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1 Introduction

Our aim in this paper is to study the asymptotic behavior of weighted power variations
of the so-called fractional Brownian motion in Brownian time defined as

ZIZXY;’ t>07

where X is a two-sided fractional Brownian motion, with Hurst parameter H € (0, 1),
and Y is a standard (one-sided) Brownian motion independent of X. It is a self-similar
process (of order H/2) with stationary increments, which is not Gaussian. When
H = 1/2, one recovers the celebrated iterated Brownian motion.

In the present paper we follow and we are inspired by the previous papers [2,4,5,9],
and our work may be seen as a natural follow-up of [4,9].
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Let f : R — R be a function belonging to C;°, the class of those functions that are
C* and bounded together with their derivatives. Then, for any r > 0 and any integer
p = 1, the weighted p-variation of Z is defined as

[27]—1

R (1) = Z E(f(Zkz—") + f(Zasrp2- N Z g1z — Zia-n)".
k=0

After proper normalization, we may expect the convergence (in some sense) to a
non-degenerate limit (to be determined) of

1271 —1
S\ () = 2 Z E(f(Zszn) + [ (Zgs12- DU Z g 1y2-1 — Zia—)?
k=0
—E[(Zg+12- — Zia-)P11, (L.1)

for some « to be discovered. Due to the fact that one cannot separate X from Y inside
Z in the definition of S,(,p ), working directly with (1.1) seems to be a difficult task (see
also [3, Problem 5.1]). This is why, following an idea introduced by Khoshnevisan
and Lewis [2] in a study of the case H = 1/2, we will rather analyze S,Ep ) by means
of certain stopping times for Y. The idea is: by stopping Y as it crosses certain levels,
and by sampling Z at these times, one can effectively separate X from Y. To be more
specific, let us introduce the following collection of stopping times (with respect to
the natural filtration of Y'), noted

Ip ={Tkn 1k 20}, n=0, (1.2)

which are in turn expressed in terms of the subsequent hitting times of a dyadic grid
cast on the real axis. More precisely, let 7, = {j 2-n/2 . Jj € Z},n > 0, be the dyadic
partition (of R) of order n/2. For every n > 0, the stopping times 7} ,, appearing in
(1.2), are given by the following recursive definition: Ty, = 0, and

Ten =inf{s > Tp1n: Y(s) € D\ {Yp_,,,}}, k=1

Note that the definition of T} ,, and therefore of .7, only involves the one-sided
Brownian motion Y, and that, for every n > 0, the discrete stochastic process

%:{YTkV,, k>o}

defines a simple and symmetric random walk over Z,. As shown in [2], as n tends
to infinity the collection {7y, : 1 < k < 2"t} approximates the common dyadic
partition {k27" : 1 < k < 2"t} of order n of the time interval [0, ¢] (see [2, Lemma
2.2] for a precise statement). Based on this fact, one can introduce the counterpart of
(1.1) based on .7, namely,
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1271 ]—1

S =27 N S(F@n) + FEn QT Zn, = Zn,)P = )
k=0

for some & > 0 to be discovered and with p, := E[N?], where N ~ N(0, 1).
At this stage, it is worthwhile noting that we are dealing with symmetric weighted
p-variation of Z, and symmetry will play an important role in our analysis as we will
see in Lemma 3.1.

In the particular case where H = % that is when Z is the iterated Brownian motion,

the asymptotic behavior of §,§p ) (+) has been studied in [4]. In fact, one can deduce the
following two finite-dimensional distributions (f.d.d.) convergences in law from [4,
Theorem 1.2].

1) For f € Cg and for any integer r > 1, we have

(27t ]—1
_ 3

2% Y U @)+ g IR Z, = 21,0 = o]
k=0 >0
+o0
= (,/Mr ~ 13, f FXOL; (Y)dws> , (13)
—00 >0

where L7 (Y) stands for the local time of ¥ before time ¢ at level s, W is a two-sided
Brownian motion independent of (X, Y) and f :LOO; F(X)Li(Y)dW; is the Wiener—Itd
integral of f(X.)L,(Y) with respect to W.

2) For f € Cg and for any integer r > 2, we have

[27]—1
n

2 Y S ) + (2, )@ En, — 25,00

k=0 [0

Y
f.d.d. o
=2 ( FX) (pard® X+ mar—2 — M%,dWs) : (1.4)
g 0

>0

where for all 1 € R, fot f(X5)d° X is the Stratonovich integral of f(X) with respect

to X defined as the limit in probability of 2="2 W<" (£, 1) as n — oo, with W' (f, 1)
defined in (3.3), W is a two-sided Brownian motion independent of (X, Y) and for
u € R, fé‘ f(X5)dW; is the Wiener—Ito integral of f(X) with respect to W defined
in (5.16).

A natural follow-up of (1.3) and (1.4) is to study the asymptotic behavior of S’,(,p ) )
when H # % In fact, the following more general result is our main finding in the
present paper.

Theorem 1.1 Let f : R — R be a function belonging to Cp° and let W denote a
two-sided Brownian motion independent of (X, Y).
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(1) For H > é, we have

127¢]-1 y,

Z 5P EZr,) + F(Zr )L, — Z1,) —> A f(Xd° X,
k=0

(1.5)

where for all t € R, fot f(X5)d° X is the Stratonovich integral of f(X) with
respect to X defined as the limit in probability of 27 W,Sl)(f, t)asn — 0o,
with WV (£, t) defined in (3.3).

For H = %, we have

[2"t]—1
law

Y
Z E(f(ZTk,n) + [ Z1 ) Z 0 = Z100) 2 A f(Xs)d* X,
k=0
(1.6)

where for all t € R, f(; f(Xs)d*X is the Stratonovich integral of f(X) with
respect to X defined as the limit in law of 2~ W(l)(f t) asn — oo.

(2) For L s <H<3 andfor any integer r = 2, we have

[27t]—1

n 1
2 Y SU @)+ fZn, QT Zn,, — 2, )
k=0 >0
rdd Y
<ﬂ2r1 f(Xs>dWs) , (1.7)
n—00 0 >0

where for u € R, fou f(X5)dWs is the Wiener—Ito integral of f(X) with respect to

W defined in (5.16), Bar—1 =,/ er=2 K’%l O‘%l—l’ with apj—1 defined in (2.18) and k|
defined in (3.4).

(3) Fixatimet >0, for H > 5 L and for any integer r > 1, we have

12"t ]—1
nH

a2 Z _(f(ZTk n) + f(ZTk-H n))(2 (ZTk.H n ZTkV,,))zr_l
k=0
Y
L B8 xaex,,
n—oo rl2r

(1.8)

where forall t € R, fé f(Xs)d° X is defined as in (1.5).
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(4) For % < H < % and for any integer r > 1, we have

. 12" ]—1 it )
7% Y SU @) + [ Zng QT Z, = Zr, )Y = o]

k=0 >0
f.d.d. +oo s
— | V2 f(Xo)L(Y)dW; , (1.9)
n—o00 00 >0

where fj;o F(X)L](Y)dW; is the Wiener—Ito integral of f(X.)L,(Y) with respect
toW, yor i= /Za h b2ra aZa, with an, defined in (2.18) and by, , defined in (7.1).

Theorem 1.1 is also a natural follow-up of [9, Corollary 1.2] where we have studied
the asymptotic behavior of the power variations of the fractional Brownian motion in
Brownian time. In fact, taking f equal to 1 in (1.8), we deduce the following Corollary.

Corollary 1.2 Assume that H > 5 for any t > 0 and any integer r > 1, we have

[27¢]—1

nH
Y QT Zyey, = Zp, )Y

2 (2r)!
— ts
n—oo rl2r

thus, we understand the asymptotic behavior of the signed power variations of odd
order of the fractional Brownian motion in Brownian time, in the case H > %, which
was missing in the first point in [9, Corollary 1.2].

Remark 1.3 1. For H = %, it has been proved in [8, (3.17)] that

[2"1] ll fdd Y,
( > U )+ FZrg ) g, —ZTMP) g <K3 / f(Xs)dWs) :
) n—o00 0 >0

k=0

>

with W a standard two-sided Brownian motion independent of the pair (X, Y) and
k3 >~ 2.322. Thus, (1.7) continues to hold for H = % andr = 2.

2. In the particular case where H = 1/2 (that is, when Z is the iterated Brownian
motion), we emphasize that the fourth point of Theorem 1.1 allows one to recover
(1.3). In fact, since H = 2, then, for any integer a > 1, by (2.18) and its related
explanation, Ol2 , = (2a)!. So, using the decomposition (7.1) and (2.3), the reader

can verify that ,/ 4, — ;LZr appearing in (1.3) is equal to y», appearing in (1.9).

3. The limit process in (1.4) is (fOY’ F (X)) (uord® X + ) phar—2 — u%r dWS>
>0

Observe that yuo, = E [N] = (rzézv and since H = % then, for any inte-
ger [ > 1, by (2.18) and its related explanation, “%1—1 = (21 — D)!. So, using

the decomposition (3.4) and (2.3), the reader can verify that ,/p4,—2 — /L%r is
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equal to By,—1 appearing in (1.7). We deduce that the limit process in (1.4) is

(%3' Oy’ F(X)d°Xs + Bori foy’ f(XS)dWS> . Thus, one can say that, for
t>0
any integer r > 2, the limit of the weighted (2r — 1)-variation of Z for H = % is

intermediate between the limit of the weighted (2r — 1)-variation of Z for H > %

and the limit of the weighted (2r — 1)-variation of Z for % < H < %

A brief outline of the paper is as follows. In Sect. 2, we give the preliminaries to
the proof of Theorem 1.1. In Sect. 3, we start the preparation to our proof. In Sect. 4,
we prove (1.5) and (1.6). In Sects. 5, 6 and 7 we prove (1.7), (1.8) and (1.9). Finally,
in Sect. 8, we give the proof of a technical lemma.

2 Preliminaries
2.1 Elements of Malliavin Calculus

In this section, we gather some elements of Malliavin calculus we shall need in the
sequel. The reader in referred to [6] for details and any unexplained result.

We continue to denote by X = (X;);er a two-sided fractional Brownian motion
with Hurst parameter H € (0, 1). That is, X is a zero mean Gaussian process, defined
on a complete probability space (2, <7, P), with covariance function,

1
Cu(t,s) = EX/X,) = 5(|s|2” + 127 — e — sy, st eR.

We suppose that <7 is the o-field generated by X. For all n € N*, we let &, be the
set of step functions on [—n, n], and & := U,&,. Set &; = 1o, (resp. 1f;,07) if £ > 0
(resp. t < 0). Let 27 be the Hilbert space defined as the closure of & with respect to
the inner product

(e, 85) ¢ = CH(t,s), s,t €R. 2.1

The mapping &; — X, can be extended to an isometry between .7 and the Gaussian
space Hl; associated with X. We will denote this isometry by ¢ — X (¢).
Let .% be the set of all smooth cylindrical random variables, i.e., of the form

F =¢(Xl‘17 ~"7Xl[)a

wherel € N*, ¢ : R — Risa C®-function such that f and its partial derivatives have
at most polynomial growth, and #; < ... < #; are some real numbers. The derivative
of F with respect to X is the element of L%(Q, ) defined by

1
¢
DsF=Za_xi(xtw""xll)gti(s)’ s eR.
i=1
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In particular D X; = ¢&;(s). For any integer k > 1, we denote by D*-2 the closure of
Z with respect to the norm

k
IFl; 2= EF?) + ) ENDIF|% 0,1
j=1

The Malliavin derivative D satisfies the chain rule. If ¢ : R” — R is C g and if
Fi,..., F, are in D12 then o(F1,..., Fy) € D2 and we have

n

dg
Do(Fy, ..., Fy) = Zﬁ(Fl,...,Fn)DFi.
i=1 !

