.2 Some Technical Results

For all $k \in \mathbb{Z}$ and $n \in \mathbb{N}$, we write

$$
\delta_{(k+1)2^{-n/2}} = \varepsilon_{(k+1)2^{-n/2}} - \varepsilon_{k2^{-n/2}}.
$$

The following lemma will play a pivotal role in the proof of Theorem [1.1.](#page-2-2) The reader can find an original version of this lemma in [\[5,](#page-50-2) Lemma 5, Lemma 6].

Lemma 2.1 1. *If* $H \le \frac{1}{2}$ *, for all integer* $q \ge 1$ *, for all* $j \in \mathbb{N}$ *and* $u \in \mathbb{R}$ *,*

$$
\left| \left\langle \varepsilon_u^{\otimes q}, \delta_{(j+1)2^{-n/2}}^{\otimes q} \right\rangle_{\mathscr{H}^{\otimes q}} \right| \leq 2^{-nqH}.
$$
 (2.7)

2. *If* $H > \frac{1}{2}$ *, for all integer q* ≥ 1 *, for all t* ∈ \mathbb{R}_+ *and j, j'* ∈ {0, ..., $\lfloor 2^{n/2} t \rfloor - 1$ }*,*

$$
\left| \left\langle \varepsilon_{j2^{-n/2}}^{\otimes q}, \delta_{(j'+1)2^{-n/2}}^{\otimes q} \right\rangle_{\mathscr{H}^{\otimes q}} \right| \leq 2^q 2^{-\frac{nq}{2}} t^{(2H-1)q},\tag{2.8}
$$

$$
\left| \left\langle \varepsilon_{(j+1)2^{-n/2}}^{\otimes q}, \delta_{(j'+1)2^{-n/2}}^{\otimes q} \right\rangle_{\mathscr{H}^{\otimes q}} \right| \leq 2^q 2^{-\frac{nq}{2}} t^{(2H-1)q}.
$$
 (2.9)

3. For all integers $r, n \geq 1$ and $t \in \mathbb{R}_+$, and with $C_{H,r}$ a constant depending only on *H and r* (*but independent of t and n*)*,*

(a) if
$$
H < 1 - \frac{1}{2r}
$$
,
\n
$$
\sum_{k,l=0}^{\lfloor 2^{n/2}t \rfloor - 1} \left| \langle \delta_{(k+1)2^{-n/2}}; \delta_{(l+1)2^{-n/2}} \rangle_{\mathcal{H}} \right|^r \leq C_{H,r} t \, 2^{n \left(\frac{1}{2} - rH \right)} \tag{2.10}
$$

(b) if
$$
H = 1 - \frac{1}{2r}
$$
,
\n
$$
\sum_{k,l=0}^{\lfloor 2^{n/2}t \rfloor - 1} \left| \left\langle \delta_{(k+1)2^{-n/2}}; \delta_{(l+1)2^{-n/2}} \right\rangle_{\mathcal{H}} \right|^r \leq C_{H,r} 2^{n(\frac{1}{2} - rH)} (t(1+n) + t^2)
$$
\n(2.11)

(c) if
$$
H > 1 - \frac{1}{2r}
$$
,

$$
\sum_{k,l=0}^{\lfloor 2^{n/2}t \rfloor -1} \left| \langle \delta_{(k+1)2^{-n/2}}; \delta_{(l+1)2^{-n/2}} \rangle_{\mathcal{H}} \right|^r \leq C_{H,r} \left(t \, 2^{n \left(\frac{1}{2} - rH \right)} + t^{2 - (2 - 2H)r} \, 2^{n(1 - r)} \right). \tag{2.12}
$$

4. *For* $H \in (0, 1)$ *. For all integer* $n \geq 1$ *and* $t \in \mathbb{R}_+$ *,*

$$
\sum_{k,l=0}^{\lfloor 2^{n/2}t \rfloor - 1} \left| \left\langle \varepsilon_{k2^{-n/2}}; \delta_{(l+1)2^{-n/2}} \right\rangle_{\mathscr{H}} \right| \leq 2^{\frac{n}{2} + 1} t^{2H + 1},\tag{2.13}
$$

$$
\sum_{k,l=0}^{\lfloor 2^{n/2}t \rfloor - 1} \left| \left\langle \varepsilon_{(k+1)2^{-n/2}}; \delta_{(l+1)2^{-n/2}} \right\rangle_{\mathscr{H}} \right| \leq 2^{\frac{n}{2} + 1} t^{2H + 1}.
$$
 (2.14)

Proof The proof, which is quite long and technical, is postponed in Sect. [8.](#page-47-0)

It has been mentioned in [\[2](#page-50-0)] that $\{||Y_{T_{\lfloor 2^n t \rfloor, n}}||_4 : n \ge 0\}$ is a bounded sequence. More generally, we have the following result.

Lemma 2.2 *For any integer* $k \geq 1$, $\{||Y_{T_{\lfloor 2^n t \rfloor,n}}||_{2k} : n \geq 0\}$ *is a bounded sequence.*

Proof Recall from the introduction that ${Y_{T_{k,n} : k \ge 0}}$ is a simple and symmetric random walk on \mathscr{D}_n , and observe that $Y_{T_{[2^n t],n}} = \sum_{l=0}^{[2^n t_j - 1]} (Y_{T_{l+1,n}} - Y_{T_{l,n}})$. So, we have

$$
E\left[\left(Y_{T_{\lfloor 2^{n}t\rfloor,n}}\right)^{2k}\right] = \sum_{l_1,\dots,l_{2k}=0}^{\lfloor 2^{n}t\rfloor-1} E\left[\left(Y_{T_{l_1+1,n}} - Y_{T_{l_1,n}}\right) \times \cdots \times \left(Y_{T_{l_{2k}+1,n}} - Y_{T_{l_{2k},n}}\right)\right]
$$

$$
= \sum_{m=1}^{k} \sum_{a_1+\dots+a_m=2k} C_{a_1,\dots,a_m} \sum_{\substack{l_1,\dots,l_m=0\\l_i \neq l_j \text{ for } i \neq j}} E\left[\left(Y_{T_{l_1+1,n}} - Y_{T_{l_1,n}}\right)^{a_1}\right]
$$

$$
\times \cdots \times E\left[\left(Y_{T_{l_m+1,n}} - Y_{T_{l_m,n}}\right)^{a_m}\right],
$$
 (2.15)

where $\forall i \in \{1, ..., m\}$ *a_i* is an even integer, $\forall m \in \{1, ..., k\}$ $C_{a_1, ..., a_m} \ge 0$, is some combinatorial constant whose explicit value is immaterial here. Now observe that the quantity in (2.15) is equal to

$$
\sum_{m=1}^{k} \sum_{a_1+\cdots+a_m=2k} C_{a_1,\ldots,a_m} \lfloor 2^n t \rfloor (\lfloor 2^n t \rfloor - 1) \times \cdots \times (\lfloor 2^n t \rfloor - m + 1) 2^{-\frac{n}{2}(a_1 + \ldots + a_m)}
$$

=
$$
\sum_{m=1}^{k} \sum_{a_1+\cdots+a_m=2k} C_{a_1,\ldots,a_m} \lfloor 2^n t \rfloor (\lfloor 2^n t \rfloor - 1) \times \cdots \times (\lfloor 2^n t \rfloor - m + 1) 2^{-nk},
$$

so, since $1 \leq m \leq k$, we deduce that $\{E\left[\left(Y_{T_{\lfloor 2^n t \rfloor, n}}\right)^{2k}\right] : n \geq 0\}$ is a bounded sequence, which proves the lemma. \Box

Also, in order to prove the fourth point of Theorem [1.1,](#page-2-2) we will need estimates on the local time of *Y* taken from [\[2\]](#page-50-0), that we collect in the following statement.

Proposition 2.3 1. *For every* $x \in \mathbb{R}$, $p \in \mathbb{N}^*$ *and* $t > 0$ *, we have*

$$
E[(L_t^x(Y))^p] \leqslant 2 E[(L_1^0(Y))^p] t^{p/2} \exp\left(-\frac{x^2}{2t}\right).
$$

2. *There exists a positive constant* μ *such that, for every a, b* $\in \mathbb{R}$ *with ab* ≥ 0 *and* $t > 0$,

$$
E[|L_t^b(Y) - L_t^a(Y)|^2]^{1/2} \le \mu \sqrt{|b-a|} \, t^{1/4} \exp\left(-\frac{a^2}{4t}\right).
$$

3. *There exists a positive random variable* $K \in L^8$ *such that, for every j* $\in \mathbb{Z}$ *, every* $n \geqslant 0$ and every $t > 0$, one has that

$$
\left| \mathcal{L}_{j,n}(t) - L_l^{j2^{-n/2}}(Y) \right| \leq 2Kn2^{-n/4} \sqrt{L_l^{j2^{-n/2}}(Y)},
$$

where $\mathcal{L}_{i,n}(t) = 2^{-n/2}(U_{i,n}(t) + D_{i,n}(t)).$

2.3 Notation

Throughout all the forthcoming proofs, we shall use the following notation. For all *t* ∈ R and *n* ∈ N, we define $X_t^{(n)} := 2^{\frac{nH}{2}} X_{t2^{-\frac{n}{2}}}$. For all $k \in \mathbb{Z}$ and $H \in (0, 1)$, we write

$$
\rho(k) = \frac{1}{2}(|k+1|^{2H} + |k-1|^{2H} - 2|k|^{2H}),
$$
\n(2.16)

it is clear that $\rho(-k) = \rho(k)$. Observe that, by [\(2.1\)](#page-5-1), we have

$$
\left| \langle \delta_{(k+1)2^{-n/2}}; \delta_{(l+1)2^{-n/2}} \rangle \mathcal{H} \right| = \left| E\big[\big(X_{(k+1)2^{-n/2}} - X_{k2^{-n/2}} \big) \big(X_{(l+1)2^{-n/2}} - X_{l2^{-n/2}} \big) \big] \right|
$$

=
$$
\left| 2^{-nH-1} \big(|k - l + 1|^{2H} + |k - l - 1|^{2H} - 2|k - l|^{2H} \big) \right|
$$

=
$$
2^{-nH} |\rho(k - l)|.
$$
 (2.17)

If $H \leq \frac{1}{2}$, for all $r \in \mathbb{N}^*$, we define

$$
\alpha_r := \sqrt{r! \sum_{a \in \mathbb{Z}} \rho(a)^r}.
$$
\n(2.18)

Note that $\sum_{a \in \mathbb{Z}} |\rho(a)|^r < \infty$ if and only if $H < 1 - 1/(2r)$, which is satisfied for all $r \ge 1$ if we suppose that $H \le 1/2$ (in the case $H = 1/2$, we have $\rho(0) = 1$ and $\rho(a) = 0$ for all $a \neq 0$. So, for any $r \in \mathbb{N}^*$, we have $\sum_{a \in \mathbb{Z}} |\rho(a)|^r = 1$.

For simplicity, throughout the paper we remove the subscript $\mathcal H$ in the inner product defined in [\(2.1\)](#page-5-1), that is, we write $\langle ; \rangle$ instead of $\langle ; \rangle_{\mathcal{H}}$.

For any sufficiently smooth function $f : \mathbb{R} \to \mathbb{R}$, the notation $\partial^l f$ means that *f* is differentiated *l* times. We denote for any $j \in \mathbb{Z}$, $\Delta_{j,n} f(X) := \frac{1}{2} (f(X_{j2^{-n/2}}) +$ $f(X_{(i+1)2-n/2})$.

In the proofs contained in this paper, *C* shall denote a positive, finite constant that may change value from line to line.

3 Preparation to the proof of Theorem [1.1](#page-2-2)

3.1 A Key Algebraic Lemma

For each integer $n \ge 1, k \in \mathbb{Z}$ and real number $t \ge 0$, let $U_{j,n}(t)$ (resp. $D_{j,n}(t)$) denote the number of *upcrossings*(resp. *downcrossings*) of the interval[*j*2−*n*/2, (*j*+1)2−*n*/2] within the first $\lfloor 2^n t \rfloor$ steps of the random walk $\{Y_{T_{k,n}}\}_{k \geq 0}$, that is,

$$
U_{j,n}(t) = \sharp \{ k = 0, \dots, \lfloor 2^n t \rfloor - 1 :
$$

\n
$$
Y_{T_{k,n}} = j2^{-n/2} \text{ and } Y_{T_{k+1,n}} = (j+1)2^{-n/2} \};
$$

\n
$$
D_{j,n}(t) = \sharp \{ k = 0, \dots, \lfloor 2^n t \rfloor - 1 :
$$

\n
$$
Y_{T_{k,n}} = (j+1)2^{-n/2} \text{ and } Y_{T_{k+1,n}} = j2^{-n/2} \}.
$$

 \mathcal{L} Springer

The following lemma taken from [\[2,](#page-50-0) Lemma 2.4] is going to be the key when studying the asymptotic behavior of the weighted power variation $V_n^{(r)}(f, t)$ of order $r \geq 1$, defined as:

$$
V_n^{(r)}(f,t) = \sum_{k=0}^{\lfloor 2^n t \rfloor - 1} \frac{1}{2} (f(Z_{T_{k,n}}) + f(Z_{T_{k+1,n}})) [(2^{\frac{nH}{2}} (Z_{T_{k+1,n}} - Z_{T_{k,n}}))^r - \mu_r], \quad t \ge 0,
$$
\n(3.1)

where $\mu_r := E[N^r]$, with $N \sim \mathcal{N}(0, 1)$. Its main feature is to separate *X* from *Y*, thus providing a representation of $V_n^{(r)}(f, t)$ which is amenable to analysis.

Lemma 3.1 *Fix* $f \in C_b^{\infty}$, $t \ge 0$ *and* $r \in \mathbb{N}^*$. *Then*

$$
V_n^{(r)}(f, t) = \sum_{j \in \mathbb{Z}} \frac{1}{2} \left(f(X_{j2^{-\frac{n}{2}}}) + f(X_{(j+1)2^{-\frac{n}{2}}}) \right) \left[\left(2^{\frac{nH}{2}} (X_{(j+1)2^{-\frac{n}{2}}} - X_{j2^{-\frac{n}{2}}}) \right)^r - \mu_r \right] \times \left(U_{j,n}(t) + (-1)^r D_{j,n}(t) \right).
$$
\n(3.2)

3.2 Transforming the Weighted Power Variations of Odd Order

By [\[2](#page-50-0), Lemma 2.5], one has

$$
U_{j,n}(t) - D_{j,n}(t) = \begin{cases} 1_{\{0 \le j < j^*(n,t)\}} & \text{if } j^*(n,t) > 0\\ 0 & \text{if } j^*(n,t) = 0\\ -1_{\{j^*(n,t) \le j < 0\}} & \text{if } j^*(n,t) < 0 \end{cases}
$$

where $j^*(n, t) = 2^{n/2} Y_{T_{2^{n}t} \mid n}$. As a consequence, $V_n^{(2r-1)}(f, t)$ is equal to

$$
\begin{cases}\n\int_{j=0}^{j^*(n,t)-1} \frac{1}{2} \left(f\left(X_{j2^{-n/2}}^+\right) + f\left(X_{(j+1)2^{-n/2}}^+\right) \left(X_{j+1}^{n,+} - X_j^{n,+}\right)^{2r-1} & \text{if } j^*(n,t) > 0 \\
0 & \text{if } j^*(n,t) = 0 \\
\int_{j^*(n,t)} \left| -1 \right|_{\{f\in \mathcal{N}^-\}} & \text{if } f(n,t) = 0\n\end{cases}
$$

$$
\sum_{j=0}^{\lfloor (n+1)/2 \rfloor} \frac{1}{2} \Big(f(X_{j2^{-n/2}}^-) + f(X_{(j+1)2^{-n/2}}^-) \Big) \Big(X_{j+1}^{n,-} - X_j^{n,-} \Big)^{2r-1} \quad \text{if } j^*(n, t) < 0
$$

where $X_t^+ := X_t$ for $t \ge 0$, $X_{-t}^- := X_t$ for $t < 0$, $X_t^{n,+} := 2^{\frac{nH}{2}} X_{2-\frac{n}{2}t}^+$ for $t \ge 0$ and $X_{-t}^{n,-} := 2^{\frac{nH}{2}} X_{2^{-\frac{n}{2}}(-t)}^{-n}$ for $t < 0$.

Let us now introduce the following sequence of processes $W_{\pm,n}^{(2r-1)}$, in which H_p stands for the *p*th Hermite polynomial $(H_1(x) = x, H_2(x) = x^2 - 1,$ etc.):

⎪⎪⎪⎪⎪⎪⎩

$$
W_{\pm,n}^{(2r-1)}(f,t) = \sum_{j=0}^{\lfloor 2^{n/2}t \rfloor - 1} \frac{1}{2} \left(f \left(X_{j2^{-\frac{n}{2}}}^{\pm} \right) + f \left(X_{(j+1)2^{-\frac{n}{2}}}^{\pm} \right) \right) H_{2r-1} \left(X_{j+1}^{n,\pm} - X_j^{n,\pm} \right), \quad t \ge 0 \quad (3.3)
$$

$$
W_n^{(2r-1)}(f,t) := \begin{cases} W_{+,n}^{(2r-1)}(f,t) & \text{if } t \ge 0 \\ W_{-,n}^{(2r-1)}(f,-t) & \text{if } t < 0 \end{cases}
$$

We then have, using the decomposition

$$
x^{2r-1} = \sum_{i=1}^{r} \kappa_{r,i} H_{2i-1}(x),
$$
\n(3.4)

(with $\kappa_{r,r} = 1$, and $\kappa_{r,1} = \frac{(2r)!}{r!2^r} = E[N^{2r}]$, with $N \sim \mathcal{N}(0, 1)$. If interested, the reader can find the explicit value of $\kappa_{r,i}$, for $1 < i < r$, e.g., in [\[9,](#page-50-3) Corollary 1.2]),

$$
V_n^{(2r-1)}(f,t) = \sum_{i=1}^r \kappa_{r,i} W_n^{(2i-1)}\left(f, Y_{T_{\lfloor 2^n t \rfloor, n}}\right).
$$
 (3.5)

4 Proofs of [\(1.5\)](#page-3-0) and [\(1.6\)](#page-3-3)

4.1 Proof of [\(1.5\)](#page-3-0)

In [\[8,](#page-50-5) Theorem 2.1], we have proved that for $H > \frac{1}{6}$ and $f \in C_b^{\infty}$, the following change-of-variable formula holds true

$$
F(Z_t) - F(0) = \int_0^t f(Z_s) d^{\circ} Z_s, \quad t \ge 0
$$
\n(4.1)

where *F* is a primitive of *f* and $\int_0^t f(Z_s) d^\circ Z_s$ is the limit in probability of $2^{-\frac{nH}{2}}V_n^{(1)}(f, t)$ as $n \to \infty$, with $V_n^{(1)}(f, t)$ defined in [\(3.1\)](#page-11-1). On the other hand, it has been proved in [\[5,](#page-50-2) Theorem 4] (see also [\[10](#page-50-7), Theorem 1.3] for an extension of this formula to the bi-dimensional case) that for all $t \in \mathbb{R}$, the following change-of-variable formula holds true for $H > \frac{1}{6}$

$$
F(X_t) - F(0) = \int_0^t f(X_s) d^\circ X_s, \tag{4.2}
$$

where $\int_0^t f(X_s) d^\circ X_s$ is the Stratonovich integral of $f(X)$ with respect to *X* defined as the limit in probability of $2^{-\frac{nH}{2}} W_n^{(1)}(f, t)$ as $n \to \infty$, with $W_n^{(1)}(f, t)$ defined in (3.3) . Thanks to (4.2) , we deduce that

$$
F(Z_t) - F(0) = \int_0^{Y_t} f(X_s) d^\circ X_s, \quad t \geq 0
$$

by combining this last equality with [\(4.1\)](#page-12-4), we get $\int_0^t f(Z_s) d^\circ Z_s = \int_0^{Y_t} f(X_s) d^\circ X_s$. So, we deduce that, for $H > \frac{1}{6}$,

$$
\sum_{k=0}^{\lfloor 2^n t \rfloor -1} \frac{1}{2} (f(Z_{T_{k,n}}) + f(Z_{T_{k+1,n}})) (Z_{T_{k+1,n}} - Z_{T_{k,n}}) \xrightarrow[n \to \infty]{P} \int_0^{Y_t} f(X_s) d^\circ X_s,
$$

thus (1.5) holds true.

