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Abstract We study the asymptotic behavior of weighted power variations of frac-
tional Brownian motion in Brownian time Zt := XYt , t � 0, where X is a fractional
Brownian motion and Y is an independent Brownian motion.
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1 Introduction

Our aim in this paper is to study the asymptotic behavior of weighted power variations
of the so-called fractional Brownian motion in Brownian time defined as

Zt = XYt , t � 0,

where X is a two-sided fractional Brownian motion, with Hurst parameter H ∈ (0, 1),
and Y is a standard (one-sided) Brownian motion independent of X . It is a self-similar
process (of order H/2) with stationary increments, which is not Gaussian. When
H = 1/2, one recovers the celebrated iterated Brownian motion.

In the present paper we follow and we are inspired by the previous papers [2,4,5,9],
and our work may be seen as a natural follow-up of [4,9].
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Let f : R → R be a function belonging to C∞
b , the class of those functions that are

C∞ and bounded together with their derivatives. Then, for any t � 0 and any integer
p � 1, the weighted p-variation of Z is defined as

R(p)
n (t) =

�2n t�−1∑

k=0

1

2
( f (Zk2−n ) + f (Z(k+1)2−n ))(Z(k+1)2−n − Zk2−n )p.

After proper normalization, we may expect the convergence (in some sense) to a
non-degenerate limit (to be determined) of

S(p)
n (t) = 2nκ

�2n t�−1∑

k=0

1

2
( f (Zk2−n ) + f (Z(k+1)2−n ))[(Z(k+1)2−n − Zk2−n )p

−E[(Z(k+1)2−n − Zk2−n )p]], (1.1)

for some κ to be discovered. Due to the fact that one cannot separate X from Y inside
Z in the definition of S(p)

n , working directly with (1.1) seems to be a difficult task (see
also [3, Problem 5.1]). This is why, following an idea introduced by Khoshnevisan
and Lewis [2] in a study of the case H = 1/2, we will rather analyze S(p)

n by means
of certain stopping times for Y . The idea is: by stopping Y as it crosses certain levels,
and by sampling Z at these times, one can effectively separate X from Y . To be more
specific, let us introduce the following collection of stopping times (with respect to
the natural filtration of Y ), noted

Tn = {Tk,n : k � 0}, n � 0, (1.2)

which are in turn expressed in terms of the subsequent hitting times of a dyadic grid
cast on the real axis. More precisely, letDn = { j2−n/2 : j ∈ Z}, n � 0, be the dyadic
partition (of R) of order n/2. For every n � 0, the stopping times Tk,n , appearing in
(1.2), are given by the following recursive definition: T0,n = 0, and

Tk,n = inf{s > Tk−1,n : Y (s) ∈ Dn \ {YTk−1,n }}, k � 1.

Note that the definition of Tk,n , and therefore of Tn , only involves the one-sided
Brownian motion Y , and that, for every n � 0, the discrete stochastic process

Yn = {YTk,n : k � 0}

defines a simple and symmetric random walk over Dn . As shown in [2], as n tends
to infinity the collection {Tk,n : 1 � k � 2nt} approximates the common dyadic
partition {k2−n : 1 � k � 2nt} of order n of the time interval [0, t] (see [2, Lemma
2.2] for a precise statement). Based on this fact, one can introduce the counterpart of
(1.1) based on Tn , namely,
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S̃(p)
n (t) = 2−nκ̃

�2n t�−1∑

k=0

1

2
( f (ZTk,n ) + f (ZTk+1,n ))[(2

nH
2 (ZTk+1,n − ZTk,n ))

p − μp],

for some κ̃ > 0 to be discovered and with μp := E[N p], where N ∼ N (0, 1).
At this stage, it is worthwhile noting that we are dealing with symmetric weighted
p-variation of Z , and symmetry will play an important role in our analysis as we will
see in Lemma 3.1.

In the particular case where H = 1
2 , that is when Z is the iterated Brownian motion,

the asymptotic behavior of S̃(p)
n (·) has been studied in [4]. In fact, one can deduce the

following two finite-dimensional distributions (f.d.d.) convergences in law from [4,
Theorem 1.2].

1) For f ∈ C2
b and for any integer r � 1, we have

⎛

⎝2− 3n
4

�2n t�−1∑

k=0

1

2
( f (ZTk,n ) + f (ZTk+1,n ))[(2

n
4 (ZTk+1,n − ZTk,n ))

2r − μ2r ]
⎞

⎠

t�0

f.d.d.−→
n→∞

(√
μ4r − μ2

2r

∫ +∞

−∞
f (Xs)L

s
t (Y )dWs

)

t�0
, (1.3)

where Ls
t (Y ) stands for the local time of Y before time t at level s, W is a two-sided

Brownian motion independent of (X,Y ) and
∫ +∞
−∞ f (Xs)Ls

t (Y )dWs is theWiener–Itô
integral of f (X ·)L ·

t (Y ) with respect to W .

2) For f ∈ C2
b and for any integer r � 2, we have

⎛

⎝2− n
4

�2n t�−1∑

k=0

1

2
( f (ZTk,n ) + f (ZTk+1,n ))(2

n
4 (ZTk+1,n − ZTk,n ))

2r−1

⎞

⎠

t�0

f.d.d.−→
n→∞

(∫ Yt

0
f (Xs)(μ2r d

◦Xs +
√

μ4r−2 − μ2
2r dWs

)

t�0
, (1.4)

where for all t ∈ R,
∫ t
0 f (Xs)d◦Xs is the Stratonovich integral of f (X) with respect

to X defined as the limit in probability of 2− nH
2 W (1)

n ( f, t) as n → ∞, withW (1)
n ( f, t)

defined in (3.3), W is a two-sided Brownian motion independent of (X,Y ) and for
u ∈ R,

∫ u
0 f (Xs)dWs is the Wiener–Itô integral of f (X) with respect to W defined

in (5.16).
A natural follow-up of (1.3) and (1.4) is to study the asymptotic behavior of S̃(p)

n (·)
when H 	= 1

2 . In fact, the following more general result is our main finding in the
present paper.

Theorem 1.1 Let f : R → R be a function belonging to C∞
b and let W denote a

two-sided Brownian motion independent of (X,Y ).
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(1) For H > 1
6 , we have

�2n t�−1∑

k=0

1

2
( f (ZTk,n ) + f (ZTk+1,n ))(ZTk+1,n − ZTk,n )

P−→
n→∞

∫ Yt

0
f (Xs)d

◦Xs,

(1.5)

where for all t ∈ R,
∫ t
0 f (Xs)d◦Xs is the Stratonovich integral of f (X) with

respect to X defined as the limit in probability of 2− nH
2 W (1)

n ( f, t) as n → ∞,
with W (1)

n ( f, t) defined in (3.3).
For H = 1

6 , we have

�2n t�−1∑

k=0

1

2
( f (ZTk,n ) + f (ZTk+1,n ))(ZTk+1,n − ZTk,n )

law−→
n→∞

∫ Yt

0
f (Xs)d

∗Xs,

(1.6)

where for all t ∈ R,
∫ t
0 f (Xs)d∗Xs is the Stratonovich integral of f (X) with

respect to X defined as the limit in law of 2− nH
2 W (1)

n ( f, t) as n → ∞.

(2) For 1
6 < H < 1

2 and for any integer r � 2, we have

⎛

⎝2− n
4

�2nt�−1∑

k=0

1

2
( f (ZTk,n ) + f (ZTk+1,n ))(2

nH
2 (ZTk+1,n − ZTk,n ))

2r−1

⎞

⎠

t�0

f.d.d.−→
n→∞

(
β2r−1

∫ Yt

0
f (Xs)dWs

)

t�0
, (1.7)

where for u ∈ R,
∫ u
0 f (Xs)dWs is the Wiener–Itô integral of f (X) with respect to

W defined in (5.16), β2r−1 =
√∑r

l=2 κ2
r,l α

2
2l−1, with α2l−1 defined in (2.18) and κr,l

defined in (3.4).

(3) Fix a time t � 0, for H > 1
2 and for any integer r � 1, we have

2− nH
2

�2n t�−1∑

k=0

1

2
( f (ZTk,n ) + f (ZTk+1,n ))(2

nH
2 (ZTk+1,n − ZTk,n ))

2r−1

L2−→
n→∞

(2r)!
r !2r

∫ Yt

0
f (Xs)d

◦Xs,

(1.8)

where for all t ∈ R,
∫ t
0 f (Xs)d◦Xs is defined as in (1.5).
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(4) For 1
4 < H � 1

2 and for any integer r � 1, we have

⎛

⎝2− 3n
4

�2n t�−1∑

k=0

1

2
( f (ZTk,n ) + f (ZTk+1,n ))[(2

nH
2 (ZTk+1,n − ZTk,n ))

2r − μ2r ]
⎞

⎠

t�0

f.d.d.−→
n→∞

(
γ2r

∫ +∞

−∞
f (Xs)L

s
t (Y )dWs

)

t�0
, (1.9)

where
∫ +∞
−∞ f (Xs)Ls

t (Y )dWs is the Wiener–Itô integral of f (X ·)L ·
t (Y ) with respect

to W, γ2r :=
√∑r

a=1 b
2
2r,a α2

2a, with α2a defined in (2.18) and b2r,a defined in (7.1).

Theorem 1.1 is also a natural follow-up of [9, Corollary 1.2] where we have studied
the asymptotic behavior of the power variations of the fractional Brownian motion in
Brownian time. In fact, taking f equal to 1 in (1.8), we deduce the following Corollary.

Corollary 1.2 Assume that H > 1
2 , for any t � 0 and any integer r � 1, we have

2− nH
2

�2nt�−1∑

k=0

(2
nH
2 (ZTk+1,n − ZTk,n ))

2r−1 L2−→
n→∞

(2r)!
r !2r Zt ,

thus, we understand the asymptotic behavior of the signed power variations of odd
order of the fractional Brownian motion in Brownian time, in the case H > 1

2 , which
was missing in the first point in [9, Corollary 1.2].

Remark 1.3 1. For H = 1
6 , it has been proved in [8, (3.17)] that

⎛

⎝
�2n t�−1∑

k=0

1

2
( f (ZTk,n ) + f (ZTk+1,n ))(ZTk+1,n − ZTk,n )

3

⎞

⎠

t�0

f.d.d.−→
n→∞

(
κ3

∫ Yt

0
f (Xs)dWs

)

t�0
,

with W a standard two-sided Brownian motion independent of the pair (X,Y ) and
κ3 � 2.322. Thus, (1.7) continues to hold for H = 1

6 and r = 2.

2. In the particular case where H = 1/2 (that is, when Z is the iterated Brownian
motion), we emphasize that the fourth point of Theorem 1.1 allows one to recover
(1.3). In fact, since H = 1

2 , then, for any integer a � 1, by (2.18) and its related
explanation, α2

2a = (2a)!. So, using the decomposition (7.1) and (2.3), the reader

can verify that
√

μ4r − μ2
2r appearing in (1.3) is equal to γ2r appearing in (1.9).

3. The limit process in (1.4) is

(∫ Yt
0 f (Xs)(μ2r d◦Xs +

√
μ4r−2 − μ2

2r dWs

)

t�0
.

Observe that μ2r = E[N 2r ] = (2r)!
r !2r and since H = 1

2 , then, for any inte-
ger l � 1, by (2.18) and its related explanation, α2

2l−1 = (2l − 1)!. So, using
the decomposition (3.4) and (2.3), the reader can verify that

√
μ4r−2 − μ2

2r is
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equal to β2r−1 appearing in (1.7). We deduce that the limit process in (1.4) is(
(2r)!
r !2r

∫ Yt
0 f (Xs)d◦Xs + β2r−1

∫ Yt
0 f (Xs)dWs

)

t�0
. Thus, one can say that, for

any integer r � 2, the limit of the weighted (2r − 1)-variation of Z for H = 1
2 is

intermediate between the limit of the weighted (2r − 1)-variation of Z for H > 1
2

and the limit of the weighted (2r − 1)-variation of Z for 1
6 < H < 1

2 .

A brief outline of the paper is as follows. In Sect. 2, we give the preliminaries to
the proof of Theorem 1.1. In Sect. 3, we start the preparation to our proof. In Sect. 4,
we prove (1.5) and (1.6). In Sects. 5, 6 and 7 we prove (1.7), (1.8) and (1.9). Finally,
in Sect. 8, we give the proof of a technical lemma.

2 Preliminaries

2.1 Elements of Malliavin Calculus

In this section, we gather some elements of Malliavin calculus we shall need in the
sequel. The reader in referred to [6] for details and any unexplained result.

We continue to denote by X = (Xt )t∈R a two-sided fractional Brownian motion
with Hurst parameter H ∈ (0, 1). That is, X is a zero mean Gaussian process, defined
on a complete probability space (�,A , P), with covariance function,

CH (t, s) = E(Xt Xs) = 1

2
(|s|2H + |t |2H − |t − s|2H ), s, t ∈ R.

We suppose that A is the σ -field generated by X . For all n ∈ N
∗, we let En be the

set of step functions on [−n, n], and E := ∪nEn . Set εt = 1[0,t] (resp. 1[t,0]) if t � 0
(resp. t < 0). Let H be the Hilbert space defined as the closure of E with respect to
the inner product

〈εt , εs〉H = CH (t, s), s, t ∈ R. (2.1)

The mapping εt �→ Xt can be extended to an isometry betweenH and the Gaussian
space H1 associated with X . We will denote this isometry by ϕ �→ X (ϕ).

Let F be the set of all smooth cylindrical random variables, i.e., of the form

F = φ(Xt1, . . . , Xtl ),

where l ∈ N
∗,φ : Rl → R is aC∞-function such that f and its partial derivatives have

at most polynomial growth, and t1 < ... < tl are some real numbers. The derivative
of F with respect to X is the element of L2(�,H ) defined by

DsF =
l∑

i=1

∂φ

∂xi
(Xt1 , . . . , Xtl )εti (s), s ∈ R.
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In particular Ds Xt = εt (s). For any integer k � 1, we denote by D
k,2 the closure of

F with respect to the norm

‖F‖2k,2 = E(F2) +
k∑

j=1

E[‖D j F‖2H ⊗ j ].

The Malliavin derivative D satisfies the chain rule. If ϕ : R
n → R is C1

b and if
F1, . . . , Fn are in D1,2, then ϕ(F1, . . . , Fn) ∈ D

1,2 and we have

Dϕ(F1, . . . , Fn) =
n∑

i=1

∂ϕ

∂xi
(F1, . . . , Fn)DFi .

We have the following Leibniz formula, whose proof is straightforward by induction
on q. Let ϕ,ψ ∈ Cq

b (q � 1), and fix 0 � u < v and 0 � s < t. Then (ϕ(Xs) +
ϕ(Xt ))

(
ψ(Xu) + ψ(Xv)) ∈ D

q,2 and

Dq((ϕ(Xs) + ϕ(Xt ))(ψ(Xu) + ψ(Xv)))

=
q∑

l=0

(
q

l

)
(ϕ(l)(Xs)ε

⊗l
s + ϕ(l)(Xt )ε

⊗l
t )⊗̃(ψ(q−l)(Xu)ε

⊗(q−l)
u

+ψ(q−l)(Xv)ε
⊗(q−l)
v ) (2.2)

where ⊗̃ stands for the symmetric tensor product and ϕ(l) (resp. ψ(q−l)) means that
ϕ is differentiated l times (resp. ψ is differentiated q − l times). A similar statement
holds fo u < v � 0 and s < t � 0.

If a random element u ∈ L2(�,H ) belongs to the domain of the divergence
operator, that is, if it satisfies

|E 〈DF, u〉H | � cu
√
E
(
F2
)
for any F ∈ F ,

then I (u) is defined by the duality relationship

E(FI(u)) = E(〈DF, u〉H ),

for every F ∈ D
1,2.

For every n � 1, let Hn be the nth Wiener chaos of X , that is, the closed lin-
ear subspace of L2(�,A , P) generated by the random variables {Hn(X (h)), h ∈
H , ‖h‖H = 1}, where Hn is the nth Hermite polynomial. Recall that H0 = 0,
Hp(x) = (−1)p exp( x

2

2 ) d p

dx p exp(− x2
2 ) for p � 1, and that

E(Hp(M)Hq(N )) =
{
p!(E[MN ])p if p = q,

0 otherwise
, (2.3)
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for jointly Gaussian M, N and integers p, q � 1. The mapping

In(h
⊗n) = Hn(X (h)) (2.4)

provides a linear isometry between the symmetric tensor product H �n and Hn . For
H = 1

2 , In coincides with the multiple Wiener–Itô integral of order n. The following
duality formula holds

E(FIn(h)) = E(〈DnF, h〉H ⊗n ), (2.5)

for any element h ∈ H �n and any random variable F ∈ D
n,2.