We have the following Leibniz formula, whose proof is straightforward by induction
ongqg.Letg, ¥ € CZ (g=>1D,and fix0 < u <vand 0 < s < t. Then (p(Xs) +

(X)) (¥ (Xu) + ¥(X,)) € DY? and
DI ((p(Xs) + o(X)) (¥ (Xu) + ¥ (X0)))
= i (611)(“’(1)()‘08?1 + ¢V XS (Xe 1
-il-:ﬁo(q_l) (X,)ed=h) 2.2)

where ® stands for the symmetric tensor product and ¢ (resp. ¥@~") means that
¢ is differentiated / times (resp. ¥ is differentiated ¢ — / times). A similar statement
holdsfou <v <0Oands <t <0.

If a random element u € L*(R2, .#) belongs to the domain of the divergence
operator, that is, if it satisfies

|E (DF, u) yp| < cuy/ E (F?) forany F € Z,

then 7 (u) is defined by the duality relationship
E(FI(u)) = E((DF, u) »),

for every F € D2,

For every n > 1, let H,, be the nth Wiener chaos of X, that is, the closed lin-
ear subspace of L2(Q2, o/, P) generated by the random variables {H,(X (h)),h €
IO, |hl|lw» = 1}, where H,, is the nth Hermite polynomial. Recall that Hy = 0,

H,(x) = (=1? exp(%z)% exp —%) for p > 1, and that

PUEIMND? if p=gq,

0 otherwise ’ (2.3)

E(H,(M)Hy(N)) = {
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for jointly Gaussian M, N and integers p, g > 1. The mapping
L,(h®") = H, (X (h)) 2.4

provides a linear isometry between the symmetric tensor product 7" and H,. For
H = % I, coincides with the multiple Wiener—Ito integral of order n. The following
duality formula holds

E(FI,(h)) = E((D"F, h) yen), (2.5)

for any element i € " and any random variable F € "2

Let {ex, k > 1} be a complete orthonormal system in 7. Given f € JZ°" and
g € HO™ foreveryr =0,...,n Am, the contraction of f and g of order r is the
element of 7#®"T"=2) defined by

eo]

f&g= Y (fe®  ®ep)per ®(g e @ Qey)yper.

Finally, we recall the following product formula: If f € 5#©" and g € S#©™, then

nAm a2\ /m
Li(f) 1 (g) = Z rl(y) (r)ln+m—2r(f Qr &) (2.6)

r=0

2.2 Some Technical Results

Forall k € Z and n € N, we write

8(k+l)2’”/2 = 8(k+1)2*”/2 — Ekp—n/2.

The following lemma will play a pivotal role in the proof of Theorem 1.1. The reader
can find an original version of this lemma in [5, Lemma 5, Lemma 6].

Lemma2.1 1. IfH < 2,for all integer g > 1, forall j €e Nandu € R,

)( ®q 54 <ol 2.7

Eu s O ”/z)j{ﬂ@q

2. IfH > § , for all integer ¢ > 1, forallt € Ry and j, j' € {0, ..., [2"%t] — 1},

® ® ”q 2H—1
(o5 8,1y | < 2727 F 22801, 2.8)
®q ®q q nq (2H l)q
‘(8(j+1)2"'/2’8(j’+1)2’”/2>,%”®q S22 (2.9)

3. Forallintegersr,n > 1andt € Ry, and with Cy , a constant depending only on
H and r (but independent of t and n),
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@ ifH <1- 4,

[2"/2¢]—1 ( H)
—r
Z ‘<8(k+1)2_"/2; 8(1+1)2—n/2>e}f CH r t 2 2 (210)
k,1=0
) ifH=1-1,
[2"/2]—1 , .
1 _rH
Z ‘(8(](4_1)2—)1/2; 8(l+l)2’"/2)jf < CH,r 2"(2 " )(t(l + I’l) + tz)
k,1=0
(2.11)
(© ifH>1- 2r’
[272¢]—1
>—rH
> (Burnae 5(l+1>2—"/2>% < Cy(t2" (3-H)
k,1=0
+ t2—(2—2H)r zn(l—r)) (212)
4. For H € (0, 1). For all integern > 1 andt € R,
[27/2¢]—1
Z ’(Skz n/2, 8(l+1)2 n/2>% < 22+1 2H+1 (213)
k,1=0
(2721 | —1
Z (8(k+1)2’"/2; 8(]—&—1)2*”/2)’;{/ < 2§+1[2H+1. (214)
k,1=0
Proof The proof, which is quite long and technical, is postponed in Sect. 8. O

It has been mentioned in [2] that {”YTLZ”I I lla : n > 0} is a bounded sequence.
More generally, we have the following result.

Lemma 2.2 For any integer k > 1, {||Y- Tingyall2k 110 2 0} is a bounded sequence.
Proof Recall from the introduction that {Y7, , : k > 0} is a simple and symmetric
random walk on %,, and observe that Yth"rJ,n = ZLZSJ_I(YT, e — Y7, ). So, we

have

@ Springer



1548 J Theor Probab (2018) 31:1539-1589

[2"t]—1
2k
E[(YTLZ"rj,n) ] = Z E[(YTHH,n - YTll.n) Xoee X (YTIZ/(H.n - YTIZk,n)]

I1,....=0
k [2"t]—1
ay
== Z Z Cll],...,am Z E[(YTIH»I,n - YT/[.H) ]
m=1a;+---+a,=2k Ii,..l;n=0
I,-#lj fori#j
a,
x - x E[(Yn, 1 — Y1) ], (2.15)
where Vi € {1, ..., m} a; is an even integer, Vim € {1, ..., k} Cqy,.. 4, = 0, is some

combinatorial constant whose explicit value is immaterial here. Now observe that the
quantity in (2.15) is equal to

k

Y Capnan 1270127 = 1) x e x (2] — m 4 1)27 2 (@)

m=1a+--+a;,=2k

k
=Y > Capay (2] (127) = 1) e x (127] —m + 1)277K,

m=1aj+-+a,=2k

so, since 1 < m < k, we deduce that {E[(YTLZ,,”‘”)M] :n > 0} is abounded sequence,
which proves the lemma. O

Also, in order to prove the fourth point of Theorem 1.1, we will need estimates on
the local time of Y taken from [2], that we collect in the following statement.

Proposition 2.3 1. Foreveryx € R, p € N* andt > 0, we have

2
E[(LT(Y)P1 <2 E[(LY(Y))P1t"/? exp (‘%) :

2. There exists a positive constant | such that, for every a, b € R with ab > 0 and
t >0,

2
a
E[IL(Y) = L{()P1V? < /1o —al 1 exp (—5) :

3. There exists a positive random variable K € L¥ such that, for every j € Z, every
n = 0and everyt > 0, one has that

in—n/2 in—n
Lint)— LI )| <224 L (1),

where L (1) = 27"2(U;j o (t) + D} n(1)).
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2.3 Notation

Throughout all the forthcoming proofs, we shall use the following notation. For all

t e Rand n € N, we define Xt(”) = 2%&2*%‘ Forall k € Z and H € (0, 1), we
write |
P = 2 (Ik + P74k — 127 = 21k, (2.16)

it is clear that p(—k) = p(k). Observe that, by (2.1), we have

| Srryz-2: Sagnp-n)or | = |E[(Xgpno-ne = Xign2) (Xqyayp-nz = Xpp-nr2) ]|
= 7 (k=1 1P k== 1P =20k = 1))
=2"""|p(k - D). (2.17)

If H < %, for all » € N*, we define

o = F!Zp(a)’. (2.18)
acl

Note that Zan |p(a)|” < oo ifand only if H < 1 — 1/(2r), which is satisfied for
all r > 1 if we suppose that H < 1/2 (in the case H = 1/2, we have p(0) = 1 and
p(a) =0foralla # 0. So, for any r € N*, we have )", _, |p(a)|” = 1).

For simplicity, throughout the paper we remove the subscript .7 in the inner product
defined in (2.1), that is, we write ( ; ) instead of { ; ) .

For any sufficiently smooth function f : R — R, the notation 3’ f means that f
is differentiated / times. We denote forany j € Z , A, f(X) := %(f(ij—n/Z) +

F X (jr1y2-n2))-
In the proofs contained in this paper, C shall denote a positive, finite constant that
may change value from line to line.

3 Preparation to the proof of Theorem 1.1
3.1 A Key Algebraic Lemma

For eachintegern > 1,k € Z and realnumbert > 0,let U; ,, () (resp. D; ,(¢)) denote
the number of upcrossings (resp. downcrossings) of the interval [ j27/2, (j+1)27"/?]
within the first [2"7] steps of the random walk {Y7, , }x>0, that is,

Ujn) =8k =0,...,[2"] —1:
Yr., = j2—n/2 and Y7,,,, = (j + 1)2—n/2};
Dja(t) =8{k=0,...,[2"]—1:
Yr,, =0+ 1272 and Y1, = jz—n/Z}.
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The following lemma taken from [2, Lemma 2.4] is going to be the key when studying

the asymptotic behavior of the weighted power variation Vn(r)( f,t) oforderr > 1,
defined as:

(27t]—1

Q) — 2 _ r_
ViU = Y U )+ Zrg QT (g, = Z,)) =, 120,
k=0
3.1
where u, := E[N"], with N ~ A0, 1). Its main feature is to separate X from Y,

thus providing a representation of Vn(r)( f, t) which is amenable to analysis.

Lemma 3.1 Fix f € C;°, t > 0 and r € N*. Then

r 1 nt r
VO = Xi‘E(f(sz’%)+f(X(j+1)2*%))[(2 ’ (X(j+1>2*% _ijf%)) — ]
je
x(Ujn(t) + (=1)"Djn(1)). (3.2)

3.2 Transforming the Weighted Power Variations of Odd Order

By [2, Lemma 2.5], one has

Logj<j*mny  if j*(n, 1) >0
Ujn@)—Dj,(t) =10 if j*(n,t) =0,

_l{j*(n,t)<j<0} lf]*(l’l, t) <0

where j*(n, 1) = 2"/2YTL2,,”‘". As a consequence, V> "V (£, 1) is equal to

j*m,n-1 _ o
Jgo %(f(ij—n/Z) + f(X(J;'H)z—nﬂ))(X;‘l’:l - X’j?’+)2r 1 1f]*(n, >0
0 if j*(n,t) =0

o)1

_ — — —\2r—1 o
X 3K ya) + F X)) (X = X57) 77 i 50 <0
p=

where Xt+ =X, fort >0, X", := X, fort <0, X:"+ = Z%X;% fort > 0 and
t
X" = Z%Xiﬂ fort < 0.
272 (-1)

Let us now introduce the following sequence of processes Wﬁ;_l), in which H),
stands for the pth Hermite polynomial (H(x) = x, Ha(x) = x2 —1,etc.):
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L2”/2tj—l

Wb 1 +
=2 o)

j=0

+f<Xi. u))Hzr_l(X;?fi—X’}*i), >0 (33)

(+D2 2
(2r 1) .
_ (f, 1) ift >0
WO = (2r ) . :
(f,—t) ift <0

We then have, using the decomposition
,
= ZKr,iHZi—l(x)» (34
i=1

(withk,, = 1,and k| = (r%g),' = E[N%1], with N ~ N(0, 1). If interested, the reader

can find the explicit value of «,.;, for 1 <i < r,e.g., in [9, Corollary 1.2]),

VIS, r)—ZK”W@l D (£ Y1, ) - (3.5)

4 Proofs of (1.5) and (1.6)
4.1 Proof of (1.5)

In [8, Theorem 2.1], we have proved that for H > % and [ € C;;O, the following
change-of-variable formula holds true

t
F(Z) - F(0) =/ f(Z)d°Zg, 120 4.1
0

where F is a primitive of f and fot f(Zs)d°Z is the limit in probability of

277V (£ 1) as n — oo, with V(. 1) defined in (3.1). On the other hand, it
has been proved in [5, Theorem 4] (see also [10, Theorem 1.3] for an extension of this
formula to the bi-dimensional case) that forall# € R, the following change-of-variable
formula holds true for H > é

t
F(X;) = F(0) :/0 J(X5)d° X, 4.2)

where fol f(X5)d° X is the Stratonovich integral of f(X) with respect to X defined

as the limit in probability of 2~ W( )(f t) asn — 0o, with W(l)(f t) defined in
(3.3). Thanks to (4.2), we deduce that
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Y
F(Z;) — F(0) = f(Xo)d°Xs, 120
0

by combining this last equality with (4.1), we get fé f(Zyd°Zs = OY’ f(X5)d° X,
So, we deduce that, for H > —,

[2"t]—1 Y,
P °
D, U@+ F e ), = Zny) 22 | fX)d Xs,
k=0

thus (1.5) holds true.