4.2 Proof of [\(1.6\)](#page-3-3)

In [\[8,](#page-50-5) Theorem 2.1], we have proved that for $H = \frac{1}{6}$ and $f \in C_b^{\infty}$, the following change-of-variable formula holds true

$$
F(Z_t) - F(0) + \frac{\kappa_3}{12} \int_0^{Y_t} f''(X_s) dW_s \stackrel{\text{(law)}}{=} \int_0^t f(Z_s) d^\circ Z_s, \quad t \geq 0 \tag{4.3}
$$

where F is a primitive of f , W is a standard two-sided Brownian motion independent of the pair (X, Y) , $\kappa_3 \simeq 2.322$ and $\int_0^t f(Z_s) d^\circ Z_s$ is the limit in law of $2^{-\frac{nH}{2}} V_n^{(1)}(f, t)$ as $n \to \infty$, with $V_n^{(1)}(f, t)$ defined in [\(3.1\)](#page-11-1). On the other hand, it has been proved in (2.19) in [\[7\]](#page-50-8) that for all $t \in \mathbb{R}$, the following change-of-variable formula holds true for $H = \frac{1}{6}$

$$
F(X_t) - F(0) + \frac{\kappa_3}{12} \int_0^t f''(X_s) dW_s = \int_0^t f(X_s) d^* X_s, \tag{4.4}
$$

where κ_3 and *W* are the same as in [\(4.3\)](#page-13-0), $\int_0^t f(X_s) d^* X_s$ is the Stratonovich integral of $f(X)$ with respect to *X* defined as the limit in law of $2^{-\frac{nH}{2}} W_n^{(1)}(f, t)$ as $n \to \infty$, with $W_n^{(1)}(f, t)$ defined in [\(3.3\)](#page-12-0). Thanks to [\(4.4\)](#page-13-1), we deduce that

$$
F(Z_t) - F(0) + \frac{\kappa_3}{12} \int_0^{Y_t} f''(X_s) dW_s = \int_0^{Y_t} f(X_s) d^* X_s, \quad t \geq 0.
$$

By combining this last equality with [\(4.3\)](#page-13-0), we get $\int_0^t f(Z_s) d^\circ Z_s \stackrel{law}{=} \int_0^{Y_t} f(X_s) d^* X_s$. So, we deduce that, for $H = \frac{1}{6}$,

$$
\sum_{k=0}^{\lfloor 2^n t \rfloor -1} \frac{1}{2} (f(Z_{T_{k,n}}) + f(Z_{T_{k+1,n}})) (Z_{T_{k+1,n}} - Z_{T_{k,n}}) \xrightarrow[n \to \infty]{law} \int_0^{Y_t} f(X_s) d^* X_s,
$$

thus (1.6) holds true.

5 Proof of [\(1.7\)](#page-3-2)

Thanks to (3.1) and (3.5) , for any integer $r \ge 2$, we have

$$
2^{-n/4}V_n^{(2r-1)}(f,t) = 2^{-n/4} \sum_{k=0}^{\lfloor 2^n t \rfloor - 1} \frac{1}{2} (f(Z_{T_{k,n}})
$$

$$
+ f(Z_{T_{k+1,n}})) (2^{\frac{nH}{2}} (Z_{T_{k+1,n}} - Z_{T_{k,n}}))^{2r-1}
$$

$$
= 2^{-n/4} \sum_{l=1}^r \kappa_{r,l} W_n^{(2l-1)}(f, Y_{T_{\lfloor 2^n t \rfloor,n}})
$$
(5.1)

The proof of (1.7) will be done in several steps.

5.1 Step 1: Limit of $2^{-n/4} \sum_{l=2}^{r} \kappa_{r,l} W_n^{(2l-1)}(f, t)$

Observe that, by (3.4) , we have

$$
\sum_{j=0}^{\lfloor 2^{n/2}t \rfloor -1} \frac{1}{2} (f(X_{j2^{-\frac{n}{2}}}^{\pm}) + f(X_{(j+1)2^{-\frac{n}{2}}}^{\pm})) (X_{j+1}^{n,\pm} - X_j^{n,\pm})^{2r-1} = \sum_{l=1}^r \kappa_{r,l} W_{\pm,n}^{(2l-1)}(f,t).
$$

We have the following proposition:

Proposition 5.1 *If* $H \in (\frac{1}{6}, \frac{1}{2})$ *, if* $r \ge 2$ *then, for any* $f \in C_b^{\infty}$ *,*

$$
\left(X_x, 2^{-\frac{n}{4}} \sum_{l=2}^r \kappa_{r,l} W_{\pm,n}^{(2l-1)}(f,t)\right)_{x \in \mathbb{R}, t \geqslant 0} \xrightarrow[n \to \infty]{f.d.d.} \left(X_x, \beta_{2r-1} \int_0^t f(X_s^{\pm}) dW_s^{\pm}\right)_{x \in \mathbb{R}, t \geqslant 0},
$$
\n(5.2)

 $$ $W_t^- = W_{-t}$ *if t* < 0*, with W a two-sided Brownian motion independent of* (X, Y) *,* and where $\int_0^t f(X_s^{\pm}) dW_s^{\pm}$ *must be understood in the Wiener–Itô sense.*

Proof For all $t \ge 0$, we define $F_{\pm,n}^{(2r-1)}(f,t) := 2^{-\frac{n}{4}} \sum_{l=2}^{r} \kappa_{r,l} W_{\pm,n}^{(2l-1)}(f,t)$. In what follows we may study separately the finite-dimensional distributions convergence in law of $(X, F_{+,n}^{(2r-1)}(f, \cdot), F_{-,n}^{(2r-1)}(f, \cdot))$ when *n* is even and when *n* is odd. For the sake of simplicity, we will only consider the even case, the analysis when *n* is odd being mutatis mutandis the same. So, assume that *n* is even and let *m* be another even integer such that $n \geq n \geq 0$. We shall apply a coarse gaining argument. We have

$$
F_{\pm,n}^{(2r-1)}(f,t) = 2^{-n/4} \sum_{i=1}^{\lfloor 2^{m/2}t \rfloor} \sum_{j=(i-1)2^{\frac{n-m}{2}}}^{i2^{\frac{n-m}{2}-1}} \frac{1}{2} (f(X_{j2^{-n/2}}^{\pm}) + f(X_{(j+1)2^{-n/2}}^{\pm}))
$$

$$
\times \left(\sum_{l=2}^{r} \kappa_{r,l} H_{2l-1}(X_{j+1}^{n,\pm} - X_j^{n,\pm}) \right)
$$

$$
+ 2^{-n/4} \sum_{j=\lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}}}^{i2^{m/2}t} \frac{1}{2} (f(X_{j2^{-n/2}}^{\pm}) + f(X_{(j+1)2^{-n/2}}^{\pm}))
$$

$$
\left(\sum_{l=1}^{r} \frac{1}{2^{m/2}t^{n}} + \frac{1}{2^{m/2}t^{n}} \right)
$$

$$
\times \left(\sum_{l=2}^{r} \kappa_{r,l} H_{2l-1} (X_{j+1}^{n,\pm} - X_j^{n,\pm}) \right). \tag{5.4}
$$

Observe that $2^{\frac{n-m}{2}}$ is an integer precisely because we have assumed that *n* and *m* are even numbers. We have

$$
(5.3) = A_{n,m}^{\pm}(t) + B_{n,m}^{\pm}(t) + C_{n,m}^{\pm}(t),
$$

where

$$
A_{n,m}^{\pm}(t) = 2^{-n/4} \sum_{i=1}^{\lfloor 2^{m/2}t \rfloor} \frac{1}{2} (f(X_{i2^{-m/2}}^{\pm}) + f(X_{(i+1)2^{-m/2}}^{\pm})) \sum_{j=(i-1)2^{\frac{n-m}{2}}}^{i2^{\frac{m-m}{2}}-1}
$$

$$
\times \left(\sum_{l=2}^{r} \kappa_{r,l} H_{2l-1}(X_{j+1}^{n,\pm} - X_{j}^{n,\pm}) \right)
$$

$$
B_{n,m}^{\pm}(t) = 2^{-n/4} \sum_{i=1}^{\lfloor 2^{m/2}t \rfloor} \sum_{j=(i-1)2^{\frac{n-m}{2}}}^{i2^{\frac{m-m}{2}}-1} \frac{1}{2} (f(X_{(j+1)2^{-n/2}}^{\pm}) - f(X_{(i+1)2^{-m/2}}^{\pm}))
$$

$$
\times \left(\sum_{l=2}^{r} \kappa_{r,l} H_{2l-1}(X_{j+1}^{n,\pm} - X_{j}^{n,\pm}) \right)
$$

$$
C_{n,m}^{\pm}(t) = 2^{-n/4} \sum_{i=1}^{\lfloor 2^{m/2}t \rfloor} \sum_{j=(i-1)2^{\frac{n-m}{2}}}^{i2^{\frac{m-m}{2}}-1} \frac{1}{2} (f(X_{j2^{-n/2}}^{\pm}) - f(X_{i2^{-m/2}}^{\pm}))
$$

$$
\times \left(\sum_{l=2}^{r} \kappa_{r,l} H_{2l-1}(X_{j+1}^{n,\pm} - X_{j}^{n,\pm}) \right)
$$

Here is a sketch of what remains to be done in order to complete the proof of [\(5.2\)](#page-14-1). Firstly, we will prove (a) the f.d.d. convergence in law of $(X, A_{n,m}^+, A_{n,m}^-)$ to $(X, \beta_{2r-1} \int_0^1 f(X_s^+) dW_s^+, \beta_{2r-1} \int_0^1 f(X_s^-) dW_s^-$ as $n \to \infty$ and then $m \to \infty$. Secondly, we will show that **(b)** $B^{\pm}_{n,m}(t)$ converges to 0 in $L^2(\Omega)$ as $n \to \infty$ and then $m \to \infty$. By applying the same techniques, we would also obtain that the same holds with

 $C^{\pm}_{n,m}(t)$. Thirdly, we will prove that **(c)**[\(5.4\)](#page-15-0) converges to 0 in $L^2(\Omega)$ as $n \to \infty$ and then *m*→∞. Once this has been done, one can easily deduce the f.d.d. convergence in law of $(X, F_{+,n}^{(2r-1)}(f, \cdot), F_{-,n}^{(2r-1)}(f, \cdot))$ to $(X, \beta_{2r-1} \int_0^{\cdot} f(X_s^+) dW_s^+, \beta_{2r-1} \int_0^{\cdot} f(X_s^-) dW_s^-)$ as $n \rightarrow \infty$, which is equivalent to [\(5.2\)](#page-14-1).

(a) Finite-dimensional distributions convergence in law of $(X, A_{n,m}^+, A_{n,m}^-)$

Fix *m*. Showing the f.d.d. convergence in law of $(X, A_{n,m}^+, A_{n,m}^-)$ as $n \to \infty$ can be easily reduced to checking the f.d.d. convergence in law of the following randomvector valued process:

$$
\left(X_x : x \in \mathbb{R}, 2^{-n/4} \sum_{j=(i-1)2^{\frac{n-m}{2}}}^{i2^{\frac{n-m}{2}}-1} H_{2l-1}(X_{j+1}^{n,+} - X_j^{n,+}), 2^{-n/4} \sum_{j=(i-1)2^{\frac{n-m}{2}}-1}^{i2^{\frac{n-m}{2}}-1} H_{2l-1}(X_{j+1}^{n,-} - X_j^{n,-}) : 2 \le l \le r, 1 \le i \le \lfloor 2^{m/2}t \rfloor \right).
$$

Thanks to (3.27) in [\[9\]](#page-50-3) (see also (3.4) in [9] and page 1073 in [\[5\]](#page-50-2)), we have

$$
\left(2^{-n/4} \sum_{j=(i-1)2}^{i2^{\frac{n-m}{2}}-1} H_{2l-1}(X_{j+1}^{n,+} - X_j^{n,+}), 2^{-n/4} \sum_{j=(i-1)2^{\frac{n-m}{2}}}^{i2^{\frac{n-m}{2}}-1} H_{2l-1}(X_{j+1}^{n,-} - X_j^{n,-}):
$$

$$
2 \le l \le r, 1 \le i \le \lfloor 2^{m/2} t \rfloor \right) \underset{n \to \infty}{\overset{\text{law}}{\underset{n \to \infty}{\longrightarrow}}} \left(\alpha_{2l-1}\left(B_{(i+1)2^{-m/2}}^{l,+} - B_{i2^{-m/2}}^{l,+}\right), \alpha_{2l-1}\left(B_{(i+1)2^{-m/2}}^{l,-} - B_{i2^{-m/2}}^{l,-}\right):
$$

$$
2 \le l \le r, 1 \le i \le \lfloor 2^{m/2} t \rfloor
$$

where $(B^{(2)}, \ldots, B^{(r)})$ is a $(r-1)$ -dimensional two-sided Brownian motion and α_{2l-1} is defined in [\(2.18\)](#page-10-0), for all $t \ge 0$, $B_t^{r,+} := B_t^{(r)}$, $B_t^{r,-} := B_{-t}^{(r)}$.

Since $E[X_x H_{2r-1}(X_{j+1}^{n, \pm} - X_j^{n, \pm})] = 0$ when $r \ge 2$ (Hermite polynomials of different orders are orthogonal), Peccati–Tudor Theorem (see, e.g., [\[6](#page-50-6), Theorem 6.2.3]) applies and yields

$$
\left(X_x, 2^{-n/4} \sum_{j=(i-1)2^{\frac{n-m}{2}}}^{i2^{\frac{n-m}{2}}-1} H_{2l-1}(X_{j+1}^{n,+} - X_j^{n,+}), 2^{-n/4} \sum_{j=(i-1)2^{\frac{n-m}{2}}}^{i2^{\frac{n-m}{2}}-1} H_{2l-1}(X_{j+1}^{n,+} - X_j^{n,+}) : 2 \le l \le r, 1 \le i \le \lfloor 2^{m/2} t \rfloor \right) \underset{n \to \infty}{\overset{\text{f.d.d.}}{\longrightarrow}} \frac{\left(1 + \frac{1}{2} \sum_{j=(i-1)2^{\frac{n-m}{2}}}^{i2^{\frac{m-m}{2}}-1} H_{2l-1}(X_{j+1}^{n,+} - X_j^{n,+})\right)}{n \to \infty}.
$$

 \mathcal{D} Springer

$$
\left(X_x, \alpha_{2l-1}(B^{l,+}_{(i+1)2^{-m/2}}-B^{l,+}_{i2^{-m/2}}), \alpha_{2l-1}(B^{l,-}_{(i+1)2^{-m/2}}-B^{l,-}_{i2^{-m/2}}):2\leq l\leq r, 1\leq i\leq \lfloor 2^{m/2}t \rfloor\right)_{x\geqslant 0},
$$

with $(B^{(2)}, \ldots, B^{(r-1)})$ is independent of *X* (and independent of *Y* as well). We then have, as $n \to \infty$ and *m* is fixed,

$$
(X, A_{n,m}^+, A_{n,m}^-) \xrightarrow{f.d.d.} \left\{ X, \beta_{2r-1} \sum_{i=1}^{\lfloor 2^{m/2} \rfloor} \frac{1}{2} (f(X_{i2^{-m/2}}^+) + f(X_{(i+1)2^{-m/2}}^+)) (W_{(i+1)2^{-m/2}}^+ - W_{i2^{-m/2}}^+),
$$

$$
\beta_{2r-1} \sum_{i=1}^{\lfloor 2^{m/2} \rfloor} \frac{1}{2} (f(X_{i2^{-m/2}}^-) + f(X_{(i+1)2^{-m/2}}^-)) (W_{(i+1)2^{-m/2}}^- - W_{i2^{-m/2}}^-) \right),
$$

with $\beta_{2r-1} := \sqrt{\sum_{l=2}^r \kappa_{r,l}^2 \alpha_{2l-1}^2}$ and *W* is a two-sided Brownian motion independent of *X* (and independent of *Y* as well). One can write

$$
\sum_{i=1}^{\lfloor 2^{m/2}t \rfloor} \frac{1}{2} (f(X_{i2^{-m/2}}^{\pm}) + f(X_{(i+1)2^{-m/2}}^{\pm})) (W_{(i+1)2^{-m/2}}^{\pm} - W_{i2^{-m/2}}^{\pm}) = K_m^{\pm}(t) + L_m^{\pm}(t),
$$

with

$$
K_m^{\pm}(t) = \sum_{i=1}^{\lfloor 2^{m/2}t \rfloor} f(X_{i2^{-m/2}}^{\pm}) \left(W_{(i+1)2^{-m/2}}^{\pm} - W_{i2^{-m/2}}^{\pm}\right),
$$

$$
L_m^{\pm}(t) = \sum_{i=1}^{\lfloor 2^{m/2}t \rfloor} \frac{1}{2} (f(X_{(i+1)2^{-m/2}}^{\pm}) - f(X_{i2^{-m/2}}^{\pm})) (W_{(i+1)2^{-m/2}}^{\pm} - W_{i2^{-m/2}}^{\pm}).
$$

It is clear that $K_m^{\pm}(t) \xrightarrow[m \to \infty]{}^{L^2} \int_0^t f(X_s^{\pm}) dW_s^{\pm}$. On the other hand, $L_m^{\pm}(t)$ converges to 0 in L^2 as $m \to \infty$. Indeed, by independence,

$$
E[L_m^{\pm}(t)^2]
$$

= $\frac{1}{4} \sum_{i,j=1}^{\lfloor 2^{m/2}t \rfloor} E[(f(X_{(i+1)2^{-m/2}}^{\pm}) - f(X_{i2^{-m/2}}^{\pm})) (f(X_{(j+1)2^{-m/2}}^{\pm}) - f(X_{j2^{-m/2}}^{\pm}))]$
 $\times E[(W_{(i+1)2^{-m/2}}^{\pm} - W_{i2^{-m/2}}^{\pm}) (W_{(j+1)2^{-m/2}}^{\pm} - W_{j2^{-m/2}}^{\pm})]$

$$
= \frac{1}{4} \sum_{i=1}^{\lfloor 2^{m/2} t \rfloor} E[(f(X_{(i+1)2^{-m/2}}^{\pm}) - f(X_{i2^{-m/2}}^{\pm}))^2] \times E[(W_{(i+1)2^{-m/2}}^{\pm} - W_{i2^{-m/2}}^{\pm})^2]
$$

$$
= \frac{2^{-m/2}}{4} \sum_{i=1}^{\lfloor 2^{m/2} t \rfloor} E[f'(X_{\theta_i})^2(X_{(i+1)2^{-m/2}}^{\pm}) - X_{i2^{-m/2}}^{\pm})^2],
$$
(5.5)

where θ_i denotes a random real number satisfying $i2^{-m/2} < \theta_i < (i+1)2^{-m/2}$. Since *f* ∈ C_b^{∞} and by Cauchy–Schwarz inequality, we deduce that

$$
(5.5) \le C_f 2^{-m/2} \sum_{i=1}^{\lfloor 2^{m/2} t \rfloor} E[(X_{(i+1)2^{-m/2}}^{\pm}) - (X_{i2^{-m/2}}^{\pm})^4]^{1/2}
$$

= $C_f 2^{-m/2} \lfloor 2^{m/2} t \rfloor 2^{-m} \sqrt{3}$
 $\le C_f 2^{-m} t,$

from which the claim follows. Summarizing, we just showed that

$$
(X, A_{n,m}^+, A_{n,m}^-) \stackrel{\text{f.d.d.}}{\longrightarrow} (X, \beta_{2r-1} \int_0^{\cdot} f(X_s^+) dW_s^+, \beta_{2r-1} \int_0^{\cdot} f(X_s^-) dW_s^-)
$$

as $n \to \infty$ then $m \to \infty$.

(b) $B^{\pm}_{n,m}(t)$ converges to 0 in $L^2(\Omega)$ as $n \to \infty$ and then $m \to \infty$. It suffices to prove that for all $k \in \{2, \ldots, r\}$,

$$
B_{n,m}^{\pm,k}(t) \xrightarrow{L^2} 0,\tag{5.6}
$$

as $n \to \infty$ and then $m \to \infty$, where $B^{\pm, k}_{n,m}(t)$ is defined as follows

$$
B_{n,m}^{\pm,k}(t) := 2^{-n/4} \sum_{i=1}^{\lfloor 2^{m/2}t \rfloor} \sum_{j=(i-1)2}^{i2^{\frac{n-m}{2}}-1} \frac{1}{2} (f(X_{(j+1)2^{-n/2}}^{\pm})
$$

$$
-f(X_{(i+1)2^{-m/2}}^{\pm})) H_{2k-1}(X_{j+1}^{n,\pm} - X_j^{n,\pm}).
$$

With obvious notation, we have that

$$
B_{n,m}^{\pm,k}(t) = 2^{-n/4} \sum_{i=1}^{\lfloor 2^{m/2}t \rfloor} \sum_{j=(i-1)2^{\frac{n-m}{2}}}^{i2^{\frac{n-m}{2}}-1} \Delta_{i,j}^{n,m} f(X^{\pm}) H_{2k-1}(X_{j+1}^{n,\pm} - X_j^{n,\pm}).
$$

It suffices to prove the convergence to 0 of $B_{n,m}^{+,k}(t)$, the proof for $B_{n,m}^{-,k}(t)$ being exactly the same. In fact, the reader can find this proof in the proof of $[5,$ $[5,$ Theorem 1, (1.15)] at page 1073.

(c) [\(5.4\)](#page-15-0) **converges to** 0 **in** $L^2(\Omega)$ **as** $n \to \infty$ **and then** $m \to \infty$.