Let {ek, k � 1} be a complete orthonormal system in H . Given f ∈ H �n and
g ∈ H �m, for every r = 0, . . . , n ∧ m, the contraction of f and g of order r is the
element of H ⊗(n+m−2r) defined by

f ⊗r g =
∞∑

k1,...,kr=1

〈 f, ek1 ⊗ · · · ⊗ ekr 〉H ⊗r ⊗ 〈g, ek1 ⊗ · · · ⊗ ekr 〉H ⊗r .

Finally, we recall the following product formula: If f ∈ H �n and g ∈ H �m , then

In( f )Im(g) =
n∧m∑

r=0

r !
(
n

r

)(
m

r

)
In+m−2r ( f ⊗r g). (2.6)

2.2 Some Technical Results

For all k ∈ Z and n ∈ N, we write

δ(k+1)2−n/2 = ε(k+1)2−n/2 − εk2−n/2 .

The following lemma will play a pivotal role in the proof of Theorem 1.1. The reader
can find an original version of this lemma in [5, Lemma 5, Lemma 6].

Lemma 2.1 1. If H � 1
2 , for all integer q � 1, for all j ∈ N and u ∈ R,

∣∣∣
〈
ε
⊗q
u , δ

⊗q
( j+1)2−n/2

〉

H ⊗q

∣∣∣ � 2−nqH . (2.7)

2. If H > 1
2 , for all integer q � 1, for all t ∈ R+ and j, j ′ ∈ {0, . . . , �2n/2t� − 1},

∣∣∣
〈
ε
⊗q
j2−n/2 , δ

⊗q
( j ′+1)2−n/2

〉

H ⊗q

∣∣∣ � 2q2− nq
2 t (2H−1)q , (2.8)

∣∣∣
〈
ε
⊗q
( j+1)2−n/2 , δ

⊗q
( j ′+1)2−n/2

〉

H ⊗q

∣∣∣ � 2q2− nq
2 t (2H−1)q . (2.9)

3. For all integers r, n � 1 and t ∈ R+, and with CH,r a constant depending only on
H and r (but independent of t and n),
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(a) if H < 1 − 1
2r ,

�2n/2t�−1∑

k,l=0

∣∣∣
〈
δ(k+1)2−n/2; δ(l+1)2−n/2

〉
H

∣∣∣
r

� CH,r t 2
n
(
1
2−r H

)

(2.10)

(b) if H = 1 − 1
2r ,

�2n/2t�−1∑

k,l=0

∣∣∣
〈
δ(k+1)2−n/2; δ(l+1)2−n/2

〉
H

∣∣∣
r

� CH,r 2
n
(
1
2−r H

)

(t (1 + n) + t2)

(2.11)

(c) if H > 1 − 1
2r ,

�2n/2t�−1∑

k,l=0

∣∣∣
〈
δ(k+1)2−n/2; δ(l+1)2−n/2

〉
H

∣∣∣
r

� CH,r
(
t 2

n
(
1
2−r H

)

+ t2−(2−2H)r 2n(1−r)). (2.12)

4. For H ∈ (0, 1). For all integer n � 1 and t ∈ R+,

�2n/2t�−1∑

k,l=0

∣∣∣
〈
εk2−n/2; δ(l+1)2−n/2

〉
H

∣∣∣ � 2
n
2+1t2H+1, (2.13)

�2n/2t�−1∑

k,l=0

∣∣∣
〈
ε(k+1)2−n/2; δ(l+1)2−n/2

〉
H

∣∣∣ � 2
n
2+1t2H+1. (2.14)

Proof The proof, which is quite long and technical, is postponed in Sect. 8. ��

It has been mentioned in [2] that {‖YT�2n t�,n‖4 : n � 0} is a bounded sequence.
More generally, we have the following result.

Lemma 2.2 For any integer k � 1, {‖YT�2n t�,n‖2k : n � 0} is a bounded sequence.

Proof Recall from the introduction that {YTk,n : k � 0} is a simple and symmetric

random walk on Dn , and observe that YT�2n t�,n = ∑�2n t�−1
l=0 (YTl+1,n − YTl,n ). So, we

have
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E
[(
YT�2n t�,n

)2k] =
�2n t�−1∑

l1,...,l2k=0

E
[(
YTl1+1,n − YTl1,n

)× · · · × (YTl2k+1,n − YTl2k ,n

)]

=
k∑

m=1

∑

a1+···+am=2k

Ca1,...,am

�2n t�−1∑

l1,...,lm=0
li 	=l j for i 	= j

E
[(
YTl1+1,n − YTl1,n

)a1]

× · · · × E
[(
YTlm+1,n − YTlm ,n

)am ], (2.15)

where ∀i ∈ {1, . . . ,m} ai is an even integer, ∀m ∈ {1, . . . , k} Ca1,...,am � 0, is some
combinatorial constant whose explicit value is immaterial here. Now observe that the
quantity in (2.15) is equal to

k∑

m=1

∑

a1+···+am=2k

Ca1,...,am �2nt�(�2nt� − 1
)× · · · × (�2nt� − m + 1

)
2− n

2 (a1+...+am )

=
k∑

m=1

∑

a1+···+am=2k

Ca1,...,am �2nt�(�2nt� − 1
)× · · · × (�2nt� − m + 1

)
2−nk,

so, since 1 � m � k, we deduce that
{
E
[(
YT�2n t�,n

)2k] : n � 0
}
is a bounded sequence,

which proves the lemma. ��

Also, in order to prove the fourth point of Theorem 1.1, we will need estimates on
the local time of Y taken from [2], that we collect in the following statement.

Proposition 2.3 1. For every x ∈ R, p ∈ N
∗ and t > 0, we have

E[(Lx
t (Y ))p] � 2 E[(L0

1(Y ))p] t p/2 exp
(

− x2

2t

)
.

2. There exists a positive constant μ such that, for every a, b ∈ R with ab � 0 and
t > 0,

E[|Lb
t (Y ) − La

t (Y )|2]1/2 � μ
√|b − a| t1/4 exp

(
−a2

4t

)
.

3. There exists a positive random variable K ∈ L8 such that, for every j ∈ Z, every
n � 0 and every t > 0, one has that

∣∣∣L j,n(t) − L j2−n/2

t (Y )

∣∣∣ � 2Kn2−n/4
√
L j2−n/2

t (Y ),

where L j,n(t) = 2−n/2(Uj,n(t) + Dj,n(t)).
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2.3 Notation

Throughout all the forthcoming proofs, we shall use the following notation. For all

t ∈ R and n ∈ N, we define X (n)
t := 2

nH
2 X

t2− n
2
. For all k ∈ Z and H ∈ (0, 1), we

write

ρ(k) = 1

2
(|k + 1|2H + |k − 1|2H − 2|k|2H ), (2.16)

it is clear that ρ(−k) = ρ(k). Observe that, by (2.1), we have

∣∣〈δ(k+1)2−n/2; δ(l+1)2−n/2〉H
∣∣ = ∣∣E

[(
X(k+1)2−n/2 − Xk2−n/2

)(
X(l+1)2−n/2 − Xl2−n/2

)]∣∣

= ∣∣2−nH−1(∣∣k − l + 1
∣∣2H + ∣∣k − l − 1

∣∣2H − 2
∣∣k − l

∣∣2H )∣∣

= 2−nH
∣∣ρ(k − l)

∣∣. (2.17)

If H � 1
2 , for all r ∈ N

∗, we define

αr :=
√
r !
∑

a∈Z
ρ(a)r . (2.18)

Note that
∑

a∈Z |ρ(a)|r < ∞ if and only if H < 1 − 1/(2r), which is satisfied for
all r � 1 if we suppose that H � 1/2 (in the case H = 1/2, we have ρ(0) = 1 and
ρ(a) = 0 for all a 	= 0. So, for any r ∈ N

∗, we have
∑

a∈Z |ρ(a)|r = 1).
For simplicity, throughout the paperwe remove the subscriptH in the inner product

defined in (2.1), that is, we write 〈 ; 〉 instead of 〈 ; 〉H .
For any sufficiently smooth function f : R → R, the notation ∂ l f means that f

is differentiated l times. We denote for any j ∈ Z , � j,n f (X) := 1
2 ( f (X j2−n/2) +

f (X( j+1)2−n/2)).

In the proofs contained in this paper, C shall denote a positive, finite constant that
may change value from line to line.

3 Preparation to the proof of Theorem 1.1

3.1 A Key Algebraic Lemma

For each integer n � 1, k ∈ Z and real number t � 0, letUj,n(t) (resp. Dj,n(t)) denote
the number of upcrossings (resp. downcrossings) of the interval [ j2−n/2, ( j+1)2−n/2]
within the first �2nt� steps of the random walk {YTk,n }k�0, that is,

Uj,n(t) = �
{
k = 0, . . . , �2nt� − 1 :

YTk,n = j2−n/2 and YTk+1,n = ( j + 1)2−n/2};
Dj,n(t) = �

{
k = 0, . . . , �2nt� − 1 :

YTk,n = ( j + 1)2−n/2 and YTk+1,n = j2−n/2}.
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The following lemma taken from [2, Lemma 2.4] is going to be the key when studying
the asymptotic behavior of the weighted power variation V (r)

n ( f, t) of order r � 1,
defined as:

V (r)
n ( f, t) =

�2n t�−1∑

k=0

1

2
( f (ZTk,n )+ f (ZTk+1,n ))[(2

nH
2 (ZTk+1,n −ZTk,n ))

r−μr ], t � 0,

(3.1)
where μr := E[Nr ], with N ∼ N (0, 1). Its main feature is to separate X from Y ,
thus providing a representation of V (r)

n ( f, t) which is amenable to analysis.

Lemma 3.1 Fix f ∈ C∞
b , t � 0 and r ∈ N

∗. Then

V (r)
n ( f, t) =

∑

j∈Z

1

2

(
f
(
X

j2− n
2

)+ f
(
X

( j+1)2− n
2

))[(
2

nH
2
(
X

( j+1)2− n
2
−X

j2− n
2

))r − μr
]

×(Uj,n(t) + (−1)r D j,n(t)
)
. (3.2)

3.2 Transforming the Weighted Power Variations of Odd Order

By [2, Lemma 2.5], one has

Uj,n(t) − Dj,n(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1{0� j< j∗(n,t)} if j∗(n, t) > 0

0 if j∗(n, t) = 0

−1{ j∗(n,t)� j<0} if j∗(n, t) < 0

,

where j∗(n, t) = 2n/2YT�2n t�,n . As a consequence, V
(2r−1)
n ( f, t) is equal to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

j∗(n,t)−1∑
j=0

1
2

(
f
(
X+

j2−n/2

)+ f
(
X+

( j+1)2−n/2

))(
Xn,+

j+1 − Xn,+
j

)2r−1 if j∗(n, t) > 0

0 if j∗(n, t) = 0∣∣ j∗(n,t)
∣∣−1∑

j=0

1
2

(
f (X−

j2−n/2) + f (X−
( j+1)2−n/2)

)(
Xn,−

j+1 − Xn,−
j

)2r−1 if j∗(n, t) < 0

,

where X+
t := Xt for t � 0, X−−t := Xt for t < 0, Xn,+

t := 2
nH
2 X+

2− n
2 t

for t � 0 and

Xn,−
−t := 2

nH
2 X−

2− n
2 (−t)

for t < 0.

Let us now introduce the following sequence of processes W (2r−1)
±,n , in which Hp

stands for the pth Hermite polynomial (H1(x) = x , H2(x) = x2 − 1, etc.):

123



J Theor Probab (2018) 31:1539–1589 1551

W (2r−1)
±,n ( f, t) =

�2n/2t�−1∑

j=0

1

2

(
f

(
X±

j2− n
2

)

+ f

(
X±

( j+1)2− n
2

))
H2r−1

(
Xn,±

j+1 − Xn,±
j

)
, t � 0 (3.3)

W (2r−1)
n ( f, t) :=

⎧
⎨

⎩
W (2r−1)

+,n ( f, t) if t � 0

W (2r−1)
−,n ( f,−t) if t < 0

.

We then have, using the decomposition

x2r−1 =
r∑

i=1

κr,i H2i−1(x), (3.4)

(with κr,r = 1, and κr,1 = (2r)!
r !2r = E[N 2r ], with N ∼ N (0, 1). If interested, the reader

can find the explicit value of κr,i , for 1 < i < r , e.g., in [9, Corollary 1.2]),

V (2r−1)
n ( f, t) =

r∑

i=1

κr,iW
(2i−1)
n

(
f,YT�2n t�,n

)
. (3.5)

4 Proofs of (1.5) and (1.6)

4.1 Proof of (1.5)

In [8, Theorem 2.1], we have proved that for H > 1
6 and f ∈ C∞

b , the following
change-of-variable formula holds true

F(Zt ) − F(0) =
∫ t

0
f (Zs)d

◦Zs, t � 0 (4.1)

where F is a primitive of f and
∫ t
0 f (Zs)d◦Zs is the limit in probability of

2− nH
2 V (1)

n ( f, t) as n → ∞, with V (1)
n ( f, t) defined in (3.1). On the other hand, it

has been proved in [5, Theorem 4] (see also [10, Theorem 1.3] for an extension of this
formula to the bi-dimensional case) that for all t ∈ R, the following change-of-variable
formula holds true for H > 1

6

F(Xt ) − F(0) =
∫ t

0
f (Xs)d

◦Xs, (4.2)

where
∫ t
0 f (Xs)d◦Xs is the Stratonovich integral of f (X) with respect to X defined

as the limit in probability of 2− nH
2 W (1)

n ( f, t) as n → ∞, with W (1)
n ( f, t) defined in

(3.3). Thanks to (4.2), we deduce that
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F(Zt ) − F(0) =
∫ Yt

0
f (Xs)d

◦Xs, t � 0

by combining this last equality with (4.1), we get
∫ t
0 f (Zs)d◦Zs = ∫ Yt

0 f (Xs)d◦Xs .
So, we deduce that, for H > 1

6 ,

�2nt�−1∑

k=0

1

2
( f (ZTk,n ) + f (ZTk+1,n ))(ZTk+1,n − ZTk,n )

P−→
n→∞

∫ Yt

0
f (Xs)d

◦Xs,

thus (1.5) holds true.

4.2 Proof of (1.6)

In [8, Theorem 2.1], we have proved that for H = 1
6 and f ∈ C∞

b , the following
change-of-variable formula holds true

F(Zt ) − F(0) + κ3

12

∫ Yt

0
f ′′(Xs)dWs

(law)=
∫ t

0
f (Zs)d

◦Zs, t � 0 (4.3)

where F is a primitive of f ,W is a standard two-sided Brownian motion independent

of the pair (X,Y ), κ3 � 2.322 and
∫ t
0 f (Zs)d◦Zs is the limit in law of 2− nH

2 V (1)
n ( f, t)

as n → ∞, with V (1)
n ( f, t) defined in (3.1). On the other hand, it has been proved in

(2.19) in [7] that for all t ∈ R, the following change-of-variable formula holds true
for H = 1

6

F(Xt ) − F(0) + κ3

12

∫ t

0
f ′′(Xs)dWs =

∫ t

0
f (Xs)d

∗Xs, (4.4)

where κ3 and W are the same as in (4.3),
∫ t
0 f (Xs)d∗Xs is the Stratonovich integral

of f (X) with respect to X defined as the limit in law of 2− nH
2 W (1)

n ( f, t) as n → ∞,
with W (1)

n ( f, t) defined in (3.3). Thanks to (4.4), we deduce that

F(Zt ) − F(0) + κ3

12

∫ Yt

0
f ′′(Xs)dWs =

∫ Yt

0
f (Xs)d

∗Xs, t � 0.

By combining this last equality with (4.3), we get
∫ t
0 f (Zs)d◦Zs

law= ∫ Yt
0 f (Xs)d∗Xs .