4.2 Proof of (1.6)

In [8, Theorem 2.1], we have proved that for H = % and f € ijo, the following
change-of-variable formula holds true

F(zt)—F(0>+— [ £ (Xaw, " / F(Z)d°Zs, 120 (43)

where F is a primitive of f, W is a standard two-sided Brownian motion independent
of the pair (X, Y), k3 = 2322 and [} f(Z;)d°Zy is the limit in law of 2~"% V" (£, 1)

as n — oo, with Vn(l)( f, t) defined in (3.1). On the other hand, it has been proved in
(2.19) in [7] that for all ¢+ € R, the following change-of-variable formula holds true
for H=1

6

t
F(X;) — F(0) + —f (X )dWs —f F(X5)d* X, 4.4

where k3 and W are the same as in (4.3), fot f(Xs)d*X; is the Stratonovich integral

of f(X) with respect to X defined as the limit in law of 2_% W,fl)(f, t)asn — o9,
with WV (£, t) defined in (3.3). Thanks to (4.4), we deduce that

Y, Y
F(Z) - FO + 53 /0 raw = [ o, o

law

By combining this last equahty with (4.3), we get fo f(Z)d°Zg Y’ f(X)d* X

So, we deduce that, for H = 6,

1271

1 aw [V
> z(f(ZTk?n)+f(ZTk+1.,l))(ZTk+1,n_Zqu,l)nljgo /0 f(Xod* Xy,

k=0

thus (1.6) holds true.
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5 Proof of (1.7)

Thanks to (3.1) and (3.5), for any integer r > 2, we have

[2"t]—-1
2IAYED(fy =2 N (f(Z,)
k=0 2

nH 2r—1
+f(ZTk+]'n))(2 2 (ZTk+1‘n - ZTk,n))

,
_ 2—n/4 ZKr,lW,gﬂ_l)(fv YTLZ”rJ,n) (5.1
=1

The proof of (1.7) will be done in several steps.

5.1 Step 1: Limit of 2="/4 Y1, i, ;WD (f, 1)

Observe that, by (3.4), we have

[27/2¢]—1 r

_ 21—1
> E(f(X;—LQ_%)+f(X(j;+l)2_%))(X§ﬁ = XY e WV (.
Jj=0 =1

We have the following proposition:

Proposition 5.1 If H € (. 1), if r > 2 then, for any f € C§°,

r t
T _ fdd.
(xx,z EY WV, r)) - (Xx,ﬂw f f(Xsi)dWsi) :
- 0
=2

XeR, 130 xeR. 120
(5.2)

where Bryr—1 = ,/2;22 K%la%l_l, an—1 is given by (2.18), W,+ =W, ift > 0and

W, = W_, ift <O, with W a two-sided Brownian motion independent of (X, Y),
and where fot f(XE)dWZE must be understood in the Wiener-Ité sense.

Proof Forallt > 0, we define F{*, " (f, 1) := 274 Y1_ ki, WLV (f, 1). In what

follows we may study separately the finite-dimensional distributions convergence in
law of (X, Fﬁ;_l)(f, ), Fﬁ%;_l)(f, -)) when n is even and when n is odd. For the
sake of simplicity, we will only consider the even case, the analysis when n is odd
being mutatis mutandis the same. So, assume that n is even and let m be another even
integer such that n > m > 0. We shall apply a coarse gaining argument. We have
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12m2) i2"2"

FEV(fn=24 %" 3 —(f(X,2 )+ X))

=i

(Z eri Hy—1 (X5 = X *)) (5.3)

=2
127211

YR E(f(X n/z)+f(X< 4 1)2-72))

j:Lzm/ztjz%

(Z wer i Hop 1 (X205 — X *)) : (5.4)

=2

Observe that 2“2 is an integer precisely because we have assumed that n and m are
even numbers. We have

(5.3) = AL, (1) + BF, (1) + C5, (1),

where
Lz’”/th 22" 1
+ —n/4 +
An’m (t) = 2 n/ Z (f(Xlz m/2) + f(X(i_‘_l)zfm/Z)) Z
=1 j=—12"2"

,
x (Z er i Ho 1 (X5 — X;Z’i)>

=2

22 2"

By:llfm(t) = 27}1/4 Z Z (f(X(j—‘,-l)Z n/2 f(X?i:_‘_l)2fm/2))

=t

,
+ +
x (Z kriHo—1 (X0 — X ))

=2
22 2" 1 {
Con@® =273 30 S X = FXp)
=i
r
X (Z Kr,szz—l(X;lfl - X;-”i)>
=2

Here is a sketch of what remains to be done in order to complete the proof of
(5.2). Firstly, we will prove (a) the f.d.d. convergence in law of (X, A}, . A," ) to
(X, Bar—1 Jo F(XAW, Bar—1 [y f(X;7)dW,) as n—o0 and then m — oo. Sec-
ondly, we will show that (b) B,ifm (t) convergestoOin L2(Q2) as n— oo and then m— o0o.
By applying the same techniques, we would also obtain that the same holds with
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(o nim (t). Thirdly, we will prove that (c) (5.4) converges to 0 in L2(Q) as n— oo and then
m—00. Once this has been done, one can easily deduce the f.d.d. convergence in law of
2r—1 2r—1 . . _ _
X POV FOTV (o 0 (X, Barmt Jo FOCHAWSE ey [y £(XD)AW)
as n— 00, which is equivalent to (5.2).
(a) Finite-dimensional distributions convergence in law of (X, A" A

b . )
n,m n,m
Fix m. Showing the f.d.d. convergence in law of (X, A,‘tm, A;,m) asn — 0o can
be easily reduced to checking the f.d.d. convergence in law of the following random-

vector valued process:

2" 1
Xeox eR 27 N Hy (X3 - xh), 2
j=Gi—12"2"
2"
XY Hya(XEG - XTT) 2l < 1< <[22
j:(i—])Zn_Zm

Thanks to (3.27) in [9] (see also (3.4) in [9] and page 1073 in [5]), we have

"2 -1 22" 1
27ty Hya (G = XDty (X - X
j=G—12"2" j=G—12"2"
1.
2<I<r 1<i< 2| =
n—oo
I+ I+ l,— I,— )
<a2l—l(B(i+l)2—m/2 - Bl‘27m/2) ) aZI—I(B(i+l)2—;n/2 - Biz—m/z) .
2<I<nr1<i< Lz’””u)
where (B@, ..., B")isa (r — 1)-dimensional two-sided Brownian motion and o3/

is defined in (2.18), forall# > 0, B+ .= B", B/~ .= B").

Since E[ X Hor—1 (X;lfl — X;’*i)] = 0 when r > 2 (Hermite polynomials of dif-
ferent orders are orthogonal), Peccati—-Tudor Theorem (see, e.g., [6, Theorem 6.2.3])
applies and yields

22 —1 22 —1
Xe 2N Hya (X = X2y Hy (X=X
j=-=122 j=(-022

21 < 1<i <|2"?) fdd
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I+ l,— l,— .
(Xm o2]— I(B( i+1)2-m/2 Biz—m/Z)a OlZIfl(B(l-Jrl)zfmﬂ - Bizfm/z) .
2<I< 1< < 127))

Xz

with (B@, ..., BU"Dyis independent of X (and independent of Y as well). We then
have, as n — oo and m is fixed,

(X, Al Ar) ©%
Lzm/ZJ
+ +
X, .BZr 1 Z _(f(Xlz m/z) + f(X(l+1)2 ’"/2))(W(i+l)2”"/2 - Wizfm/Z)’
L2m/2J

)

/321'—1 Z (f(Xl_2 m/2) + f(X(_l-‘rl)Z m/2))( (l+1)2 mj2 W2 m/2)
i=1

with By, := /2;22 /cr2 ! “%171 and W is a two-sided Brownian motion independent

of X (and independent of Y as well). One can write

[27/21]
Z (‘f(XIZ m/2) + f(X (i+1)2— m/Z))( (l+1)2 m/2 W:lz:—m/Z) = Kr:rll:(t) + Lr::(t)’
i=1
with
L2m/2tJ
+ +
K () = Z f(X io— m/z) ( (i+1)2-m/2 Wiz—»z/Z) s
i=1
127/21]
+ + +
Lm(t) = Z (f(X(l+1)2 m/2 f(Xlz »1/2))(W(l‘+1)2—m/2 - Wi27m/2)'
i=1

2 t
It is clear that K 31: ) L f f (Xsi)d WYdE On the other hand, L;:(t) converges to
m— 00 0

0in L? as m — oo. Indeed, by independence,

E[LE ()]
[2/21]

- 4 Z (f(X(l+1)2 m/2) f(Xlz m/Z))(f(X(]+1)2 m/2 f(X;tz—m/Z))]

i,j=1

+ + +
X E[(W(l+1)2 -m/2 Wiz—m/2)(W(j+1)2—m/2 - sz—m/Z)]
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127/21]
1 + 2
=1 2 Bl ) = FX G X ELOVE e = W)l
i=1
g-m/2 1221]

T4 Z ELf'(Xo)? (X(z+1)2 n) = Xijifm/z)z]v (5.5)
i=1

where 6; denotes a random real number satisfying i2~"/% < 6; < (i +1)27"/2. Since
f € Cp° and by Cauchy—Schwarz inequality, we deduce that

[2m/2¢]

(5:5) < Cp27"2 3 ENX G, o) = (X5, 172
i=1

< Ccp2mHy,

from which the claim follows. Summarizing, we just showed that

f.d.d.

(X, A, A7) S (X By /0 FXHAWE By /0 FX)AW)

asn — oo thenm — oo.
(b) ijm (1) converges to 0 in L>($2) as n — oo and then m — oo.
It suffices to prove that for all k € {2, ..., r},

B ki) L LN 0, (5.6)
as n — oo and then m — oo, where B,,i, ,ff (t) is defined as follows

L2m/2IJ 12"_2’" 1 .
+.k o 4 2: +
B0 =271 2 2V E o)
==
s n,t
f(X(H_])z m/z))HZkfl(Xj_H — X] )

With obvious notation, we have that

272 2" 1

Bfnlf(f)—z n/4 Z Z Am"f(Xj[)sz 1(Xj+1 Xf’i).

= e

It suffices to prove the convergence to 0 of B,J,f ;,/f (1), the proof for B,Z;,’f (t) being exactly
the same. In fact, the reader can find this proof in the proof of [5, Theorem 1, (1.15)]
at page 1073.

@ Springer



1558 J Theor Probab (2018) 31:1539-1589

(c) (5.4) converges to 0 in L%(Q2) as n — oo and then m — oo.