It suffices to prove that for all $k \in \{2, ..., r\}$, $J_{n,m}^{\pm,k}(t) \stackrel{L^2}{\longrightarrow} 0$ as $n \to \infty$ and then $m \to \infty$, where $J_{n,m}^{\pm,k}(t)$ is defined as follows,

$$
J_{n,m}^{\pm,k}(t) = 2^{-n/4} \sum_{j=\lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}}}^{\lfloor 2^{n/2}t \rfloor -1} \frac{1}{2} (f(X_{j2^{-n/2}}^{\pm}) + f(X_{(j+1)2^{-n/2}}^{\pm})) H_{2k-1}(X_{j+1}^{n,\pm} - X_j^{n,\pm})
$$

$$
= 2^{-n/4} \sum_{j=\lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}}}^{\lfloor 2^{n/2}t \rfloor -1} \Theta_j^n f(X^{\pm}) H_{2k-1}(X_{j+1}^{n,\pm} - X_j^{n,\pm}),
$$

with obvious notation. We will only prove the convergence to 0 of $J_{n,m}^{+,k}(t)$, the proof for $J_{n,m}^{-,k}(t)$ being exactly the same. Using the relationship between Hermite polynomials and multiple stochastic integrals, namely $H_r(2^{nH/2}(X^+_{(j+1)2^{-n/2}} - X^+_{j2^{-n/2}})) =$ $2^{nrH/2}I_r(\delta_{(j+1)2^{-n/2}}^{\otimes r})$, we obtain, using [\(2.6\)](#page-7-0) as well,

$$
E[(J_{n,m}^{+,k}(t))^2] = \left| 2^{-n/2} 2^{nH(2k-1)} \sum_{j,j'= \lfloor 2^{m/2} t \rfloor 2}^{n \lfloor 2^{m/2} t \rfloor 2} \sum_{l=0}^{n \lfloor 2^{m/2} t \rfloor 2}^{n \lfloor 2^{m/2} t \rfloor 2} \left| l \binom{2k-1}{l}^2 \right|^2
$$

\n
$$
\times E\left[\Theta_j^n f(X^+) \Theta_{j'}^n f(X^+) I_{2(2k-1)-2l} \left(\delta_{(j+1)2^{-n/2}}^{\otimes (2k-1-l)} \otimes \delta_{(j'+1)2^{-n/2}}^{\otimes (2k-1-l)} \right) \right]
$$

\n
$$
\times \langle \delta_{(j+1)2^{-n/2}}; \delta_{(j'+1)2^{-n/2}} \rangle^l \right|
$$

\n
$$
\leq 2^{-n/2} 2^{nH(2k-1)} \sum_{j,j'= \lfloor 2^{m/2} t \rfloor 2}^{n \lfloor 2^{n/2} t \rfloor - 1} \sum_{l=0}^{2k-1} l! \binom{2k-1}{l}^2
$$

\n
$$
\times \left| E\left[\Theta_j^n f(X^+) \Theta_{j'}^n f(X^+) I_{2(2k-1)-2l} \left(\delta_{(j+1)2^{-n/2}}^{\otimes (2k-1-l)} \otimes \delta_{(j'+1)2^{-n/2}}^{\otimes (2k-1-l)} \right) \right] \right|
$$

\n
$$
\times \left| \langle \delta_{(j+1)2^{-n/2}}; \delta_{(j'+1)2^{-n/2}} \rangle \right|^l
$$

\n
$$
= \sum_{l=0}^{2k-1} l! \binom{2k-1}{l}^2 Q_{n,m}^{+,l}(t), \qquad (5.7)
$$

with obvious notation. Thanks both to the duality formula (2.5) and to (2.2) , we have

$$
d_n^{(+,l)}(j,j') := E\bigg[\Theta_j^n f(X^+) \Theta_{j'}^n f(X^+) I_{2(2k-1)-2l} \bigg(\delta_{(j+1)2^{-n/2}}^{\otimes (2k-1-l)} \otimes \delta_{(j'+1)2^{-n/2}}^{\otimes (2k-1-l)}\bigg)\bigg]
$$

\n
$$
= E\bigg[\bigg\langle D^{2(2k-1-l)}(\Theta_j^n f(X^+) \Theta_{j'}^n f(X^+))\,;\,\delta_{(j+1)2^{-n/2}}^{\otimes (2k-1-l)} \otimes \delta_{(j'+1)2^{-n/2}}^{\otimes (2k-1-l)}\bigg)\bigg]
$$

\n
$$
= \frac{1}{4} \sum_{a=0}^{2(2k-1-l)} \binom{2(2k-1-l)}{a} E\bigg[\bigg\langle \bigg(f^{(a)}\bigg(X_{j2^{-n/2}}^+\bigg) \epsilon_{j2^{-n/2}}^{\otimes a} + f^{(a)}\bigg(X_{(j+1)2^{-n/2}}^+\bigg)
$$

$$
\times \varepsilon_{(j+1)2^{-n/2}}^{\otimes a} \left(f^{(2(2k-1-l)-a)} \left(X^+_{j'2^{-n/2}} \right) \varepsilon_{j'2^{-n/2}}^{\otimes (2(2k-1-l)-a)} \\ + f^{(2(2k-1-l)-a)} \left(X^+_{(j'+1)2^{-n/2}} \right) \varepsilon_{(j'+1)2^{-n/2}}^{\otimes (2(2k-1-l)-a)} \left(\sum_{j'+1 \geq 2^{-n/2}}^{\infty} \varepsilon_{(j+1)2^{-n/2}}^{\otimes (2k-1-l)-a} \right) \left(\varepsilon_{j'+1}^{\otimes a} \right) \left(\v
$$

At this stage, the proof of the claim (**c**) is going to be different according to the value of *l*:

• If $l = 2k - 1$ in [\(5.7\)](#page-19-0) then

$$
Q_{n,m}^{+,2k-1}(t) = 2^{-n/2} 2^{nH(2k-1)} \sum_{j,j'= \lfloor 2^{m/2} t \rfloor 2^{\frac{n-m}{2}}}^{\lfloor 2^{n/2} t \rfloor -1} \Big| E[\Theta_j^n f(X^+) \Theta_{j'}^n f(X^+)]\Big|
$$

\n
$$
\times \Big| \langle \delta_{(j+1)2^{-n/2}}; \delta_{(j'+1)2^{-n/2}} \rangle \Big|^{2k-1}
$$

\n
$$
\leq C_f 2^{-n/2} 2^{nH(2k-1)} \sum_{j,j'= \lfloor 2^{m/2} t \rfloor 2^{\frac{n-m}{2}}}^{\lfloor 2^{n/2} t \rfloor -1} \Big| \langle \delta_{(j+1)2^{-n/2}}; \delta_{(j'+1)2^{-n/2}} \rangle \Big|^{2k-1}
$$

\n
$$
= C_f 2^{-n/2} \sum_{j,j'= \lfloor 2^{m/2} t \rfloor 2^{\frac{n-m}{2}}}^{\lfloor 2^{n/2} t \rfloor -1} \Big| \frac{1}{2} (|j-j'+1|^{2H} + |j-j'-1|^{2H} - 2|j-j'|^{2H}) \Big|^{2k-1}
$$

\n
$$
= C_f 2^{-n/2} \sum_{j= \lfloor 2^{m/2} t \rfloor 2^{\frac{n-m}{2}}}^{\lfloor 2^{n/2} t \rfloor -1} \sum_{j= \lfloor 2^{m/2} t \rfloor 2^{\frac{n-m}{2}}}^{\lfloor 2^{m/2} t \rfloor 2^{\frac{n-m}{2}}} \Big| \frac{1}{2} (|p+1|^{2H} + |p-1|^{2H} - 2|p|^{2H}) \Big|^{2k-1}
$$

\n
$$
= C_f 2^{-n/2} \sum_{j= \lfloor 2^{m/2} t \rfloor 2^{\frac{n-m}{2}}}^{\lfloor 2^{m/2} t \rfloor 2^{\frac{n-m}{2}}} p = j - \lfloor 2^{n/2} t \rfloor + 1} \Big| \frac{1}{2} (|p+1|^{2H} + |p-1|^{2H} - 2|p|^{2H}) \Big|^{2k-1}
$$

\n(5.8)

where we have the first inequality since *f* belongs to C_b^{∞} and the last one follows by the change of variable $p = j - j'$. Using the notation [\(2.16\)](#page-10-2), and by a Fubini argument, we get that the quantity given in (5.8) is equal to

$$
C_f 2^{-n/2} \sum_{p=\lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}} - 1}^{\lfloor 2^{n/2}t \rfloor 2^{\frac{n-m}{2}} - 1} |\rho(p)|^{2k-1} ((p + \lfloor 2^{n/2}t \rfloor) \wedge \lfloor 2^{n/2}t \rfloor
$$

$$
-(p + \lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}}) \vee \lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}}).
$$
 (5.9)

By separating the cases when $0 \leq p \leq \lfloor 2^{n/2} t \rfloor - \lfloor 2^{m/2} t \rfloor 2^{\frac{n-m}{2}} - 1$ or when $\lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}} - \lfloor 2^{n/2}t \rfloor + 1 \leq p < 0$ we deduce that

$$
0 \leq \left(\frac{(p + \lfloor 2^{n/2} t \rfloor)}{2^{n/2}} \wedge \frac{(\lfloor 2^{n/2} t \rfloor)}{2^{n/2}} - \frac{(p + \lfloor 2^{m/2} t \rfloor 2^{\frac{n-m}{2}})}{2^{n/2}} \vee \lfloor 2^{m/2} t \rfloor 2^{-m/2} \right)
$$

\n
$$
\leq \lfloor 2^{n/2} t \rfloor 2^{-n/2} - \lfloor 2^{m/2} t \rfloor 2^{-m/2} = \lfloor 2^{n/2} t \rfloor 2^{-n/2} - \lfloor 2^{m/2} t \rfloor 2^{-m/2} \rfloor
$$

\n
$$
\leq \left| \lfloor 2^{n/2} t \rfloor 2^{-n/2} - t \right| + \left| t - \lfloor 2^{m/2} t \rfloor 2^{-m/2} \right| \leq 2^{-n/2} + 2^{-m/2}.
$$

As a result, the quantity given in (5.9) is bounded by

$$
C_f \sum_{p \in \mathbb{Z}} |\rho(p)|^{2k-1} (2^{-n/2} + 2^{-m/2}),
$$

with $\sum_{p \in \mathbb{Z}} |\rho(p)|^{2k-1} < \infty$ (because $H < 1/2 \leq 1 - \frac{1}{4k-2}$). Finally, we have

$$
Q_{n,m}^{+,2k-1}(t) \leqslant C\big(2^{-n/2} + 2^{-m/2}\big). \tag{5.10}
$$

• Preparation to the cases $0 \le l \le 2k - 2$: In order to handle the terms $Q_{n,m}^{+,l}(t)$ whenever $0 \le l \le 2k - 2$, we will make use of the following decomposition:

$$
\left|d_n^{(+,l)}(j,j')\right| \leq \frac{1}{4}\left(\Omega_n^{(1,l)}(j,j') + \Omega_n^{(2,l)}(j,j') + \Omega_n^{(3,l)}(j,j') + \Omega_n^{(4,l)}(j,j')\right),\tag{5.11}
$$

where

$$
\Omega_{n}^{(1,l)}(j, j') = \sum_{a=0}^{2(2k-1-l)} \binom{2(2k-1-l)}{a} E\left[f^{(a)}(X_{j2^{-n/2}}^{+})f^{(2(2k-1-l)-a)}(X_{j'2^{-n/2}}^{+})\right] \\
\times \left| \left\langle \varepsilon_{j2^{-n/2}}^{\otimes a} \tilde{\otimes} \varepsilon_{j'2^{-n/2}}^{\otimes (2(2k-1-l)-a)} ; \delta_{(j+1)2^{-n/2}}^{\otimes (2k-1-l)} \otimes \delta_{(j'+1)2^{-n/2}}^{\otimes (2k-1-l)} \right\rangle \right| \\
\Omega_{n}^{(2,l)}(j, j') = \sum_{a=0}^{2(2k-1-l)} \binom{2(2k-1-l)}{a} E\left[f^{(a)}(X_{j2^{-n/2}}^{+})f^{(2(2k-1-l)-a)}(X_{(j'+1)2^{-n/2}}^{+})\right] \\
\times \left| \left\langle \varepsilon_{j2^{-n/2}}^{\otimes a} \tilde{\otimes} \varepsilon_{(j'+1)2^{-n/2}}^{\otimes (2(2k-1-l)-a)} ; \delta_{(j+1)2^{-n/2}}^{\otimes (2k-1-l)} \otimes \delta_{(j'+1)2^{-n/2}}^{\otimes (2k-1-l)} \right\rangle \right| \\
\Omega_{n}^{(3,l)}(j, j') = \sum_{a=0}^{2(2k-1-l)} \binom{2(2k-1-l)}{a} E\left[f^{(a)}(X_{(j+1)2^{-n/2}}^{+})f^{(2(2k-1-l)-a)}(X_{j'2^{-n/2}}^{+})\right] \\
\times \left| \left\langle \varepsilon_{(j+1)2^{-n/2}}^{\otimes a} \tilde{\otimes} \varepsilon_{j'2^{-n/2}}^{\otimes (2(2k-1-l)-a)} ; \delta_{(j+1)2^{-n/2}}^{\otimes (2k-1-l)} \otimes \delta_{(j'+1)2^{-n/2}}^{\otimes (2k-1-l)} \right\rangle \right| \\
\Omega_{n}^{(4,l)}(j, j') = \sum_{a=0}^{2(2k-1-l)} \binom{2(2r-1-l)}{a} E\left[f^{(a)}(X_{(j+1)2^{-n/2}}^{+})f^{(2(
$$

• For $1 \leq l \leq 2k - 2$: Since *f* belongs to C_b^{∞} and thanks to [\(2.7\)](#page-7-2), we deduce that

$$
d_n^{(+,l)}(j,j') \leqslant C \big(2^{-nH}\big)^{2(2k-1-l)}.
$$

As a consequence of this previous inequality, we have

$$
Q_{n,m}^{+,l}(t)
$$
\n
$$
\leq C(2^{-nH})^{2(2k-2)} 2^{-n/2} 2^{nH(2k-1)} \sum_{j,j'= \lfloor 2^{m/2}t \rfloor - 1}^{\lfloor 2^{n/2}t \rfloor - 1} |\langle \delta_{(j+1)2^{-n/2}}; \delta_{(j'+1)2^{-n/2}} \rangle|^l
$$
\n
$$
\leq C(2^{-nH})^{2(2k-2)} 2^{nH(2k-1)} 2^{-nHl} \Big(\sum_{p \in \mathbb{Z}} |\rho(p)|^l \Big) (2^{-n/2} + 2^{-m/2})
$$
\n
$$
\leq C 2^{-nH(2k-2)} (2^{-n/2} + 2^{-m/2}), \tag{5.12}
$$

where we have the second inequality by the same arguments that have been used previously in the case $l = 2k - 1$.

• For $l = 0$: Thanks to the decomposition (5.11) we get

$$
Q_{n,m}^{+,0}(t) \leq \frac{1}{4} 2^{-n/2} 2^{nH(2k-1)} \sum_{k'=1}^4 \sum_{j,j'= \lfloor 2^{m/2} t \rfloor 2^{\frac{n-m}{2}}}^{\lfloor 2^{n/2} t \rfloor -1} \Omega_n^{(k',0)}(j,j') \tag{5.13}
$$

We will study only the term corresponding to $\Omega_n^{(2,0)}(j, j')$ in [\(5.13\)](#page-22-0), which is representative to the difficulty. It is given by

$$
\frac{1}{4}2^{-n/2}2^{nH(2k-1)}\sum_{j,j'= \lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}}}^{\lfloor 2^{n/2}t \rfloor -1}\sum_{a=0}^{2(2k-1)}\binom{2(2k-1)}{a}\bigg|E\big[f^{(a)}\big(X_{j2^{-n/2}}^+\big)\bigg]\\\times f^{(2(2k-1)-a)}\big(X_{(j'+1)2^{-n/2}}^+\big)\bigg]\bigg|\bigg|\bigg\langle \varepsilon_{j2^{-n/2}}^{\otimes a}\tilde{\otimes} \varepsilon_{(j'+1)2^{-n/2}}^{\otimes 2(2k-1)-a)}; \delta_{(j+1)2^{-n/2}}^{\otimes (2k-1)}\otimes \delta_{(j'+1)2^{-n/2}}^{\otimes (2k-1)}\bigg\rangle\bigg|\bigg|\bigg\langle \varepsilon_{j2^{-n/2}}^{\otimes a}\tilde{\otimes} \varepsilon_{(j'+1)2^{-n/2}}^{\otimes (2k-1)}; \delta_{(j'+1)2^{-n/2}}^{\otimes (2k-1)-a}\big)\bigg|\bigg\langle \varepsilon_{j2^{-n/2}}^{\otimes a}\tilde{\otimes} \varepsilon_{(j'+1)2^{-n/2}}^{\otimes (2(2k-1)-a)}; \delta_{(j+1)2^{-n/2}}^{\otimes (2k-1)}\otimes \delta_{(j'+1)2^{-n/2}}^{\otimes (2k-1)}\big)\bigg|.
$$

We define $E_n^{(a,k)}(j, j') := |\langle \varepsilon_{j2^{-n/2}}^{\otimes a} \tilde{\otimes} \varepsilon_{(j'+1)2^{-n/2}}^{\otimes (2(2k-1)-a)}; \delta_{(j+1)2^{-n/2}}^{\otimes (2k-1)} \otimes \delta_{(j'+1)2^{-n/2}}^{\otimes (2k-1)})|$. By [\(2.7\)](#page-7-2), we thus get, with \tilde{c}_a some combinatorial constants,

$$
E_n^{(a,k)}(j,j') \leq \tilde{c}_a 2^{-nH(4k-3)} \left(\left| \langle \varepsilon_{j2^{-n/2}}; \delta_{(j+1)2^{-n/2}} \rangle \right| + \left| \langle \varepsilon_{j2^{-n/2}}; \delta_{(j'+1)2^{-n/2}} \rangle \right| + \left| \langle \varepsilon_{j'+1} \rangle \right| \right)
$$

+
$$
\left| \langle \varepsilon_{(j'+1)2^{-n/2}}; \delta_{(j+1)2^{-n/2}} \rangle \right| + \left| \langle \varepsilon_{(j'+1)2^{-n/2}}; \delta_{(j'+1)2^{-n/2}} \rangle \right| \right).
$$

For instance, we can write

$$
\sum_{j,j'= \lfloor 2^{m/2}t \rfloor 2}^{\lfloor 2^{n/2}t \rfloor -1} \left| \left\langle \varepsilon_{(j'+1)2^{-n/2}}; \delta_{(j+1)2^{-n/2}} \right\rangle \right|
$$
\n
$$
= 2^{-nH-1} \sum_{j,j'= \lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}}}^{\lfloor 2^{n/2}t \rfloor -1} \left| (j+1)^{2H} - j^{2H} + |j'-j+1|^{2H} - |j'-j|^{2H} \right|
$$
\n
$$
\leq 2^{-nH-1} \sum_{j,j'= \lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}}}^{\lfloor 2^{n/2}t \rfloor -1} \left((j+1)^{2H} - j^{2H} \right)
$$
\n
$$
+ 2^{-nH-1} \sum_{\lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}}}^{\lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}}} \leq j \leq j' \leq \lfloor 2^{n/2}t \rfloor -1} (j'-j+1)^{2H} - (j'-j)^{2H})
$$
\n
$$
+ 2^{-nH-1} \sum_{\lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}}}^{\lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}}} \leq j' < j \leq \lfloor 2^{n/2}t \rfloor -1} \left((j-j')^{2H} - (j-j'-1)^{2H} \right)
$$
\n
$$
\leq \frac{3}{2} 2^{-nH} \left(\lfloor 2^{n/2}t \rfloor - \lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}} \right) \lfloor 2^{n/2}t \rfloor^{2H} \leq \frac{3t^{2H}}{2} \left(2^{n/2}t - \lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}} \right).
$$

Similarly,

$$
\sum_{j,j'= \lfloor 2^{m/2}t \rfloor 2}^{\lfloor 2^{n/2}t \rfloor -1} |\langle \varepsilon_{j2^{-n/2}}; \delta_{(j+1)2^{-n/2}} \rangle| \leq \frac{3t^{2H}}{2} (2^{n/2}t - \lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}});
$$

\n
$$
\sum_{j,j'= \lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}}}^{\lfloor 2^{n/2}t \rfloor -1} |\langle \varepsilon_{j2^{-n/2}}; \delta_{(j'+1)2^{-n/2}} \rangle| \leq \frac{3t^{2H}}{2} (2^{n/2}t - \lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}});
$$

\n
$$
\sum_{j,j'= \lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}}}^{\lfloor 2^{n/2}t \rfloor -1} |\langle \varepsilon_{(j'+1)2^{-n/2}}; \delta_{(j'+1)2^{-n/2}} \rangle| \leq \frac{3t^{2H}}{2} (2^{n/2}t - \lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}}).
$$

\n
$$
_{j,j'= \lfloor 2^{m/2}t \rfloor 2^{\frac{n-m}{2}}}.
$$

As a consequence, we deduce

$$
Q_{n,m}^{(+,0)}(t) \leq C 2^{-nH(2k-2)} \left(t - \lfloor 2^{m/2} t \rfloor 2^{\frac{-m}{2}} \right) \leq C 2^{-nH(2k-2)} 2^{-m/2}.
$$
 (5.14)

Combining (5.10) , (5.12) and (5.14) finally shows

$$
E\left[\left(J_{n,m}^{+,k}(t)\right)^2\right] \leq C\left(2^{-n/2} + 2^{-m/2} + 2^{-nH(2k-2)}\left(2^{-n/2} + 2^{-m/2}\right) + 2^{-nH(2k-2)}2^{-m/2}\right).
$$

 $\underline{\textcircled{\tiny 2}}$ Springer

So, we deduce that $J_{n,m}^{+,k}(t)$ converges to 0 in $L^2(\Omega)$ as $n \to \infty$ and then $m \to \infty$.
Finally, thanks to (a), (b) and (c), (5.2) holds true. Finally, thanks to (a), (b) and (c), (5.2) holds true.