So, we deduce that, for H = 1
6 ,

�2nt�−1∑

k=0

1

2
( f (ZTk,n ) + f (ZTk+1,n ))(ZTk+1,n − ZTk,n )

law−→
n→∞

∫ Yt

0
f (Xs)d

∗Xs,

thus (1.6) holds true.
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5 Proof of (1.7)

Thanks to (3.1) and (3.5), for any integer r � 2, we have

2−n/4V (2r−1)
n ( f, t) = 2−n/4

�2nt�−1∑

k=0

1

2
( f (ZTk,n )

+ f (ZTk+1,n ))(2
nH
2 (ZTk+1,n − ZTk,n ))

2r−1

= 2−n/4
r∑

l=1

κr,lW
(2l−1)
n ( f,YT�2n t�,n ) (5.1)

The proof of (1.7) will be done in several steps.

5.1 Step 1: Limit of 2−n/4 ∑r
l=2 κr,lW

(2l−1)
n ( f, t)

Observe that, by (3.4), we have

�2n/2t�−1∑

j=0

1

2
( f (X±

j2− n
2
)+ f (X±

( j+1)2− n
2
))(Xn,±

j+1 − Xn,±
j )2r−1=

r∑

l=1

κr,lW
(2l−1)
±,n ( f, t).

We have the following proposition:

Proposition 5.1 If H ∈ ( 16 ,
1
2 ), if r � 2 then, for any f ∈ C∞

b ,

(
Xx , 2

− n
4

r∑

l=2

κr,lW
(2l−1)
±,n ( f, t)

)

x∈R, t�0

f.d.d.−→
n→∞

(
Xx , β2r−1

∫ t

0
f (X±

s )dW±
s

)

x∈R, t�0
,

(5.2)

where β2r−1 =
√∑r

l=2 κ2
r,l α

2
2l−1, α2l−1 is given by (2.18), W+

t = Wt if t > 0 and

W−
t = W−t if t < 0, with W a two-sided Brownian motion independent of (X,Y ),

and where
∫ t
0 f (X±

s )dW±
s must be understood in the Wiener–Itô sense.

Proof For all t � 0, we define F (2r−1)
±,n ( f, t) := 2− n

4
∑r

l=2 κr,lW
(2l−1)
±,n ( f, t). In what

follows we may study separately the finite-dimensional distributions convergence in
law of

(
X, F (2r−1)

+,n ( f, ·), F (2r−1)
−,n ( f, ·)) when n is even and when n is odd. For the

sake of simplicity, we will only consider the even case, the analysis when n is odd
being mutatis mutandis the same. So, assume that n is even and let m be another even
integer such that n � m � 0. We shall apply a coarse gaining argument. We have
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F (2r−1)
±,n ( f, t) = 2−n/4

�2m/2t�∑

i=1

i2
n−m
2 −1∑

j=(i−1)2
n−m
2

1

2
( f (X±

j2−n/2) + f (X±
( j+1)2−n/2))

×
(

r∑

l=2

κr,l H2l−1(X
n,±
j+1 − Xn,±

j )

)
(5.3)

+2−n/4
�2n/2t�−1∑

j=�2m/2t�2 n−m
2

1

2
( f (X±

j2−n/2) + f (X±
( j+1)2−n/2))

×
(

r∑

l=2

κr,l H2l−1(X
n,±
j+1 − Xn,±

j )

)
. (5.4)

Observe that 2
n−m
2 is an integer precisely because we have assumed that n and m are

even numbers. We have

(5.3) = A±
n,m(t) + B±

n,m(t) + C±
n,m(t),

where

A±
n,m(t) = 2−n/4

�2m/2t�∑

i=1

1

2
( f (X±

i2−m/2) + f (X±
(i+1)2−m/2))

i2
n−m
2 −1∑

j=(i−1)2
n−m
2

×
(

r∑

l=2

κr,l H2l−1(X
n,±
j+1 − Xn,±

j )

)

B±
n,m(t) = 2−n/4

�2m/2t�∑

i=1

i2
n−m
2 −1∑

j=(i−1)2
n−m
2

1

2
( f (X±

( j+1)2−n/2) − f (X±
(i+1)2−m/2))

×
(

r∑

l=2

κr,l H2l−1(X
n,±
j+1 − Xn,±

j )

)

C±
n,m(t) = 2−n/4

�2m/2t�∑

i=1

i2
n−m
2 −1∑

j=(i−1)2
n−m
2

1

2
( f (X±

j2−n/2) − f (X±
i2−m/2))

×
(

r∑

l=2

κr,l H2l−1(X
n,±
j+1 − Xn,±

j )

)

Here is a sketch of what remains to be done in order to complete the proof of
(5.2). Firstly, we will prove (a) the f.d.d. convergence in law of (X, A+

n,m, A−
n,m) to

(X, β2r−1
∫ ·
0 f (X+

s )dW+
s , β2r−1

∫ ·
0 f (X−

s )dW−
s ) as n→∞ and then m → ∞. Sec-

ondly,wewill show that (b) B±
n,m(t) converges to 0 in L2(�) asn→∞ and thenm→∞.

By applying the same techniques, we would also obtain that the same holds with
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C±
n,m(t). Thirdly,wewill prove that (c) (5.4) converges to 0 in L2(�) as n→∞ and then

m→∞. Once this has been done, one can easily deduce the f.d.d. convergence in law of
(X, F (2r−1)

+,n ( f, ·), F (2r−1)
−,n ( f, ·)) to (X, β2r−1

∫ ·
0 f (X+

s )dW+
s , β2r−1

∫ ·
0 f (X−

s )dW−
s )

as n→∞, which is equivalent to (5.2).
(a) Finite-dimensional distributions convergence in law of (X, A+

n,m, A−
n,m)

Fix m. Showing the f.d.d. convergence in law of (X, A+
n,m, A−

n,m) as n → ∞ can
be easily reduced to checking the f.d.d. convergence in law of the following random-
vector valued process:

⎛

⎜⎝Xx : x ∈ R, 2−n/4
i2

n−m
2 −1∑

j=(i−1)2
n−m
2

H2l−1(X
n,+
j+1 − Xn,+

j ) , 2−n/4

×
i2

n−m
2 −1∑

j=(i−1)2
n−m
2

H2l−1(X
n,−
j+1 − Xn,−

j ) : 2 � l � r, 1 � i � �2m/2t�
⎞

⎟⎠ .

Thanks to (3.27) in [9] (see also (3.4) in [9] and page 1073 in [5]), we have

⎛

⎜⎝2−n/4
i2

n−m
2 −1∑

j=(i−1)2
n−m
2

H2l−1(X
n,+
j+1 − Xn,+

j ), 2−n/4
i2

n−m
2 −1∑

j=(i−1)2
n−m
2

H2l−1(X
n,−
j+1 − Xn,−

j ) :

2 � l � r, 1 � i � �2m/2t�
⎞

⎟⎠
law−→

n→∞

(
α2l−1

(
Bl,+

(i+1)2−m/2 − Bl,+
i2−m/2

)
, α2l−1

(
Bl,−

(i+1)2−m/2 − Bl,−
i2−m/2

) :

2 � l � r, 1 � i � �2m/2t�
)

where (B(2), . . . , B(r)) is a (r−1)-dimensional two-sided Brownianmotion and α2l−1

is defined in (2.18), for all t � 0, Br,+
t := B(r)

t , Br,−
t := B(r)

−t .
Since E[Xx H2r−1(X

n,±
j+1 − Xn,±

j )] = 0 when r � 2 (Hermite polynomials of dif-
ferent orders are orthogonal), Peccati–Tudor Theorem (see, e.g., [6, Theorem 6.2.3])
applies and yields

⎛

⎜⎝Xx , 2
−n/4

i2
n−m
2 −1∑

j=(i−1)2
n−m
2

H2l−1(X
n,+
j+1 − Xn,+

j ), 2−n/4
i2

n−m
2 −1∑

j=(i−1)2
n−m
2

H2l−1(X
n,+
j+1−Xn,+

j ) :

2 � l � r, 1 � i � �2m/2t�
⎞

⎟⎠

x�0

f.d.d.−→
n→∞
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(
Xx , α2l−1(B

l,+
(i+1)2−m/2 − Bl,+

i2−m/2), α2l−1(B
l,−
(i+1)2−m/2 − Bl,−

i2−m/2) :
2 � l � r, 1 � i � �2m/2t�

)

x�0
,

with (B(2), . . . , B(r−1)) is independent of X (and independent of Y as well). We then
have, as n → ∞ and m is fixed,

(X, A+
n,m, A−

n,m)
f.d.d.−→

⎛

⎝X, β2r−1

�2m/2.�∑

i=1

1

2
( f (X+

i2−m/2) + f (X+
(i+1)2−m/2))(W

+
(i+1)2−m/2 − W+

i2−m/2),

β2r−1

�2m/2.�∑

i=1

1

2
( f (X−

i2−m/2) + f (X−
(i+1)2−m/2))(W

−
(i+1)2−m/2 − W−

i2−m/2)

⎞

⎠ ,

with β2r−1 :=
√∑r

l=2 κ2
r,l α

2
2l−1 andW is a two-sided Brownian motion independent

of X (and independent of Y as well). One can write

�2m/2t�∑

i=1

1

2
( f (X±

i2−m/2) + f (X±
(i+1)2−m/2))(W

±
(i+1)2−m/2 − W±

i2−m/2) = K±
m (t) + L±

m(t),

with

K±
m (t) =

�2m/2t�∑

i=1

f (X±
i2−m/2)

(
W±

(i+1)2−m/2 − W±
i2−m/2

)
,

L±
m(t) =

�2m/2t�∑

i=1

1

2
( f (X±

(i+1)2−m/2) − f (X±
i2−m/2))(W

±
(i+1)2−m/2 − W±

i2−m/2).

It is clear that K±
m (t)

L2−→
m→∞

∫ t

0
f (X±

s )dW±
s . On the other hand, L±

m(t) converges to

0 in L2 as m → ∞. Indeed, by independence,

E[L±
m(t)2]

= 1

4

�2m/2t�∑

i, j=1

E[( f (X±
(i+1)2−m/2) − f (X±

i2−m/2))( f (X
±
( j+1)2−m/2) − f (X±

j2−m/2))]

× E[(W±
(i+1)2−m/2 − W±

i2−m/2)(W
±
( j+1)2−m/2 − W±

j2−m/2)]
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= 1

4

�2m/2t�∑

i=1

E[( f (X±
(i+1)2−m/2) − f (X±

i2−m/2))
2] × E[(W±

(i+1)2−m/2 − W±
i2−m/2)

2]

= 2−m/2

4

�2m/2t�∑

i=1

E[ f ′(Xθi )
2(X±

(i+1)2−m/2) − X±
i2−m/2)

2], (5.5)

where θi denotes a random real number satisfying i2−m/2 < θi < (i +1)2−m/2. Since
f ∈ C∞

b and by Cauchy–Schwarz inequality, we deduce that

(5.5) � C f 2
−m/2

�2m/2t�∑

i=1

E[(X±
(i+1)2−m/2) − (X±

i2−m/2)
4]1/2

= C f 2
−m/2�2m/2t�2−mH

√
3

� C f 2
−mH t,

from which the claim follows. Summarizing, we just showed that

(X, A+
n,m, A−

n,m)
f.d.d.−→ (X, β2r−1

∫ .

0
f (X+

s )dW+
s , β2r−1

∫ .

0
f (X−

s )dW−
s )

as n → ∞ then m → ∞.
(b) B±

n,m(t) converges to 0 in L2(�) as n → ∞ and then m → ∞.
It suffices to prove that for all k ∈ {2, . . . , r},

B±,k
n,m (t)

L2−→ 0, (5.6)

as n → ∞ and then m → ∞, where B±,k
n,m (t) is defined as follows

B±,k
n,m (t) := 2−n/4

�2m/2t�∑

i=1

i2
n−m
2 −1∑

j=(i−1)2
n−m
2

1

2
( f (X±

( j+1)2−n/2)

− f (X±
(i+1)2−m/2))H2k−1(X

n,±
j+1 − Xn,±

j ).

With obvious notation, we have that

B±,k
n,m (t) = 2−n/4

�2m/2t�∑

i=1

i2
n−m
2 −1∑

j=(i−1)2
n−m
2

�
n,m
i, j f (X±)H2k−1(X

n,±
j+1 − Xn,±

j ).

It suffices to prove the convergence to 0 of B+,k
n,m (t), the proof for B−,k

n,m (t) being exactly
the same. In fact, the reader can find this proof in the proof of [5, Theorem 1, (1.15)]
at page 1073.
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(c) (5.4) converges to 0 in L2(�) as n → ∞ and then m → ∞.

It suffices to prove that for all k ∈ {2, . . . , r}, J±,k
n,m (t)

L2−→ 0 as n → ∞ and then

m → ∞, where J±,k
n,m (t) is defined as follows,

J±,k
n,m (t) = 2−n/4

�2n/2t�−1∑

j=�2m/2t�2 n−m
2

1

2
( f (X±

j2−n/2) + f (X±
( j+1)2−n/2))H2k−1(X

n,±
j+1 − Xn,±

j )

= 2−n/4
�2n/2t�−1∑

j=�2m/2t�2 n−m
2

�n
j f (X

±)H2k−1(X
n,±
j+1 − Xn,±

j ),

with obvious notation. We will only prove the convergence to 0 of J+,k
n,m (t), the proof

for J−,k
n,m (t) being exactly the same. Using the relationship between Hermite polyno-

mials and multiple stochastic integrals, namely Hr (2nH/2(X+
( j+1)2−n/2 − X+

j2−n/2)) =
2nr H/2 Ir (δ

⊗r
( j+1)2−n/2), we obtain, using (2.6) as well,

E[(J+,k
n,m (t))2] =

∣∣∣∣2
−n/22nH(2k−1)

�2n/2t�−1∑

j, j ′=�2m/2t�2 n−m
2

2k−1∑

l=0

l!
(
2k − 1

l

)2

×E

[
�n

j f (X
+)�n

j ′ f (X
+)I2(2k−1)−2l

(
δ
⊗(2k−1−l)
( j+1)2−n/2 ⊗ δ

⊗(2k−1−l)
( j ′+1)2−n/2

)]

×〈δ( j+1)2−n/2 ; δ( j ′+1)2−n/2〉l
∣∣∣∣

� 2−n/22nH(2k−1)
�2n/2t�−1∑

j, j ′=�2m/2t�2 n−m
2

2k−1∑

l=0

l!
(
2k − 1

l

)2

×
∣∣∣∣E
[
�n

j f (X
+)�n

j ′ f (X
+)I2(2k−1)−2l

(
δ
⊗(2k−1−l)
( j+1)2−n/2 ⊗ δ

⊗(2k−1−l)
( j ′+1)2−n/2

)]∣∣∣∣

×∣∣〈δ( j+1)2−n/2 ; δ( j ′+1)2−n/2〉∣∣l

=
2k−1∑

l=0

l!
(
2k − 1

l

)2

Q+,l
n,m(t), (5.7)

with obvious notation. Thanks both to the duality formula (2.5) and to (2.2), we have

d(+,l)
n ( j, j ′) := E

[
�n

j f (X
+)�n

j ′ f (X
+)I2(2k−1)−2l

(
δ
⊗(2k−1−l)
( j+1)2−n/2 ⊗ δ

⊗(2k−1−l)
( j ′+1)2−n/2

)]

= E

[〈
D2(2k−1−l)(�n

j f (X
+)�n

j ′ f (X
+)) ; δ

⊗(2k−1−l)
( j+1)2−n/2 ⊗ δ

⊗(2k−1−l)
( j ′+1)2−n/2

〉]

= 1

4

2(2k−1−l)∑

a=0

(
2(2k − 1 − l)

a

)
E

[〈(
f (a)

(
X+

j2−n/2

)
ε⊗a
j2−n/2 + f (a)

(
X+

( j+1)2−n/2

)
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×ε⊗a
( j+1)2−n/2

)
⊗̃
(
f
(
2(2k−1−l)−a

)(
X+

j ′2−n/2

)
ε
⊗(2(2k−1−l)−a)

j ′2−n/2

+ f
(
2(2k−1−l)−a

)(
X+

( j ′+1)2−n/2

)
ε
⊗(2(2k−1−l)−a)

( j ′+1)2−n/2

)
; δ

⊗(2k−1−l)
( j+1)2−n/2 ⊗ δ

⊗(2k−1−l)
( j ′+1)2−n/2

〉]
.