2
It suffices to prove that for all k € {2, ...,r}, J,f;,f(t) L> 0 as n — oo and then

m — 00, where Jf,,f () is defined as follows,

(2721 —1
ko _ H—n/4 1 + + nt _ ynzE
i (1) =2 Do UK Gn) + LG D Hae (X5 = X5
j:Lzm/Zth%
[2"/2¢]—1
=27 Y O Hu (X~ XT),
j=12m/2)2" 2"

with obvious notation. We will only prove the convergence to 0 of J,{’f ,,]f (), the proof
for Jn_,;,]f (t) being exactly the same. Using the relationship between Hermite polyno-

mials and multiple stochastic integrals, namely H, (2"H#/2(X (4; e T Xj_zfn n) =
onrH/2 (58%)2_"/2), we obtain, using (2.6) as well,

[2"2¢]—1 2k—1

2%k — 1\?
+.k o \\27 _ |9n—n/2onH(2k—1)
E[(Jnym(t))]_‘Z 2 > > l!< 1 )

joir=lanrgptet =0

®Qk—1-1)  @Q2k—1-)
><E[(“);5f(X+)@']l~/f(X+)12(2k—1)—21 (3(j+])2,,,/2 ® S(j/+1)2n/2>:|

. l
X <8(j+1)27n/2 N 5(‘]'/4_])27”/2)

[2"2¢]—1 2k—1

2
< 27n/22nH(2k71) Z Z l’(Zk - l)
[

j=lemzp st =0

®Qk—1-1) o ®k—1-1)
X E[®7f(X+)®?/f(X+)12(2k1)21 (50“)27"/2 ® 5(j,+1)2n/z>”

1
X|(8(j12-n123 82|
2k—1

2
=y 1!<2kl_ 1) oo, (5.7
=0

with obvious notation. Thanks both to the duality formula (2.5) and to (2.2), we have

Dii i - BCk—1-1)  (@Ck—1-I)
dtP (., j = E|:®;{f(X+)®7-/f(X+)12(2k—1)—2l (5(j+,)2_,,/2 ®8(j,+1)2_,,/2)]

_ E|:<D2(2k_1_l)(@)’]!f-(X-‘—)(;‘);%rf(X+)) . 8®(Zk—1—1) ® 5®(2/<—1—l) >]

G2z @ Orpnani
2(2k—1-1)
1 22k =11 @ ( y+ ®a @[ y+
4 2 ( a )ER(f Xjae )€ jpae + LN X (iypone
a=0
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®a 5 2(2k—1-1)—a + ®Q2@2k—1-0)—a)
XE(].+1)2,,,/2> ®<f( ) (Xjrz—n/z)gj/z—nﬂ

2Qk—1-1)—a + QQRRk—1-—a) ) . ®2k—1-1) RQ2k—1-1)
+f( )(X(j'ﬂ)z*"/z)8<j'+1>2*"/2 ) > 3 ® 5<j'+1>2*”’2>]'

At this stage, the proof of the claim (¢) is going to be different according to the value
of I:

o If/ =2k — 1in (5.7) then

1272 —1
O, k=1 (1) = 27/ 2 H k=D > ’E[@?f(X*)@'}f(X*)]
Jgr=lamp

x| (8120023 81y m) [

12721 —1
< szfn/Zan(Zkfl) Z |<5(j+l)2—"/2; 8<‘]_’+])2_n/2)|2k—1

Jogr=12m "3
[27/2¢)—1 1

=c2? 3 i P 2l = PP

=122

ST 1 2H 2H 2H\ | 2k—1
=cp2™? Y. > UpH T e =17 =20
j=lam2ep "2 p=I—120 204

(5.8)

where we have the first inequality since f belongs to C;° and the last one follows
by the change of variable p = j — j’. Using the notation (2.16), and by a Fubini
argument, we get that the quantity given in (5.8) is equal to

[2n/24)—[2m/24 123" —1
sz—n/z Z ‘p(p)’Zk—l((p + LG/zt_]) A LG/th
p=[2m/21 123" — | 27/21 )41
—(p+ 12"Pe)2"77) v 22270, (5.9)

By separating the cases when 0 < p < [27/2¢] — |2/2t]2"7" — 1 or when
12/2¢12"3" — [27/2¢] + 1 < p < 0 we deduce that

(p+12"%))  (1221)  (p+[2"*4)2"7) /2, 1y=m/2
0< < n/2 A oz /2 v 22
< |12"2e) 272 — o] + |t — 122272 < 272 22,
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As a result, the quantity given in (5.9) is bounded by

Cr Y e[ @2 427,
PEZ

with ZPGZ |,0(p)|2k—1 < oo (because H < 1/2 <1 — ﬁ). Finally, we have

SRy < C(27E 2, (5.10)

n,m

e Preparation to the cases 0 < [/ < 2k — 2: In order to handle the terms Q;f,fl (1)
whenever 0 </ < 2k — 2, we will make use of the following decomposition:

lastP (. jh| < Z(Qﬁl’”(ﬁ I+ QPG+ QPG+ G ).

(5.11)
where

2(2k—1-1)
o 2Qk—1-1)
MG =) (

a=0

) ‘E [f“” O (X}zfm)] ’

<8}8;a7n/2®£®(2(2k—1—l)—a). ®Qk—1-1) 5®(2k—1—l)>

a

x jan P92 B Oy y-nr

2(2k—1-1)

L 22k—1-1) » —D)—a
Q@G jh =3 ( ) )‘E[f( )(X;Wz)f(z(zk 1-1) )(X(+j/+1)27”/2)]‘

a=0

X

®a 5 ®Q22k—1-)—a), ®2k—1-1) ®2k—1-1)
<8j2—n/2 ®8(j/+1)2—n/2 B 6(j+])2—n/2 ® 8(j/+l)2—n/2>

2(2k—1-1)

202k —1—1) i
3D¢;i iy — + 2(2k—1-1) +
QMG jih= > ( , )‘E[f<“>(x(j+l)2,,,/z)f( “)(Xj,zf,,/z)]‘
a=0
®a 5 ®Qk—1-D)—a), y@Ck—1-1) o (@k—1-1)
) <8<j+l>2*”/2®81/2*"/2 P04y @ 8<j’+l>2*”/2>
2(2k—1-1)
202r—1-1) i
7N WA ¥ 202k—1-1) T
03,0 = Z ( a >‘E[f(a)(x(j+1)2fn/2)f( a)(x<_j’+1)2ﬂ’/2)]‘
a=0

5 ®C2R2k—1-)~a), ®Q2k—1-1) 6®(2k7171)

®a
) <€<j+1>2*“/2®8(j'+1>2*"/2 POz ® (j’+1)2*"/2>

e For 1 </ < 2k —2: Since f belongs to Cgo and thanks to (2.7), we deduce that

.o — 22k—1-1
dith(j, j) < c(2mH)PED,
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As a consequence of this previous inequality, we have

Q0
[2"/22]—1
—nH\2Q2k=2) 5—n/2 AnH(2k—1) . l
<c@™) 272 Yo GG dgrnan)|

j,j’:[zm/zl]z%

PEL
< €2 HRk=D (/2 g pom/2), (5.12)

where we have the second inequality by the same arguments that have been used
previously in the case [ = 2k — 1.
e For [ = 0 : Thanks to the decomposition (5.11) we get

\_2”/2”

0fn () < 2”/22"”@" ”Z > 20 613

M=bj jrmom "™

We will study only the term corresponding to QS,Z’O) (j, j) in (5.13), which is
representative to the difficulty. It is given by

[2"/2¢]—1 2(2k—1)

L 202k — 1)
S T e

j,j’=|_2m/2lJ2n_2m a=0

22k—1)—a) +
xf (X1 ”/2)]

BQk-1)—a), (®U-1)  (®-1)
< €5 nn @€ g an 38 i ®8(j'+1)2*”’2>

[2"2¢]—1 2(2k—1)

< Cz—n/Zan(Zk—l) Z Z

joi=12m2e2 2"

5®(2k 1 5®(2k 1) >

®(2(2k D—a).
< o Oy

G2 B0 i

@h), . o\ . ®RQQ2k—1)—a), ®2k—1) ®@2k—1)
We deﬁne En (.]7 .]/) i |< j2 11/2®8 (j +1)2—n/2 5 +1)2— n/2 ® 8 (j'+1)2— n/2>|'

By (2.7), we thus get, with ¢, some combinatorial constants

E,g”’k)(j, J/) < 5a 2_nH(4k_3)(|<5j2ﬂ1/2§ 5(j+1)27n/2>| + |<8j27n/2§ 6(j/_|_1)27n/2>|

ez 8z )| + [egrenarns 8rsya—n)])-
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For instance, we can write

[2"/2¢] -1
> \(e¢jrr1y2-nr2s 8¢j 4122
Jgr=lm 2 Tt
[2"/2¢] -1
— 2an71 Z
joj'=l2m2e2 "
[2"/2¢]—1

< 2711[‘171 Z

j,j/:Lzm/Z;JQ":Tm

+2—nH—1 Z ((J/ _

L2m/22" 7 << <1202 -1

+2—nH—1 Z

L2222 < << (2021

3 —nH (An)2 M2, 171N a2, 2H 312H
< S22 - 2 2 20 2 <
Similarly,
[2"/2]—1 32H
> (£ 2725 8 y2mmn)| < == (2% =
Jgr=lam " T
[2"/21]-1 32H
Yo lejrwes gl < = (@2 -
J=lmge Tt
127/2¢]—1 3s2H
> {ernzmns 8¢jrampmmal < ——(2"%r =

Joir=12m2e 2 "

As a consequence, we deduce

G+ D2 — 2| — 1 =) =

|

j+ DM == )

(G = = (= ' = D)

n—m

22— |2 ]277).

Lzm/zt_] 2 11—2m ) ;

Lzm/zt_] 2 n—zm ) ;

Lzm/th 2 n—2m ) )

QSl-,’_r;’lO)(t) < 2 H@k-2) (t _ Lz’"/zuz#) < C 2 HQ@k=2)p-m/2 (5.14)

Combining (5.10), (5.12) and (5.14) finally shows

E[(J’,t;’,]l{(t))z] g C(z—ﬂ/z + 2—m/2 + 2—}1H(2k—2)(2—n/2 + 2_m/2)

+ 2—nH(2k—2)2—m/2).
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So, we deduce that J,,Jf;f(t) converges to 0 in L%(Q) as n — oo and then m — oo.
Finally, thanks to (a), (b) and (c), (5.2) holds true. O

5.2 Step 2: Limit of 2/*W, " (f, Y10, )

Thanks to (1.5), for H > £,27F W (f, Y1) —=> Jo* f(X)d°X,. Thus, since
, —00

n
H < %, we deduce that

27 BWOD (1 Y1, ) = 0. (5.15)

n—o0

5.3 Step 3: Moment bounds for W,*" "V (f, -)

We recall the following result from [8]. Fix an integer r > 1 as well as a function
fe leo. There exists a constant ¢ > 0 such that, for all real numbers s < ¢ and all
neN,

2H

E[(WD(f,0) = W D1, )] < e max (|7, | (j = s[277 +1).

5.4 Step 4: Last step in the proof of (1.7)

Following [2], we introduce the following natural definition for two-sided stochastic
integrals: foru € R, let

u !/0” fXHawt ifu>0
/ fX)dWy =1 ; (5.16)
0 Jo “fX)awy ifu <0

where W1 and W~ are defined in Proposition 5.1, X * and X~ are defined in Sect. 4,
and [, f(X;)dW;" must be understood in the Wiener-Ito sense.
Using (3.5), (5.15), the conclusion of Step 3 (to pass from Y70, 0 Y1) and since

2
by [2, Lemma 2.3], we have YTLZM," L) Y, as n — oo, we deduce that the limit of
2-1/4y 2 =D (£ 1) is the same as that of

,
27N ke WD Y.
=2

Thus, the proof of (1.7) follows directly from (5.2), the definition of the integral in
(5.16), as well as the fact that X, W and Y are independent.
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6 Proof of (1.8)

We suppose that H > % The proof of (1.8) will be done in several steps:

6.1 Step 1: Limits and moment bounds for W,EZi_l) fs )

We recall the following It6-type formula from [5, Theorem 4] (see also [10, Theo-

rem 1.3] for an extension of this formula to the bi-dimensional case). For all 7 € R,

the following change-of-variable formula holds true for H > %

t
F(X;) = F(0) =/0 f(X)d° X, (6.1)

where F' is a primitive of f and fot f(X5)d° X is the Stratonovich integral of f(X)

with respect to X defined as the limit in probability of 2= W,gl) (f,t)asn — oo.
For the rest of the proof, we suppose that f € C;°. The following proposition will
play a pivotal role in the proof of (1.8).