5.2 Step 2: Limit of $2^{-n/4}W_n^{(1)}(f, Y_{T_{\lfloor 2^n t \rfloor, n}})$

Thanks to [\(1.5\)](#page-3-0), for $H > \frac{1}{6}$, $2^{-\frac{nH}{2}} W_n^{(1)}(f, Y_{T_{\lfloor 2^n t \rfloor, n}}) \xrightarrow[n \to \infty]{P} \int_0^{Y_t} f(X_s) d^\circ X_s$. Thus, since $H < \frac{1}{2}$, we deduce that

$$
2^{-n/4} W_n^{(1)}\left(f, Y_{T_{\lfloor 2^n t \rfloor, n}}\right) \xrightarrow[n \to \infty]{P} 0. \tag{5.15}
$$

5.3 Step 3: Moment bounds for $W_n^{(2r-1)}(f, \cdot)$

We recall the following result from [\[8\]](#page-50-5). Fix an integer $r \geq 1$ as well as a function *f* ∈ C_b^{∞} . There exists a constant *c* > 0 such that, for all real numbers *s* < *t* and all *n* ∈ ^N,

$$
E\big[\big(W_n^{(2r-1)}(f,t)-W_n^{(2r-1)}(f,s)\big)^2\big]\leqslant c \max\big(|s|^{2H},|t|^{2H}\big)\big(|t-s|2^{n/2}+1\big).
$$

5.4 Step 4: Last step in the proof of [\(1.7\)](#page-3-2)

Following [\[2](#page-50-0)], we introduce the following natural definition for two-sided stochastic integrals: for $u \in \mathbb{R}$, let

$$
\int_0^u f(X_s) dW_s = \begin{cases} \int_0^u f(X_s^+) dW_s^+ & \text{if } u \ge 0 \\ \int_0^{-u} f(X_s^-) dW_s^- & \text{if } u < 0 \end{cases},
$$
(5.16)

where *W*+ and *W*− are defined in Proposition [5.1,](#page-14-2) *X*+ and *X*− are defined in Sect. [4,](#page-12-2) and $\int_0^1 f(X_s^{\pm}) dW_s^{\pm}$ must be understood in the Wiener–Itô sense.

Using [\(3.5\)](#page-12-5), [\(5.15\)](#page-24-1), the conclusion of Step 3 (to pass from $Y_{T_{2}n_{t},n}$ to Y_t) and since by [\[2,](#page-50-0) Lemma 2.3], we have $Y_{T_{\lfloor 2^n t \rfloor, n}} \xrightarrow{L^2} Y_t$ as $n \to \infty$, we deduce that the limit of $2^{-n/4}V_n^{(2r-1)}(f, t)$ is the same as that of

$$
2^{-n/4} \sum_{l=2}^{r} \kappa_{r,l} W_n^{(2l-1)}(f, Y_t).
$$

Thus, the proof of (1.7) follows directly from (5.2) , the definition of the integral in [\(5.16\)](#page-24-0), as well as the fact that *X*, *W* and *Y* are independent.

6 Proof of [\(1.8\)](#page-3-1)

We suppose that $H > \frac{1}{2}$. The proof of [\(1.8\)](#page-3-1) will be done in several steps:

6.1 Step 1: Limits and moment bounds for $W_n^{(2i-1)}(f, \cdot)$

We recall the following Itô-type formula from [\[5](#page-50-2), Theorem 4] (see also [\[10,](#page-50-7) Theorem 1.3] for an extension of this formula to the bi-dimensional case). For all $t \in \mathbb{R}$, the following change-of-variable formula holds true for $H > \frac{1}{2}$

$$
F(X_t) - F(0) = \int_0^t f(X_s) d^\circ X_s, \tag{6.1}
$$

where *F* is a primitive of *f* and $\int_0^t f(X_s) d^\circ X_s$ is the Stratonovich integral of $f(X)$ with respect to *X* defined as the limit in probability of $2^{-\frac{nH}{2}} W_n^{(1)}(f, t)$ as $n \to \infty$.

For the rest of the proof, we suppose that $f \in C_b^{\infty}$. The following proposition will play a pivotal role in the proof of [\(1.8\)](#page-3-1).

Proposition 6.1 *There exists a positive constant C, independent of n and t, such that for all* $i \geqslant 1$ *and* $t \in \mathbb{R}$ *, we have*

$$
E\left[\left(2^{-\frac{nH}{2}}W_n^{(2i-1)}(f,t)\right)^2\right] \leqslant C\,\psi(t,H,i,n),\tag{6.2}
$$

where, we have

$$
\psi(t, H, i, n) := |t|^{(2H-1)(4i-3)} |t|^{2H+1} 2^{-n(2i-2)(1-H)} \n+ C \sum_{a=1}^{2i-2} \left(\left[|t| (1+n) + t^2 \right] |t|^{2(2H-1)(2i-1-a)} 2^{-\frac{n}{2}(2H-1)} 2^{-n(1-H)} [2i-1-a] \right. \n+ |t|^{2(1-(1-H)a)} |t|^{2(2H-1)(2i-1-a)} 2^{-n(1-H)[2i-2]} 1_{\{H>1-\frac{1}{2a}\}} \n+ C |t|^{2(1-(1-H)(2i-1))} 2^{-n(1-H)(2i-2)} 1_{\{H>1-\frac{1}{(4i-2)}\}}.
$$

Proof Set $\phi_n(j, j') := \Delta_{j,n} f(X) \Delta_{j',n} f(X)$, where we recall that $\Delta_{j,n} f(X) :=$ $\frac{1}{2}(f(X_{j2^{-n/2}}) + f(X_{(j+1)2^{-n/2}})$. Fix *t* ≥ 0 (the proof in the case *t* < 0 is similar), for all $i \geqslant 1$, we have

$$
E\left[\left(2^{-\frac{nH}{2}}W_n^{(2i-1)}(f,t)\right)^2\right] = E\left[\left(2^{-\frac{nH}{2}}W_{+,n}^{(2i-1)}(f,t)\right)^2\right]
$$

= $2^{-nH}\sum_{j,j'=0}^{\lfloor 2\frac{n}{2}t \rfloor - 1} E\left(\phi_n(j,j')H_{2i-1}\left(X_{j+1}^{n,+} - X_j^{n,+}\right)H_{2i-1}\left(X_{j'+1}^{n,+} - X_{j'}^{n,+}\right)\right)$

 \mathcal{L} Springer

$$
= 2^{-nH(1-(2i-1))} \sum_{j,j'=0}^{[2\frac{n}{2}i] - 1} E\left(\phi_n(j, j') I_{2i-1}(\delta_{(j+1)2^{-n/2}}^{\otimes 2i-1}) I_{2i-1}(\delta_{(j'+1)2^{-n/2}}^{\otimes 2i-1})\right)
$$

\n
$$
= 2^{-nH(2-2i)} \sum_{a=0}^{2i-1} a! \binom{2i-1}{a} \sum_{j,j'=0}^{[2\frac{n}{2}i] - 1} E\left(\phi_n(j, j')\right)
$$

\n
$$
\times I_{4i-2-2a}(\delta_{(j+1)2^{-n/2}}^{\otimes 2i-1-a} \otimes \delta_{(j'+1)2^{-n/2}}^{\otimes 2i-1-a}) (\delta_{(j+1)2^{-n/2}}, \delta_{(j'+1)2^{-n/2}})^a
$$

\n
$$
= 2^{-nH(2-2i)} \sum_{a=0}^{2i-1} a! \binom{2i-1}{a} \sum_{j,j'=0}^{[2\frac{n}{2}i] - 1} E\left(\left(D^{4i-2-2a}(\phi_n(j, j')),
$$

\n
$$
\delta_{(j+1)2^{-n/2}}^{\otimes 2i-1-a} \otimes \delta_{(j'+1)2^{-n/2}}^{\otimes 2i-1-a}\right) (\delta_{(j+1)2^{-n/2}}, \delta_{(j'+1)2^{-n/2}})^a
$$

\n
$$
= \sum_{a=0}^{2i-1} a! \binom{2i-1}{a}^2 Q_n^{(i,a)}(t), \qquad (6.3)
$$

with obvious notation at the last equality and with the third equality following from (2.4) , the fourth one from (2.6) and the fifth one from (2.5) . We have the following estimates.

• Case $a = 2i - 1$

$$
\left| Q_n^{(i,2i-1)}(t) \right| \leq 2^{-nH(2-2i)} \sum_{j,j'=0}^{\lfloor 2^{\frac{n}{2}}t \rfloor - 1} E(|\phi_n(j,j')|)
$$

$$
\times \left| \langle \delta_{(j+1)2^{-n/2}}, \delta_{(j'+1)2^{-n/2}} \rangle \right|^{2i-1}
$$

$$
\leq C 2^{-nH(2-2i)} \sum_{j,j'=0}^{\lfloor 2^{\frac{n}{2}}t \rfloor - 1} \left| \langle \delta_{(j+1)2^{-n/2}}, \delta_{(j'+1)2^{-n/2}} \rangle \right|^{2i-1}.
$$

Now, we distinguish three cases: (a) If $H < 1 - \frac{1}{(4i-2)}$: by [\(2.10\)](#page-8-0) we have

$$
\left| \mathcal{Q}_n^{(i,2i-1)}(t) \right| \leq C \ t \ 2^{-nH(2-2i)} \ 2^{n\left(\frac{1}{2}-(2i-1)H\right)} = C \ t \ 2^{-n\left(H-\frac{1}{2}\right)}.
$$

(b) If $H = 1 - \frac{1}{(4i-2)}$: by [\(2.11\)](#page-8-1) we have

$$
\left| \mathcal{Q}_n^{(i,2i-1)}(t) \right| \leq C \left[t(1+n) + t^2 \right] 2^{-nH(2-2i)} 2^{n \left(\frac{1}{2} - (2i-1)H \right)}
$$

= $C \left[t(1+n) + t^2 \right] 2^{-n \left(H - \frac{1}{2} \right)}.$

(c) If $H > 1 - \frac{1}{(4i-2)}$: by [\(2.12\)](#page-8-2) we have

$$
\left| \mathcal{Q}_n^{(i,2i-1)}(t) \right| \leq C \ t \ 2^{-nH(2-2i)} \ 2^{n\left(\frac{1}{2} - (2i-1)H\right)} \\
+ C \ t^{2 - (2-2H)(2i-1)} \ 2^{-nH(2-2i)} \ 2^{n(1-(2i-1))} \\
= C \ t \ 2^{-n(H-\frac{1}{2})} + C \ t^{2(1-(1-H)(2i-1))} \ 2^{-n(1-H)(2i-2)}.
$$

So, we deduce that

$$
\left| \mathcal{Q}_n^{(i,2i-1)}(t) \right| \leq C \left[|t| (1+n) + t^2 \right] 2^{-n \left(H - \frac{1}{2} \right)} + C \left| t \right|^{2 \left(1 - (1-H)(2i-1) \right)} 2^{-n(1-H)(2i-2)} \mathbf{1}_{\left\{ H > 1 - \frac{1}{(4i-2)} \right\}}
$$
\n(6.4)

• Preparation to the cases where $0 \le a \le 2i - 2$ Thanks to (2.2) we have

$$
D^{4i-2-2a}(\phi_n(j, j')) = D^{4i-2-2a}(\Delta_{j,n}f(X)\Delta_{j',n}f(X)) \leq C \sum_{l=0}^{4i-2-2a}
$$
\n
$$
\left(f^{(l)}(X_{j2-n/2})\varepsilon_{j2-n/2}^{\otimes l} + f^{(l)}(X_{(j+1)2-n/2})\varepsilon_{(j+1)2-n/2}^{\otimes l}\right)
$$
\n
$$
\left(f^{(4i-2-2a-l)}(X_{j'2-n/2})\varepsilon_{j'2-n/2}^{\otimes 4i-2-2a-l} + f^{(4i-2-2a-l)}(X_{(j'+1)2-n/2})\varepsilon_{(j'+1)2-n/2}^{\otimes 4i-2-2a-l}\right)
$$
\n
$$
= C \sum_{l=0}^{4i-2-2a} (f^{(l)}(X_{j2-n/2})f^{(4i-2-2a-l)}(X_{j'2-n/2})\varepsilon_{j2-n/2}^{\otimes l}\delta\varepsilon_{j'2-n/2}^{\otimes 4i-2-2a-l} + f^{(l)}(X_{j2-n/2})
$$
\n
$$
\times f^{(4i-2-2a-l)}(X_{(j'+1)2-n/2})\varepsilon_{j2-n/2}^{\otimes l}\delta\varepsilon_{(j'+1)2-n/2}^{\otimes 4i-2-2a-l}
$$
\n
$$
+ f^{(l)}(X_{(j+1)2-n/2})f^{(4i-2-2a-l)}(X_{j'2-n/2})
$$
\n
$$
\times \varepsilon_{(j+1)2-n/2}^{\otimes l}\delta\varepsilon_{j'2-n/2}^{\otimes 4i-2-2a-l} + f^{(l)}(X_{(j+1)2-n/2})f^{(4i-2-2a-l)}(X_{(j'+1)2-n/2})\varepsilon_{(j+1)2-n/2}^{\otimes l}
$$
\n
$$
\varepsilon_{(j'+1)2-n/2}^{\otimes 4i-2-2a-l}\right) (6.5)
$$

So, we have

• Case
$$
1 \leq a \leq 2i - 2
$$

$$
\left| \mathcal{Q}_{n}^{(i,a)}(t) \right|
$$

\n
$$
\leq C2^{-nH(2-2i)} \sum_{l=0}^{4i-2-2a} \sum_{j,j'=0}^{2^{n} \sum_{j=0}^{n} j} \sum_{j,j'=0}^{2^{n} \sum_{j'=0}^{n} j} \left| \left(\epsilon \delta^{(i)}_{j'2^{-n/2}} + \epsilon \delta^{(i-2-2a-1)}_{(j'+1)2^{-n/2}} + \epsilon \delta^{(i-2-2a-1)}_{(j'+1)2^{-n/2}} \right) \right|
$$

$$
\delta_{(j+1)2^{-n/2}}^{\otimes 2i-1-a} \otimes \delta_{(j'+1)2^{-n/2}}^{\otimes 2i-1-a} \left\| \left| \left\langle \delta_{(j+1)2^{-n/2}}, \delta_{(j'+1)2^{-n/2}} \right\rangle \right|^{a} \right\|
$$

$$
\leq C \ t^{(2H-1)(4i-2-2a)} 2^{-nH(2-2i)} (2^{-\frac{n}{2}})^{4i-2-2a}
$$

$$
\times \sum_{j,j'=0}^{\lfloor 2^{\frac{n}{2}} t \rfloor -1} \left| \left\langle \delta_{(j+1)2^{-n/2}}, \delta_{(j'+1)2^{-n/2}} \right\rangle \right|^{a},
$$

where we have the first inequality because $f \in C_b^{\infty}$ and thanks to [\(6.5\)](#page-27-0), and the second one thanks to (2.8) and (2.9) . Now, we distinguish three cases: (a) If $H < 1 - \frac{1}{2a}$: by [\(2.10\)](#page-8-0) we have

$$
\left| \mathcal{Q}_n^{(i,a)}(t) \right| \leq C \ t \ t^{(2H-1)(4i-2-2a)} \ 2^{-nH(2-2i)} 2^{-n(2i-1-a)} \ 2^{n\left(\frac{1}{2}-aH\right)}
$$
\n
$$
= C \ t^{2(2H-1)(2i-1-a)+1} \ 2^{-\frac{n}{2}(2H-1)} \ 2^{-n(1-H)[2i-1-a]}.
$$

(b) If $H = 1 - \frac{1}{2a}$: by [\(2.11\)](#page-8-1) we have

$$
\left| \mathcal{Q}_n^{(i,a)}(t) \right|
$$

\n
$$
\leq C \left[t(1+n) + t^2 \right] t^{(2H-1)(4i-2-2a)} 2^{-nH(2-2i)} 2^{-n(2i-1-a)} 2^{n(\frac{1}{2}-aH)}
$$

\n
$$
= C \left[t(1+n) + t^2 \right] t^{2(2H-1)(2i-1-a)} 2^{-\frac{n}{2}(2H-1)} 2^{-n(1-H)[2i-1-a]}.
$$

(c) If $H > 1 - \frac{1}{2a}$: by [\(2.12\)](#page-8-2) we have

$$
\left| \mathcal{Q}_n^{(i,a)}(t) \right| \leq C \ t \ t^{(2H-1)(4i-2-2a)} \ 2^{-nH(2-2i)} 2^{-n(2i-1-a)} \ 2^{n\left(\frac{1}{2}-aH\right)} \\
+ C \ t^{2-(2-2H)a} \ t^{(2H-1)(4i-2-2a)} \ 2^{-nH(2-2i)} 2^{-n(2i-1-a)} \ 2^{n(1-a)} \\
= C \ t^{2(2H-1)(2i-1-a)+1} \ 2^{-\frac{n}{2}(2H-1)} \ 2^{-n(1-H)[2i-1-a]} \\
+ C \ t^{2(1-(1-H)a)} \ t^{2(2H-1)(2i-1-a)} \ 2^{-n(1-H)[2i-2]}.
$$

So, we deduce that

$$
\left| \mathcal{Q}_n^{(i,a)}(t) \right| \leq C \left[\left| t \right| (1+n) + t^2 \right] \left| t \right|^{2(2H-1)(2i-1-a)} 2^{-\frac{n}{2}(2H-1)} 2^{-n(1-H)} \left[2i-1-a \right] + C \left| t \right|^{2(1-(1-H)a)} \left| t \right|^{2(2H-1)(2i-1-a)} 2^{-n(1-H)} \left[2i-2 \right] \mathbf{1}_{\left\{ H > 1 - \frac{1}{2a} \right\}}
$$
\n
$$
(6.6)
$$

• Case $a = 0$

$$
Q_n^{(i,0)}(t) = 2^{-nH(2-2i)} \sum_{j,j'=0}^{\lfloor 2^{\frac{n}{2}}t \rfloor - 1} E\left(\left\langle D^{4i-2}(\phi_n(j,j')) , \delta_{(j+1)2^{-n/2}}^{\otimes 2i-1} \otimes \delta_{(j'+1)2^{-n/2}}^{\otimes 2i-1} \right\rangle\right).
$$

By (6.5) we deduce that

$$
\left| \mathcal{Q}_{n}^{(i,0)}(t) \right| \leq C2^{-nH(2-2i)} \sum_{l=0}^{4i-2} \sum_{j,j'=0}^{\lfloor 2\frac{n}{2}t \rfloor - 1} \left| \left\langle \left(\varepsilon_{j2-n/2}^{\otimes l} + \varepsilon_{(j+1)2^{-n/2}}^{\otimes l} \right) \right. \right|
$$

$$
\tilde{\otimes} \left(\varepsilon_{j'2-n/2}^{\otimes 4i-2-l} + \varepsilon_{(j'+1)2^{-n/2}}^{\otimes 4i-2-l} \right), \delta_{(j+1)2-n/2}^{\otimes 2i-1} \otimes \delta_{(j'+1)2^{-n/2}}^{\otimes 2i-1} \right|.
$$
 (6.7)

We define

$$
E_n^{(i,l)}(j, j') := \left| \left\langle \left(\varepsilon_{j2^{-n/2}}^{\otimes l} + \varepsilon_{(j+1)2^{-n/2}}^{\otimes l} \right) \tilde{\otimes} \left(\varepsilon_{j'2^{-n/2}}^{\otimes 4i - 2 - l} + \varepsilon_{(j'+1)2^{-n/2}}^{\otimes 4i - 2 - l} \right), \right. \\ \left. \delta_{(j+1)2^{-n/2}}^{\otimes 2i - 1} \otimes \delta_{(j'+1)2^{-n/2}}^{\otimes 2i - 1} \right|.
$$

Observe that by (2.8) and (2.9) , we have

$$
E_n^{(i,l)}(j, j') \le Ct^{(2H-1)(4i-3)}(2^{-\frac{n}{2}})^{4i-3} \left(\left| \left(\varepsilon_{j2^{-n/2}} + \varepsilon_{(j+1)2^{-n/2}} \right), \delta_{(j'+1)2^{-n/2}} \right| \right) + \left| \left| \left(\varepsilon_{j'2^{-n/2}} + \varepsilon_{(j'+1)2^{-n/2}} \right), \delta_{(j+1)2^{-n/2}} \right| \right| + \left| \left(\varepsilon_{j2^{-n/2}} + \varepsilon_{(j+1)2^{-n/2}} \right), \delta_{(j+1)2^{-n/2}} \right| + \left| \left| \left(\varepsilon_{j'2^{-n/2}} + \varepsilon_{(j'+1)2^{-n/2}} \right), \delta_{(j'+1)2^{-n/2}} \right| \right|.
$$

By combining these previous estimates with (6.7) , (2.13) and (2.14) , we deduce that

$$
\left| \mathcal{Q}_n^{(i,0)}(t) \right| \leq C |t|^{(2H-1)(4i-3)} |t|^{2H+1} 2^{-nH(2-2i)} \left(2^{-\frac{n}{2}} \right)^{4i-3} 2^{\frac{n}{2}}
$$

= C |t|^{(2H-1)(4i-3)} |t|^{2H+1} 2^{-n(2i-2)(1-H)}. (6.8)

By combining (6.3) with (6.4) , (6.6) and (6.8) , we deduce that (6.2) holds true.