At this stage, the proof of the claim (c) is going to be different according to the value
of l:

• If l = 2k − 1 in (5.7) then

Q+,2k−1
n,m (t) = 2−n/22nH(2k−1)

�2n/2t�−1∑

j, j ′=�2m/2t�2 n−m
2

∣∣∣∣E
[
�n

j f (X
+)�n

j ′ f (X
+)
]∣∣∣∣

×∣∣〈δ( j+1)2−n/2 ; δ( j ′+1)2−n/2〉∣∣2k−1

� C f 2
−n/22nH(2k−1)

�2n/2t�−1∑

j, j ′=�2m/2t�2 n−m
2

∣∣〈δ( j+1)2−n/2 ; δ( j ′+1)2−n/2
〉∣∣2k−1

= C f 2
−n/2

�2n/2t�−1∑

j, j ′=�2m/2t�2 n−m
2

∣∣1
2

(∣∣ j− j ′+1
∣∣2H +∣∣ j− j ′−1

∣∣2H − 2
∣∣ j − j ′

∣∣2H )∣∣2k−1

= C f 2
−n/2

�2n/2t�−1∑

j=�2m/2t�2 n−m
2

j−�2m/2t�2 n−m
2∑

p= j−�2n/2t�+1

∣∣1
2

(∣∣p+1
∣∣2H +∣∣p − 1

∣∣2H − 2
∣∣p
∣∣2H )∣∣2k−1

(5.8)

where we have the first inequality since f belongs to C∞
b and the last one follows

by the change of variable p = j − j ′. Using the notation (2.16), and by a Fubini
argument, we get that the quantity given in (5.8) is equal to

C f 2
−n/2

�2n/2t�−�2m/2t�2 n−m
2 −1∑

p=�2m/2t�2 n−m
2 −�2n/2t�+1

∣∣ρ(p)
∣∣2k−1((

p + �2n/2t�) ∧ �2n/2t�

−(p + �2m/2t�2 n−m
2
) ∨ �2m/2t�2 n−m

2
)
. (5.9)

By separating the cases when 0 � p � �2n/2t� − �2m/2t�2 n−m
2 − 1 or when

�2m/2t�2 n−m
2 − �2n/2t� + 1 � p < 0 we deduce that

0 �
(

(p + �2n/2t�)
2n/2 ∧ (�2n/2t�)

2n/2 − (p + �2m/2t�2 n−m
2 )

2n/2 ∨ �2m/2t�2−m/2
)

� �2n/2t�2−n/2 − �2m/2t�2−m/2 = ∣∣�2n/2t�2−n/2 − �2m/2t�2−m/2
∣∣

�
∣∣�2n/2t�2−n/2 − t

∣∣+ ∣∣t − �2m/2t�2−m/2
∣∣ � 2−n/2 + 2−m/2.
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As a result, the quantity given in (5.9) is bounded by

C f

∑

p∈Z

∣∣ρ(p)
∣∣2k−1(2−n/2 + 2−m/2),

with
∑

p∈Z |ρ(p)|2k−1 < ∞ (because H < 1/2 � 1 − 1
4k−2 ). Finally, we have

Q+,2k−1
n,m (t) � C

(
2−n/2 + 2−m/2). (5.10)

• Preparation to the cases 0 � l � 2k − 2: In order to handle the terms Q+,l
n,m(t)

whenever 0 � l � 2k − 2, we will make use of the following decomposition:

∣∣d(+,l)
n ( j, j ′)

∣∣ � 1

4

(
�(1,l)

n ( j, j ′) + �(2,l)
n ( j, j ′) + �(3,l)

n ( j, j ′) + �(4,l)
n ( j, j ′)

)
,

(5.11)
where

�(1,l)
n ( j, j ′) =

2(2k−1−l)∑

a=0

(
2(2k − 1 − l)

a

)∣∣∣∣E
[
f (a)
(
X+

j2−n/2

)
f (2(2k−1−l)−a)

(
X+

j ′2−n/2

)]∣∣∣∣

×
∣∣∣∣

〈
ε⊗a
j2−n/2⊗̃ε

⊗(2(2k−1−l)−a)

j ′2−n/2 ; δ
⊗(2k−1−l)
( j+1)2−n/2 ⊗ δ

⊗(2k−1−l)
( j ′+1)2−n/2

〉∣∣∣∣

�(2,l)
n ( j, j ′) =

2(2k−1−l)∑

a=0

(
2(2k − 1 − l)

a

)∣∣∣∣E
[
f (a)
(
X+

j2−n/2

)
f
(
2(2k−1−l)−a

)(
X+

( j ′+1)2−n/2

)]∣∣∣∣

×
∣∣∣∣

〈
ε⊗a
j2−n/2⊗̃ε

⊗(2(2k−1−l)−a)

( j ′+1)2−n/2 ; δ
⊗(2k−1−l)
( j+1)2−n/2 ⊗ δ

⊗(2k−1−l)
( j ′+1)2−n/2

〉∣∣∣∣

�(3,l)
n ( j, j ′) =

2(2k−1−l)∑

a=0

(
2(2k − 1 − l)

a

)∣∣∣∣E
[
f (a)
(
X+

( j+1)2−n/2

)
f
(
2(2k−1−l)−a

)(
X+

j ′2−n/2

)]∣∣∣∣

×
∣∣∣∣

〈
ε⊗a
( j+1)2−n/2⊗̃ε

⊗(2(2k−1−l)−a)

j ′2−n/2 ; δ
⊗(2k−1−l)
( j+1)2−n/2 ⊗ δ

⊗(2k−1−l)
( j ′+1)2−n/2

〉∣∣∣∣

�(4,l)
n ( j, j ′) =

2(2k−1−l)∑

a=0

(
2(2r−1−l)

a

)∣∣∣∣E
[
f (a)
(
X+

( j+1)2−n/2

)
f
(
2(2k−1−l)−a

)(
X+

( j ′+1)2−n/2

)]∣∣∣∣

×
∣∣∣∣

〈
ε⊗a
( j+1)2−n/2⊗̃ε

⊗(2(2k−1−l)−a)

( j ′+1)2−n/2 ; δ
⊗(2k−1−l)
( j+1)2−n/2 ⊗ δ

⊗(2k−1−l)
( j ′+1)2−n/2

〉∣∣∣∣.

• For 1 � l � 2k − 2 : Since f belongs to C∞
b and thanks to (2.7), we deduce that

d(+,l)
n ( j, j ′) � C

(
2−nH )2(2k−1−l)

.
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As a consequence of this previous inequality, we have

Q+,l
n,m(t)

� C
(
2−nH )2(2k−2) 2−n/2 2nH(2k−1)

�2n/2t�−1∑

j, j ′=�2m/2t�2 n−m
2

∣∣〈δ( j+1)2−n/2 ; δ( j ′+1)2−n/2〉∣∣l

� C
(
2−nH )2(2k−2) 2nH(2k−1)2−nHl

(∑

p∈Z
|ρ(p)|l

)(
2−n/2 + 2−m/2)

� C 2−nH(2k−2)(2−n/2 + 2−m/2), (5.12)

where we have the second inequality by the same arguments that have been used
previously in the case l = 2k − 1.

• For l = 0 : Thanks to the decomposition (5.11) we get

Q+,0
n,m(t) � 1

4
2−n/22nH(2k−1)

4∑

k′=1

�2n/2t�−1∑

j, j ′=�2m/2t�2 n−m
2

�(k′,0)
n ( j, j ′) (5.13)

We will study only the term corresponding to �
(2,0)
n ( j, j ′) in (5.13), which is

representative to the difficulty. It is given by

1

4
2−n/22nH(2k−1)

�2n/2t�−1∑

j, j ′=�2m/2t�2 n−m
2

2(2k−1)∑

a=0

(
2(2k − 1)

a

)∣∣∣∣E
[
f (a)
(
X+

j2−n/2

)

× f (2(2k−1)−a)
(
X+

( j ′+1)2−n/2

)]∣∣∣∣

∣∣∣∣

〈
ε⊗a
j2−n/2⊗̃ε

⊗(2(2k−1)−a)

( j ′+1)2−n/2 ; δ
⊗(2k−1)
( j+1)2−n/2 ⊗ δ

⊗(2k−1)
( j ′+1)2−n/2

〉∣∣∣∣

� C2−n/22nH(2k−1)
�2n/2t�−1∑

j, j ′=�2m/2t�2 n−m
2

2(2k−1)∑

a=0

∣∣∣∣

〈
ε⊗a
j2−n/2⊗̃ε

⊗(2(2k−1)−a)

( j ′+1)2−n/2 ;

δ
⊗(2k−1)
( j+1)2−n/2 ⊗ δ

⊗(2k−1)
( j ′+1)2−n/2

〉∣∣∣∣.

We define E (a,k)
n ( j, j ′) := ∣∣〈ε⊗a

j2−n/2⊗̃ε
⊗(2(2k−1)−a)

( j ′+1)2−n/2 ; δ
⊗(2k−1)
( j+1)2−n/2 ⊗ δ

⊗(2k−1)
( j ′+1)2−n/2

〉∣∣.
By (2.7), we thus get, with c̃a some combinatorial constants,

E (a,k)
n ( j, j ′) � c̃a 2

−nH(4k−3)(∣∣〈ε j2−n/2; δ( j+1)2−n/2
〉∣∣+ |〈ε j2−n/2; δ( j ′+1)2−n/2〉|

+∣∣〈ε( j ′+1)2−n/2; δ( j+1)2−n/2
〉∣∣+ ∣∣〈ε( j ′+1)2−n/2; δ( j ′+1)2−n/2

〉∣∣).
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For instance, we can write

�2n/2t�−1∑

j, j ′=�2m/2t�2 n−m
2

∣∣〈ε( j ′+1)2−n/2; δ( j+1)2−n/2
〉∣∣

= 2−nH−1
�2n/2t�−1∑

j, j ′=�2m/2t�2 n−m
2

∣∣( j + 1)2H − j2H +∣∣ j ′ − j+1
∣∣2H − ∣∣ j ′ − j

∣∣2H ∣∣

� 2−nH−1
�2n/2t�−1∑

j, j ′=�2m/2t�2 n−m
2

(
( j + 1)2H − j2H

)

+ 2−nH−1
∑

�2m/2t�2 n−m
2 � j� j ′��2n/2t�−1

(
( j ′ − j + 1)2H − ( j ′ − j)2H

)

+ 2−nH−1
∑

�2m/2t�2 n−m
2 � j ′< j��2n/2t�−1

(
( j − j ′)2H − ( j − j ′ − 1)2H

)

� 3

2
2−nH (�2n/2t�−�2m/2t�2 n−m

2
)�2n/2t�2H � 3t2H

2

(
2n/2t − �2m/2t�2 n−m

2
)
.

Similarly,

�2n/2t�−1∑

j, j ′=�2m/2t�2 n−m
2

∣∣〈ε j2−n/2; δ( j+1)2−n/2
〉∣∣ � 3t2H

2

(
2n/2t − �2m/2t�2 n−m

2
);

�2n/2t�−1∑

j, j ′=�2m/2t�2 n−m
2

∣∣〈ε j2−n/2; δ( j ′+1)2−n/2
〉∣∣ � 3t2H

2

(
2n/2t − �2m/2t�2 n−m

2
);

�2n/2t�−1∑

j, j ′=�2m/2t�2 n−m
2

∣∣〈ε( j ′+1)2−n/2; δ( j ′+1)2−n/2
〉∣∣ � 3t2H

2

(
2n/2t − �2m/2t�2 n−m

2
)
.

As a consequence, we deduce

Q(+,0)
n,m (t) � C 2−nH(2k−2)

(
t − �2m/2t�2−m

2

)
� C 2−nH(2k−2)2−m/2. (5.14)

Combining (5.10), (5.12) and (5.14) finally shows

E
[(
J+,k
n,m (t)

)2] � C

(
2−n/2 + 2−m/2 + 2−nH(2k−2)(2−n/2 + 2−m/2)

+ 2−nH(2k−2)2−m/2).
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So, we deduce that J+,k
n,m (t) converges to 0 in L2(�) as n → ∞ and then m → ∞.

Finally, thanks to (a), (b) and (c), (5.2) holds true. ��

5.2 Step 2: Limit of 2−n/4W (1)
n ( f,YT�2n t�,n)

Thanks to (1.5), for H > 1
6 , 2

− nH
2 W (1)

n ( f,YT�2n t�,n )
P−→

n→∞
∫ Yt
0 f (Xs)d◦Xs . Thus, since

H < 1
2 , we deduce that

2−n/4W (1)
n

(
f,YT�2n t�,n

)
P−→

n→∞ 0. (5.15)

5.3 Step 3: Moment bounds for W (2r−1)
n ( f, ·)

We recall the following result from [8]. Fix an integer r � 1 as well as a function
f ∈ C∞

b . There exists a constant c > 0 such that, for all real numbers s < t and all
n ∈ N,

E
[(
W (2r−1)

n ( f, t) − W (2r−1)
n ( f, s)

)2] � c max
(∣∣s
∣∣2H ,

∣∣t
∣∣2H )(∣∣t − s

∣∣2n/2 + 1
)
.

5.4 Step 4: Last step in the proof of (1.7)

Following [2], we introduce the following natural definition for two-sided stochastic
integrals: for u ∈ R, let

∫ u

0
f (Xs)dWs =

{∫ u
0 f (X+

s )dW+
s if u � 0

∫ −u
0 f (X−

s )dW−
s if u < 0

, (5.16)

where W+ and W− are defined in Proposition 5.1, X+ and X− are defined in Sect. 4,
and

∫ ·
0 f (X±

s )dW±
s must be understood in the Wiener–Itô sense.

Using (3.5), (5.15), the conclusion of Step 3 (to pass from YT�2n t�,n to Yt ) and since

by [2, Lemma 2.3], we have YT�2n t�,n
L2−→ Yt as n → ∞, we deduce that the limit of

2−n/4V (2r−1)
n ( f, t) is the same as that of

2−n/4
r∑

l=2

κr,lW
(2l−1)
n ( f,Yt ).

Thus, the proof of (1.7) follows directly from (5.2), the definition of the integral in
(5.16), as well as the fact that X , W and Y are independent.
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6 Proof of (1.8)

We suppose that H > 1
2 . The proof of (1.8) will be done in several steps:

6.1 Step 1: Limits and moment bounds for W (2i−1)
n ( f, ·)

We recall the following Itô-type formula from [5, Theorem 4] (see also [10, Theo-
rem 1.3] for an extension of this formula to the bi-dimensional case). For all t ∈ R,
the following change-of-variable formula holds true for H > 1

2

F(Xt ) − F(0) =
∫ t

0
f (Xs)d

◦Xs, (6.1)

where F is a primitive of f and
∫ t
0 f (Xs)d◦Xs is the Stratonovich integral of f (X)

with respect to X defined as the limit in probability of 2− nH
2 W (1)

n ( f, t) as n → ∞.
For the rest of the proof, we suppose that f ∈ C∞

b . The following proposition will
play a pivotal role in the proof of (1.8).

Proposition 6.1 There exists a positive constant C, independent of n and t, such that
for all i � 1 and t ∈ R, we have

E
[(
2− nH

2 W (2i−1)
n ( f, t)

)2] � C ψ(t, H, i, n), (6.2)

where, we have

ψ(t, H, i, n) := ∣∣t∣∣(2H−1)(4i−3) ∣∣t
∣∣2H+1 2−n(2i−2)(1−H)

+C
2i−2∑

a=1

([∣∣t
∣∣(1 + n) + t2

] ∣∣t
∣∣2(2H−1)(2i−1−a) 2− n

2 (2H−1) 2−n(1−H)
[
2i−1−a

]

+ ∣∣t∣∣2(1−(1−H)a) ∣∣t
∣∣2(2H−1)(2i−1−a) 2−n(1−H)[2i−2]1{

H>1− 1
2a

}
)

+C
[∣∣t
∣∣(1 + n) + t2

]
2−n
(
H− 1

2

)

+C
∣∣t
∣∣2(1−(1−H)(2i−1)) 2−n(1−H)(2i−2)1{

H>1− 1
(4i−2)

}.