Proposition 6.1 There exists a positive constant C, independent of n and t, such that
foralli > 1 andt € R, we have

E[2"" T w2V )] < Cy, H, i n, (6.2)

where, we have

Wt H, i n) = ‘t|(2H—1)(4i—3) M2H+l 5—n(2i—2)(1~H)
2i—-2

+C ZZ: <[|t|(] +n) + 2] }t|2(2H71)(2i717a) 2~ 3QH-1) h=n(1—H)[2i~1-d]
a=1

2(17(17H)a)| 2QH-1)Q2i—1=a) A—n(1—H)[2i-2]
t| 2 1{ 1 )
H>17—}

2a

+1e]

+C[|t|d+n) + tz]z—"(H—%)
2(1-(1-H)(2i=1)) n—n(1—H)(2i—=2)
+C |t 2 1 Hole gy )

Proof Set ¢,(j, j") = Ajnf(X)Aj ,f(X), where we recall that A , f(X) :=
%(f(ij—n/Z) + f(X(j41)2-n2)- Fixt = 0 (the proof in the case ¢ < 0 is similar), for
alli > 1, we have

E[@ 2 WD (f0)"] = B[~ WV (0)’]
__~n—nH r! PRV . n,+ n,+ . n,+ n,+
=2 Z E ¢n(]aJ)H21—l(Xj+1 _Xj )HZZ—I(X]-,_H—XJ., )
J.Jj'=0
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1234)-1
_ H—nH(1=2i—1)) i i i (8% 7] 1 (857
=27 ' Z E<¢n(17] )121—1(3(1';1)2"/2)12’—1(5(/"-[%1)2"/2)>
J.J'=0
2l 2 1224)-1
_ H-nHQ- 2:)2 ( ) Z E<¢n(j,j')
J>J'=0
®2i—1 ®2i—1
X 14i—2-24 (5< Jii)z S ® 8 l+1)2 liz/z))<5(j+l)2"/2’ Bjrnanr)
21 sy 212211
—0- nH(2-2i) Z < - ) Z E<<D4i22a(¢n(j, j/))7
J+Jj'=0

®2i—1—a ®2i—1—a
Sna-mn © (i1 n/2>> (8jr12-nr2: 8jryna-n)”

2i—1

E e

(6.3)

with obvious notation at the last equality and with the third equality following from
(2.4), the fourth one from (2.6) and the fifth one from (2.5). We have the following

estimates.

e Casea =2i — 1

1231)-1
[0U2=D ()] <272 N E(|gu(, J)])
JJ'=0

2i—
X | (6(j+1)2_"/2’ 8(j/+1)2_”/2)|

2%1]—-1

é Cz—nH(Z—Zi) Z ‘(8(j+1)2—n/2, (S(j/+1)2—n/2>
J,Jj'=0

Now, we distinguish three cases:
(a) If H <1— T : by (2.10) we have

. . 7 l_ | — - -2
‘QS’ZI_U(Z)) < C t 2—H(2=2i) 2”(2 (2i I)H) —C12 n(H

b)) IfH=1-— (4l : by (2.11) we have

(Q,Si’zi_l)(t)) <C [t(l +n)+ r2] p-nH@-20) yi(b-@i-DH)

—C [t(l )+ z2] (=),
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o IfH>1-— : by (2.12) we have

@-2) 2)

‘Q(i,Zi—l)(t)’ < €1 2-mHE-20) Zn(%—(Zi—l)H)
n
4 C 2~ Q-2DQi=1) g=nH(2-20) Hn(1-Qi=1))

—Ct 2—n(H—%) 4 € 20-(=H)@i=1) y=n(1-H)Q2i~2)
So, we deduce that

082 =D )] < C[|r](1 +n) +t2]2—"(H—%)

2(1=(I=H)@2i=1)) »—n(1—H)(2i-2
e M ( | )2 e )1{H>1 @ 2)}
(6.4

e Preparation to the cases where 0 < a < 2i —2
Thanks to (2.2) we have

DY, (j, j) = DTN fOA W f (X)) SC Y

1 i (1 ! S
(f< "X jorm)e Gy + FOX G n)6 Gy ®

4i—2—2a—1 ®4i—2—-2a—1 4i—2—2a—1 2—2a-1
(fH22DX g SO0 4 fA22 DX ryayge)e 0

4i—2—-2a
=C Z OK ) FET22D K jira)e ) p @S2+ O X jpnr2)
=0

4i—2-2a-1) ®4i—2—-2a—-1
f (X(j +1)2— ”/2)8 j2- ”/2®8(j '+1)2-1/2

FFO(X jryn) FE2727D (X j1yap2)

®l ®4i—2-2a—1 0 (4i—2—2a—1) 5
><£(j+1)2 u/2®"3 19—n/2 +f (X(J+1)2 "/2)f T (X(j +1)2— "/’)8(1+1)2 w2 ®

£®l4i7272a71) (65)

(/1212

So, we have
e Case 1 <a<2i—-2

of )|
—2—2a |_22tJ71
< C2—)’lH(2 2!) Z Z
=0 J,j'=0

S ®R4i—2—2a—1 R4i—2—2a—1
K( e e "/2)®< e T E e )
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a
®2i—1-a ®2i—1-a
Bjna- ® 9 j’+1)2"/2> <5<j+1>2—"/2’ 5(j/+1>2-"/2>

<C (QH—=1)(4i—2-2a) H—nH(2-2i) (27 5 )4i7272a

n
22¢]—1 a

x< )

J>J'=0

El

<5(./+1)2"/Zf 5(j'+1>2"/2>

where we have the first inequality because f € C,° and thanks to (6.5), and the
second one thanks to (2.8) and (2.9). Now, we distinguish three cases:
(@) If H < 1 — 2 : by (2.10) we have

‘Qgi,a)(t)‘ < €t @H=DWI=2-20) 9=nH(2=2i)y=n(i~1-a) 2*!(%-“"’)

— C 2QH=-DQi=1-a)+1 2—5QH-1) p—n(1-H)[2i~1~a]
(b) If H =1 — 5 : by (2.11) we have
oy )|
<C [t(l T n) _Hz] (QH=D(#~2-2a) y—nH(2-2i)y—n(2i~1~a) 2"(%—“1)

—C [t(l +n)+ tz] [2QH=DQi—1-a) y=3 QH~1) y—n(1-H)[2i—1-a]

o IfH >1-— % : by (2.12) we have

‘Q(i,a)(t)’ < Ot @H=D(E—=2-2a) p—nH(2=2i)5—n(2i~1—a) 2"(%—6111)
n ~

1 C {2~ @2H)a (QH-)(#i~2-2a) p—nH(Q2~2i)y—n(2i~1-a) yn(l—a)
— ¢ 2CH-DQi-1-a)+1 3= 2H-1) y—n(1-H)[2i~1-a]
1 ¢ 20-(=H)a) 2QH-1)Q2i~1-a) y—n(1-H)[2i-2]

So, we deduce that

1059 < C[|e](+n) +12] ’t’2(2H71)(2i717a) >—3QH-1) 2—n(1—H)[2i—1—a]
2(1-(1-H)a) |t|2(2ﬂ—1>(2i—1—a> y-n(i-m[2i-2]4

+C el {H>1-4}
(6.6)
e Casea =0
12%¢)-1
1,0 o\ A—nH(Q2=2i 4i—2 . ®2i—1 ®2i—1
QSII )(t)—z nH( D Z E(<D ! (¢n(}v J,))’(S(li_il)Q—n/Z ®8(j/_l~_l)2n/2>>'
J.j'=0
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By (6.5) we deduce that

n
4i—2 (2211

|Q£li’0) (t)| < C27ﬁH(272i) Z Z

<< 12 n/2 +8(]+1)2 n/2)
I=0 j,j'=0

S ®R4i— ® ®2i—1 ®2i—1
®<8 i’ 71/2 + /+1)2 n/2>’ 8(/+1)2 n/2 ® 8(‘//+1)2n/2> .

(6.7)

We define

D oy S @4 ®4i—2—1
Ei(‘ll )(.]’.] ) T ‘<< ]2 n/2 +‘9(]+1)2 n/2>®< /zl n/2 + (j <l|>1)2"/2>’

®2i—1 ®2i—1
8(jana-n2 @Oy

Observe that by (2.8) and (2.9), we have

E’(ii,l)(j, i < C1RH-DEI-3) (2*%)41'73 (|((8j2,n/z + e(j+1)2,,,/2), 5(1.,“)27”/2”
+H((ejr2-m2 + 8rrznz), 8jna-ne )] + [{(ej2-0
& p1y2-1/2)s 8 1y2-n72)|

+|((8j/2—n/2 + 8(j/+1)2—n/2), 5(j/+1)2—n/2)|).

By combining these previous estimates with (6.7), (2.13) and (2.14), we deduce
that

[N

}Q(z 0)0)‘ < C [1|@H-DEI=3) | 2H+1 5—nH(2-20) (2 )4’ 3 2

— C |t|(2H 1)(41 3) |t|2H+l 2 n(21 2)(1 H) (68)

By combining (6.3) with (6.4), (6.6) and (6.8), we deduce that (6.2) holds true.

O
. . _nH __(2i—1
6.2 Step 2: Limit of 2~"2 W~V (f, Y1, )
Let us prove that fori > 2,
2i—1 L?
2 WA (£, ¥1,,) 230 6.9)
—> 00

Due to the independence between X and Y and thanks to (6.2), we have

nH

E[@ WD (f Yi,,))] = ELE[@TF WD (£ Y)Y ]
< CE[I#(YTWW, H.i,n)l.
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It suffices to prove that

E[Y¥ (YT, H.i,n)] — 0. (6.10)

n—oo

For simplicity, we write Y, (¢) instead of Y’ Tignsjn- We have

E[Y (Y, (1), H,i,n)] = E[|Y,(t)|?A~DE =3 |y, (1) |2H+1] o 7n@i=20=H)
2i—2

+C > (E[[|Yn<r>|<1 +n) + (Y ()]
a=1

1Y, (1) 22H-D@i-1-a)] 23 QH-1) p—n(1—H)[2i—1-a]

+E[|Yn(1‘)|2(l_(l_H)a) |Yn(l‘)|2(2H_l)(2i_1_a)] 2—n(l—H)[2i—2]1{H>1_zla}>

1
+ CE[|Y,(D)[(1 +n) + (Yn(t))2]2*”<H*§)
+ CE[|Y,, (t))20 (=) Q@i=1)] p—n(1-H)(2i~2)

S I (6.11)

Let us prove that, forall 1 <a <2i —2

E[Y, (1)[20-0-Ha) |y, () 2CH-D@i~1-a)] 2*”“*””2[*2]1{[{”7%} =20

(the proof of the convergence to 0 of the other terms in (6.11) is similar). In fact, by
Holder inequality, we have

E[|Yn (t)|2(1—(1—H)a) |Yn (t)|2(2H—1)(2i—1—d)]1{H>1_%}

—(1— 1 — i—1—a) 4
< EY @m0 By, () RITDEIO R

Observe that for H > 1 — ﬁ we have 2 < 4(1 — (1 — H)a) < 4. So, by Holder

inequality, we deduce that E[|Y,(1)[*1-0—HD 13 < E[(Y,(1)*]20-0—Ha < ¢
for all n € N, where we have the last inequality by Lemma 2.2. On the other hand
since H > % we have 4(2H — 1)(2i — 1 — a) > 0, and it is clear that there exists an

integer kg > 1 such that m > 1. Thus, by Holder inequality, we have
2H-1)Q2i—1—a)

) (
E[|Y, (1) |*CH-DCi-1-013 < E[(1,(1))%0] %o < C forall n € N, where
we have the last inequality by Lemma 2.2. Finally, we deduce that
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E[|Yn(t)|2(1—(1—H)a) |Yn(t)|2(2H_l)(2i_l_a)] 2—n(l—H)[2i—2]1{H>1_7}

< Cz—n(l—H)[Zi—Z] - 0.

n—oo

Thus, (6.10) holds true.