 \Box

6.2 Step 2: Limit of $2^{-\frac{nH}{2}} W_n^{(2i-1)}(f, Y_{T_{\lfloor 2^n t \rfloor, n}})$

Let us prove that for $i \geq 2$,

$$
2^{-\frac{nH}{2}} W_n^{(2i-1)}\left(f, Y_{T_{\lfloor 2^n t \rfloor, n}}\right) \xrightarrow[n \to \infty]{L^2} 0. \tag{6.9}
$$

Due to the independence between *X* and *Y* and thanks to [\(6.2\)](#page-25-2), we have

$$
E\big[\big(2^{-\frac{nH}{2}}W_n^{(2i-1)}(f, Y_{T_{\lfloor 2^n t \rfloor,n}})\big)^2\big] = E\big[E\big[\big(2^{-\frac{nH}{2}}W_n^{(2i-1)}(f, Y_{T_{\lfloor 2^n t \rfloor,n}})\big)^2\big|Y\big]\big] \leqslant CE\big[\psi\big(Y_{T_{\lfloor 2^n t \rfloor,n}}, H, i, n\big)\big].
$$

It suffices to prove that

$$
E\big[\psi\big(Y_{T_{\lfloor 2^n t \rfloor, n}}, H, i, n\big)\big] \longrightarrow_{n \to \infty} 0. \tag{6.10}
$$

For simplicity, we write $Y_n(t)$ instead of $Y_{T_1, n_{t+n}}$. We have

$$
E[\psi(Y_n(t), H, i, n)] = E[|Y_n(t)|^{(2H-1)(4i-3)} |Y_n(t)|^{2H+1}] 2^{-n(2i-2)(1-H)}
$$

+
$$
C \sum_{a=1}^{2i-2} \left(E[[|Y_n(t)|(1+n) + (Y_n(t))^2] |Y_n(t)|^{2(2H-1)(2i-1-a)} \right)
$$

+
$$
|Y_n(t)|^{2(2H-1)(2i-1-a)} |2^{-\frac{n}{2}(2H-1)} 2^{-n(1-H)[2i-1-a]}
$$

+
$$
E[|Y_n(t)|^{2(1-(1-H)a)} |Y_n(t)|^{2(2H-1)(2i-1-a)} |2^{-n(1-H)[2i-2]} \mathbf{1}_{\{H>1-\frac{1}{2a}\}} \right)
$$

+
$$
CE[|Y_n(t)|(1+n) + (Y_n(t))^2] 2^{-n(H-\frac{1}{2})}
$$

+
$$
CE[|Y_n(t)|^{2(1-(1-H)(2i-1))}] 2^{-n(1-H)(2i-2)}
$$

$$
\times \mathbf{1}_{\{H>1-\frac{1}{(4i-2)}\}}.
$$
 (6.11)

Let us prove that, for all $1 \le a \le 2i - 2$

$$
E[|Y_n(t)|^{2(1-(1-H)a)} |Y_n(t)|^{2(2H-1)(2i-1-a)}] 2^{-n(1-H)[2i-2]} \mathbf{1}_{\{H>1-\frac{1}{2a}\}} \underset{n\to\infty}{\longrightarrow} 0,
$$

(the proof of the convergence to 0 of the other terms in (6.11) is similar). In fact, by Hölder inequality, we have

$$
E[|Y_n(t)|^{2(1-(1-H)a)} |Y_n(t)|^{2(2H-1)(2i-1-a)}\mathbf{1}_{\{H>1-\frac{1}{2a}\}}\n\leq E[|Y_n(t)|^{4(1-(1-H)a)} g]^{\frac{1}{2}} E[|Y_n(t)|^{4(2H-1)(2i-1-a)}]^{\frac{1}{2}} \mathbf{1}_{\{H>1-\frac{1}{2a}\}}.
$$

Observe that for $H > 1 - \frac{1}{2a}$ we have $2 < 4(1 - (1 - H)a) < 4$. So, by Hölder inequality, we deduce that $E[|Y_n(t)|^{4(1-(1-H)a)}]^{\frac{1}{2}} \le E[(Y_n(t))^4]^{\frac{1}{2}(1-(1-H)a)} \le C$ for all $n \in \mathbb{N}$, where we have the last inequality by Lemma [2.2.](#page-8-4) On the other hand since $H > \frac{1}{2}$ we have $4(2H - 1)(2i - 1 - a) > 0$, and it is clear that there exists an integer $k_0 > 1$ such that $\frac{2k_0}{4(2H-1)(2i-1-a)} > 1$. Thus, by Hölder inequality, we have $E[|Y_n(t)|^{4(2H-1)(2i-1-a)}]^{\frac{1}{2}} \le E[(Y_n(t))^{2k_0}]^{\frac{(2H-1)(2i-1-a)}{k_0}} \le C$ for all $n \in \mathbb{N}$, where we have the last inequality by Lemma [2.2.](#page-8-4) Finally, we deduce that

$$
E[|Y_n(t)|^{2(1-(1-H)a)} |Y_n(t)|^{2(2H-1)(2i-1-a)} 2^{-n(1-H)[2i-2]} \mathbf{1}_{\{H>1-\frac{1}{2a}\}}\n\leq C2^{-n(1-H)[2i-2]} \to 0.
$$

Thus, (6.10) holds true.

6.3 Step 3: Limit of $V_n^{(1)}(f, \cdot)$

Recall that for all $t \geqslant 0$ and $r \geqslant 1$,

$$
V_n^{(r)}(f,t) := \sum_{k=0}^{\lfloor 2^n t \rfloor -1} \frac{1}{2} (f(Z_{T_{k,n}}) + f(Z_{T_{k+1,n}})) [(2^{\frac{nH}{2}} (Z_{T_{k+1,n}} - Z_{T_{k,n}}))^r - \mu_r].
$$

We claim that

$$
2^{-\frac{nH}{2}}V_n^{(1)}(f,t) \xrightarrow[n \to \infty]{L^2} \int_0^{Y_t} f(X_s) d^\circ X_s. \tag{6.12}
$$

We will make use of the following Taylor's type formula (if interested the reader can find a proof of this formula, e.g., in [\[1\]](#page-50-9) page 1788). Fix $f \in C_b^{\infty}$, let *F* be a primitive of *f*. For any *a*, $b \in \mathbb{R}$,

$$
F(b) - F(a) = \frac{1}{2}(f(a) + f(b))(b - a) - \frac{1}{24}(f''(a) + f''(b))(b - a)^3
$$

+ $O(|b - a|^5)$,

where $|O(|b - a|^5)| \leq C_F |b - a|^5$, C_F being a constant depending only on *F*. One can thus write

$$
F(Z_{T_{\lfloor 2^n t \rfloor,n}}) - F(0) = \sum_{k=0}^{\lfloor 2^n t \rfloor - 1} (F(Z_{T_{k+1,n}}) - F(Z_{T_{k,n}}))
$$

= $2^{-\frac{nH}{2}} V_n^{(1)}(f, t) - \frac{2^{-\frac{3nH}{2}}}{12} V_n^{(3)}(f'', t) + \sum_{k=0}^{\lfloor 2^n t \rfloor - 1} O(|Z_{T_{k+1,n}} - Z_{T_{k,n}}|^5).$ (6.13)

Thanks to the Minkowski inequality, we have

$$
\left\|\sum_{k=0}^{\lfloor 2^n t\rfloor-1} O(|Z_{T_{k+1,n}}-Z_{T_{k,n}}|^5)\right\|_2 \leqslant C_F \sum_{k=0}^{\lfloor 2^n t\rfloor-1} \left\||Z_{T_{k+1,n}}-Z_{T_{k,n}}|^5\right\|_2.
$$

Due to the independence between *X* and *Y* , the self-similarity and the stationarity of increments of *X*, we have

$$
\| |Z_{T_{k+1,n}} - Z_{T_{k,n}}|^{5} \|_{2} = (E[(Z_{T_{k+1,n}} - Z_{T_{k,n}})^{10}])^{\frac{1}{2}} = (E[E[(Z_{T_{k+1,n}} - Z_{T_{k,n}})^{10} | Y]])^{\frac{1}{2}}
$$

= $(2^{-5nH} E[X_{1}^{10}])^{\frac{1}{2}} = 2^{-\frac{5nH}{2}} \|X_{1}^{5}\|_{2}.$

Finally, thanks to the previous calculation and since $H > \frac{1}{2}$, we deduce that

$$
\|\sum_{k=0}^{\lfloor 2^n t \rfloor - 1} O(|Z_{T_{k+1,n}} - Z_{T_{k,n}}|^5)\|_2 \leq C_F \sum_{k=0}^{\lfloor 2^n t \rfloor - 1} 2^{-\frac{5nH}{2}} \|X_1^5\|_2
$$

\$\leq C_F \|X_1^5\|_2 t 2^{n(1-\frac{5H}{2})} \to 0. \tag{6.14}

By [\(3.5\)](#page-12-5), we have $2^{-\frac{3nH}{2}}V_n^{(3)}(f,t) = 2^{-\frac{3nH}{2}}W_n^{(3)}(f,Y_{T_{\lfloor 2^n t \rfloor,n}}) + 32^{-\frac{3nH}{2}}W_n^{(1)}(f,t)$ *Y*_{$T_{[2^{n}t],n}$). By [\(6.9\)](#page-29-2), we have that $2^{-\frac{3nH}{2}}W_n^{(3)}(f, Y_{T_{[2^{n}t],n}})$ converges to 0 in L^2 as} $n \to \infty$. By [\(6.2\)](#page-25-2) and thanks to the independence of *X* and *Y*, we deduce that

$$
E\left[\left(2^{-\frac{3nH}{2}}W_n^{(1)}\left(f, Y_{T_{\lfloor 2^n t \rfloor, n}}\right)\right)^2\right] \n\leq C2^{-2nH}\left(2^{-n\left(H-\frac{1}{2}\right)}\left[(1+n)E\left[\left|Y_{T_{\lfloor 2^n t \rfloor, n}}\right|\right]+E\left[\left(Y_{T_{\lfloor 2^n t \rfloor, n}}\right)^2\right]\right] \n+ E\left[\left|Y_{T_{\lfloor 2^n t \rfloor, n}}\right|^{2H}\right]+E\left[\left|Y_{T_{\lfloor 2^n t \rfloor, n}}\right|^{4H}\right]\right),
$$

by Hölder inequality and thanks to Lemma [2.2,](#page-8-4) we can prove easily that the last quantity converges to 0 as $n \to \infty$. Finally, we get

$$
2^{-\frac{3nH}{2}}V_n^{(3)}(f,t) \xrightarrow[n \to \infty]{L^2} 0.
$$
 (6.15)

Now, let us prove that

$$
F(Z_{T_{\lfloor 2^n t \rfloor, n}}) - F(0) \xrightarrow[n \to \infty]{L^2} F(Z_t) - F(0). \tag{6.16}
$$

In fact, as it has been mentioned in the introduction, $T_{[2^n t],n} \xrightarrow{a.s.} t$ as $n \to \infty$ (see [\[2](#page-50-0), Lemma 2.2] for a precise statement), and thanks to the continuity of *F* as well as the continuity of the paths of *Z*, we have

$$
F(Z_{T_{\lfloor 2^n t \rfloor, n}}) - F(0) \xrightarrow[n \to \infty]{a.s.} F(Z_t) - F(0). \tag{6.17}
$$

In addition, by the mean value theorem, and since f is bounded, we have that $|F(Z_{T_{\lfloor 2^n t \rfloor, n}}) - F(0)| \leq \sup_{x \in \mathbb{R}} |f(x)| |Z_{T_{\lfloor 2^n t \rfloor, n}}|$, so, we deduce that

$$
||F(Z_{T_{\lfloor 2^n t \rfloor,n}}) - F(0)||_4 \leq \sup_{x \in \mathbb{R}} |f(x)| ||Z_{T_{\lfloor 2^n t \rfloor,n}}||_4.
$$

Due to independence between X and Y , and to the self-similarity of X , we have $\|Z_{T_{[2^{n}t],n}}\|_4 = \|X_{Y_{T_{[2^{n}t],n}}}\|_4 = \|Y_{T_{[2^{n}t],n}}\|_4^H X_1\|_4 = \|Y_{T_{[2^{n}t],n}}\|_4^H \|_4 \|X_1\|_4.$ By Hölder inequality, we have $|||Y_{T_{\lfloor 2^n t \rfloor, n}}| \cdot H||_4 \leq (||Y_{T_{\lfloor 2^n t \rfloor, n}}||_4)^H$. Finally, we have

$$
||F(Z_{T_{\lfloor 2^{n}t\rfloor,n}})-F(0)||_4\leq \sup_{x\in\mathbb{R}}|f(x)|||X_1||_4(||Y_{T_{\lfloor 2^{n}t\rfloor,n}}||_4)^H.
$$

Thanks to Lemma [2.2](#page-8-4) and to the previous inequality, we deduce that the sequence $(F(Z_{T_{\lfloor 2^n t\rfloor, n}}) - F(0))_{n \in \mathbb{N}}$ is bounded in L^4 . Combining this fact with [\(6.17\)](#page-32-0) we deduce that (6.16) holds true.

Finally, combining (6.13) with (6.14) , (6.15) and (6.16) , we deduce that

$$
2^{-\frac{nH}{2}}V_n^{(1)}(f,t)\xrightarrow[n\to\infty]{L^2} F(Z_t) - F(0).
$$

By [\(6.1\)](#page-25-3), we have $F(X_t) - F(0) = \int_0^t f(X_s) d^\circ X_s$ which implies that $F(Z_t) - F(0) =$ $\int_0^{Y_t} f(X_s) d^\circ X_s$. So, we deduce finally that [\(6.12\)](#page-31-1) holds true.

6.4 Step 4: Last step in the proof of [\(1.8\)](#page-3-1)

Thanks to (3.5) , we have

$$
V_n^{(2r-1)}(f,t) = \sum_{i=1}^r \kappa_{r,i} W_n^{(2i-1)}(f, Y_{T_{\lfloor 2^n t \rfloor, n}}).
$$

For $r = 1$, [\(1.8\)](#page-3-1) holds true by [\(6.12\)](#page-31-1). For $r \ge 2$, we have $2^{-\frac{nH}{2}} V_n^{(2r-1)}(f, t) =$ $\kappa_{r,1} 2^{-\frac{nH}{2}} V_n^{(1)}(f,t) + \sum_{i=2}^r \kappa_{r,i} 2^{-\frac{nH}{2}} W_n^{(2i-1)}(f, Y_{T_{[2^n_1],n}})$. Combining this equality with (6.9) and (6.12) , we deduce that (1.8) holds true.

7 Proof of [\(1.9\)](#page-4-0)

Recall that for all $t \geqslant 0$ and $r \geqslant 1$,

$$
V_n^{(2r)}(f,t) := \sum_{k=0}^{\lfloor 2^n t \rfloor -1} \frac{1}{2} (f(Z_{T_{k,n}}) + f(Z_{T_{k+1,n}})) [(2^{\frac{nH}{2}} (Z_{T_{k+1,n}} - Z_{T_{k,n}}))^{2r} - \mu_{2r}],
$$

and for all *i* ∈ \mathbb{Z} , $\Delta_{i,n} f(X) := \frac{1}{2} (f(X_{i2^{-n/2}}) + f(X_{(i+1)2^{-n/2}})$. Thanks to Lemma [3.1,](#page-11-0) we have

$$
2^{-\frac{n}{2}}V_n^{(2r)}(f,t) = 2^{-\frac{n}{2}}\sum_{i\in\mathbb{Z}}\Delta_{i,n}f(X)[(X_{i+1}^{(n)} - X_i^{(n)})^{2r} - \mu_{2r}](U_{i,n}(t) + D_{i,n}(t))
$$

=
$$
\sum_{i\in\mathbb{Z}}\Delta_{i,n}f(X)[(X_{i+1}^{(n)} - X_i^{(n)})^{2r} - \mu_{2r}]\mathcal{L}_{i,n}(t),
$$

with obvious notation at the last line. Fix $t \geqslant 0$. In order to study the asymptotic behavior of $2^{-\frac{n}{2}}V_n^{(2r)}(t)$ as *n* tends to infinity (after using the adequate normalization according to the value of the Hurst parameter H), we shall consider (separately) the cases when *n* is even and when *n* is odd.

When *n* is even, for any even integers $n \ge m \ge 0$ and any integer $p \ge 0$, one can decompose $2^{-\frac{n}{2}}V_n^{(2r)}(t)$ as

$$
2^{-\frac{n}{2}}V_n^{(2r)}(t) = A_{m,n,p}^{(2r)}(t) + B_{m,n,p}^{(2r)}(t) + C_{m,n,p}^{(2r)}(t) + D_{m,n,p}^{(2r)}(t) + E_{n,p}^{(2r)}(t),
$$

where

$$
A_{m,n,p}^{(2r)}(t) = \sum_{-p2^{m/2}+1 \le j \le p2^{m/2}} \sum_{i=(j-1)2^{\frac{n-m}{2}}}^{j2^{\frac{m}{2}-1}-1} \Delta_{i,n}f(X)[(X_{i+1}^{(n)} - X_i^{(n)})^{2r} - \mu_{2r}]
$$

\n
$$
\times (\mathcal{L}_{i,n}(t) - L_i^{i2^{-n/2}}(Y))
$$

\n
$$
B_{m,n,p}^{(2r)}(t) = \sum_{-p2^{m/2}+1 \le j \le p2^{m/2}} \sum_{i=(j-1)2^{\frac{n-m}{2}}}^{j2^{\frac{n-m}{2}-1}-1} \Delta_{i,n}f(X)[(X_{i+1}^{(n)} - X_i^{(n)})^{2r} - \mu_{2r}]
$$

\n
$$
\times (L_i^{i2^{-n/2}}(Y) - L_i^{j2^{-m/2}}(Y))
$$

\n
$$
C_{m,n,p}^{(2r)}(t) = \sum_{-p2^{m/2}+1 \le j \le p2^{m/2}} L_i^{j2^{-m/2}}(Y) \sum_{i=(j-1)2^{\frac{n-m}{2}}}^{j2^{\frac{n-m}{2}-1}-1} (\Delta_{i,n}f(X) - \Delta_{j,m}f(X))
$$

\n
$$
B_{m,n,p}^{(2r)}(t) = \sum_{-p2^{m/2}+1 \le j \le p2^{m/2}} \Delta_{j,m}f(X)L_i^{j2^{-m/2}}(Y)
$$

\n
$$
D_{m,n,p}^{(2r)}(t) = \sum_{-p2^{m/2}+1 \le j \le p2^{m/2}} \Delta_{j,m}f(X)L_i^{j2^{-m/2}}(Y)
$$

\n
$$
i \ge j2^{\frac{n-m}{2}-1}
$$

\n
$$
K \sum_{i=(j-1)2^{\frac{n-m}{2}}}^{j2^{\frac{n-m}{2}-1}} [(X_{i+1}^{(n)} - X_i^{(n)})^{2r} - \mu_{2r}] \mathcal{L}_{i,n}(t)
$$

\n
$$
+ \sum_{i \le p2^{n/2}} \Delta_{i,n}f(X) [(X_{i+1}^{(n)} - X_i^{(n)})^{2r} - \mu_{2r}] \mathcal{L}_{i,n}(t).
$$

We can see that since we have taken even integers $n \ge m \ge 0$ then $2^{m/2}$, $2^{\frac{n-m}{2}}$ and $2^{n/2}$ are integers as well. This justifies the validity of the previous decomposition.