Proof Set φn( j, j ′) := � j,n f (X)� j ′,n f (X), where we recall that � j,n f (X) :=
1
2 ( f (X j2−n/2) + f (X( j+1)2−n/2). Fix t � 0 (the proof in the case t < 0 is similar), for
all i � 1, we have

E
[(
2− nH

2 W (2i−1)
n ( f, t)

)2] = E
[(
2− nH

2 W (2i−1)
+,n ( f, t)

)2]

= 2−nH
�2 n

2 t�−1∑

j, j ′=0

E

(
φn( j, j

′)H2i−1
(
Xn,+

j+1 − Xn,+
j

)
H2i−1

(
Xn,+

j ′+1 − Xn,+
j ′
))
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= 2−nH(1−(2i−1))
�2 n

2 t�−1∑

j, j ′=0

E

(
φn( j, j

′)I2i−1
(
δ⊗2i−1
( j+1)2−n/2

)
I2i−1

(
δ⊗2i−1
( j ′+1)2−n/2

))

= 2−nH(2−2i)
2i−1∑

a=0

a!
(
2i − 1

a

)2 �2 n
2 t�−1∑

j, j ′=0

E

(
φn( j, j

′)

×I4i−2−2a
(
δ⊗2i−1−a
( j+1)2−n/2 ⊗ δ⊗2i−1−a

( j ′+1)2−n/2

))〈δ( j+1)2−n/2 , δ( j ′+1)2−n/2〉a

= 2−nH(2−2i)
2i−1∑

a=0

a!
(
2i − 1

a

)2 �2 n
2 t�−1∑

j, j ′=0

E

(〈
D4i−2−2a(φn( j, j

′)
)
,

δ⊗2i−1−a
( j+1)2−n/2 ⊗ δ⊗2i−1−a

( j ′+1)2−n/2

〉)
〈δ( j+1)2−n/2 , δ( j ′+1)2−n/2〉a

=
2i−1∑

a=0

a!
(
2i − 1

a

)2

Q(i,a)
n (t), (6.3)

with obvious notation at the last equality and with the third equality following from
(2.4), the fourth one from (2.6) and the fifth one from (2.5). We have the following
estimates.

• Case a = 2i − 1

∣∣Q(i,2i−1)
n (t)

∣∣ � 2−nH(2−2i)
�2 n

2 t�−1∑

j, j ′=0

E
(∣∣φn( j, j

′)
∣∣)

×∣∣〈δ( j+1)2−n/2 , δ( j ′+1)2−n/2〉∣∣2i−1

� C2−nH(2−2i)
�2 n

2 t�−1∑

j, j ′=0

∣∣〈δ( j+1)2−n/2 , δ( j ′+1)2−n/2〉∣∣2i−1
.

Now, we distinguish three cases:
(a) If H < 1 − 1

(4i−2) : by (2.10) we have

∣∣∣Q(i,2i−1)
n (t)

∣∣∣ � C t 2−nH(2−2i) 2
n
(
1
2−(2i−1)H

)

= C t 2
−n
(
H− 1

2

)

.

(b) If H = 1 − 1
(4i−2) : by (2.11) we have

∣∣∣Q(i,2i−1)
n (t)

∣∣∣ � C
[
t (1 + n) + t2

]
2−nH(2−2i) 2

n
(
1
2−(2i−1)H

)

= C
[
t (1 + n) + t2

]
2
−n
(
H− 1

2

)

.

123



1566 J Theor Probab (2018) 31:1539–1589

(c) If H > 1 − 1
(4i−2) : by (2.12) we have

∣∣∣Q(i,2i−1)
n (t)

∣∣∣ � C t 2−nH(2−2i) 2
n
(
1
2−(2i−1)H

)

+C t2−(2−2H)(2i−1) 2−nH(2−2i) 2n(1−(2i−1))

= C t 2−n(H− 1
2 ) + C t2(1−(1−H)(2i−1)) 2−n(1−H)(2i−2).

So, we deduce that

∣∣Q(i,2i−1)
n (t)

∣∣ � C
[∣∣t
∣∣(1 + n) + t2

]
2−n
(
H− 1

2

)

+C
∣∣t
∣∣2
(
1−(1−H)(2i−1)

)
2−n(1−H)(2i−2)1{

H>1− 1
(4i−2)

}

(6.4)

• Preparation to the cases where 0 � a � 2i − 2
Thanks to (2.2) we have

D4i−2−2a(φn( j, j
′)) = D4i−2−2a(� j,n f (X)� j ′,n f (X)) � C

4i−2−2a∑

l=0(
f (l)(X j2−n/2 )ε

⊗l
j2−n/2 + f (l)(X( j+1)2−n/2 )ε

⊗l
( j+1)2−n/2 )⊗̃

( f (4i−2−2a−l)(X j ′2−n/2 )ε
⊗4i−2−2a−l
j ′2−n/2 + f (4i−2−2a−l)(X( j ′+1)2−n/2 )ε

⊗4i−2−2a−l
( j ′+1)2−n/2 )

= C
4i−2−2a∑

l=0

( f (l)(X j2−n/2 ) f (4i−2−2a−l)(X j ′2−n/2 )ε
⊗l
j2−n/2⊗̃ε⊗4i−2−2a−l

j ′2−n/2 + f (l)(X j2−n/2 )

× f (4i−2−2a−l)(X( j ′+1)2−n/2 )ε
⊗l
j2−n/2⊗̃ε⊗4i−2−2a−l

( j ′+1)2−n/2

+ f (l)(X( j+1)2−n/2
)
f (4i−2−2a−l)(X j ′2−n/2 )

×ε⊗l
( j+1)2−n/2⊗̃ε⊗4i−2−2a−l

j ′2−n/2 + f (l)(X( j+1)2−n/2
)
f (4i−2−2a−l)(X( j ′+1)2−n/2 )ε

⊗l
( j+1)2−n/2⊗̃

ε⊗4i−2−2a−l
( j ′+1)2−n/2

)
(6.5)

So, we have
• Case 1 � a � 2i − 2

∣∣∣Q(i,a)
n (t)

∣∣∣

� C2−nH(2−2i)
4i−2−2a∑

l=0

�2 n
2 t�−1∑

j, j ′=0∣∣∣∣

〈(
ε⊗l
j2−n/2 + ε⊗l

( j+1)2−n/2

)
⊗̃
(

ε⊗4i−2−2a−l
j ′2−n/2 + ε⊗4i−2−2a−l

( j ′+1)2−n/2

)
,
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δ⊗2i−1−a
( j+1)2−n/2 ⊗ δ⊗2i−1−a

( j ′+1)2−n/2

〉∣∣∣∣

∣∣∣∣

〈
δ( j+1)2−n/2 , δ( j ′+1)2−n/2

〉∣∣∣∣
a

� C t (2H−1)(4i−2−2a) 2−nH(2−2i)(2− n
2
)4i−2−2a

×
�2 n

2 t�−1∑

j, j ′=0

∣∣∣∣

〈
δ( j+1)2−n/2 , δ( j ′+1)2−n/2

〉∣∣∣∣
a

,

where we have the first inequality because f ∈ C∞
b and thanks to (6.5), and the

second one thanks to (2.8) and (2.9). Now, we distinguish three cases:
(a) If H < 1 − 1

2a : by (2.10) we have
∣∣∣Q(i,a)

n (t)
∣∣∣ � C t t (2H−1)(4i−2−2a) 2−nH(2−2i)2−n(2i−1−a) 2

n
(
1
2−aH

)

= C t2(2H−1)(2i−1−a)+1 2− n
2 (2H−1) 2−n(1−H)[2i−1−a].

(b) If H = 1 − 1
2a : by (2.11) we have

∣∣∣Q(i,a)
n (t)

∣∣∣

� C
[
t (1 + n) + t2

]
t (2H−1)(4i−2−2a) 2−nH(2−2i)2−n(2i−1−a) 2

n
(
1
2−aH

)

= C
[
t (1 + n) + t2

]
t2(2H−1)(2i−1−a) 2− n

2 (2H−1) 2−n(1−H)[2i−1−a].

(c) If H > 1 − 1
2a : by (2.12) we have

∣∣∣Q(i,a)
n (t)

∣∣∣ � C t t (2H−1)(4i−2−2a) 2−nH(2−2i)2−n(2i−1−a) 2
n
(
1
2−aH

)

+C t2−(2−2H)a t (2H−1)(4i−2−2a) 2−nH(2−2i)2−n(2i−1−a) 2n(1−a)

= C t2(2H−1)(2i−1−a)+1 2− n
2 (2H−1) 2−n(1−H)[2i−1−a]

+C t2(1−(1−H)a) t2(2H−1)(2i−1−a) 2−n(1−H)[2i−2].

So, we deduce that

∣∣Q(i,a)
n (t)

∣∣ � C
[∣∣t
∣∣(1 + n) + t2

] ∣∣t
∣∣2(2H−1)(2i−1−a) 2− n

2 (2H−1) 2−n(1−H)
[
2i−1−a

]

+C
∣∣t
∣∣2(1−(1−H)a) ∣∣t

∣∣2(2H−1)(2i−1−a) 2−n(1−H)
[
2i−2

]
1{

H>1− 1
2a

}

(6.6)

• Case a = 0

Q(i,0)
n (t)=2−nH(2−2i)

�2 n
2 t�−1∑

j, j ′=0

E

(〈
D4i−2(φn( j, j

′)
)
, δ⊗2i−1

( j+1)2−n/2 ⊗ δ⊗2i−1
( j ′+1)2−n/2

〉)
.
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By (6.5) we deduce that

∣∣Q(i,0)
n (t)

∣∣ � C2−nH(2−2i)
4i−2∑

l=0

�2 n
2 t�−1∑

j, j ′=0

∣∣∣∣

〈(
ε⊗l
j2−n/2 + ε⊗l

( j+1)2−n/2

)

⊗̃
(

ε⊗4i−2−l
j ′2−n/2 + ε⊗4i−2−l

( j ′+1)2−n/2

)
, δ⊗2i−1

( j+1)2−n/2 ⊗ δ⊗2i−1
( j ′+1)2−n/2

〉∣∣∣∣. (6.7)

We define

E (i,l)
n ( j, j ′) :=

∣∣∣∣

〈(
ε⊗l
j2−n/2 + ε⊗l

( j+1)2−n/2

)
⊗̃
(

ε⊗4i−2−l
j ′2−n/2 + ε⊗4i−2−l

( j ′+1)2−n/2

)
,

δ⊗2i−1
( j+1)2−n/2 ⊗ δ⊗2i−1

( j ′+1)2−n/2

〉∣∣∣∣.

Observe that by (2.8) and (2.9), we have

E (i,l)
n ( j, j ′)�Ct (2H−1)(4i−3)(2− n

2
)4i−3 (∣∣〈(ε j2−n/2 + ε( j+1)2−n/2

)
, δ( j ′+1)2−n/2

〉∣∣

+∣∣〈(ε j ′2−n/2 + ε( j ′+1)2−n/2
)
, δ( j+1)2−n/2

〉∣∣+ ∣∣〈(ε j2−n/2

+ ε( j+1)2−n/2
)
, δ( j+1)2−n/2

〉∣∣

+∣∣〈(ε j ′2−n/2 + ε( j ′+1)2−n/2
)
, δ( j ′+1)2−n/2

〉∣∣).

By combining these previous estimates with (6.7), (2.13) and (2.14), we deduce
that

∣∣∣Q(i,0)
n (t)

∣∣∣ � C |t |(2H−1)(4i−3) |t |2H+1 2−nH(2−2i)
(
2− n

2

)4i−3
2

n
2

= C |t |(2H−1)(4i−3) |t |2H+1 2−n(2i−2)(1−H). (6.8)

By combining (6.3) with (6.4), (6.6) and (6.8), we deduce that (6.2) holds true.

��

6.2 Step 2: Limit of 2− nH
2 W (2i−1)

n ( f,YT�2n t�,n)

Let us prove that for i � 2,

2− nH
2 W (2i−1)

n

(
f,YT�2n t�,n

)
L2−→

n→∞ 0. (6.9)

Due to the independence between X and Y and thanks to (6.2), we have

E
[(
2− nH

2 W (2i−1)
n

(
f,YT�2n t�,n

))2] = E
[
E
[(
2− nH

2 W (2i−1)
n

(
f,YT�2n t�,n

))2∣∣Y
]]

� CE
[
ψ
(
YT�2n t�,n , H, i, n

)]
.
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It suffices to prove that

E
[
ψ
(
YT�2n t�,n , H, i, n

)] −→
n→∞ 0. (6.10)

For simplicity, we write Yn(t) instead of YT�2n t�,n . We have

E[ψ(Yn(t), H, i, n)] = E[|Yn(t)|(2H−1)(4i−3) |Yn(t)|2H+1] 2−n(2i−2)(1−H)

+C
2i−2∑

a=1

(
E[[|Yn(t)|(1 + n) + (Yn(t))

2]

|Yn(t)|2(2H−1)(2i−1−a)] 2− n
2 (2H−1) 2−n(1−H)[2i−1−a]

+ E[|Yn(t)|2(1−(1−H)a) |Yn(t)|2(2H−1)(2i−1−a)] 2−n(1−H)[2i−2]1{H>1− 1
2a }
)

+CE[|Yn(t)|(1 + n) + (Yn(t))
2]2−n(H− 1

2 )

+CE[|Yn(t)|2(1−(1−H)(2i−1))] 2−n(1−H)(2i−2)

×1{H>1− 1
(4i−2) }. (6.11)

Let us prove that, for all 1 � a � 2i − 2

E[|Yn(t)|2(1−(1−H)a) |Yn(t)|2(2H−1)(2i−1−a)] 2−n(1−H)[2i−2]1{H>1− 1
2a } −→

n→∞ 0,

(the proof of the convergence to 0 of the other terms in (6.11) is similar). In fact, by
Hölder inequality, we have

E[|Yn(t)|2(1−(1−H)a) |Yn(t)|2(2H−1)(2i−1−a)]1{H>1− 1
2a }

� E[|Yn(t)|4(1−(1−H)a)g] 12 E[|Yn(t)|4(2H−1)(2i−1−a)] 12 1{H>1− 1
2a }.

Observe that for H > 1 − 1
2a we have 2 < 4(1 − (1 − H)a) < 4. So, by Hölder

inequality, we deduce that E[|Yn(t)|4(1−(1−H)a)] 12 � E[(Yn(t))4] 12 (1−(1−H)a) � C
for all n ∈ N, where we have the last inequality by Lemma 2.2. On the other hand
since H > 1

2 we have 4(2H − 1)(2i − 1 − a) > 0, and it is clear that there exists an

integer k0 > 1 such that 2k0
4(2H−1)(2i−1−a)

> 1. Thus, by Hölder inequality, we have

E[|Yn(t)|4(2H−1)(2i−1−a)] 12 � E[(Yn(t))2k0 ]
(2H−1)(2i−1−a)

k0 � C for all n ∈ N, where
we have the last inequality by Lemma 2.2. Finally, we deduce that
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E[|Yn(t)|2(1−(1−H)a) |Yn(t)|2(2H−1)(2i−1−a)] 2−n(1−H)[2i−2]1{H>1− 1
2a }

� C2−n(1−H)[2i−2] →
n→∞ 0.

Thus, (6.10) holds true.

6.3 Step 3: Limit of V (1)
n ( f, ·)

Recall that for all t � 0 and r � 1,

V (r)
n ( f, t) :=

�2nt�−1∑

k=0

1

2
( f (ZTk,n ) + f (ZTk+1,n ))[(2

nH
2 (ZTk+1,n − ZTk,n ))

r − μr ].

We claim that

2− nH
2 V (1)

n ( f, t)
L2−→

n→∞

∫ Yt

0
f (Xs)d

◦Xs . (6.12)

We will make use of the following Taylor’s type formula (if interested the reader can
find a proof of this formula, e.g., in [1] page 1788). Fix f ∈ C∞

b , let F be a primitive
of f . For any a, b ∈ R,

F(b) − F(a) = 1

2
( f (a) + f (b))(b − a) − 1

24
( f ′′(a) + f ′′(b))(b − a)3

+O(|b − a|5),

where |O(|b − a|5)| � CF |b − a|5, CF being a constant depending only on F . One
can thus write

F(ZT�2n t�,n ) − F(0) =
�2n t�−1∑

k=0

(F(ZTk+1,n ) − F(ZTk,n ))

= 2− nH
2 V (1)

n ( f, t) − 2− 3nH
2

12
V (3)
n ( f ′′, t) +

�2n t�−1∑

k=0

O(|ZTk+1,n − ZTk,n |5).