6.3 Step 3: Limit of V,V (£, -)
Recall that forallt > Oand r > 1,

[27]—1

1
VOIS = Y @)+ f @ NQT Zn, = Zn,)) - el

k=0

We claim that v
t
2—*v<1>(f ) —> F(X)d° X (6.12)
0

We will make use of the following Taylor’s type formula (if interested the reader can
find a proof of this formula, e.g., in [1] page 1788). Fix f € C};°, let F be a primitive
of f.Foranya, b € R,

1 1
F(b) = Fla) = S(f@+ fG)b —a) = o (f" @ + [ B — a)®
+0(lb —al®),

where |0 (1b — a?)| < Cplb —al’, CF being a constant depending only on F. One
can thus write

1277 ]—1
F(ZTI_ZIHJ,n) - F(O) = Z (F(ZTk+l,il) - F(ZTk.n))
k=0
3nH [2"7]—1
=277 (1)(f t) G)(f// t) + Z 0(|ZTk+I n ZTk.n |5)

k=0

(6.13)
Thanks to the Minkowski inequality, we have
[27t]—1 [27¢]—1

Z 0(|ZTk+l,n - ZTk,n|5) < Cr Z H|ZTk+l,n - ZTk,n
k=0 2 k=0

l
N

Due to the independence between X and Y, the self-similarity and the stationarity of
increments of X, we have
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\Hzn+u,—znﬁﬁuz=(Euanﬁ-—znmfon%=(EIEuanﬁ-—znﬁf0|Ynﬁ
_ (2_5nHE[X110])% 511H

> 1|X7 2.
Finally, thanks to the previous calculation and since H > %, we deduce that

127 ]—1 5 -t
Tivin = “Tin 2 X LF B 112
I > ollz Zr, ), <cr o 27| XT)

k=0 k=0
CF||X5H2t2”(1_STH) — 0. (6.14)
n— oo
— 3 (3) R ) = (D)
By (3.5), we have 2 V7 (f, t) Wa ' (f, Y1, ) + 32 W (f,
YTLZ"rJ ,)- By (6.9), we have that 2~ ,13)(f YTLZ”tJ ,) converges to 0 in L? as

n — o0. By (6.2) and thanks to the mdependence of X and Y, we deduce that

() :
E| (275w (1. 100,,))

_ _1
< C22nH<2 n(H 2) |:(1 +I’l)E HYTB"fJﬂ

4H:|>7

by Holder inequality and thanks to Lemma 2.2, we can prove easily that the last
quantity converges to 0 as n — oo. Finally, we get

ool ]

2H
+ E [’YTW,M :| + E [|YTm,J,n

" 2
VO (£ 5 0. (6.15)
n—oo
Now, let us prove that
F(Zt,,) — F(O) F(Zz) — F(0). (6.16)

In fact, as it has been mentioned in the introduction, T|2n;,, 2N tasn — 00 (see
[2, Lemma 2.2] for a precise statement), and thanks to the continuity of F as well as
the continuity of the paths of Z, we have

F(Zti,y,) = FO) =5 F(Z) = F(0). (6.17)

In addition, by the mean value theorem, and since f is bounded, we have that
|F(Zrn,,,) — FO)| < sup,cr | £ ()N Z1,0,,,]- 50, we deduce that

IF(Z1,,,) = FO)lla < sup | £ Z1i0,,, -

xeR
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Due to independence between X and Y, and to the self-similarity of X, we have
127,08 = WXy, lla = W70, 17 X1 lla = Y10, 1% 41X ls. By Holder
inequality, we have |||YTL2"r In 714 < (||YTL2,1[ i lla)H. Finally, we have

I F(Z1n,,,) = FOla < sup [ £ X1l Y70, 1007,

xeR

Thanks to Lemma 2.2 and to the previous inequality, we deduce that the sequence
(F(ZTLzm.n) — F(0)), _y is bounded in L*. Combining this fact with (6.17) we deduce
that (6.16) holds true.

Finally, combining (6.13) with (6.14), (6.15) and (6.16), we deduce that

2" vy, 1) —> F(Z) ~ F(0).

By (6.1), we have F(X;)—F(0) = fot f(X;)d° X5 whichimplies that F(Z;)— F (0) =
OY’ f(X5)d°Xs. So, we deduce finally that (6.12) holds true.

6.4 Step 4: Last step in the proof of (1.8)

Thanks to (3.5), we have

,
Vn(zr_l)(f, 1) = ZKr,iWrEZI_l)(f’ YTLG,J_,,)-

i=1

For r = 1, (1.8) holds true by (6.12). For r > 2, we have 2= V¥ "V (f,1) =

nH nH i
k127 2 VAV (D) + Xy k2™ T WV Y
with (6.9) and (6.12), we deduce that (1.8) holds true.

). Combining this equality

t],n

7 Proof of (1.9)

Recall that forallt > Oand r > 1,

2"t ]—1

VS = Y S ) + FZaa DT Zay, = 2,0 = o).
k=0

andforalli € Z, Aj p f(X) := %(f(X,-zfn/z)+f(X(i+1)27n/z).Thanks toLemma 3.1,
we have

27IVE(f) =272 A fOOLX = X = o JUia () + Djn(0))
i€’

=Y A FOOLXY = XV — g 1Lin (1),
i€Z
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with obvious notation at the last line. Fix ¢+ > 0. In order to study the asymptotic
behavior of 272 Vn(zr) (t) as n tends to infinity (after using the adequate normalization
according to the value of the Hurst parameter H) , we shall consider (separately) the
cases when n is even and when r is odd.

When 7 is even, for any even integers n > m > 0 and any integer p > 0, one can
decompose 273 Vn(zr) (1) as

273V (1) = AR () + BE (1) + C)(6) + D) (1) + ECD (1),

m,n,p m,n,p m,n,p m,n,p P
where
2
AGD (1) = > Y A OO, = XM = oy
*P2'"/2+1<]<172m/2i:(j_l)z%
cn—n/2
X(Lin() = L ()
j2n5m _1
B (1) = > Yo A OO, = XY — o)
—sz/2+1Sj<P2m/2i:(j_l)z%
in—n/2 -27m/2
(L) = LT ()
R 2"
-
Con) (1) = > LY@ ) (A fX) = Aju f(X))
—p2" IS j<p2" i=(j—12"7"
(X, = X — o]
-2—m/2
DS (1) = > AjmfXOLE 7 (Y)
—p2m 21 p2n 2
j2n5m _1
x> I = XY — o]
i=(j-12" 2"
EX@ = Y AafQOIXT — XY = por]Lin(0)
izp2n/?
+ Y A fOOIX = XY = o Lin ().
i<—p2n/2

We can see that since we have taken even integers n > m > 0 then 2m/2, 27" and
2""/2 are integers as well. This justifies the validity of the previous decomposition.
When n is odd, for any odd integers n > m > 0 we can work with the

same decomposition for V,,Qr) (t). The only difference is that we have to replace

. 2 2 2 2
the SUm Y- omo i< j< om0 Al (0, Bl »(8), Chiid (1) and Dy, (¢) by
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1. And instead of and in E 1), we
—p2 +1<J<[72% Zz>p2”/2 Zz< p2n/2 ( ),

must consider ) a1 and ) »+1 respectively. The analysis can then be done
) “izp2 2 i<—p2 2
mutatis mutandis.

Suppose that l < HK é Firstly, we will prove that 2~ 4 Aﬁ,%rn) (1), 271 B,(,,zr,,) »(0),
2” C (2r) n,p(t) and 27iE ,(1 ;,) (t) converge to 0 in L? by letting n, then m, then p tends to
infinity. Secondly, we will study the f.d.d. convergence in law of (274 D,§1 n,p ()10,
which will then be equivalent to the f.d.d. convergence in law of (2~ Vn(zr) () >0-

(1) 275420 (1) = —> 0 :
n—

We have, for all r € N*,

,
=Y baaHaa(x) + oy, (7.1)

a=1

where H,, is the nth Hermite polynomial, uo, = E[N lwith N ~ N (0, 1), and by, 4
are some explicit constants (if interested, the reader can find these explicit constants,
e.g., in [9, Corollary 1.2]). We deduce that

r 277 —1
AZ) (D)= bya 3 S A fOOH (X, = X™)
_pzm/2+1<j<p2m/2 i=(j71)2%
in—n/2
X (Lin(t) — L7 (Y))
= szraA,frn)pa ), (12)

with obvious notation at the last line. It suffices to prove that for any fixed m and p
and foralla € {1,...,r}

@) L
2” Am’n p.a(®) = 0. (7.3)
Set (i, i) := Ajn f(X)Ay, f(X). Thanks to (2.4), (2.5), (2.6) and to the indepen-
dence of X and Y, we have

n—m n—m

j2 7 -1 j277 -1

E[HAR) 0] = 2o 3 3 S E[gutii)

—p2ml2 1<, 1K pam/? i=(jm 1)2% = _1)2;1 m

Iy (5(H1)2,%) ba (‘3@-41)2*%)] E [(Li.,,(t) it (y)) (c,-/,,,(z) _pi?? (Y)>:H

n—m n—m

277 -1 j27 -l

< 2PHed > > > - ‘ [m(z i) (a®2f;)2 7)

—p2'"/2+l<j,j’<p2m/2 =(j— 1)2"# i=(j'=1)2" 2

:

@ Springer



in(t) — L%’ X | Lira(t) = LI 2 (Y)

J Theor Probab (2018) 31:1539-1589 1575
2

xhq (8%% c
@+12 %
2o

2a 2
< 22nHa—% Zl‘<2la) Z Z Z | [¢n a, l'/)
=0

P2 PRI S T (12T

Lin(t) —LI* °(Y)

2

®2
x a2 (8(1+1)2 w2 ® 8 :1)2 n/2>]‘ |<8(i+1)2*”/2’ 5(:"+1)2*"/2)| ‘

Lo — LI (1Y)

2

n—m —m
2a j2 2 -1 j2 7 -1

— pnHa—} Zn(”) ) 3 ) \E [(p* 2. ',

— 2
P PRI i (=122

5@2(1 1 ® 5®2071

I %
(D2-n/2 (i/+|)27n/2>:H (8¢i1y2-n725 8 ryp-n)| | Lin (@) = L = (Y)

2

Lo — LI (1Y)

2
2a

2
- Zl'( “) 1O @), (7.4)

by obvious notation at the last line. By the points 2 and 3 of Proposition 2.3, see also
(3.14) in [9] for the detailed proof, we have

Hci,nm — L2 () < 2K Iy " /8n2 /% 278 | 1/

12,
+ 20K ll4 1LY (V)] - 2,
Since —p2™/? +1 < j < p2™? and (j — 1)2% <i< j2"57m — 1, we deduce
that p2”/2 i < p2V? —1.So, |i| < p2"/2. Consequently we have that HEAES

p!/427/8 which shows that || £; (1) — Li> > (Y)|l2 < C(p'/* + 1)n2~%. Finally, we
deduce that
X

Hﬁ,-,nm - Lz’ Lirn(t) — LI

<Cp'*+1)%n%271. (1.5
2

Now, observe that, by the same arguments that has been used to show (6.5) and since
f e C)°, we have

(a)l) . 4a—-21 Y ®2a—1 ®2a—1
Oiin ‘E [<D ) 8 g ®5<i'f1)2*"/2>”

a2 g 0
B 5 [ ®4a—21—k ®4a—21—k
<€ Z ( ) K( e+ €y "/2) ® (81'/2—"/2 +8<z‘/+1>2—"/2) :

®2a—1 ®2a—1
8(z+1)2 n/2 ®8(1’+1)2 n/2>

Since H < 2, thanks to (2.7), we have @l( ; ll < 2 nHGa=2) g0 by combining
(7.4) with (7.5), for I = 0, we have
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p2% -1
n 1 n 1
T}/([O,a)(t)gczana—j Z (2—4nHa(p1+1)2n22—7)gcp(pz ~|—1))2n22_2"Ha,
ii'=—p23
(1.6)
forl # 0, we have
] 5 231 1
T,gl’a)(l) < C (pz + 1) n222nHa—n 2—nH(4a—21) Z ’(8([_+1)27,‘/27 8(,'/+1)27n/2)‘
ii'=—p23

By the same arguments that has been used in the proof of (2.10), one can prove that

forH <1— 21,we have

i l 1 _IH
S o gl < cup2 G @)
ii'=—p2?