When *n* is odd, for any odd integers $n \ge m \ge 0$ we can work with the same decomposition for $V_n^{(2r)}(t)$. The only difference is that we have to replace the sum $\sum_{-p2^{m/2}+1 \leq j \leq p2^{m/2}}$ in $A_{m,n,p}^{(2r)}(t)$, $B_{m,n,p}^{(2r)}(t)$, $C_{m,n,p}^{(2r)}(t)$ and $D_{m,n,p}^{(2r)}(t)$ by $\sum_{-p2 \frac{m+1}{2} + 1 \leqslant j \leqslant p2 \frac{m+1}{2}}$. And instead of $\sum_{i \geqslant p2^{n/2}}$ and $\sum_{i \leqslant p2^{n/2}}$ in $E_{n,p}^{(2r)}(t)$, we must consider $\sum_{i \geq p} \frac{n+1}{2}$ and $\sum_{i \leq -p} \frac{n+1}{2}$ respectively. The analysis can then be done mutatis mutandis.

Suppose that $\frac{1}{4} < H \le \frac{1}{2}$. Firstly, we will prove that $2^{-\frac{n}{4}} A_{m,n,p}^{(2r)}(t)$, $2^{-\frac{n}{4}} B_{m,n,p}^{(2r)}(t)$, $2^{-\frac{n}{4}}C_{m,n,p}^{(2r)}(t)$ and $2^{-\frac{n}{4}}E_{n,p}^{(2r)}(t)$ converge to 0 in L^2 by letting *n*, then *m*, then *p* tends to infinity. Secondly, we will study the f.d.d. convergence in law of $(2^{-\frac{n}{4}}D_{m,n,p}^{(2r)}(t))_{t\geqslant0}$, which will then be equivalent to the f.d.d. convergence in law of $(2^{-\frac{3n}{4}}V_n^{(2r)}(t))_{t\geqslant 0}$.

(1)
$$
2^{-\frac{n}{4}}A_{m,n,p}^{(2r)}(t) \xrightarrow[n \to \infty]{L^2} 0
$$
:

We have, for all $r \in \mathbb{N}^*$.

$$
x^{2r} = \sum_{a=1}^{r} b_{2r,a} H_{2a}(x) + \mu_{2r},
$$
\n(7.1)

where H_n is the *n*th Hermite polynomial, $\mu_{2r} = E[N^{2r}]$ with $N \sim \mathcal{N}(0, 1)$, and $b_{2r,a}$ are some explicit constants (if interested, the reader can find these explicit constants, e.g., in [\[9,](#page-50-3) Corollary 1.2]). We deduce that

$$
A_{m,n,p}^{(2r)}(t) = \sum_{a=1}^{r} b_{2r,a} \sum_{\substack{-p2^{m/2}+1 \le j \le p2^{m/2} \\ j \ge \frac{n-m}{2}}} \sum_{i=(j-1)2^{\frac{n-m}{2}}}^{\substack{j2^{\frac{n-m}{2}}-1 \\ 2^{\frac{n-m}{2}} \\ j \ge (j-1)2^{\frac{n-m}{2}}}} \Delta_{i,n} f(X) H_{2a}(X_{i+1}^{(n)} - X_i^{(n)})
$$

$$
\times (\mathcal{L}_{i,n}(t) - L_i^{i2^{-n/2}}(Y))
$$

$$
= \sum_{a=1}^{r} b_{2r,a} A_{m,n,p,a}^{(2r)}(t), \tag{7.2}
$$

with obvious notation at the last line. It suffices to prove that for any fixed *m* and *p* and for all $a \in \{1, \ldots, r\}$

$$
2^{-\frac{n}{4}}A_{m,n,p,a}^{(2r)}(t) \xrightarrow[n \to \infty]{L^2} 0.
$$
 (7.3)

Set $\phi_n(i, i') := \Delta_{i,n} f(X) \Delta_{i',n} f(X)$. Thanks to [\(2.4\)](#page-7-3), [\(2.5\)](#page-7-1), [\(2.6\)](#page-7-0) and to the independence of *X* and *Y* , we have

$$
E\left[(2^{-\frac{n}{4}}A_{m,n,p,a}^{(2r)}(t))^2\right] = \left|2^{2nHa-\frac{n}{2}}\sum_{-p2^{m/2}+1\leq j,j'\leq p2^{m/2}}\sum_{i=(j-1)2^{\frac{n-m}{2}}}\sum_{i'=(j'-1)2^{\frac{n-m}{2}}}^{j2^{\frac{n-m}{2}}-1}E\left[\phi_n(i,i')\right]
$$

$$
\times I_{2a}\left(\delta_{(i+1)2^{-\frac{n}{2}}}\right)I_{2a}\left(\delta_{(i'+1)2^{-\frac{n}{2}}}\right)\right]E\left[\left(\mathcal{L}_{i,n}(t)-L_i^{i2^{-\frac{n}{2}}}(Y)\right)\left(\mathcal{L}_{i',n}(t)-L_i^{i'2^{-\frac{n}{2}}}(Y)\right)\right]
$$

$$
\leq 2^{2nHa-\frac{n}{2}}\sum_{-p2^{m/2}+1\leq j,j'\leq p2^{m/2}}\sum_{i=(j-1)2^{\frac{n-m}{2}}}\sum_{i'=(j'-1)2^{\frac{n-m}{2}}}^{j/2^{\frac{n-m}{2}}-1}\left|E\left[\phi_n(i,i')I_{2a}\left(\delta^{\otimes 2a}_{(i+1)2^{-\frac{n}{2}}}\right)\right]\right|
$$

 \mathcal{L} Springer

$$
\times I_{2a} \left(\delta_{(i'+1)2^{-\frac{n}{2}}}^{\otimes 2a} \right) \left\| \left\| \mathcal{L}_{i,n}(t) - L_{t}^{i2^{-\frac{n}{2}}} (Y) \right\|_{2} \times \left\| \mathcal{L}_{i',n}(t) - L_{t}^{i'2^{-\frac{n}{2}}} (Y) \right\|_{2}
$$
\n
$$
\leq 2^{2nHa - \frac{n}{2}} \sum_{l=0}^{2a} l! \binom{2a}{l}^{2} \sum_{-p2^{m/2}+1 \leq j,j' \leq p2^{m/2}} \sum_{i=(j-1)2^{\frac{n-m}{2}} - 1} j'2^{\frac{n-m}{2}-1} \sum_{i'=(j'-1)2^{\frac{n-m}{2}}} |E[\phi_{n}(i, i') - \phi_{n}(i, i')|] \times I_{4a-2l} \left(\delta_{(i+1)2^{-n/2}}^{\otimes 2a-l} \otimes \delta_{(i'+1)2^{-n/2}}^{\otimes 2a-l} \right) \right] \left\| \left\langle \delta_{(i+1)2^{-n/2}}, \delta_{(i'+1)2^{-n/2}} \right\rangle \right\|^{l} \left\| \mathcal{L}_{i,n}(t) - L_{t}^{i2^{-\frac{n}{2}}} (Y) \right\|_{2}
$$
\n
$$
\times \left\| \mathcal{L}_{i',n}(t) - L_{t}^{i'2^{-\frac{n}{2}}} (Y) \right\|_{2}
$$
\n
$$
= 2^{2nHa - \frac{n}{2}} \sum_{l=0}^{2a} l! \binom{2a}{l}^{2} \sum_{-p2^{m/2}+1 \leq j,j' \leq p2^{m/2}} \sum_{i=(j-1)2^{\frac{n-m}{2}} - 1} j'2^{\frac{n-m}{2}-1} \sum_{i'=(j'-1)2^{\frac{n-m}{2}}} |E[\left\langle D^{4a-2l}(\phi_{n}(i, i')),
$$
\n
$$
\delta_{(i+1)2^{-n/2}}^{\otimes 2a-l} \otimes \delta_{(i'+1)2^{-n/2}}^{\otimes 2a-l} \right) \right] \left\| \left\langle \delta_{(i+1)2^{-n/2}}, \delta_{(i'+1)2^{-n/2}} \right\rangle \right\|^{l} \left\| \mathcal{
$$

by obvious notation at the last line. By the points 2 and 3 of Proposition [2.3,](#page-9-1) see also (3.14) in [\[9\]](#page-50-3) for the detailed proof, we have

$$
\left\| \mathcal{L}_{i,n}(t) - L_t^{i2^{-\frac{n}{2}}} (Y) \right\|_2 \leq 2\sqrt{\mu} \left\| K \right\|_4 t^{1/8} n2^{-n/4} 2^{-n/8} |i|^{1/4}
$$

+2 $\left\| K \right\|_4 \left\| L_t^0 (Y) \right\|_2^{1/2} n2^{-n/4}.$

Since $-p2^{m/2} + 1 \le j \le p2^{m/2}$ and $(j - 1)2^{\frac{n-m}{2}} \le i \le j2^{\frac{n-m}{2}} - 1$, we deduce that $-p2^{n/2} \le i \le p2^{n/2} - 1$. So, $|i| \le p2^{n/2}$. Consequently we have that $|i|^{1/4} \le$ $p^{1/4}2^{n/8}$, which shows that $\|\mathcal{L}_{i,n}(t) - L_t^{i2-\frac{n}{2}}(Y)\|_2 \le C(p^{1/4} + 1)n2^{-\frac{n}{4}}$. Finally, we deduce that

$$
\left\| \mathcal{L}_{i,n}(t) - L_t^{i2-\frac{n}{2}}(Y) \right\|_2 \times \left\| \mathcal{L}_{i',n}(t) - L_t^{i'2-\frac{n}{2}}(Y) \right\|_2 \leq C(p^{1/4} + 1)^2 n^2 2^{-\frac{n}{2}}. (7.5)
$$

Now, observe that, by the same arguments that has been used to show (6.5) and since $f \in C_b^{\infty}$, we have

$$
\Theta_{i,i',n}^{(a,l)} := \left| E\left[\left\langle D^{4a-2l}(\phi_n(i,i')), \delta_{(i+1)2^{-n/2}}^{\otimes 2a-l} \otimes \delta_{(i'+1)2^{-n/2}}^{\otimes 2a-l} \right) \right] \right|
$$

\n
$$
\leq C \sum_{k=0}^{4a-2l} {4a-2l \choose k} \left| \left\langle \left(\varepsilon_{i2^{-n/2}}^{\otimes k} + \varepsilon_{(i+1)2^{-n/2}}^{\otimes k} \right) \tilde{\otimes} \left(\varepsilon_{i'2^{-n/2}}^{\otimes 4a-2l-k} + \varepsilon_{(i'+1)2^{-n/2}}^{\otimes 4a-2l-k} \right) \right. \right|,
$$

\n
$$
\delta_{(i+1)2^{-n/2}}^{\otimes 2a-l} \otimes \delta_{(i'+1)2^{-n/2}}^{\otimes 2a-l} \left| \right|.
$$

Since $H \le \frac{1}{2}$, thanks to [\(2.7\)](#page-7-2), we have $\Theta_{i,i',n}^{(a,l)} \le C2^{-nH(4a-2l)}$. So, by combining [\(7.4\)](#page-35-1) with (7.5) , for $l = 0$, we have

$$
\Upsilon_n^{(0,a)}(t) \leq C2^{2nHa - \frac{n}{2}} \sum_{i,i'=-p2^{\frac{n}{2}}}^{p2^{\frac{n}{2}}-1} (2^{-4nHa} (p^{\frac{1}{4}}+1)^2 n^2 2^{-\frac{n}{2}}) \leq C p(p^{\frac{1}{4}}+1) n^2 2^{-2nHa},\tag{7.6}
$$

for $l \neq 0$, we have

$$
\Upsilon_n^{(l,a)}(t) \leq C \left(p^{\frac{1}{4}} + 1 \right)^2 n^2 2^{2nHa-n} \left(2^{-nH(4a-2l)} \sum_{i,i'=-p2^{\frac{n}{2}}}^{p2^{\frac{n}{2}}-1} \left| \left\langle \delta_{(i+1)2^{-n/2}}, \delta_{(i'+1)2^{-n/2}} \right\rangle \right|^l \right).
$$

By the same arguments that has been used in the proof of (2.10) , one can prove that for $H < 1 - \frac{1}{2l}$, we have

$$
\sum_{i,i'=-p2^{\frac{n}{2}}}^{p2^{\frac{n}{2}}-1} |\langle \delta_{(i+1)2^{-n/2}}, \delta_{(i'+1)2^{-n/2}} \rangle|^l \leq C_{H,l} p 2^{n(\frac{1}{2}-lH)}.
$$
 (7.7)

For $H = \frac{1}{2}$, thanks to [\(2.17\)](#page-10-3) and to the discussion of the case $H = \frac{1}{2}$ after [\(2.18\)](#page-10-0), we have *n*

$$
\sum_{i,i'=-p2^{\frac{n}{2}}}^{p2^{\frac{n}{2}}-1} |\langle \delta_{(i+1)2^{-n/2}}, \delta_{(i'+1)2^{-n/2}} \rangle| \leq 2^{-\frac{n}{2}} (p2^{\frac{n}{2}} - (-p2^{\frac{n}{2}})) = 2p,
$$

thus, [\(7.7\)](#page-37-0) holds true for $l = 1$ and $H = \frac{1}{2}$. So, since $H \le \frac{1}{2}$, we deduce that

$$
\sum_{l=1}^{2a} \Upsilon_n^{(l,a)}(t) \le Cp \left(p^{\frac{1}{4}} + 1 \right)^2 n^2 \sum_{l=1}^{2a} 2^{2nHa-n} \left(2^{-nH(4a-2l)} 2^{n \left(\frac{1}{2} - lH \right)} \right)
$$

= $Cp \left(p^{\frac{1}{4}} + 1 \right)^2 n^2 2^{-\frac{n}{2}} \sum_{l=1}^{2a} 2^{-nH(2a-l)}.$ (7.8)

By combining [\(7.4\)](#page-35-1) with [\(7.6\)](#page-37-1) and [\(7.8\)](#page-37-2), we deduce that [\(7.3\)](#page-35-2) holds true for $H \leq \frac{1}{2}$. (2) $2^{-\frac{n}{4}} B_{m,n,p}^{(2r)}(t) \xrightarrow{L^2} 0$ as $m \to \infty$, uniformly on *n* : Using (7.1) , we get

$$
B_{m,n,p}^{(2r)}(t) = \sum_{a=1}^{r} b_{2r,a} \sum_{\substack{-p2^{m/2}+1 \le j \le p2^{m/2} \\ \sum_{i=(j-1)2^{n-2n}}}} \sum_{\substack{n=m \\ 2^{n-m} \\ n \equiv n}} \Delta_{i,n} f(X) H_{2a} \left(X_{i+1}^{(n)} - X_i^{(n)} \right)
$$

$$
\times \left(L_i^{i2^{-n/2}}(Y) - L_i^{j2^{-m/2}}(Y) \right)
$$

$$
= \sum_{a=1}^{r} b_{2r,a} B_{m,n,p,a}^{(2r)}(t), \qquad (7.9)
$$

with obvious notation at the last line. It suffices to prove that for any fixed *p* and for all $a \in \{1, ..., r\}$

$$
2^{-\frac{n}{4}}B_{m,n,p,a}^{(2r)}(t) \xrightarrow[m \to \infty]{L^2} 0,
$$
\n(7.10)

uniformly on n . By the same arguments that has been used to prove (7.4) , we get

$$
\begin{split} &E\left[\left(2^{-\frac{n}{4}}B_{m,n,p,a}^{(2r)}(t)\right)^2\right]\\ &\leqslant 2^{2nHa-\frac{n}{2}}\sum_{l=0}^{2a}l!\binom{2a}{l}^2\sum_{-p2^{m/2}+1\leqslant j,j'\leqslant p2^{m/2}}\sum_{i=(j-1)2^{\frac{n-m}{2}}}\sum_{i'=(j'-1)2^{\frac{n-m}{2}}}\limits^{j'2^{\frac{n-m}{2}}-1}\left|E\left[\left\langle D^{4a-2l}(\phi_n(i,i')\right)\right.\right.\\ &\left.\left.\delta_{(i+1)2^{-n/2}}^{\otimes 2a-l}\otimes\delta_{(i'+1)2^{-n/2}}^{\otimes 2a-l}\right]\right]\left|\left|\left\langle \delta_{(i+1)2^{-n/2}},\delta_{(i'+1)2^{-n/2}}\right\rangle\right|^{l}\right|E\left[\left(L_i^{i2^{-n/2}}(Y)-L_i^{j2^{-m/2}}(Y)\right)\right]\\ &\times\left(L_i^{i'2^{-n/2}}(Y)-L_i^{j'2^{-m/2}}(Y)\right)\right]\right|, \end{split}
$$

by Proposition [2.3](#page-9-1) (point 2) and Cauchy–Schwarz, we have

$$
\left| E\left[\left(L_t^{i2^{-n/2}}(Y) - L_t^{j2^{-m/2}}(Y) \right) \left(L_t^{i/2^{-n/2}}(Y) - L_t^{j/2^{-m/2}}(Y) \right) \right] \right|
$$

\$\leq \mu^2 \sqrt{t} \sqrt{|i2^{-n/2} - j2^{-m/2}| |i/2^{-n/2} - j/2^{-m/2}|} \leq \mu^2 \sqrt{t} 2^{-m/2}.

So, we deduce that

$$
E\left[\left(2^{-\frac{n}{4}}B_{m,n,p,a}^{(2r)}(t)\right)^{2}\right] \leq C2^{-\frac{m}{2}}2^{2nHa-\frac{n}{2}}\sum_{l=0}^{2a}l!\binom{2a}{l}^{2}\sum_{-p2^{m/2}+1\leq j,j'\leq p2^{m/2}}\sum_{i=(j-1)2^{\frac{n-m}{2}}}j2^{\frac{n-m}{2}-1}
$$
\n
$$
\sum_{i'=(j'-1)2^{\frac{n-m}{2}}}^{j'2^{\frac{n-m}{2}}-1}|E\left[\left\langle D^{4a-2l}(\phi_{n}(i,i')), \delta_{(i+1)2^{-n/2}}^{\otimes 2a-l}\otimes \delta_{(i'+1)2^{-n/2}}^{\otimes 2a-l}\right\rangle\right]\left|\left|\left\langle \delta_{(i+1)2^{-n/2}}, \delta_{(i'+1)2^{-n/2}}\right\rangle\right|\right|^{l}
$$
\n
$$
=\sum_{l=0}^{2a}l!\binom{2a}{l}^{2}\Lambda_{n,m}^{(l,a)}(t),\tag{7.11}
$$

by obvious notation at the last line.