(6.13)

Thanks to the Minkowski inequality, we have

∥∥∥∥∥∥

�2n t�−1∑

k=0

O(|ZTk+1,n − ZTk,n |5)
∥∥∥∥∥∥
2

� CF

�2n t�−1∑

k=0

∥∥∥
∣∣ZTk+1,n − ZTk,n

∣∣5
∥∥∥
2
.

Due to the independence between X and Y , the self-similarity and the stationarity of
increments of X , we have
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∥∥∣∣ZTk+1,n −ZTk,n

∣∣5∥∥
2 = (E[(ZTk+1,n − ZTk,n )

10]) 1
2 =(E[E[(ZTk+1,n − ZTk,n )

10 | Y ]]) 1
2

= (2−5nH E[X10
1 ]) 1

2 = 2− 5nH
2 ‖X5

1‖2.

Finally, thanks to the previous calculation and since H > 1
2 , we deduce that

∥∥
�2n t�−1∑

k=0

O
(∣∣ZTk+1,n − ZTk,n

∣∣5)∥∥
2 � CF

�2nt�−1∑

k=0

2− 5nH
2
∥∥X5

1

∥∥
2

� CF
∥∥X5

1

∥∥
2t 2

n
(
1− 5H

2

)
−→
n→∞ 0. (6.14)

By (3.5), we have 2− 3nH
2 V (3)

n ( f, t) = 2− 3nH
2 W (3)

n ( f,YT�2n t�,n ) + 32− 3nH
2 W (1)

n ( f,

YT�2n t�,n ). By (6.9), we have that 2− 3nH
2 W (3)

n ( f,YT�2n t�,n ) converges to 0 in L2 as
n → ∞. By (6.2) and thanks to the independence of X and Y , we deduce that

E

[(
2− 3nH

2 W (1)
n

(
f,YT�2n t�,n

))2]

� C2−2nH
(
2−n
(
H− 1

2

) [
(1 + n)E

[∣∣∣YT�2n t�,n

∣∣∣
]

+ E

[(
YT�2n t�,n

)2]]

+ E

[∣∣∣YT�2n t�,n

∣∣∣
2H
]

+ E
[∣∣YT�2n t�,n

∣∣4H
])

,

by Hölder inequality and thanks to Lemma 2.2, we can prove easily that the last
quantity converges to 0 as n → ∞. Finally, we get

2− 3nH
2 V (3)

n ( f, t)
L2−→

n→∞ 0. (6.15)

Now, let us prove that

F(ZT�2n t�,n ) − F(0)
L2−→

n→∞ F(Zt ) − F(0). (6.16)

In fact, as it has been mentioned in the introduction, T�2nt�,n
a.s.−→ t as n → ∞ (see

[2, Lemma 2.2] for a precise statement), and thanks to the continuity of F as well as
the continuity of the paths of Z , we have

F(ZT�2n t�,n ) − F(0)
a.s.−→

n→∞ F(Zt ) − F(0). (6.17)

In addition, by the mean value theorem, and since f is bounded, we have that∣∣F(ZT�2n t�,n ) − F(0)
∣∣ � supx∈R | f (x)||ZT�2n t�,n |, so, we deduce that

‖F(ZT�2n t�,n ) − F(0)‖4 � sup
x∈R

| f (x)|‖ZT�2n t�,n‖4.
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Due to independence between X and Y , and to the self-similarity of X , we have
‖ZT�2n t�,n‖4 = ‖XYT�2n t�,n ‖4 = ‖|YT�2n t�,n |H X1‖4 = ‖|YT�2n t�,n |H‖4‖X1‖4. By Hölder

inequality, we have ‖|YT�2n t�,n |H‖4 � (‖YT�2n t�,n‖4)H . Finally, we have

‖F(ZT�2n t�,n ) − F(0)‖4 � sup
x∈R

| f (x)|‖X1‖4(‖YT�2n t�,n‖4)H .

Thanks to Lemma 2.2 and to the previous inequality, we deduce that the sequence(
F(ZT�2n t�,n )−F(0)

)
n∈N is bounded in L4. Combining this fact with (6.17) we deduce

that (6.16) holds true.
Finally, combining (6.13) with (6.14), (6.15) and (6.16), we deduce that

2− nH
2 V (1)

n ( f, t)
L2−→

n→∞ F(Zt ) − F(0).

By (6.1), we have F(Xt )−F(0) = ∫ t0 f (Xs)d◦Xs which implies that F(Zt )−F(0) =∫ Yt
0 f (Xs)d◦Xs . So, we deduce finally that (6.12) holds true.

6.4 Step 4: Last step in the proof of (1.8)

Thanks to (3.5), we have

V (2r−1)
n ( f, t) =

r∑

i=1

κr,iW
(2i−1)
n ( f,YT�2n t�,n ).

For r = 1, (1.8) holds true by (6.12). For r � 2, we have 2− nH
2 V (2r−1)

n ( f, t) =
κr,12− nH

2 V (1)
n ( f, t) + ∑r

i=2 κr,i2− nH
2 W (2i−1)

n ( f,YT�2n t�,n ). Combining this equality
with (6.9) and (6.12), we deduce that (1.8) holds true.

7 Proof of (1.9)

Recall that for all t � 0 and r � 1,

V (2r)
n ( f, t) :=

�2n t�−1∑

k=0

1

2
( f (ZTk,n ) + f (ZTk+1,n ))[(2

nH
2 (ZTk+1,n − ZTk,n ))

2r − μ2r ],

and for all i ∈ Z,�i,n f (X) := 1
2 ( f (Xi2−n/2)+ f (X(i+1)2−n/2). Thanks to Lemma 3.1,

we have

2− n
2 V (2r)

n ( f, t) = 2− n
2
∑

i∈Z
�i,n f (X)[(X (n)

i+1 − X (n)
i )2r − μ2r ](Ui,n(t) + Di,n(t))

=
∑

i∈Z
�i,n f (X)[(X (n)

i+1 − X (n)
i )2r − μ2r ]Li,n(t),
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with obvious notation at the last line. Fix t � 0. In order to study the asymptotic
behavior of 2− n

2 V (2r)
n (t) as n tends to infinity (after using the adequate normalization

according to the value of the Hurst parameter H ) , we shall consider (separately) the
cases when n is even and when n is odd.

When n is even, for any even integers n � m � 0 and any integer p � 0, one can
decompose 2− n

2 V (2r)
n (t) as

2− n
2 V (2r)

n (t) = A(2r)
m,n,p(t) + B(2r)

m,n,p(t) + C (2r)
m,n,p(t) + D(2r)

m,n,p(t) + E (2r)
n,p (t),

where

A(2r)
m,n,p(t) =

∑

−p2m/2+1� j�p2m/2

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

�i,n f (X)[(X (n)
i+1 − X (n)

i )2r − μ2r ]

×(Li,n(t) − Li2−n/2

t (Y ))

B(2r)
m,n,p(t) =

∑

−p2m/2+1� j�p2m/2

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

�i,n f (X)[(X (n)
i+1 − X (n)

i )2r − μ2r ]

×(Li2−n/2

t (Y ) − L j2−m/2

t (Y ))

C (2r)
m,n,p(t) =

∑

−p2m/2+1� j�p2m/2

L j2−m/2

t (Y )

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

(�i,n f (X) − � j,m f (X))

×[(X (n)
i+1 − X (n)

i )2r − μ2r ]
D(2r)
m,n,p(t) =

∑

−p2m/2+1� j�p2m/2

� j,m f (X)L j2−m/2

t (Y )

×
j2

n−m
2 −1∑

i=( j−1)2
n−m
2

[(X (n)
i+1 − X (n)

i )2r − μ2r ]

E (2r)
n,p (t) =

∑

i�p2n/2

�i,n f (X)[(X (n)
i+1 − X (n)

i )2r − μ2r ]Li,n(t)

+
∑

i<−p2n/2

�i,n f (X)[(X (n)
i+1 − X (n)

i )2r − μ2r ]Li,n(t).

We can see that since we have taken even integers n � m � 0 then 2m/2, 2
n−m
2 and

2n/2 are integers as well. This justifies the validity of the previous decomposition.
When n is odd, for any odd integers n � m � 0 we can work with the

same decomposition for V (2r)
n (t). The only difference is that we have to replace

the sum
∑

−p2m/2+1� j�p2m/2 in A(2r)
m,n,p(t), B

(2r)
m,n,p(t), C

(2r)
m,n,p(t) and D(2r)

m,n,p(t) by
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∑
−p2

m+1
2 +1� j�p2

m+1
2
. And instead of

∑
i�p2n/2 and

∑
i<−p2n/2 in E (2r)

n,p (t), we

must consider
∑

i�p2
n+1
2

and
∑

i<−p2
n+1
2

respectively. The analysis can then be done

mutatis mutandis.
Suppose that 1

4 < H � 1
2 . Firstly, we will prove that 2

− n
4 A(2r)

m,n,p(t), 2− n
4 B(2r)

m,n,p(t),

2− n
4C (2r)

m,n,p(t) and 2− n
4 E (2r)

n,p (t) converge to 0 in L2 by letting n, thenm, then p tends to

infinity. Secondly, we will study the f.d.d. convergence in law of (2− n
4 D(2r)

m,n,p(t))t�0,

which will then be equivalent to the f.d.d. convergence in law of (2− 3n
4 V (2r)

n (t))t�0.

(1) 2− n
4 A(2r)

m,n,p(t)
L2−→

n→∞ 0 :
We have, for all r ∈ N

∗,

x2r =
r∑

a=1

b2r,aH2a(x) + μ2r , (7.1)

where Hn is the nth Hermite polynomial, μ2r = E[N 2r ]with N ∼ N (0, 1), and b2r,a
are some explicit constants (if interested, the reader can find these explicit constants,
e.g., in [9, Corollary 1.2]). We deduce that

A(2r)
m,n,p(t) =

r∑

a=1

b2r,a
∑

−p2m/2+1� j�p2m/2

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

�i,n f (X)H2a(X
(n)
i+1 − X (n)

i )

×(Li,n(t) − Li2−n/2

t (Y ))

=
r∑

a=1

b2r,a A
(2r)
m,n,p,a(t), (7.2)

with obvious notation at the last line. It suffices to prove that for any fixed m and p
and for all a ∈ {1, . . . , r}

2− n
4 A(2r)

m,n,p,a(t)
L2−→

n→∞ 0. (7.3)

Set φn(i, i ′) := �i,n f (X)�i ′,n f (X). Thanks to (2.4), (2.5), (2.6) and to the indepen-
dence of X and Y , we have

E
[
(2− n

4 A(2r)
m,n,p,a(t))

2
]

=

∣∣∣∣∣∣∣
22nHa− n

2
∑

−p2m/2+1� j, j ′�p2m/2

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

j ′2
n−m
2 −1∑

i ′=( j ′−1)2
n−m
2

E
[
φn(i, i

′)

×I2a
(
δ
(i+1)2− n

2

)
I2a
(
δ
(i ′+1)2− n

2

)]
E

[(
Li,n(t) − Li2− n

2
t (Y )

)(
Li ′,n(t) − Li ′2− n

2
t (Y )

)]∣∣∣∣

� 22nHa− n
2

∑

−p2m/2+1� j, j ′�p2m/2

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

j ′2
n−m
2 −1∑

i ′=( j ′−1)2
n−m
2

∣∣∣∣E
[
φn(i, i

′)I2a
(

δ⊗2a

(i+1)2− n
2

)
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×I2a

(
δ⊗2a

(i ′+1)2− n
2

)]∣∣∣∣

∥∥∥∥Li,n(t) − Li2− n
2

t (Y )

∥∥∥∥
2
×
∥∥∥∥Li ′,n(t) − Li ′2− n

2
t (Y )

∥∥∥∥
2

� 22nHa− n
2

2a∑

l=0

l!
(
2a

l

)2 ∑

−p2m/2+1� j, j ′�p2m/2

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

j ′2
n−m
2 −1∑

i ′=( j ′−1)2
n−m
2

∣∣E
[
φn(i, i

′)

×I4a−2l

(
δ⊗2a−l
(i+1)2−n/2 ⊗ δ⊗2a−l

(i ′+1)2−n/2

)]∣∣∣
∣∣〈δ(i+1)2−n/2 , δ(i ′+1)2−n/2

〉∣∣l
∥∥∥∥Li,n(t) − Li2− n

2
t (Y )

∥∥∥∥
2

×
∥∥∥∥Li ′,n(t) − Li ′2− n

2
t (Y )

∥∥∥∥
2

= 22nHa− n
2

2a∑

l=0

l!
(
2a

l

)2 ∑

−p2m/2+1� j, j ′�p2m/2

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

j ′2
n−m
2 −1∑

i ′=( j ′−1)2
n−m
2

∣∣∣E
[〈
D4a−2l (φn(i, i

′)),

δ⊗2a−l
(i+1)2−n/2 ⊗ δ⊗2a−l

(i ′+1)2−n/2

〉]∣∣∣
∣∣〈δ(i+1)2−n/2 , δ(i ′+1)2−n/2

〉∣∣l
∥∥∥∥Li,n(t) − Li2− n

2
t (Y )

∥∥∥∥
2

×
∥∥∥∥Li ′,n(t) − Li ′2− n

2
t (Y )

∥∥∥∥
2

=
2a∑

l=0

l!
(
2a

l

)2

ϒ(l,a)
n (t), (7.4)

by obvious notation at the last line. By the points 2 and 3 of Proposition 2.3, see also
(3.14) in [9] for the detailed proof, we have

∥∥∥∥Li,n(t) − Li2− n
2

t (Y )

∥∥∥∥
2

� 2
√

μ ‖K‖4 t1/8n2−n/4 2−n/8 |i |1/4

+ 2 ‖K‖4 ‖L0
t (Y )‖1/22 n2−n/4.

Since −p2m/2 + 1 � j � p2m/2 and ( j − 1)2
n−m
2 � i � j2

n−m
2 − 1, we deduce

that −p2n/2 � i � p2n/2 − 1. So, |i | � p2n/2. Consequently we have that |i |1/4 �
p1/42n/8, which shows that ‖Li,n(t) − Li2− n

2
t (Y )‖2 � C(p1/4 + 1)n2− n

4 . Finally, we
deduce that∥∥∥∥Li,n(t) − Li2− n

2
t (Y )

∥∥∥∥
2
×
∥∥∥∥Li ′,n(t) − Li ′2− n

2
t (Y )

∥∥∥∥
2

� C(p1/4 + 1)2n22− n
2 . (7.5)

Now, observe that, by the same arguments that has been used to show (6.5) and since
f ∈ C∞

b , we have

�
(a,l)
i,i ′,n :=

∣∣∣E
[〈
D4a−2l(φn(i, i

′)), δ⊗2a−l
(i+1)2−n/2 ⊗ δ⊗2a−l

(i ′+1)2−n/2

〉]∣∣∣

� C
4a−2l∑

k=0

(
4a − 2l

k

) ∣∣∣
〈(

ε⊗k
i2−n/2 + ε⊗k

(i+1)2−n/2

)
⊗̃
(
ε⊗4a−2l−k
i ′2−n/2 + ε⊗4a−2l−k

(i ′+1)2−n/2

)
,

δ⊗2a−l
(i+1)2−n/2 ⊗ δ⊗2a−l

(i ′+1)2−n/2

〉∣∣∣ .

Since H � 1
2 , thanks to (2.7), we have �

(a,l)
i,i ′,n � C2−nH(4a−2l). So, by combining

(7.4) with (7.5), for l = 0, we have
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ϒ(0,a)
n (t)�C22nHa− n

2

p2
n
2 −1∑

i,i ′=−p2
n
2

(2−4nHa(p
1
4 +1)2n22− n

2 )�Cp(p
1
4 +1))2n22−2nHa,

(7.6)
for l 	= 0, we have

ϒ(l,a)
n (t) � C

(
p

1
4 + 1

)2
n222nHa−n

⎛

⎜⎝2−nH(4a−2l)
p2

n
2 −1∑

i,i ′=−p2
n
2

∣∣〈δ(i+1)2−n/2 , δ(i ′+1)2−n/2
〉∣∣l
⎞

⎟⎠ .