For H = %, thanks to (2.17) and to the discussion of the case H = % after (2.18), we
have
pZ% -1

> Uiz Srpnp-nn)l < 277(p2% — (—p22)) = 2p.
ii'=—p23

thus, (7.7) holds true for/ = 1 and H = 5. So, since H < 5, we deduce that

2a

2a
Y orPm < Cp (p% + 1) n?y ot (2"“"(4" 2197 H))
=1 =1

2a

—Cp (p%+1) n?28 Y grH D), (1.8)
=1

By combining (7.4) with (7.6) and (7.8), we deduce that (7.3) holds true for H < %

) Z’KB(zr),,(t) —> 0 as m — oo, uniformly onn :

Using (7.1), we get

r j2 7 -1
B0-Yre XX swrtom (s -x)
a= —p2m/2 41 j < p2m/? i=(j— ])2 =

x (L2 -1 )

= szmB,E%Q,, A0, (7.9)
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with obvious notation at the last line. It suffices to prove that for any fixed p and for
alla e {l,...,r}

n 2
27182 )y £ o, (7.10)
m—o0

m,n,p,a

uniformly on n. By the same arguments that has been used to prove (7.4), we get

R 2
E [(27353,21),a<r>) ]
Rt

2a 2
< p2uHa—4 Z“(Zla) Z Z Z ‘E [<D4"721(¢>,,(i, i) .

=0 —[72'”/2+1<j,j’<1)2’"/2 ;

n—m

=(j—12"2" i=(j-12"2

®2a—1 ®2a—1 l i27n/2 j2=m/2
s ®3(i,jl)2,n/2m (8- 1y2-m2> 81y ’E [(L; ) - L")

yp— 1y—m/2
x (L7 -1 )],

by Proposition 2.3 (point 2) and Cauchy—Schwarz, we have

B[ =1 ) (1o - 1P )|

< MZN/;\/|i2_n/2 — j2mm/2||ir2=n/2 — jra-m/2| M2ﬂ2—m/2.

So, we deduce that

n 2 m = 2a\> 2
eimno]errensfol)  w %
=0 —p2m 241, j < p2m/? i=(j—12" "
j2" "
) ‘E [<D4a721(¢" @) OGS e ® S?fzfﬁlz—n/zm [(8+1y2-n2+ 8(grya-nr )|
= —1)2"2
2a
- Zu(zl")zz\f,{»;g(z), (7.11)
=0

by obvious notation at the last line.
By the same arguments that has been used in the proof of (7.3), we have, for
4—11<H<%,andl=0

p2% -1 1
Af,?;g)(t)<C2_%22”H“‘% Z <2—4nHa>gcpzz_%z—n(ZHa—j) < CPZZ—%

ek
i,i’=—p

I

(7.12)
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for l # 0, we have

pZ%—l
AL (6 < €27 722y o nHEa=aD NS g iya-n) !

iil=—p23
So, thanks to (7.7), we deduce that

2a 2a |
S ALO @) < € patainat (Z z—nH<4a—21>2"(z—lH)>

=1 =1

2a
—cp2t (Z 2—nH(2a—l)) <Cp27 7. (7.13)
I=1

By combining (7.11) with (7.12) and (7.13), we deduce that (7.10) holds true for
1 1

n 2
3) 2’1C,(7,2,r,,),p(t) L% 0asn — oo, thenm — oo

Using (7.1), we get

r j2 -1
jp—m/2
)0 = bya 3 7w Y Qi fX) = Aju fX)
a=l —p2" 21 <p2m/? == 2
g (2~ 507)
v B 22" 1 |
e
=2 ba 2 ZERCOD DI (f (Xiz*%> -/ <ij*%))
a=1 ,p2m/2+1<j<p2m/2 i:(]—l)2Lr
xHaa (X{) = X{")
. P
'2—’"
+Y bra > e Y S (F(Xt)
a=1 ,pzm/Lnggpzm/z i=(j71)2t2ﬂ

(n) (n)
-f <X(j+1)2*%>) Ha (Xi“ - X )

=Y b2 (CDhpa® + €D a®)
a=1
with obvious notation. It suffices to prove that for any fixed p and foralla € {1, ..., r}

n 2
27ic@ () Lo, (7.14)

m,n,p,a
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as n — 0o, then m — oo. By obvious notation, we have

27
2 'zfm/Z
Cr(n,)n, ,a(t) = L{ (Y) A’?’mf(X)Hml thn)l_Xi(n) .
P i.J +
—p2M IS <2 i=(-n2" 2"

Thanks to the independence of X and Y, and to the first point of Proposition 2.3, we
have

n 2 n - =2
E [(2765,3_1W,a<r>) ] =27} > E(LP oL m)
*[.72”’/2+1<j,j'<p2"’/2

n—m

[ R B b i
> E(ArOONLT OO (X0 = X) Haa (X[ = X{))

n—m

i=(j—12" 7" v=(j—12" "

<C272
—p2M2 1<, j < p2m/?
JE
Y X [E (Al reoan reom (x5 -x") Ha (X2, - X))

n—m n—m
i=(—-12 2 i'=(j/—-1)2 2

by the same arguments that has been used previously for several times, we deduce that

— n—m
[ R RS T S |

E [(2*%C§f’{1,p,a(r))z] <2 ~n/2nHa 3 3 3

_pzm/2+1<j’j/\p2m/2 l.=(j71)2% i/:(j/fl)Z%

2a 2
2a nm nm ®Q2a—1) ®2a—1)
IZOI!( l ) |E[ar] ro0al" 0012 (38300, @887 10 )|

Xl(a(j+1)2—n/2; (S(j/+1)2—n/2>|l

2a 2 2
— »—n/292nHa Zn( l ) ofz’m(t), (7.15)
=0

with obvious notation. Following the proof of (5.6), we get that

e If / = 2a then the term 0,%“ (t) in (7.15) can be bounded by

,m

251
1 p

n sup E (‘f(Xx) - f(Xy)|2> Z |(8(i+1)2”1/2; (S(i/+1)2—n/2)|

4 oy

2a
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Since H < 5 and thanks to (7.7), observe that

1
2

oz, <cpt) ap (o) - raf).  @ie
=yl <22

o If 1 < < 2a — 1 then, by (7.7) among other things used in the proof of (5.6), we

have
251
o \@a-2n) P
O}{z,m(t) < C (2 nH) Z |(8(i+1)2”1/2; S(i/+1)2—n/2>|l

i i/=—p2%

l—lH)
< sz—nH(4a—21) 2”(2 ) (7.17)

e If/ =0 then
4a 2\ 2

08,0 < C(27) " (2p28)" < € pPo-intiagr, (7.18)

By combining (7.15) with (7.16), (7.17) and (7.18), we get

2a—1
EIQ75CD, a1 < C ( sup E(If(X0) = fFX)P) +p (Z 2—nH<2a—f>>

[x—y|<27m/? =1

+ pzzfn(ZHaf%)> ,

it is then clear that, since 4—11 < H < %, the last quantity converges to 0 as n — oo and
then m — oo. Finally, we have proved that (7.14) holds true.

. 2
“4) 274 E,f;,) (1) L) 0 as p — oo, uniformly onn :

Using (7.1), we get

.
E@® =S b Ain f (X)Hag (X0 = X)) Lin (1)
5P +
a=1 i>p2n/2

Y A OO (X5 = X)) £ia®

i<—p2n/2
,
= braER) 1), (7.19)
a=1
with obvious notation at the last line. It suffices to prove that for alla € {1, ..., r}
2 HE () L o (7.20)
n,p,a oo s .
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1581
uniformly on n. By the same arguments that has been used previously, we have
—(2r) 2
E|(279EX). (0
2a 24\ 2
2nHa—1% 4a—21 P ®2a—I ®2a—1
< 224y Zl!( / > Z ‘E [(D “ (¢l’l(lvl ))7 8(i+1>2—n/2 ®5(l~/+1)2—n/2>:|)
1=0 i,i’>p2"/2
1
|8 122, 8rsnya-n)| | E[Lin () Lir n (@]
2 24\ 2
2nHa—"% 4a—21 P ®2a—I1 ®2a—I1
+ 2277473 Zl!( / ) Z ‘E [(D a (¢n(l,l )), 8(1‘+1)2*”/2 ® S(i,_*_])zfn/z)]‘
=0 ii’ <—p2n/2
I
X|(8r1y2-n2+ 8irgrya-nr2)| | E[Lin (@) Lir n(1)]]. (7.21)

It suffices to prove the convergence to 0 of the quantity given in (7.21). We have,

22nHa—'2’§:l!(21a)2 Z ‘E|:<D4a—2l(¢n(l-’i/))’8®2a71 ® §82a—1 m
1=0

(i+1)2-/2 & O 1)2-1/2
ii’ >p2n/2

X84 1ya-n2s 8rg 1yp-n2) N ELLin () Lir (D]

2a 24\ >
S
=0

with obvious notation at the last line. It is enough to prove that, forall/ € {0, ..., 2a}

Qe ) — 0, (7.22)
p—00

uniformly on n. By the same arguments that has been used in the proof of (7.3), for
1L g < %,Wehave

i)
Forl =0:

QO (1) < c22rHazsp=inta NN BIL L (0 Ly (1]].
i,i'>p2n/?

By the third point of Proposition 2.3, we have

|Lin ()] < L2 (¥) 4+ 2Kn274 L2 (v)

so that
E[Lin(0)?] <2E[LIT"" (1)2] + 802272 K22 L1 (1) .
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which implies

|Lin)],<C HL;'2’"/2(Y) ”2 + Ccn2 /4 ”L;'T”/ ? (7.23)
On the other hand, thanks to the point 1 of Proposition 2.3, we have
. i2—n/2)?
E[L*"(1)?] < Crexp (—% . (7.24)
Consequently, we get
. 2
cn—n/2 lz_n/2
[ ], < Cr'Pexp (—% : (7.25)
By combining (7.23) with (7.24) and (7.25), we deduce that
i2-1/2)? i2-1/2)?
||£[’,1(I)H2 < C eXp (—% + Cn2_”/4 exXp —%
(i2="/2) (i2="/2)
< Cexp e + Cexp = ) (7.26)

Observe that, by Cauchy—Schwarz inequality, we have
oo <2t 3 Lol | (27 30 Lol
i>p2n/2 i'>ponl2
Thanks to (7.26), we get

_n —nj2 (iz_”/2)2
272 Z ||£i,n(t)||2<C2 " Z exp -

i>p2n/2 izp2'/?