By the same arguments that has been used in the proof of (7.3) , we have, for $\frac{1}{4}$ < $H \le \frac{1}{2}$, and $l = 0$

$$
\Lambda_{n,m}^{(0,a)}(t) \leq C2^{-\frac{m}{2}} 2^{2nHa - \frac{n}{2}} \sum_{i,i'=-p2^{\frac{n}{2}}}^{p2^{\frac{n}{2}}-1} \left(2^{-4nHa} \right) \leq Cp^2 2^{-\frac{m}{2}} 2^{-n \left(2Ha - \frac{1}{2} \right)} \leq Cp^2 2^{-\frac{m}{2}},\tag{7.12}
$$

for $l \neq 0$, we have

$$
\Lambda_{n,m}^{(l,a)}(t) \leq C2^{-\frac{m}{2}} 2^{2nHa-\frac{n}{2}} \left(2^{-nH(4a-2l)} \sum_{\substack{i,i'=-p2^{\frac{n}{2}}\\i,i'=-p2^{\frac{n}{2}}}}^{p2^{\frac{n}{2}}-1} |\langle \delta_{(i+1)2^{-n/2}}, \delta_{(i'+1)2^{-n/2}} \rangle|^{l} \right).
$$

So, thanks to [\(7.7\)](#page-37-0), we deduce that

$$
\sum_{l=1}^{2a} \Lambda_{n,m}^{(l,a)}(t) \leq C \ p \ 2^{-\frac{m}{2}} 2^{2nHa - \frac{n}{2}} \left(\sum_{l=1}^{2a} 2^{-nH(4a-2l)} 2^{n(\frac{1}{2} - lH)} \right)
$$
\n
$$
= C \ p \ 2^{-\frac{m}{2}} \left(\sum_{l=1}^{2a} 2^{-nH(2a-l)} \right) \leq C \ p \ 2^{-\frac{m}{2}}. \tag{7.13}
$$

By combining (7.11) with (7.12) and (7.13) , we deduce that (7.10) holds true for $\frac{1}{4} < H \leqslant \frac{1}{2}.$

(3) $2^{-\frac{n}{4}}C_{m,n,p}^{(2r)}(t) \xrightarrow{L^2} 0$ as $n \to \infty$, then $m \to \infty$:

Using (7.1) , we get

$$
C_{m,n,p}^{(2r)}(t) = \sum_{a=1}^{r} b_{2r,a} \sum_{-p2^{m/2}+1 \leq j \leq p2^{m/2}} L_{t}^{j2^{-m/2}}(Y) \sum_{i=(j-1)2^{\frac{n-m}{2}}}^{j2^{\frac{n-m}{2}-1} (x_{i,n}f(X) - \Delta_{j,m}f(X))
$$

\n
$$
\times H_{2a} \left(X_{i+1}^{(n)} - X_{i}^{(n)}\right)
$$

\n
$$
= \sum_{a=1}^{r} b_{2r,a} \sum_{-p2^{m/2}+1 \leq j \leq p2^{m/2}} L_{t}^{j2^{-m/2}}(Y) \sum_{i=(j-1)2^{\frac{n-m}{2}}}^{j2^{\frac{n-m}{2}-1} - 1} \frac{1}{2} \left(f\left(X_{i2^{-\frac{n}{2}}}\right) - f\left(X_{j2^{-\frac{m}{2}}}\right)\right)
$$

\n
$$
\times H_{2a} \left(X_{i+1}^{(n)} - X_{i}^{(n)}\right)
$$

\n
$$
+ \sum_{a=1}^{r} b_{2r,a} \sum_{-p2^{m/2}+1 \leq j \leq p2^{m/2}} L_{t}^{j2^{-m/2}}(Y) \sum_{i=(j-1)2^{\frac{n-m}{2}}}^{j2^{\frac{n-m}{2}-1} - 1} \frac{1}{2} \left(f\left(X_{(i+1)2^{-\frac{n}{2}}}\right) - f\left(X_{(j+1)2^{-\frac{n}{2}}}\right) \right)
$$

\n
$$
-f\left(X_{(j+1)2^{-\frac{m}{2}}}\right) H_{2a} \left(X_{i+1}^{(n)} - X_{i}^{(n)}\right)
$$

\n
$$
= \sum_{a=1}^{r} b_{2r,a} \left(C_{m,n,p,a}^{(1)}(t) + C_{m,n,p,a}^{(2)}(t)\right),
$$

with obvious notation. It suffices to prove that for any fixed *p* and for all $a \in \{1, \ldots, r\}$

$$
2^{-\frac{n}{4}}C_{m,n,p,a}^{(2)}(t) \xrightarrow{L^2} 0,
$$
\n(7.14)

as $n \to \infty$, then $m \to \infty$. By obvious notation, we have

$$
C_{m,n,p,a}^{(2)}(t)=\sum_{-p2^{m/2}+1\leqslant j\leqslant p2^{m/2}}L_{t}^{j2^{-m/2}}(Y)\sum_{i=(j-1)2^{\frac{n-m}2}}^{j2^{\frac{n-m}2}-1}\Delta_{i,j}^{n,m}f(X)H_{2a}\left(X_{i+1}^{(n)}-X_{i}^{(n)}\right).
$$

Thanks to the independence of *X* and *Y* , and to the first point of Proposition [2.3,](#page-9-1) we have

$$
E\left[\left(2^{-\frac{n}{4}}C_{m,n,p,a}^{(2)}(t)\right)^{2}\right] = 2^{-\frac{n}{2}}\left|\sum_{-p2^{m/2}+1\leqslant j,j'\leqslant p2^{m/2}}E\left(L_{t}^{j2^{-m/2}}(Y)L_{t}^{j'2^{-m/2}}(Y)\right)\right|
$$

\n
$$
\sum_{i=(j-1)2^{n}\frac{n-m}{2}}^{j2^{n}\frac{n-m}{2}-1} \sum_{i'=(j'-1)2^{n}\frac{n-m}{2}}^{j'2^{n}\frac{n-m}{2}-1}E\left(\Delta_{i,j}^{n,m}f(X)\Delta_{i',j'}^{n,m}f(X)H_{2a}\left(X_{i+1}^{(n)}-X_{i}^{(n)}\right)H_{2a}\left(X_{i'+1}^{(n)}-X_{i'}^{(n)}\right)\right)\right|
$$

\n
$$
\leq C2^{-\frac{n}{2}}\sum_{-p2^{m/2}+1\leqslant j,j'\leqslant p2^{m/2}}^{j^{n}\frac{n-m}{2}-1} \sum_{j'2^{n}\frac{n-m}{2}-1}^{j'2^{n}\frac{n-m}{2}-1} \left|E\left(\Delta_{i,j}^{n,m}f(X)\Delta_{i',j'}^{n,m}f(X)H_{2a}\left(X_{i+1}^{(n)}-X_{i}^{(n)}\right)H_{2a}\left(X_{i'+1}^{(n)}-X_{i'}^{(n)}\right)\right)\right|,
$$

\n
$$
i=(j-1)2^{\frac{n-m}{2}}i'=(j'-1)2^{\frac{n-m}{2}}}
$$

by the same arguments that has been used previously for several times, we deduce that

$$
E\left[\left(2^{-\frac{n}{4}}C_{m,n,p,a}^{(2)}(t)\right)^{2}\right] \leq 2^{-n/2}2^{nHa} \sum_{-p2^{m/2}+1\leq j,j'\leq p2^{m/2}} \sum_{i=(j-1)2^{\frac{n-m}{2}}i'\leq (j'-1)2^{\frac{n-m}{2}}i}
$$

$$
\sum_{l=0}^{2a} l!\binom{2a}{l}^{2}\left|E\left[\Delta_{i,j}^{n,m}f(X)\Delta_{i',j'}^{n,m}f(X)I_{4a-2l}\left(\delta_{(j+1)2^{-n/2}}^{\otimes(2a-l)}\otimes\delta_{(j'+1)2^{-n/2}}^{\otimes(2a-l)}\right)\right]\right|
$$

$$
\times |\langle\delta_{(j+1)2^{-n/2}};\delta_{(j'+1)2^{-n/2}}\rangle|^{l}
$$

$$
= 2^{-n/2}2^{2nHa} \sum_{l=0}^{2a} l!\binom{2a}{l}^{2}O_{n,m}^{l}(t), \qquad (7.15)
$$

with obvious notation. Following the proof of (5.6) , we get that

• If $l = 2a$ then the term $O_{n,m}^{2a}(t)$ in [\(7.15\)](#page-40-0) can be bounded by

$$
\frac{1}{4}\sup_{|x-y|\leqslant 2^{-m/2}}E\left(\left|f(X_x)-f(X_y)\right|^2\right)\sum_{i,i'=-p2^{\frac{n}{2}}}\frac{p2^{\frac{n}{2}-1}}{2^{n/2}}\left|\left\langle\delta_{(i+1)2^{-n/2}};\delta_{(i'+1)2^{-n/2}}\right\rangle\right|^{2a}.
$$

Since $H \leq \frac{1}{2}$ and thanks to [\(7.7\)](#page-37-0), observe that

$$
O_{n,m}^{2a}(t) \leqslant C \, p \, 2^{n \left(\frac{1}{2} - 2Ha\right)} \sup_{|x - y| \leqslant 2^{-m/2}} E\left(\left|f(X_x) - f(X_y)\right|^2\right). \tag{7.16}
$$

• If $1 \le l \le 2a - 1$ then, by [\(7.7\)](#page-37-0) among other things used in the proof of [\(5.6\)](#page-18-1), we have

$$
O_{n,m}^l(t) \leq C \left(2^{-nH}\right)^{(4a-2l)} \sum_{i,i'=-p2^{\frac{n}{2}}}^{p2^{\frac{n}{2}}-1} |\langle \delta_{(i+1)2^{-n/2}}; \delta_{(i'+1)2^{-n/2}} \rangle|^l
$$

$$
\leq C p 2^{-nH(4a-2l)} 2^{n\left(\frac{1}{2}-lH\right)}.
$$
 (7.17)

• If $l = 0$ then

$$
O_{n,m}^0(t) \leqslant C \left(2^{-nH}\right)^{4a} \left(2p2^{\frac{n}{2}}\right)^2 \leqslant C p^2 2^{-4nHa} 2^n. \tag{7.18}
$$

By combining (7.15) with (7.16) , (7.17) and (7.18) , we get

$$
E[(2^{-\frac{n}{4}}C_{m,n,p,a}^{(2)}(t))^2] \leq C \left(\sup_{|x-y| \leq 2^{-m/2}} E(|f(X_x) - f(X_y)|^2) + p \left(\sum_{l=1}^{2a-1} 2^{-nH(2a-l)} \right) + p^2 2^{-n(2Ha - \frac{1}{2})} \right),
$$

it is then clear that, since $\frac{1}{4} < H \le \frac{1}{2}$, the last quantity converges to 0 as $n \to \infty$ and then $m \to \infty$. Finally, we have proved that [\(7.14\)](#page-39-1) holds true.

(4) $2^{-\frac{n}{4}} E_{n,p}^{(2r)}(t) \xrightarrow{L^2} 0$ as $p \to \infty$, uniformly on *n* : Using (7.1) , we get

$$
E_{n,p}^{(2r)}(t) = \sum_{a=1}^{r} b_{2r,a} \left(\sum_{i \ge p2^{n/2}} \Delta_{i,n} f(X) H_{2a} \left(X_{i+1}^{(n)} - X_i^{(n)} \right) \mathcal{L}_{i,n}(t) + \sum_{i < -p2^{n/2}} \Delta_{i,n} f(X) H_{2a} \left(X_{i+1}^{(n)} - X_i^{(n)} \right) \mathcal{L}_{i,n}(t) \right)
$$

=
$$
\sum_{a=1}^{r} b_{2r,a} E_{n,p,a}^{(2r)}(t), \qquad (7.19)
$$

with obvious notation at the last line. It suffices to prove that for all $a \in \{1, \ldots, r\}$

$$
2^{-\frac{n}{4}} E_{n,p,a}^{(2r)}(t) \xrightarrow[p \to \infty]{L^2} 0,
$$
\n(7.20)

uniformly on *n*. By the same arguments that has been used previously, we have

$$
E\left[\left(2^{-\frac{n}{4}}E_{n,p,a}^{(2r)}(t)\right)^{2}\right] \leq 22^{2nHa-\frac{n}{2}}\sum_{l=0}^{2a}l!\binom{2a}{l}^{2}\sum_{i,i'\geq p2^{n/2}}\left|E\left[\left\langle D^{4a-2l}\left(\phi_{n}(i,i')\right),\delta_{(i+1)2^{-n/2}}^{\otimes 2a-l}\otimes \delta_{(i'+1)2^{-n/2}}^{\otimes 2a-l}\right)\right]\right|
$$

$$
\times\left|\left\langle \delta_{(i+1)2^{-n/2}},\delta_{(i'+1)2^{-n/2}}\right\rangle\right|^{l}\left|E\left[\mathcal{L}_{i,n}(t)\mathcal{L}_{i',n}(t)\right]\right|
$$

+22<sup>2nHa-\frac{n}{2}}\sum_{l=0}^{2a}l!\binom{2a}{l}^{2}\sum_{i,i'\leq -p2^{n/2}}\left|E\left[\left\langle D^{4a-2l}\left(\phi_{n}(i,i')\right),\delta_{(i+1)2^{-n/2}}^{\otimes 2a-l}\otimes \delta_{(i'+1)2^{-n/2}}^{\otimes 2a-l}\right)\right]\right|

$$
\times\left|\left\langle \delta_{(i+1)2^{-n/2}},\delta_{(i'+1)2^{-n/2}}\right\rangle\right|^{l}\left|E\left[\mathcal{L}_{i,n}(t)\mathcal{L}_{i',n}(t)\right]\right|.
$$
 (7.21)</sup>

It suffices to prove the convergence to 0 of the quantity given in (7.21) . We have,

$$
2^{2nHa-\frac{n}{2}}\sum_{l=0}^{2a}l!\binom{2a}{l}^{2}\sum_{i,i'\geq p2^{n/2}}\left|E\left[\left\langle D^{4a-2l}\left(\phi_{n}(i,i')\right),\delta_{(i+1)2^{-n/2}}^{\otimes 2a-l}\otimes \delta_{(i'+1)2^{-n/2}}^{\otimes 2a-l}\right\rangle\right]\right|
$$

$$
\times|\langle\delta_{(i+1)2^{-n/2}},\delta_{(i'+1)2^{-n/2}}\rangle|^{l}\left|E[\mathcal{L}_{i,n}(t)\mathcal{L}_{i',n}(t)]\right|
$$

$$
=\sum_{l=0}^{2a}l!\binom{2a}{l}^{2}\Omega_{n,p}^{(l,a)}(t),
$$

with obvious notation at the last line. It is enough to prove that, for all $l \in \{0, \ldots, 2a\}$:

$$
\Omega_{n,p}^{(l,a)}(t) \xrightarrow[p \to \infty]{} 0,\tag{7.22}
$$

uniformly on n . By the same arguments that has been used in the proof of (7.3) , for $\frac{1}{4} < H \leq \frac{1}{2}$, we have For $l = 0$:

$$
\Omega_{n,p}^{(0,a)}(t) \leq C2^{2nHa-\frac{n}{2}} 2^{-4nHa} \sum_{i,i' \geq p2^{n/2}} \left| E[\mathcal{L}_{i,n}(t)\mathcal{L}_{i',n}(t)] \right|.
$$

By the third point of Proposition [2.3,](#page-9-1) we have

$$
\left|\mathcal{L}_{i,n}(t)\right| \leqslant L_t^{i2^{-n/2}}(Y) + 2Kn2^{-n/4}\sqrt{L_t^{i2^{-n/2}}(Y)}
$$

so that

$$
E\big[\mathcal{L}_{i,n}(t)^2\big] \leqslant 2E\big[L_t^{i2-n/2}(Y)^2\big] + 8n^22^{-n/2}||K^2||_2||L_t^{i2-n/2}(Y)||_2,
$$

1

which implies

$$
\|\mathcal{L}_{i,n}(t)\|_{2} \leq C\left\|L_{t}^{i2^{-n/2}}(Y)\right\|_{2} + Cn2^{-n/4}\left\|L_{t}^{i2^{-n/2}}(Y)\right\|_{2}^{\frac{1}{2}}.
$$
 (7.23)

On the other hand, thanks to the point 1 of Proposition [2.3,](#page-9-1) we have

$$
E\left[L_t^{i2^{-n/2}}(Y)^2\right] \leq C t \exp\left(-\frac{\left(i2^{-n/2}\right)^2}{2t}\right). \tag{7.24}
$$

Consequently, we get

$$
\left\| L_t^{i2^{-n/2}}(Y) \right\|_2 \leqslant C t^{1/2} \exp\left(-\frac{\left(i2^{-n/2}\right)^2}{4t}\right). \tag{7.25}
$$

By combining (7.23) with (7.24) and (7.25) , we deduce that

$$
\|\mathcal{L}_{i,n}(t)\|_{2} \leq C \exp\left(-\frac{\left(i2^{-n/2}\right)^{2}}{4t}\right) + Cn2^{-n/4} \exp\left(-\frac{\left(i2^{-n/2}\right)^{2}}{8t}\right)
$$

$$
\leq C \exp\left(-\frac{\left(i2^{-n/2}\right)^{2}}{4t}\right) + C \exp\left(-\frac{\left(i2^{-n/2}\right)^{2}}{8t}\right). \tag{7.26}
$$

Observe that, by Cauchy–Schwarz inequality, we have

$$
\Omega_{n,p}^{(0,a)}(t) \leq C \left(2^{-\frac{n}{2}} \sum_{i \geq p2^{n/2}} \left\| \mathcal{L}_{i,n}(t) \right\|_2 \right) \left(2^{-2nHa} \sum_{i' \geq p2^{n/2}} \left\| \mathcal{L}_{i',n}(t) \right\|_2 \right).
$$

Thanks to (7.26) , we get

$$
2^{-\frac{n}{2}} \sum_{i \geq p2^{n/2}} \left\| \mathcal{L}_{i,n}(t) \right\|_2 \leq C 2^{-n/2} \sum_{i \geq p2^{n/2}} \exp \left(-\frac{\left(i2^{-n/2}\right)^2}{4t}\right) + C 2^{-n/2} \sum_{i \geq p2^{n/2}} \exp \left(-\frac{\left(i2^{-n/2}\right)^2}{8t}\right).
$$

But, for $k \in \{4, 8\}$,

$$
2^{-n/2} \sum_{i \geq p2^{n/2}} \exp\left(-\frac{\left(i2^{-n/2}\right)^2}{kt}\right) \leqslant \int_{p-1}^{\infty} \exp\left(\frac{-x^2}{kt}\right) dx.
$$

On the other hand, since $H > \frac{1}{4}$, we have

$$
2^{-2nHa} \sum_{i' \geq p2^{n/2}} \|\mathcal{L}_{i',n}(t)\|_{2} \leq 2^{-n\left(2Ha - \frac{1}{2}\right)} 2^{-\frac{n}{2}} \sum_{i' \geq p2^{n/2}} \|\mathcal{L}_{i',n}(t)\|_{2}
$$

$$
\leq C2^{-\frac{n}{2}} \sum_{i' \geq p2^{n/2}} \|\mathcal{L}_{i',n}(t)\|_{2}
$$

Finally, we deduce that

$$
\Omega_{n,p}^{(0,a)}(t) \leq C \left(\int_{p-1}^{\infty} \exp\left(\frac{-x^2}{4t}\right) dx + \int_{p-1}^{\infty} \exp\left(\frac{-x^2}{8t}\right) dx \right)^2 \underset{p \to \infty}{\longrightarrow} 0, \quad (7.27)
$$

uniformly on *n*.

For $l \neq 0$: By the same arguments that has been used in the proof of [\(7.3\)](#page-35-2) and thanks to (2.17) , the Cauchy–Schwarz inequality and (7.26) , we have

$$
\Omega_{n,p}^{(l,a)}(t) \leq C2^{2nHa-\frac{n}{2}} \left(2^{-nH(4a-2l)} \sum_{i,i' \geq p2^{n/2}} \left| \left\langle \delta_{(i+1)2^{-n/2}}, \delta_{(i'+1)2^{-n/2}} \right\rangle \right|^l \left| E\left[\mathcal{L}_{i,n}(t) \mathcal{L}_{i',n}(t) \right] \right| \right)
$$

\n
$$
\leq C2^{2nHa-\frac{n}{2}} 2^{-nH(4a-2l)} 2^{-nHl} \left(\sum_{i,i' \geq p2^{n/2}} \left| \rho(i-i') \right|^l \left\| \mathcal{L}_{i,n}(t) \right\|_2 \left\| \mathcal{L}_{i',n}(t) \right\|_2 \right)
$$

\n
$$
\leq C2^{-nH(2a-l)} \left(2^{-\frac{n}{2}} \sum_{i \geq p2^{n/2}} \left\| \mathcal{L}_{i,n}(t) \right\|_2 \right) \left(\sum_{a \in \mathbb{Z}} \left| \rho(a) \right|^l \right)
$$

\n
$$
\leq C2^{-\frac{n}{2}} \sum_{i \geq p2^{n/2}} \left\| \mathcal{L}_{i,n}(t) \right\|_2
$$

\n
$$
\leq C \left(\int_{p-1}^{\infty} \exp\left(\frac{-x^2}{4t} \right) dx + \int_{p-1}^{\infty} \exp\left(\frac{-x^2}{8t} \right) dx \right) \underset{p \to \infty}{\longrightarrow} 0, \qquad (7.28)
$$

uniformly on *n*, and we have the fourth inequality because, since $H \le \frac{1}{2} \le 1 - \frac{1}{2l}$, $\sum_{a \in \mathbb{Z}} |\rho(a)|^l < \infty$. By combining [\(7.27\)](#page-44-0) and [\(7.28\)](#page-44-1), we deduce that [\(7.22\)](#page-42-1) holds true for $\frac{1}{4} < H \leqslant \frac{1}{2}$.