By the same arguments that has been used in the proof of (2.10), one can prove that
for H < 1 − 1

2l , we have

p2
n
2 −1∑

i,i ′=−p2
n
2

∣∣〈δ(i+1)2−n/2 , δ(i ′+1)2−n/2
〉∣∣l � CH,l p 2

n
(
1
2−lH

)

. (7.7)

For H = 1
2 , thanks to (2.17) and to the discussion of the case H = 1

2 after (2.18), we
have

p2
n
2 −1∑

i,i ′=−p2
n
2

|〈δ(i+1)2−n/2 , δ(i ′+1)2−n/2〉| � 2− n
2 (p2

n
2 − (−p2

n
2 )) = 2p,

thus, (7.7) holds true for l = 1 and H = 1
2 . So, since H � 1

2 , we deduce that

2a∑

l=1

ϒ(l,a)
n (t) � Cp

(
p

1
4 + 1

)2
n2

2a∑

l=1

22nHa−n
(
2−nH(4a−2l)2

n
(
1
2−lH

))

= Cp
(
p

1
4 + 1

)2
n22− n

2

2a∑

l=1

2−nH(2a−l). (7.8)

By combining (7.4) with (7.6) and (7.8), we deduce that (7.3) holds true for H � 1
2 .

(2) 2− n
4 B(2r)

m,n,p(t)
L2−→ 0 as m → ∞, uniformly on n :

Using (7.1), we get

B(2r)
m,n,p(t) =

r∑

a=1

b2r,a
∑

−p2m/2+1� j�p2m/2

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

�i,n f (X)H2a

(
X (n)
i+1 − X (n)

i

)

×
(
Li2−n/2

t (Y ) − L j2−m/2

t (Y )
)

=
r∑

a=1

b2r,a B
(2r)
m,n,p,a(t), (7.9)
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with obvious notation at the last line. It suffices to prove that for any fixed p and for
all a ∈ {1, . . . , r}

2− n
4 B(2r)

m,n,p,a(t)
L2−→

m→∞ 0, (7.10)

uniformly on n. By the same arguments that has been used to prove (7.4), we get

E

[(
2− n

4 B(2r)
m,n,p,a(t)

)2]

� 22nHa− n
2

2a∑

l=0

l!
(
2a

l

)2 ∑

−p2m/2+1� j, j ′�p2m/2

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

j ′2
n−m
2 −1∑

i ′=( j ′−1)2
n−m
2

∣∣∣E
[〈
D4a−2l(φn(i, i

′)) ,

δ⊗2a−l
(i+1)2−n/2 ⊗ δ⊗2a−l

(i ′+1)2−n/2

〉]∣∣∣
∣∣〈δ(i+1)2−n/2 , δ(i ′+1)2−n/2

〉∣∣l
∣∣∣E
[(

Li2−n/2

t (Y ) − L j2−m/2

t (Y )
)

×
(
Li ′2−n/2

t (Y ) − L j ′2−m/2

t (Y )
)]∣∣∣ ,

by Proposition 2.3 (point 2) and Cauchy–Schwarz, we have

∣∣∣E
[(

Li2−n/2

t (Y ) − L j2−m/2

t (Y )
) (

Li ′2−n/2

t (Y ) − L j ′2−m/2

t (Y )
)]∣∣∣

� μ2√t
√

|i2−n/2 − j2−m/2||i ′2−n/2 − j ′2−m/2| � μ2√t2−m/2.

So, we deduce that

E

[(
2− n

4 B(2r)
m,n,p,a(t)

)2]
� C2− m

2 22nHa− n
2

2a∑

l=0

l!
(
2a

l

)2 ∑

−p2m/2+1� j, j ′�p2m/2

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

j ′2
n−m
2 −1∑

i ′=( j ′−1)2
n−m
2

∣∣∣E
[〈
D4a−2l(φn(i, i

′)), δ⊗2a−l
(i+1)2−n/2 ⊗ δ⊗2a−l

(i ′+1)2−n/2

〉]∣∣∣
∣∣〈δ(i+1)2−n/2 , δ(i ′+1)2−n/2

〉∣∣l

=
2a∑

l=0

l!
(
2a

l

)2

�(l,a)
n,m (t), (7.11)

by obvious notation at the last line.
By the same arguments that has been used in the proof of (7.3), we have, for

1
4 < H � 1

2 , and l = 0

�(0,a)
n,m (t)�C2−m

2 22nHa− n
2

p2
n
2 −1∑

i,i ′=−p2
n
2

(
2−4nHa

)
�Cp22−m

2 2
−n
(
2Ha− 1

2

)

� Cp22−m
2 ,

(7.12)
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for l 	= 0, we have

�(l,a)
n,m (t) � C2−m

2 22nHa− n
2

⎛

⎜⎝2−nH(4a−2l)
p2

n
2 −1∑

i,i ′=−p2
n
2

|〈δ(i+1)2−n/2 , δ(i ′+1)2−n/2〉|l
⎞

⎟⎠ .

So, thanks to (7.7), we deduce that

2a∑

l=1

�(l,a)
n,m (t) � C p 2−m

2 22nHa− n
2

(
2a∑

l=1

2−nH(4a−2l)2
n
(
1
2−lH

))

= C p 2−m
2

(
2a∑

l=1

2−nH(2a−l)

)
� C p 2−m

2 . (7.13)

By combining (7.11) with (7.12) and (7.13), we deduce that (7.10) holds true for
1
4 < H � 1

2 .

(3) 2− n
4C (2r)

m,n,p(t)
L2−→ 0 as n → ∞, then m → ∞ :

Using (7.1), we get

C (2r)
m,n,p(t) =

r∑

a=1

b2r,a
∑

−p2m/2+1� j�p2m/2

L j2−m/2

t (Y )

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

(�i,n f (X) − � j,m f (X))

×H2a

(
X (n)
i+1 − X (n)

i

)

=
r∑

a=1

b2r,a
∑

−p2m/2+1� j�p2m/2

L j2−m/2

t (Y )

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

1

2

(
f
(
X
i2− n

2

)
− f

(
X

j2− m
2

))

×H2a

(
X (n)
i+1 − X (n)

i

)

+
r∑

a=1

b2r,a
∑

−p2m/2+1� j�p2m/2

L j2−m/2

t (Y )

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

1

2

(
f
(
X

(i+1)2− n
2

)

− f
(
X

( j+1)2− m
2

))
H2a

(
X (n)
i+1 − X (n)

i

)

=
r∑

a=1

b2r,a
(
C (1)
m,n,p,a(t) + C (2)

m,n,p,a(t)
)

,

with obvious notation. It suffices to prove that for any fixed p and for all a ∈ {1, . . . , r}

2− n
4C (2)

m,n,p,a(t)
L2−→ 0, (7.14)
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as n → ∞, then m → ∞. By obvious notation, we have

C(2)
m,n,p,a(t) =

∑

−p2m/2+1� j�p2m/2

L j2−m/2

t (Y )

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

�
n,m
i, j f (X)H2a

(
X (n)
i+1−X (n)

i

)
.

Thanks to the independence of X and Y , and to the first point of Proposition 2.3, we
have

E

[(
2− n

4 C (2)
m,n,p,a(t)

)2] = 2− n
2

∣∣∣∣∣∣

∑

−p2m/2+1� j, j ′�p2m/2

E
(
L j2−m/2

t (Y )L j ′2−m/2

t (Y )
)

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

j ′2
n−m
2 −1∑

i ′=( j ′−1)2
n−m
2

E
(
�

n,m
i, j f (X)�

n,m
i ′, j ′ f (X)H2a

(
X (n)
i+1 − X (n)

i

)
H2a

(
X (n)

i ′+1 − X (n)

i ′
))
∣∣∣∣∣∣∣

� C2− n
2

∑

−p2m/2+1� j, j ′�p2m/2

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

j ′2
n−m
2 −1∑

i ′=( j ′−1)2
n−m
2

∣∣∣E
(
�

n,m
i, j f (X)�

n,m
i ′, j ′ f (X)H2a

(
X (n)
i+1−X (n)

i

)
H2a

(
X (n)

i ′+1−X (n)

i ′
))∣∣∣ ,

by the same arguments that has been used previously for several times, we deduce that

E

[(
2− n

4 C(2)
m,n,p,a(t)

)2]
�2−n/222nHa

∑

−p2m/2+1� j, j ′�p2m/2

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

j ′2
n−m
2 −1∑

i ′=( j ′−1)2
n−m
2

2a∑

l=0

l!
(
2a

l

)2 ∣∣∣E
[
�
n,m
i, j f (X)�

n,m
i ′, j ′ f (X)I4a−2l

(
δ
⊗(2a−l)
( j+1)2−n/2 ⊗ δ

⊗(2a−l)
( j ′+1)2−n/2

)]∣∣∣

×|〈δ( j+1)2−n/2 ; δ( j ′+1)2−n/2 〉|l

= 2−n/222nHa
2a∑

l=0

l!
(
2a

l

)2
Ol
n,m(t), (7.15)

with obvious notation. Following the proof of (5.6), we get that

• If l = 2a then the term O2a
n,m(t) in (7.15) can be bounded by

1

4
sup

|x−y|�2−m/2
E
(∣∣ f (Xx ) − f (Xy)

∣∣2
) p2

n
2 −1∑

i,i ′=−p2
n
2

∣∣〈δ(i+1)2−n/2; δ(i ′+1)2−n/2
〉∣∣2a .
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Since H � 1
2 and thanks to (7.7), observe that

O2a
n,m(t) � C p 2

n
(
1
2−2Ha

)

sup
|x−y|�2−m/2

E
(∣∣ f (Xx ) − f (Xy)

∣∣2
)

. (7.16)

• If 1 � l � 2a − 1 then, by (7.7) among other things used in the proof of (5.6), we
have

Ol
n,m(t) � C

(
2−nH

)(4a−2l)
p2

n
2 −1∑

i,i ′=−p2
n
2

|〈δ(i+1)2−n/2; δ(i ′+1)2−n/2〉|l

� C p 2−nH(4a−2l) 2
n
(
1
2−lH

)

. (7.17)

• If l = 0 then

O0
n,m(t) � C

(
2−nH

)4a (
2p2

n
2

)2
� C p2 2−4nHa2n . (7.18)

By combining (7.15) with (7.16), (7.17) and (7.18), we get

E[(2− n
4C (2)

m,n,p,a(t))
2] � C

(
sup

|x−y|�2−m/2
E(| f (Xx ) − f (Xy)|2) + p

(
2a−1∑

l=1

2−nH(2a−l)

)

+ p22−n
(
2Ha− 1

2

))
,

it is then clear that, since 1
4 < H � 1

2 , the last quantity converges to 0 as n → ∞ and
then m → ∞. Finally, we have proved that (7.14) holds true.

(4) 2− n
4 E (2r)

n,p (t)
L2−→ 0 as p → ∞, uniformly on n :

Using (7.1), we get

E (2r)
n,p (t) =

r∑

a=1

b2r,a

⎛

⎝
∑

i�p2n/2

�i,n f (X)H2a

(
X (n)
i+1 − X (n)

i

)
Li,n(t)

+
∑

i<−p2n/2

�i,n f (X)H2a

(
X (n)
i+1 − X (n)

i

)
Li,n(t)

⎞

⎠

=
r∑

a=1

b2r,a E
(2r)
n,p,a(t), (7.19)

with obvious notation at the last line. It suffices to prove that for all a ∈ {1, . . . , r}

2− n
4 E (2r)

n,p,a(t)
L2−→

p→∞ 0, (7.20)
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uniformly on n. By the same arguments that has been used previously, we have

E

[(
2− n

4 E (2r)
n,p,a(t)

)2]

� 222nHa− n
2

2a∑

l=0

l!
(
2a

l

)2 ∑

i,i ′�p2n/2

∣∣∣E
[〈
D4a−2l(φn(i, i

′)
)
, δ⊗2a−l

(i+1)2−n/2 ⊗ δ⊗2a−l
(i ′+1)2−n/2

〉]∣∣∣

×∣∣〈δ(i+1)2−n/2 , δ(i ′+1)2−n/2
〉∣∣l ∣∣E

[Li,n(t)Li ′,n(t)
]∣∣

+ 222nHa− n
2

2a∑

l=0

l!
(
2a

l

)2 ∑

i,i ′<−p2n/2

∣∣∣E
[〈
D4a−2l(φn(i, i

′)
)
, δ⊗2a−l

(i+1)2−n/2 ⊗ δ⊗2a−l
(i ′+1)2−n/2

〉]∣∣∣

×∣∣〈δ(i+1)2−n/2 , δ(i ′+1)2−n/2
〉∣∣l ∣∣E

[Li,n(t)Li ′,n(t)
]∣∣. (7.21)

It suffices to prove the convergence to 0 of the quantity given in (7.21). We have,

22nHa− n
2

2a∑

l=0

l!
(
2a

l

)2 ∑

i,i ′�p2n/2

∣∣∣E
[〈
D4a−2l(φn(i, i

′)
)
, δ⊗2a−l

(i+1)2−n/2 ⊗ δ⊗2a−l
(i ′+1)2−n/2

〉]∣∣∣

×|〈δ(i+1)2−n/2 , δ(i ′+1)2−n/2〉|l ∣∣E[Li,n(t)Li ′,n(t)]
∣∣

=
2a∑

l=0

l!
(
2a

l

)2

�(l,a)
n,p (t),

with obvious notation at the last line. It is enough to prove that, for all l ∈ {0, . . . , 2a}:

�(l,a)
n,p (t) −→

p→∞ 0, (7.22)

uniformly on n. By the same arguments that has been used in the proof of (7.3), for
1
4 < H � 1

2 , we have
For l = 0 :

�(0,a)
n,p (t) � C22nHa− n

2 2−4nHa
∑

i,i ′�p2n/2

∣∣E[Li,n(t)Li ′,n(t)]
∣∣.

By the third point of Proposition 2.3, we have

∣∣Li,n(t)
∣∣ � Li2−n/2

t (Y ) + 2Kn2−n/4
√
Li2−n/2

t (Y )

so that

E
[Li,n(t)

2] � 2E
[
Li2−n/2

t (Y )2
]+ 8n22−n/2‖K 2‖2‖Li2−n/2

t (Y )‖2,
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which implies

∥∥Li,n(t)
∥∥
2 � C

∥∥∥Li2−n/2

t (Y )

∥∥∥
2
+ Cn2−n/4

∥∥∥Li2−n/2

t (Y )

∥∥∥
1
2

2
. (7.23)

On the other hand, thanks to the point 1 of Proposition 2.3, we have

E
[
Li2−n/2

t (Y )2
]

� Ct exp

(
−
(
i2−n/2

)2

2t

)
. (7.24)

Consequently, we get

∥∥Li2−n/2

t (Y )
∥∥
2 � Ct1/2 exp

(
−
(
i2−n/2

)2

4t

)
. (7.25)

By combining (7.23) with (7.24) and (7.25), we deduce that

∥∥Li,n(t)
∥∥
2 � C exp

(
−
(
i2−n/2

)2

4t

)
+ Cn2−n/4 exp

(
−
(
i2−n/2

)2

8t

)

� C exp

(
−
(
i2−n/2

)2

4t

)
+ C exp

(
−
(
i2−n/2

)2

8t

)
. (7.26)

Observe that, by Cauchy–Schwarz inequality, we have

�(0,a)
n,p (t) � C

⎛

⎝2− n
2
∑

i�p2n/2

∥∥Li,n(t)
∥∥
2

⎞

⎠

⎛

⎝2−2nHa
∑

i ′�p2n/2

∥∥Li ′,n(t)
∥∥
2

⎞

⎠ .

Thanks to (7.26), we get

2− n
2
∑

i�p2n/2

∥∥Li,n(t)
∥∥
2 � C2−n/2

∑

i�p2n/2

exp

(
−
(
i2−n/2

)2

4t

)

+ C2−n/2
∑

i�p2n/2

exp

(
−
(
i2−n/2

)2

8t

)
.