~2—n/2 2
+ C27"/? Z exp(—%).

i>p2"/2
But, for k € {4, 8},
(i2=/? 00 —x2
27?2 Z exp( ) ) g/ exp <_x> dx.
p—1 kt
i>p2n/2

@ Springer



J Theor Probab (2018) 31:1539-1589 1583

On the other hand, since H > %, we have

n—2nHa Z ”‘Ci/,n(t)nz < 2—"(21‘10_%)2_% Z Hﬁi/,"(l‘)HZ

i’>p2”/2 i’}pZ”/z

Finally, we deduce that

oo —)C2 o0 —.Xz 2
Q09 < C f exp | — ) dx + / exp| — )dx) — 0, (7.27)
np p—1 4t p—1 8t p—>o0

uniformly on n.
For [ # 0 : By the same arguments that has been used in the proof of (7.3) and
thanks to (2.17), the Cauchy—Schwarz inequality and (7.26), we have

Qi@ < ced (2_’”{(4&_2” > (841120725 8y 1y2-m2) |E[£i,ll(t)£i”n(’)]|)

i¢i/2[72"/2

<czZ"Hu—’z’z—"H<4a—21>2—"Hl( > |/0(ii/)|l}|£i,n(1)|2||[,i/,n(t)H2)

i,i>pan/2

< ¢2nH@a=h (2'2’ > ||Li,n(t)||2) (Z |p(a)|l>

i>p2n? ac’,

<2t Y [ Liaol,

i2p2"/2
00 —)C2 o0 —)C2
Cc (/ exp (—) dx +/ exp (—) dx) — 0, (7.28)
p—1 4¢ p—1 8t p—>

uniformly on n, and we have the fourth inequality because , since H < % <1- 2L1’
Zan |p(a) |l < 00. By combining (7.27) and (7.28), we deduce that (7.22) holds true
for}1 < H < %

N

(5) The convergence in law of D,(,%’rn),p(t) asn — 0o, thenm — oo, then p — 00 :

Let us prove that

n fdd. too
74D ,(1),50 == (2 / FXOLIXAW),5  (7.29)

e
as n — oo, then m — oo, then p — oo, where y,, and fj;o F (X)L (Y)d Wy are

defined in the point (3) of Theorem 1.1. In fact, using the decomposition (7.1), we
have
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n n ip—m/2
24D () =274 3 A fOL (1)
_P2m/2+1<j§p2m/2
jz%ﬂil 2r
X [ x) -]

i=(j-12"7"
_n jom2
=274 > Ajm XL (Y)
_pzm/z_._]gjgpzm/z
j2n5n17] ,
X D bt (X - X).
i=(j71)2n5n1 a=1

It was been proved in (3.27) in [9] that

2"
1
27N H (XY - X) 1<a<r s —p2" 1< < p2n | B
i=(j—12" 2"
2 . 2
o (8o Bs) 1 i1 < )
where (B(]), el B(’)) is a r-dimensional two-sided Brownian motion and «y, is

defined in (2.18). Since for any x € R, E[X Haq (X'} — X'™)] = 0 (Hermite poly-
nomials of different orders are orthogonal), and thanks to the independence between
X and Y, Peccati—Tudor Theorem (see, e.g., [6, Theorem 6.2.3]) applies and yields

27
Xe ¥y 2743y, (X}i)lfxf”)y 1<a<r: —p2"241<j < p2m/? f.dg.
l.:(j71>2"_2”‘ x,yeR
(X ¥y 020 (B o = BYGn) s 1<a<r i =p2"2 4 1< < pzm/z>x’y€]R
where (B, ..., B") is a r-dimensional two-sided Brownian motion independent
of X and Y. Hence, for any fixed m and p, we have
_n fdd.
274D (1 ) =
(27500, 0) ) =5 e
jo—m/2
X Z A]’mf(X)L{ (Y) (W(j+1)2—m/2 - Wj2—m/2) s
_pzm/2+1<j<p2m/2 >0
(7.30)

where yy, 1=, /Z;zl b%r aa%a and W is a two-sided Brownian motion. Fix ¢ > 0,

observe that
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j2—m/2
Z A],mf(X)L, (Y) (W(j_l_l)z—m/z - sz—m/z)
—p2 21 j<p2
~2—m/2

= Z f (ij_%) Lt] (Y) (W(j+1)2—m/2 - sz—m/Z)

—p2 P H1<j<p2"

1

* 2 2 (f (X(/+1>2‘%)

—[72"7/2+1§j<[72’”/2

j2—m/2

_f (ij—%>) Lt (Y) (W(j+1)27”l/2 - Wj2—m/2)
— jz
= Z f (X]277) L (Y) (W(j+l)27m/2 - szfm/Z)

*[72"1/2+1<j<172m/2
+ N p (1), (7.31)

with obvious notation at the last line Since E[f+Oo (f(Xs )LS(Y))zds] C f+°°

E[(Lf(Y))z]ds C f+°° exp( )ds < 00, where we have the second inequality
by the point 1 of Proposition 2.3, and thanks to the independence between (X, Y) and
W and the a.s. continuity of s — f(Xy) and s — L§(Y), we deduce that

j2m
> f (X,- *%) LW (W gipome = Wiann)
,pzm/2+1<j<p2m/2
12 +p 12 +o0
L F(X)LE(Y)dW, —> e YLE (Y)d W (7.32)
m—o0 J_, _

Now, let us prove that, for any fixed p,

LZ
N, p (1) = 0. (7.33)
1 = / m — m
In fact, since f(X( +1)2,7) f(X ,m) =f (Xg )(X( +l)2 X; ) where

0; is a random real number satlsfylng j2~ 7 < 0; <+ 1)2~7, and thanks to the
1ndependence of X, Y and W, the independence of the increments of W, and the point
1 of Proposition 2.3, we have

E[(Nm.p ()] = 41_1 Z E [(f (X(j+1>2*%) -/ (ij*%»

_1,2m/2+1 gj’j/gpzm/z

ip—m »/2—m/2
x (f <X<j/+1>z*%) -/ (Xj/z )) o (Y)]
E[(Wjsnamz = Winome) (Wijrarpme = Win-ne)]

- 2:12 2 E [<f/(x9f) <X<j+1)2*% B Xﬂrf»z]

— P2 < p2n 2
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o]

m 2
se2 > E [<X<./+1)2‘i"* - ij_%) }
—p2mR21j<p2m?

= 22" 52p2% = cp2 " — 0.

m— 00

Thus (7.33) holds true. Thanks to (7.30), (7.31), (7.32) and (7.33), we deduce that
(7.29) holds true.

Finally, by combining (7.3) with (7.10), (7.14), (7.20) and (7.29), we deduce that
(1.9) holds true.

8 Proof of Lemma 2.1

® ®
1. We have, (g, a 5(;{#1)2*”/2

) wea = (€u» 8(j41)2-n2) %, Thanks to (2.1), we have
(8”, 8(j+1)2—n/2)jf - E(Xu (X(j+l)27"/2 - ijfn/Z)).

Observe that, forall 0 < s <rtandu € R,
1 1
E(Xu(Xi = X0) = 5 (" =) + S(|s - == u*).

Since for H < 1/2 one has |b* — a?| < |b — a|*! for any a,b € Ry, we
immediately deduce (2.7).
2. By (2.1), forall j, j' € {0, ..., |2"?t] — 1},

|<8j2_"/2’ 6(j/+1)2—n/2)jf| = |E[Xj2—n/2 (X(j/+1)2—ll/2 — Xj/z—n/Z):H
o R (VA | i e R e T U VRN T

S [V e e B e e [ e A
(8.1)
We consider the function f : [a, b] — R defined by
Foo =[x
Applying the mean value theorem to f, we have that
16" = [a*"| < 28 (ja] v o)™ |b — a] < 2(la] v [o])*" b~ al.
(8.2)
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We deduce from (8.2) that

2 P = [P < 2 P

< 2—nH| LG/th |2H 1 < 22 2H-1

similarly we have,

ZH} < 2—nH||_2n/2tJ|2H*1 < 0=n/242H~1

- P -

i =" =1

Combining the last two inequalities with (8.1), and since (8%{” 25 8(@;.{,] 122 ) oo

= <8j2—n/2, 8(]-/“)2_”/2)?%, we deduce that (2.8) holds true. The proof of (2.9) may
be done similarly.
3. By (2.1) we have

|(8(k+1)2—n/2; 5(l+1)27”/2>% ’r = ’E[(X(k+1)2—n/2 - sz—n/Z)(X(l+1)2—n/2 - Xlz—n/Z):Hr
— |2711H71(|k — I+ 1|2H + |k - 1|2H . 2|k _l|2H)|r _ 27nrH|p(k

where we have the last equality by the notation (2.16). So, we deduce that

[2/2¢]—1 [2"/2¢]—1
> Bwrnanes darmpma) ol =271 30 fpte=Df
k,1=0 k,1=0
[27/2t]—1

_2—nrH Z Z |,0(p)|r

k=0 p=k—[27/21]+1
[2"/2¢]—1
=271 3 o) ((p+ (2"2)) A 1272) = p v 0)
p=1-129/21]
LZ”/th—l . |_2"/2tJ—1
<2 N e <2 li=rH), 2. e,
p=1-(2"/1] p=1-12"1]
(8.3)

where we have the second equality by the change of variable p = k —1 and the third

equality by a Fubini argument. Observe that [p(p)|" ~ (HQ2H — 1))" pH=2)r

as p — +o00. So, we deduce that

(a) if H <1 — % : ZpEZ lp(p)|" < oo, by combining this fact with (8.3) we
deduce that (2 10) holds true.

b) IfH=1-5; e(p)|” ~ HEH=D) o p — +00. So, we deduce that there
exists a constant Chr > 0 independent of n and ¢ such that for all integer
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n>landallt € Ry

[27/2¢]—1 [2/21]

1 2"/2t1
Yo e <Cur |1+ Y = | <Cur (1+/ _dx>

p=1—[27/2¢]

nlog(2

+ log(t)> <Cur(1+n+1).

By combining this last inequality with (8.3) we deduce that (2.11) holds true.

© IfH > 1—4 :|p(p)|" ~ %asp — +oowhere0 < (2—2H)r < 1.
So, we deduce that there exists a constant Ky, > 0 independent of n and ¢
such that for all integer n > 1 and all t € R

[2"/2¢]—1 12/2¢]
r
Y el <Kup |1+ ) Q2"
p=1—|2"2] p=1

2n/2¢ 1
< Kp,r 1+/0 X(Z—T)rdx

2%(1—(2—2[‘1)’)1‘17(272H)r
1—Q2—-2H)r

= KH,r 1+

<Cu (14 2%(1—(2—2H)r)t1—(2—2H)r)7

where Cpy, = Kp Vv 1_(12(_+H)r By combining the last inequality with (8.3)

we deduce that (2.12) holds true.
4. As it has been proved in (8.1), we have

|(8k2—n/2, 8(l+1)2’”/2>jf‘ = ‘E[Xk2*"/2 (}((l—i-l)Z*"/2 - Xl2’"/2)]|
e [ e U R [ e e

’

so, by a telescoping argument we get

L2n/2tJ_1
Z |(sk2—n/2;5(1+1)2—"/2>%|

k,1=0
n LG/th_l
< 241 2HFL | pnH =l Z = Z‘ZH — k=1~ 1|2H , (8.4
k,1=0

by using the change of variable p = k — [ and a Fubini argument, among other
things that has been used in the previous proof, we deduce that
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[2/2¢]—1
2—nH—1 Z Hk—l|2H—|k—l—1|2H|<2%Z2H+1-
k,1=0

By combining this last inequality with (8.4) we deduce that (2.13) holds true. The
proof of (2.14) may be done similarly.
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