(5) The convergence in law of $D_{m,n,p}^{(2r)}(t)$ as $n \to \infty$, then $m \to \infty$, then $p \to \infty$: Let us prove that

$$
\left(2^{-\frac{n}{4}}D_{m,n,p}^{(2r)}(t)\right)_{t\geqslant 0}\stackrel{f.d.d.}{\longrightarrow}\left(\gamma_{2r}\int_{-\infty}^{+\infty}f(X_s)L_i^s(Y)dW_s\right)_{t\geqslant 0},\tag{7.29}
$$

as $n \to \infty$, then $m \to \infty$, then $p \to \infty$, where γ_{2r} and $\int_{-\infty}^{+\infty} f(X_s) L_s^s(Y) dW_s$ are defined in the point (3) of Theorem [1.1.](#page-2-2) In fact, using the decomposition (7.1) , we have

$$
\begin{split} 2^{-\frac{n}{4}}D_{m,n,p}^{(2r)}(t)&=2^{-\frac{n}{4}}\sum_{-p2^{m/2}+1\leqslant j\leqslant p2^{m/2}}\Delta_{j,m}f(X)L_{t}^{j2^{-m/2}}(Y)\\ &\times \sum_{i=(j-1)2^{\frac{n-m}{2}} }^{j2^{\frac{m-m}{2}}-1}\left[\left(X_{i+1}^{(n)}-X_{i}^{(n)}\right)^{2r}-\mu_{2r}\right]\\ &=2^{-\frac{n}{4}}\sum_{-p2^{m/2}+1\leqslant j\leqslant p2^{m/2}}\Delta_{j,m}f(X)L_{t}^{j2^{-m/2}}(Y)\\ &\times \sum_{i=(j-1)2^{\frac{n-m}{2}}-1}^{j\frac{n-m}{2}}\sum_{r=1}^{r}b_{2r,a}H_{2a}\left(X_{i+1}^{(n)}-X_{i}^{(n)}\right).\end{split}
$$

It was been proved in (3.27) in [\[9\]](#page-50-3) that

$$
\left(2^{-n/4} \sum_{i=(j-1)2^{\frac{n-m}{2}}}^{j2^{\frac{n-m}{2}}-1} H_{2a}(X_{i+1}^{(n)} - X_i^{(n)}), 1 \le a \le r : -p2^{m/2} + 1 \le j \le p2^{m/2} \right) \xrightarrow{\text{law}} \left(\alpha_{2a} \left(B_{(j+1)2^{-m/2}}^{(a)} - B_{j2^{-m/2}}^{(a)}\right), 1 \le a \le r : -p2^{m/2} + 1 \le j \le p2^{m/2}\right)
$$

where $(B^{(1)}, \ldots, B^{(r)})$ is a *r*-dimensional two-sided Brownian motion and α_{2a} is defined in [\(2.18\)](#page-10-0). Since for any $x \in \mathbb{R}$, $E[X_x H_{2a}(X_{j+1}^{n, \pm} - X_j^{n, \pm})] = 0$ (Hermite polynomials of different orders are orthogonal), and thanks to the independence between *X* and *Y* , Peccati–Tudor Theorem (see, e.g., [\[6](#page-50-6), Theorem 6.2.3]) applies and yields

$$
\left(X_x, Y_y, 2^{-n/4} \sum_{i=(j-1)2^{\frac{n-m}{2}}}^{j2^{\frac{m-m}{2}}-1} H_{2a}\left(X_{i+1}^{(n)} - X_i^{(n)}\right), 1 \le a \le r : -p2^{m/2} + 1 \le j \le p2^{m/2} \right)_{x,y \in \mathbb{R}}
$$

$$
\left(X_x, Y_y, \alpha_{2a} \left(B_{(j+1)2^{-m/2}}^{(a)} - B_{j2^{-m/2}}^{(a)}\right), 1 \le a \le r : -p2^{m/2} + 1 \le j \le p2^{m/2} \right)_{x,y \in \mathbb{R}}
$$

where $(B^{(1)}, \ldots, B^{(r)})$ is a *r*-dimensional two-sided Brownian motion independent of *X* and *Y* . Hence, for any fixed *m* and *p*, we have

$$
\left(2^{-\frac{n}{4}}D_{m,n,p}^{(2r)}(t)\right)_{t\geqslant 0} \xrightarrow[n\to\infty]{f.d.d.} \gamma_{2r}
$$
\n
$$
\times \left(\sum_{-p2^{m/2}+1\leqslant j\leqslant p2^{m/2}} \Delta_{j,m}f(X)L_{t}^{j2^{-m/2}}(Y)\left(W_{(j+1)2^{-m/2}}-W_{j2^{-m/2}}\right)\right)_{t\geqslant 0},\tag{7.30}
$$

where $\gamma_{2r} := \sqrt{\sum_{a=1}^{r} b_{2r,a}^2 \alpha_{2a}^2}$ and *W* is a two-sided Brownian motion. Fix $t \ge 0$, observe that

$$
\sum_{-p2^{m/2}+1 \leq j \leq p2^{m/2}} \Delta_{j,m} f(X) L_t^{j2^{-m/2}}(Y) \left(W_{(j+1)2^{-m/2}} - W_{j2^{-m/2}}\right)
$$
\n
$$
= \sum_{-p2^{m/2}+1 \leq j \leq p2^{m/2}} f\left(X_{j2^{-\frac{m}{2}}}\right) L_t^{j2^{-m/2}}(Y) \left(W_{(j+1)2^{-m/2}} - W_{j2^{-m/2}}\right)
$$
\n
$$
+ \sum_{-p2^{m/2}+1 \leq j \leq p2^{m/2}} \frac{1}{2} \left(f\left(X_{(j+1)2^{-\frac{m}{2}}}\right)
$$
\n
$$
- f\left(X_{j2^{-\frac{m}{2}}}\right) L_t^{j2^{-m/2}}(Y) \left(W_{(j+1)2^{-m/2}} - W_{j2^{-m/2}}\right)
$$
\n
$$
= \sum_{-p2^{m/2}+1 \leq j \leq p2^{m/2}} f\left(X_{j2^{-\frac{m}{2}}}\right) L_t^{j2^{-m/2}}(Y) \left(W_{(j+1)2^{-m/2}} - W_{j2^{-m/2}}\right)
$$
\n
$$
+ N_{m,p}(t), \qquad (7.31)
$$

with obvious notation at the last line. Since $E\left[\int_{-\infty}^{+\infty} (f(X_s)L_t^s(Y))^2 ds\right] \leq C \int_{-\infty}^{+\infty}$ $E[(L_f^s(Y))^2]ds \leq C \int_{-\infty}^{+\infty} \exp(\frac{-s^2}{2t})ds < \infty$, where we have the second inequality
by the naint 1.45 Proposition 2.2 and then be to the independence between (K, K) and by the point 1 of Proposition [2.3,](#page-9-1) and thanks to the independence between (*X*, *Y*) and *W* and the a.s. continuity of $s \to f(X_s)$ and $s \to L^s_t(Y)$, we deduce that

$$
\sum_{\substack{-p2^{m/2}+1 \le j \le p2^{m/2} \\ m \to \infty}} f\left(X_{j2^{-\frac{m}{2}}}\right) L_t^{j2^{-m/2}}(Y) \left(W_{(j+1)2^{-m/2}} - W_{j2^{-m/2}}\right) \n\frac{L^2}{m \to \infty} \int_{-p}^{+p} f(X_s) L_t^s(Y) dW_s \xrightarrow[p \to \infty]{L^2} \int_{-\infty}^{+\infty} f(X_s) L_t^s(Y) dW_s. \tag{7.32}
$$

Now, let us prove that, for any fixed *p*,

$$
N_{m,p}(t) \xrightarrow[m \to \infty]{L^2} 0. \tag{7.33}
$$

In fact, since $f(X_{(j+1)2-\frac{m}{2}}) - f(X_{j2-\frac{m}{2}}) = f'(X_{\theta_j})(X_{(j+1)2-\frac{m}{2}} - X_{j2-\frac{m}{2}})$ where θ_j is a random real number satisfying $j2^{-\frac{m}{2}} < \theta_j < (j+1)2^{-\frac{m}{2}}$, and thanks to the independence of *X* , *Y* and *W*, the independence of the increments of *W*, and the point 1 of Proposition [2.3,](#page-9-1) we have

$$
E\left[(N_{m,p}(t))^{2}\right] = \frac{1}{4} \sum_{-p2^{m/2}+1 \leq j, j' \leq p2^{m/2}} E\left[\left(f\left(X_{(j+1)2^{-\frac{m}{2}}}\right) - f\left(X_{j2^{-\frac{m}{2}}}\right)\right) \times \left(f\left(X_{(j'+1)2^{-\frac{m}{2}}}\right) - f\left(X_{j'2^{-\frac{m}{2}}}\right)\right) L_{t}^{j2^{-m/2}}(Y) L_{t}^{j'2^{-m/2}}(Y)\right] \times E\left[\left(W_{(j+1)2^{-m/2}} - W_{j2^{-m/2}}\right)\left(W_{(j'+1)2^{-m/2}} - W_{j'2^{-m/2}}\right)\right] \newline = \frac{2^{-\frac{m}{2}}}{4} \sum_{-p2^{m/2}+1 \leq j \leq p2^{m/2}} E\left[\left(f'(X_{\theta_{j}})\left(X_{(j+1)2^{-\frac{m}{2}}} - X_{j2^{-\frac{m}{2}}}\right)\right)^{2}\right]
$$

$$
\times E\left[\left(L_i^{j2^{-m/2}}(Y)\right)^2\right] \\
\leq C2^{-\frac{m}{2}} \sum_{-p2^{m/2}+1 \leq j \leq p2^{m/2}} E\left[\left(X_{(j+1)2^{-\frac{m}{2}}}-X_{j2^{-\frac{m}{2}}}\right)^2\right] \\
= C2^{-mH}2^{-\frac{m}{2}}2p2^{\frac{m}{2}} = Cp2^{-mH} \underset{m \to \infty}{\longrightarrow} 0.
$$

Thus (7.33) holds true. Thanks to (7.30) , (7.31) , (7.32) and (7.33) , we deduce that [\(7.29\)](#page-44-2) holds true.

Finally, by combining (7.3) with (7.10) , (7.14) , (7.20) and (7.29) , we deduce that [\(1.9\)](#page-4-0) holds true.

8 Proof of Lemma [2.1](#page-7-5)

1. We have, $\langle \varepsilon_u^{\otimes q}, \delta_{(j+1)2^{-n/2}}^{\otimes q} \rangle_{\mathscr{H}}^{\otimes q} = \langle \varepsilon_u, \delta_{(j+1)2^{-n/2}} \rangle_{\mathscr{H}}^q$. Thanks to [\(2.1\)](#page-5-1), we have

$$
\langle \varepsilon_u, \delta_{(j+1)2^{-n/2}} \rangle_{\mathscr{H}} = E\big(X_u\big(X_{(j+1)2^{-n/2}} - X_{j2^{-n/2}}\big)\big).
$$

Observe that, for all $0 \le s \le t$ and $u \in \mathbb{R}$,

$$
E(X_u(X_t - X_s)) = \frac{1}{2}(t^{2H} - s^{2H}) + \frac{1}{2}(|s - u|^{2H} - |t - u|^{2H}).
$$

Since for $H \le 1/2$ one has $|b^{2H} - a^{2H}| \le |b - a|^{2H}$ for any $a, b \in \mathbb{R}_+$, we immediately deduce [\(2.7\)](#page-7-2).

2. By [\(2.1\)](#page-5-1), for all *j*, $j' \in \{0, ..., \lfloor 2^{n/2}t \rfloor - 1\}$,

$$
\left| \langle \varepsilon_{j2^{-n/2}}, \delta_{(j'+1)2^{-n/2}} \rangle_{\mathcal{H}} \right| = \left| E \left[X_{j2^{-n/2}} (X_{(j'+1)2^{-n/2}} - X_{j'2^{-n/2}}) \right] \right|
$$

\n
$$
= \left| 2^{-nH-1} \left(|j'+1|^{2H} - |j'|^{2H} \right) + 2^{-nH-1} \left(|j-j'|^{2H} - |j-j'-1|^{2H} \right) \right|
$$

\n
$$
\leq 2^{-nH-1} \left| |j'+1|^{2H} - |j'|^{2H} \right| + 2^{-nH-1} \left| |j-j'|^{2H} - |j-j'-1|^{2H} \right|.
$$

\n(8.1)

We consider the function $f : [a, b] \to \mathbb{R}$ defined by

$$
f(x) = |x|^{2H}.
$$

Applying the mean value theorem to *f* , we have that

$$
||b|^{2H} - |a|^{2H}| \le 2H(|a| \vee |b|)^{2H-1}|b - a| \le 2(|a| \vee |b|)^{2H-1}|b - a|.
$$
\n(8.2)

We deduce from (8.2) that

$$
2^{-nH-1}||j' + 1|^{2H} - |j'|^{2H} \le 2^{-nH}|j' + 1|^{2H-1}
$$

$$
\le 2^{-nH}||2^{n/2}t||^{2H-1} \le 2^{-n/2}t^{2H-1},
$$

similarly we have,

$$
2^{-nH-1}||j-j'|^{2H} - |j-j'-1|^{2H} \le 2^{-nH} |[2^{n/2}t]|^{2H-1} \le 2^{-n/2}t^{2H-1}.
$$

Combining the last two inequalities with [\(8.1\)](#page-47-2), and since $\langle \varepsilon_{j2-n/2}^{\otimes q}, \delta_{(j'+1)2-n/2}^{\otimes q} \rangle_{\mathscr{H}^{\otimes q}}$ $=$ $\langle \varepsilon_{j2^{-n/2}}, \delta_{(j'+1)2^{-n/2}} \rangle^q_{\mathcal{H}}$, we deduce that [\(2.8\)](#page-7-4) holds true. The proof of [\(2.9\)](#page-7-4) may be done similarly.

3. By (2.1) we have

$$
\left| \langle \delta_{(k+1)2^{-n/2}}; \delta_{(l+1)2^{-n/2}} \rangle \mathcal{H} \right|^r = \left| E \left[\left(X_{(k+1)2^{-n/2}} - X_{k2^{-n/2}} \right) \left(X_{(l+1)2^{-n/2}} - X_{l2^{-n/2}} \right) \right] \right|^r
$$

=
$$
\left| 2^{-nH-1} \left(\left| k-l+1 \right|^{2H} + \left| k-l-1 \right|^{2H} - 2 \left| k-l \right|^{2H} \right) \right|^r = 2^{-nrH} \left| \rho (k-l) \right|^r,
$$

where we have the last equality by the notation (2.16) . So, we deduce that

$$
\sum_{k,l=0}^{\lfloor 2^{n/2}t \rfloor - 1} |\langle \delta_{(k+1)2^{-n/2}}; \delta_{(l+1)2^{-n/2}} \rangle_{\mathcal{H}}|^r = 2^{-nrH} \sum_{k,l=0}^{\lfloor 2^{n/2}t \rfloor - 1} |\rho(k-l)|^r
$$

\n
$$
= 2^{-nrH} \sum_{k=0}^{\lfloor 2^{n/2}t \rfloor - 1} \sum_{p=k-\lfloor 2^{n/2}t \rfloor + 1}^k |\rho(p)|^r
$$

\n
$$
= 2^{-nrH} \sum_{p=1-\lfloor 2^{n/2}t \rfloor}^{\lfloor 2^{n/2}t \rfloor - 1} |\rho(p)|^r ((p + \lfloor 2^{n/2}t \rfloor) \wedge \lfloor 2^{n/2}t \rfloor - p \vee 0)
$$

\n
$$
\leq 2^{-nrH} \lfloor 2^{n/2}t \rfloor \sum_{p=1-\lfloor 2^{n/2}t \rfloor}^{\lfloor 2^{n/2}t \rfloor - 1} |\rho(p)|^r \leq 2^{n(\frac{1}{2} - rH)} t \sum_{p=1-\lfloor 2^{n/2}t \rfloor}^{\lfloor 2^{n/2}t \rfloor - 1} |\rho(p)|^r,
$$

\n(8.3)

where we have the second equality by the change of variable $p = k - l$ and the third equality by a Fubini argument. Observe that $|\rho(p)|^r \sim (H(2H - 1))^r p^{(2H - 2)r}$ as $p \to +\infty$. So, we deduce that

- (a) if $H < 1 \frac{1}{2r}$: $\sum_{p \in \mathbb{Z}} |\rho(p)|^r < \infty$, by combining this fact with [\(8.3\)](#page-48-0) we deduce that (2.10) holds true.
- (b) If $H = 1 \frac{1}{2r}$: $|\rho(p)|^r \sim \frac{(H(2H-1))^r}{p}$ as $p \to +\infty$. So, we deduce that there exists a constant $C_{H,r} > 0$ independent of *n* and *t* such that for all integer

 $n \geqslant 1$ and all $t \in \mathbb{R}_+$

$$
\sum_{p=1-\lfloor 2^{n/2}t \rfloor-1}^{\lfloor 2^{n/2}t \rfloor-1} |\rho(p)|^r \leq C_{H,r} \left(1+\sum_{p=2}^{\lfloor 2^{n/2}t \rfloor}\frac{1}{p}\right) \leq C_{H,r} \left(1+\int_1^{2^{n/2}t}\frac{1}{x}dx\right)
$$

= $C_{H,r} \left(1+\frac{n\log(2)}{2}+\log(t)\right) \leq C_{H,r} \left(1+n+t\right).$

By combining this last inequality with (8.3) we deduce that (2.11) holds true. (c) If $H > 1 - \frac{1}{2r}$: $|\rho(p)|^r \sim \frac{(H(2H-1))^r}{p^{(2-2H)r}}$ as $p \to +\infty$ where $0 < (2-2H)r < 1$. So, we deduce that there exists a constant $K_{H,r} > 0$ independent of *n* and *t* such that for all integer $n \geq 1$ and all $t \in \mathbb{R}_+$

$$
\sum_{p=1-\lfloor 2^{n/2}t \rfloor}^{\lfloor 2^{n/2}t \rfloor -1} \left| \rho(p) \right|^r \leqslant K_{H,r} \left(1 + \sum_{p=1}^{\lfloor 2^{n/2}t \rfloor} \frac{1}{p^{(2-2H)r}} \right)
$$

$$
\leqslant K_{H,r} \left(1 + \int_0^{2^{n/2}t} \frac{1}{x^{(2-2H)r}} dx \right)
$$

$$
= K_{H,r} \left(1 + \frac{2^{\frac{n}{2} \left(1 - (2-2H)r \right)} t^{1 - (2-2H)r}}{1 - (2-2H)r} \right)
$$

$$
\leqslant C_{H,r} \left(1 + 2^{\frac{n}{2} \left(1 - (2-2H)r \right)} t^{1 - (2-2H)r} \right),
$$

where $C_{H,r} = K_{H,r} \vee \frac{K_{H,r}}{1-(2-2H)r}$. By combining the last inequality with [\(8.3\)](#page-48-0) we deduce that (2.12) holds true.

4. As it has been proved in (8.1) , we have

$$
\left| \left\langle \varepsilon_{k2^{-n/2}}, \delta_{(l+1)2^{-n/2}} \right\rangle_{\mathscr{H}} \right| = \left| E \left[X_{k2^{-n/2}} \left(X_{(l+1)2^{-n/2}} - X_{l2^{-n/2}} \right) \right] \right|
$$

\$\leq 2^{-nH-1} \left| |l+1|^{2H} - |l|^{2H} \right| + 2^{-nH-1} \left| |k-l|^{2H} - |k-l-1|^{2H} \right|,

so, by a telescoping argument we get

$$
\sum_{k,l=0}^{\lfloor 2^{n/2}t \rfloor - 1} |\langle \varepsilon_{k2^{-n/2}}; \delta_{(l+1)2^{-n/2}} \rangle_{\mathcal{H}}|
$$

\$\leq 2^{\frac{n}{2}-1}t^{2H+1} + 2^{-nH-1} \sum_{k,l=0}^{\lfloor 2^{n/2}t \rfloor - 1} ||k - l|^{2H} - |k - l - 1|^{2H} |, (8.4)

by using the change of variable $p = k - l$ and a Fubini argument, among other things that has been used in the previous proof, we deduce that

$$
2^{-nH-1} \sum_{k,l=0}^{\lfloor 2^{n/2}t \rfloor -1} ||k-l|^{2H} - |k-l-1|^{2H} || \leq 2^{\frac{n}{2}} t^{2H+1}.
$$

By combining this last inequality with (8.4) we deduce that (2.13) holds true. The proof of [\(2.14\)](#page-8-3) may be done similarly.

Acknowledgements We are thankful to the referees for their careful reading of the original manuscript and for a number of suggestions. The financial support of the DFG (German Science Foundations) Research Training Group 2131 is gratefully acknowledged.

References

- 1. Gradinaru,M., Russo, F., Vallois, P.: Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index $H > 1/4$. Ann. Probab. **31**(4), 1772–1820 (2003)
- 2. Khoshnevisan, D., Lewis, T.M.: Stochastic calculus for Brownian motion on a Brownian fracture. Ann. Appl. Probab. **9**(3), 629–667 (1999)
- 3. Khoshnevisan, D., Lewis, T.M.: Iterated Brownian Motion and its Intrinsic skeletal structure. In: Dalang R.C., Dozzi M., Russo F. (eds) Seminar on Stochastic Analysis, Random Fields and Applications. Progress in Probability, vol 45. Birkhäuser, Basel (1999)
- 4. Nourdin, I., Peccati, G.: Weighted power variations of iterated Brownian motion. Electron. J. Probab. **13**(43), 1229–1256 (2008)
- 5. Nourdin, I., Nualart, D., Tudor, C.: Central and non-central limit theorems for weighted power variations of the fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. **46**(4), 1055–1079 (2009)
- 6. Nourdin, I., Peccati, G.: Normal Approximations Using Malliavin Calculus: From Stein's Method to the Universality. Cambridge University Press, Cambridge (2012)
- 7. Nourdin, I., Réveillac, A., Swanson, J.: The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6. Electron. J. Probab. **15**(70), 2117–2162 (2010)
- 8. Nourdin, I., Zeineddine, R.: An Itô-type formula for the fractional Brownian motion in Brownian time. Electron. J. Probab. **19**(99), 1–15 (2014)
- 9. Zeineddine, R.: Fluctuations of the power variation of fractional Brownian motion in Brownian time. Bernoulli **21**(2), 760–780 (2015)
- 10. Zeineddine, R.: Change-of-variable formula for the bi-dimensional fractional Brownian motion in Brownian time. ALEA Lat. Am. J. Probab. Math. Stat. **12**(2), 597–683 (2015)