But, for k ∈ {4, 8},

2−n/2
∑

i�p2n/2

exp

(
−
(
i2−n/2

)2

kt

)
�
∫ ∞

p−1
exp

(−x2

kt

)
dx .
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On the other hand, since H > 1
4 , we have

2−2nHa
∑

i ′�p2n/2

∥∥Li ′,n(t)
∥∥
2 � 2

−n
(
2Ha− 1

2

)

2− n
2
∑

i ′�p2n/2

∥∥Li ′,n(t)
∥∥
2

� C2− n
2
∑

i ′�p2n/2

∥∥Li ′,n(t)
∥∥
2

Finally, we deduce that

�(0,a)
n,p (t) � C

(∫ ∞

p−1
exp

(−x2

4t

)
dx +

∫ ∞

p−1
exp

(−x2

8t

)
dx

)2

−→
p→∞ 0, (7.27)

uniformly on n.
For l 	= 0 : By the same arguments that has been used in the proof of (7.3) and

thanks to (2.17), the Cauchy–Schwarz inequality and (7.26), we have

�(l,a)
n,p (t) � C22nHa− n

2

⎛

⎝2−nH(4a−2l)
∑

i,i ′�p2n/2

∣∣〈δ(i+1)2−n/2 , δ(i ′+1)2−n/2
〉∣∣l ∣∣E

[Li,n(t)Li ′,n(t)
]∣∣

⎞

⎠

� C22nHa− n
2 2−nH(4a−2l)2−nHl

⎛

⎝
∑

i,i ′�p2n/2

∣∣ρ(i − i ′)
∣∣l∥∥Li,n(t)

∥∥
2

∥∥Li ′,n(t)
∥∥
2

⎞

⎠

� C2−nH(2a−l)

⎛

⎝2− n
2
∑

i�p2n/2

∥∥Li,n(t)
∥∥
2

⎞

⎠
(
∑

a∈Z

∣∣ρ(a)
∣∣l
)

� C2− n
2
∑

i�p2n/2

∥∥Li,n(t)
∥∥
2

� C

(∫ ∞

p−1
exp

(−x2

4t

)
dx +

∫ ∞

p−1
exp

(−x2

8t

)
dx

)
−→
p→∞ 0, (7.28)

uniformly on n, and we have the fourth inequality because , since H � 1
2 � 1 − 1

2l ,∑
a∈Z |ρ(a)|l < ∞.By combining (7.27) and (7.28), we deduce that (7.22) holds true

for 1
4 < H � 1

2 .

(5) The convergence in law of D(2r)
m,n,p(t) as n → ∞, then m → ∞, then p → ∞ :

Let us prove that

(
2− n

4 D(2r)
m,n,p(t)

)
t�0

f.d.d.−→ (
γ2r

∫ +∞

−∞
f (Xs)L

s
t (Y )dWs

)
t�0, (7.29)

as n → ∞, then m → ∞, then p → ∞, where γ2r and
∫ +∞
−∞ f (Xs)Ls

t (Y )dWs are
defined in the point (3) of Theorem 1.1. In fact, using the decomposition (7.1), we
have
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2− n
4 D(2r)

m,n,p(t) = 2− n
4

∑

−p2m/2+1� j�p2m/2

� j,m f (X)L j2−m/2

t (Y )

×
j2

n−m
2 −1∑

i=( j−1)2
n−m
2

[(
X (n)
i+1 − X (n)

i

)2r − μ2r

]

= 2− n
4

∑

−p2m/2+1� j�p2m/2

� j,m f (X)L j2−m/2

t (Y )

×
j2

n−m
2 −1∑

i=( j−1)2
n−m
2

r∑

a=1

b2r,a H2a

(
X (n)
i+1 − X (n)

i

)
.

It was been proved in (3.27) in [9] that

⎛

⎜⎝2−n/4
j2

n−m
2 −1∑

i=( j−1)2
n−m
2

H2a
(
X (n)
i+1−X (n)

i

)
, 1�a�r : −p2m/2+1� j � p2m/2

⎞

⎟⎠
law−→

(
α2a

(
B(a)

( j+1)2−m/2 − B(a)

j2−m/2

)
, 1 � a � r : −p2m/2 + 1 � j � p2m/2

)

where (B(1), . . . , B(r)) is a r -dimensional two-sided Brownian motion and α2a is
defined in (2.18). Since for any x ∈ R, E[Xx H2a(X

n,±
j+1 − Xn,±

j )] = 0 (Hermite poly-
nomials of different orders are orthogonal), and thanks to the independence between
X and Y , Peccati–Tudor Theorem (see, e.g., [6, Theorem 6.2.3]) applies and yields

⎛

⎜⎝Xx , Yy, 2
−n/4

j2
n−m
2 −1∑

i=( j−1)2
n−m
2

H2a

(
X (n)
i+1−X (n)

i

)
, 1�a�r : −p2m/2+1� j � p2m/2

⎞

⎟⎠

x,y∈R

f.d.d.−→

(
Xx , Yy, α2a

(
B(a)

( j+1)2−m/2 − B(a)

j2−m/2

)
, 1 � a � r : −p2m/2 + 1 � j � p2m/2

)

x,y∈R

where (B(1), . . . , B(r)) is a r -dimensional two-sided Brownian motion independent
of X and Y . Hence, for any fixed m and p, we have

(
2− n

4 D(2r)
m,n,p(t)

)

t�0

f.d.d.−→
n→∞ γ2r

×
⎛

⎝
∑

−p2m/2+1� j�p2m/2

� j,m f (X)L j2−m/2

t (Y )
(
W( j+1)2−m/2 − Wj2−m/2

)
⎞

⎠

t�0

,

(7.30)

where γ2r :=
√∑r

a=1 b
2
2r,aα

2
2a and W is a two-sided Brownian motion. Fix t � 0,

observe that
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∑

−p2m/2+1� j�p2m/2

� j,m f (X)L j2−m/2

t (Y )
(
W( j+1)2−m/2 − Wj2−m/2

)

=
∑

−p2m/2+1� j�p2m/2

f
(
X

j2−m
2

)
L j2−m/2

t (Y )
(
W( j+1)2−m/2 − Wj2−m/2

)

+
∑

−p2m/2+1� j�p2m/2

1

2

(
f
(
X

( j+1)2−m
2

)

− f
(
X

j2−m
2

))
L j2−m/2

t (Y )
(
W( j+1)2−m/2 − Wj2−m/2

)

=
∑

−p2m/2+1� j�p2m/2

f
(
X

j2−m
2

)
L j2−m/2

t (Y )
(
W( j+1)2−m/2 − Wj2−m/2

)

+ Nm,p(t), (7.31)

with obvious notation at the last line. Since E[∫ +∞
−∞

(
f (Xs)Ls

t (Y )
)2
ds] � C

∫ +∞
−∞

E[(Ls
t (Y ))2]ds � C

∫ +∞
−∞ exp (−s2

2t )ds < ∞, where we have the second inequality
by the point 1 of Proposition 2.3, and thanks to the independence between (X,Y ) and
W and the a.s. continuity of s → f (Xs) and s → Ls

t (Y ), we deduce that

∑

−p2m/2+1� j�p2m/2

f
(
X

j2−m
2

)
L j2−m/2

t (Y )
(
W( j+1)2−m/2 − Wj2−m/2

)

L2−→
m→∞

∫ +p

−p
f (Xs)L

s
t (Y )dWs

L2−→
p→∞

∫ +∞

−∞
f (Xs)L

s
t (Y )dWs . (7.32)

Now, let us prove that, for any fixed p,

Nm,p(t)
L2−→

m→∞ 0. (7.33)

In fact, since f (X
( j+1)2−m

2
) − f (X

j2−m
2
) = f ′(Xθ j )(X( j+1)2−m

2
− X

j2−m
2
) where

θ j is a random real number satisfying j2−m
2 < θ j < ( j + 1)2−m

2 , and thanks to the
independence of X , Y andW , the independence of the increments ofW , and the point
1 of Proposition 2.3, we have

E
[
(Nm,p(t))

2] = 1

4

∑

−p2m/2+1� j, j ′�p2m/2

E
[(

f
(
X

( j+1)2−m
2

)
− f

(
X

j2−m
2

))

×
(
f
(
X

( j ′+1)2−m
2

)
− f

(
X

j ′2−m
2

))
L j2−m/2

t (Y )L j ′2−m/2

t (Y )
]

×E
[(
W( j+1)2−m/2 − Wj2−m/2

) (
W( j ′+1)2−m/2 − Wj ′2−m/2

)]

= 2−m
2

4

∑

−p2m/2+1� j�p2m/2

E

[(
f ′(Xθ j )

(
X

( j+1)2−m
2

− X
j2−m

2

))2]
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×E

[(
L j2−m/2

t (Y )
)2]

� C2−m
2

∑

−p2m/2+1� j�p2m/2

E

[(
X

( j+1)2−m
2

− X
j2−m

2

)2]

= C2−mH2−m
2 2p2

m
2 = Cp2−mH −→

m→∞ 0.

Thus (7.33) holds true. Thanks to (7.30), (7.31), (7.32) and (7.33), we deduce that
(7.29) holds true.

Finally, by combining (7.3) with (7.10), (7.14), (7.20) and (7.29), we deduce that
(1.9) holds true.

8 Proof of Lemma 2.1

1. We have, 〈ε⊗q
u , δ

⊗q
( j+1)2−n/2〉H ⊗q = 〈εu, δ( j+1)2−n/2〉qH . Thanks to (2.1), we have

〈εu, δ( j+1)2−n/2〉H = E
(
Xu
(
X( j+1)2−n/2 − X j2−n/2

))
.

Observe that, for all 0 � s � t and u ∈ R,

E
(
Xu(Xt − Xs)

) = 1

2

(
t2H − s2H

)+ 1

2

(∣∣s − u
∣∣2H − ∣∣t − u

∣∣2H ).

Since for H � 1/2 one has |b2H − a2H | � |b − a|2H for any a, b ∈ R+, we
immediately deduce (2.7).

2. By (2.1), for all j, j ′ ∈ {0, . . . , �2n/2t� − 1},
∣∣〈ε j2−n/2 , δ( j ′+1)2−n/2

〉
H

∣∣ = ∣∣E[X j2−n/2
(
X( j ′+1)2−n/2 − X j ′2−n/2

)]∣∣

= ∣∣2−nH−1(∣∣ j ′ + 1
∣∣2H − ∣∣ j ′∣∣2H )+ 2−nH−1(∣∣ j − j ′

∣∣2H − ∣∣ j − j ′ − 1
∣∣2H )∣∣

� 2−nH−1
∣∣∣∣ j ′ + 1

∣∣2H − ∣∣ j ′∣∣2H ∣∣+ 2−nH−1
∣∣∣∣ j − j ′

∣∣2H − ∣∣ j − j ′ − 1
∣∣2H ∣∣.
(8.1)

We consider the function f : [a, b] → R defined by

f (x) = ∣∣x∣∣2H .

Applying the mean value theorem to f , we have that

∣∣∣∣b
∣∣2H − ∣∣a∣∣2H ∣∣ � 2H

(∣∣a
∣∣ ∨ ∣∣b∣∣)2H−1∣∣b − a

∣∣ � 2
(∣∣a
∣∣ ∨ ∣∣b∣∣)2H−1∣∣b − a

∣∣.
(8.2)
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We deduce from (8.2) that

2−nH−1
∣∣∣∣ j ′ + 1

∣∣2H − ∣∣ j ′∣∣2H ∣∣ � 2−nH
∣∣ j ′ + 1

∣∣2H−1

� 2−nH
∣∣�2n/2t�∣∣2H−1 � 2−n/2t2H−1,

similarly we have,

2−nH−1
∣∣∣∣ j − j ′

∣∣2H − ∣∣ j − j ′ − 1
∣∣2H ∣∣ � 2−nH

∣∣�2n/2t�∣∣2H−1 � 2−n/2t2H−1.

Combining the last two inequalitieswith (8.1), and since 〈ε⊗q
j2−n/2 , δ

⊗q
( j ′+1)2−n/2〉H ⊗q

= 〈ε j2−n/2 , δ( j ′+1)2−n/2〉qH , we deduce that (2.8) holds true. The proof of (2.9) may
be done similarly.

3. By (2.1) we have

∣∣〈δ(k+1)2−n/2 ; δ(l+1)2−n/2〉H
∣∣r = ∣∣E[(X(k+1)2−n/2 − Xk2−n/2

)(
X(l+1)2−n/2 − Xl2−n/2

)]∣∣r

= ∣∣2−nH−1(∣∣k − l + 1
∣∣2H + ∣∣k − l − 1

∣∣2H − 2
∣∣k − l

∣∣2H )∣∣r = 2−nr H
∣∣ρ(k − l)

∣∣r ,

where we have the last equality by the notation (2.16). So, we deduce that

�2n/2t�−1∑

k,l=0

∣∣〈δ(k+1)2−n/2; δ(l+1)2−n/2
〉
H

∣∣r = 2−nr H
�2n/2t�−1∑

k,l=0

∣∣ρ(k − l)
∣∣r

= 2−nr H
�2n/2t�−1∑

k=0

k∑

p=k−�2n/2t�+1

∣∣ρ(p)
∣∣r

= 2−nr H
�2n/2t�−1∑

p=1−�2n/2t�

∣∣ρ(p)
∣∣r ((p + �2n/2t�) ∧ �2n/2t� − p ∨ 0

)

� 2−nr H �2n/2t�
�2n/2t�−1∑

p=1−�2n/2t�

∣∣ρ(p)
∣∣r � 2n

(
1
2−r H

)
t

�2n/2t�−1∑

p=1−�2n/2t�
|ρ(p)|r ,

(8.3)

wherewe have the second equality by the change of variable p = k−l and the third
equality by a Fubini argument. Observe that |ρ(p)|r ∼ (H(2H − 1))r p(2H−2)r

as p → +∞. So, we deduce that
(a) if H < 1 − 1

2r : ∑p∈Z |ρ(p)|r < ∞, by combining this fact with (8.3) we
deduce that (2.10) holds true.

(b) If H = 1− 1
2r : |ρ(p)|r ∼ (H(2H−1))r

p as p → +∞. So, we deduce that there
exists a constant CH,r > 0 independent of n and t such that for all integer
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n � 1 and all t ∈ R+

�2n/2t�−1∑

p=1−�2n/2t�

∣∣ρ(p)
∣∣r � CH,r

⎛

⎝1 +
�2n/2t�∑

p=2

1

p

⎞

⎠ � CH,r

(
1 +

∫ 2n/2t

1

1

x
dx

)

= CH,r

(
1 + n log(2)

2
+ log(t)

)
� CH,r

(
1 + n + t

)
.

By combining this last inequality with (8.3) we deduce that (2.11) holds true.
(c) If H > 1− 1

2r : |ρ(p)|r ∼ (H(2H−1))r

p(2−2H)r as p → +∞where 0 < (2−2H)r < 1.
So, we deduce that there exists a constant KH,r > 0 independent of n and t
such that for all integer n � 1 and all t ∈ R+

�2n/2t�−1∑

p=1−�2n/2t�

∣∣ρ(p)
∣∣r � KH,r

⎛

⎝1 +
�2n/2t�∑

p=1

1

p(2−2H)r

⎞

⎠

� KH,r

(
1 +

∫ 2n/2t

0

1

x (2−2H)r
dx

)

= KH,r

⎛

⎝1 + 2
n
2

(
1−(2−2H)r

)
t1−(2−2H)r

1 − (2 − 2H)r

⎞

⎠

� CH,r
(
1 + 2

n
2

(
1−(2−2H)r

)
t1−(2−2H)r ),

where CH,r = KH,r ∨ KH,r
1−(2−2H)r . By combining the last inequality with (8.3)

we deduce that (2.12) holds true.
4. As it has been proved in (8.1), we have

∣∣〈εk2−n/2 , δ(l+1)2−n/2
〉
H

∣∣ = ∣∣E[Xk2−n/2
(
X(l+1)2−n/2 − Xl2−n/2

)]∣∣

� 2−nH−1
∣∣∣∣l + 1

∣∣2H − ∣∣l∣∣2H ∣∣+ 2−nH−1
∣∣∣∣k − l

∣∣2H − ∣∣k − l − 1
∣∣2H ∣∣,

so, by a telescoping argument we get

�2n/2t�−1∑

k,l=0

∣∣〈εk2−n/2; δ(l+1)2−n/2
〉
H |

� 2
n
2−1t2H+1 + 2−nH−1

�2n/2t�−1∑

k,l=0

∣∣∣∣k − l
∣∣2H − ∣∣k − l − 1

∣∣2H ∣∣, (8.4)

by using the change of variable p = k − l and a Fubini argument, among other
things that has been used in the previous proof, we deduce that
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2−nH−1
�2n/2t�−1∑

k,l=0

∣∣∣∣k − l
∣∣2H − ∣∣k − l − 1

∣∣2H ∣∣ � 2
n
2 t2H+1.

By combining this last inequality with (8.4) we deduce that (2.13) holds true. The
proof of (2.14) may be done similarly.
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