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Abstract We provide an improved version of the Darling–Erdős theorem for sums
of i.i.d. random variables with mean zero and finite variance. We extend this result
to multidimensional random vectors. Our proof is based on a new strong invariance
principle in this setting which has other applications as well such as an integral test
refinement of the multidimensional Hartman–Wintner LIL. We also identify a border-
line situation where one has weak convergence to a shifted version of the standard
limiting distribution in the classical Darling–Erdős theorem.

Keywords Darling–Erdős theorem · Extreme value distribution · Hartman–Wintner
LIL · Integral test · Strong invariance principle · Multidimensional version · Double
truncation
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1 Introduction

Let X, X1, X2, . . . be i.i.d. random variables and set Sn =∑n
j=1 X j , n ≥ 1. Further

set Lt = loge(t ∨ e),LLt = L(Lt) and LLLt = L(LLt), t ≥ 0. In 1956, Darling and
Erdős proved that under the assumption E|X |3 < ∞, EX2 = 1 and EX = 0, the
following convergence in distribution result holds,
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an max
1≤k≤n

|Sk |/
√
k − bn

d→ Ỹ , (1.1)

where an = √
2LLn, bn = 2LLn + LLLn/2 − log(π)/2 and Ỹ is a random

variable which has an extreme value distribution with distribution function y �→
exp(− exp(−y)).

The above third moment assumption was later relaxed in [14,16] to E|X |2+δ < ∞
for some δ > 0, but the question remained open whether a finite second moment
would be already sufficient.

This was finally answered in [6], where it is shown that (1.1) holds if and only if

EX2 I {|X | ≥ t} = o
(
(LLt)−1

)
as t → ∞.

Moreover, it is shown in [6] that the above result holds more generally under the
assumption of a finite second moment if one replaces the normalizers

√
k by

√
Bk ,

where Bn =∑n
j=1 σ 2

j and

σ 2
n := EX2 I

{|X | ≤ √
n/(LLn)p

}

for some p ≥ 2. So we have under the classical assumption EX2 < ∞ and EX = 0,

an max
1≤k≤n

|Sk |/
√
Bk − bn

d→ Ỹ .

For some further related work on the classical Darling–Erdős theorem, the reader
is referred to [2,4,10] and the references in these articles.

The Darling–Erdős theorem is also related to finding an integral test refining the
Hartman–Wintner LIL, a problem which was already addressed by Feller in 1946.
Here, one can relatively easily prove that the classical Kolmogorov–Erdős–Petrowski
integral test for Brownian motion holds for sums of i.i.d. mean zero random variables
if one has E|X |2+δ < ∞ for some δ > 0. In this case, one has for any non-decreasing
function φ: ]0,∞[→]0,∞[,

P
{|Sn| ≤ √

nφ(n) eventually
} = 1 or 0,

according as
∑∞

n=1 n
−1φ(n) exp(−φ2(n)/2) is finite or infinite.

Feller proved that this result remains valid under the second moment assumption if
one replaces

√
n by

√
Bn defined as above with p ≥ 4. Similarly, as for the Darling–

Erdős theorem, this implies that the Kolmogorov–Erdős–Petrowski integral test holds
in its original form if

EX2 I {|X | ≥ t} = O
(
(LLt)−1

)
as t → ∞.

The proof in [11] was based on a skillful double truncation argument which only
worked for symmetric distributions. Finally, in [6] an extension of this argument to
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the general non-symmetric case was found so that we now know that most results in
[11] are correct (see also [1] for more historical background).

There is still one question in the paper [11]which has not yet been addressed, namely
whether it is possible to make the theorem “slightly more elegant” by replacing the
sequence

√
Bn by

√
nσn . Feller writes that he “was unable to devise a proof simple

enough to be justified by the slight improvement of the theorem” (see p. 632 in [11]).
We believe that we have found a simple enough proof of Feller’s claim (see Step 3 in
the proof of Theorem 2.3).

This leads to the following improved version of the Darling–Erdős theorem under
the finite second moment assumption:

an max
1≤k≤n

|Sk |/
√
kσk − bn

d→ Ỹ . (1.2)

At the same time, we can show that there is a much wider choice for the trun-
cation level in the definition of σ 2

n . For instance, it is possible to define σ 2
n as

EX2 I {|X | ≤ √
n}.

This improved version of the Darling–Erdős theorem will actually follow from a
general result for d-dimensional random vectors which will be given in the following
section.

2 Statement of Main Results

We now consider i.i.d. d-dimensional random vectors X, X1, X2, . . . such that
E|X |2 < ∞ and EX = 0, where we denote the Euclidean norm by | · |. The cor-
responding matrix norm will be denoted by ‖ · ‖, that is, we set

‖A‖ := sup
|x |≤1

|Ax |

for any (d, d)-matrix A. It is well known that ‖A‖ = the largest eigenvalue of A if A
is symmetric and nonnegative definite.

Let again Sn := ∑n
j=1 X j , n ≥ 1. Horváth [12] obtained in 1994 the following

multidimensional version of the Darling–Erdős theorem assuming that E|X |2+δ < ∞
for some δ > 0 and that Cov(X ) (= the covariance matrix of X ) is equal to the
d-dimensional identity matrix I ,

an max
1≤k≤n

|Sk |/
√
k − bd,n

d→ Ỹ , (2.1)

where Ỹ has the same distribution as in dimension 1,

bd,n := 2LLn + dLLLn/2 − log(Γ (d/2)),

and Γ (t), t > 0 is the Gamma function. Recall that Γ (1/2) = √
π so that this extends

the one-dimensional Darling–Erdős theorem.
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We are ready to formulate our general result.We consider non-decreasing sequences
cn of positive real numbers satisfying for large n,

exp
(−(log n)εn

) ≤ cn/
√
n ≤ exp

(
(log n)εn

)
, (2.2)

where εn → 0.
Further, let for each n, Γn be the symmetric nonnegative definite matrix such that

Γ 2
n =
[
EX (i)X ( j) I {|X | ≤ cn}

]

1≤i, j≤d
, n ≥ 1. (2.3)

If the covariance matrix of X = (X (1), . . . , X (d)) is positive definite, the matrices
Γn will be invertible for large enough n. Replacing cn by cn∨n0 for a suitable n0 ≥ 1
if necessary, we can assume w.l.o.g. that all matrices Γn are invertible.

Theorem 2.1 Let X, Xn, n ≥ 1 be i.i.d. mean zero random vectors in R
d such that

E |X |2 < ∞ and Cov(X) = I. Then, we have for any sequence {cn} satisfying
condition (2.2),

an max
1≤k≤n

|Γ −1
k Sk |/

√
k − bd,n

d→ Ỹ , (2.4)

where Ỹ :Ω → R is a random variable such that

P{Ỹ ≤ t} = exp(− exp(−t)), t ∈ R.

Under the additional assumption

E|X |2 I {|X | ≥ t} = o
(
(LLt)−1

)
as t → ∞, (2.5)

we also have
an max

1≤k≤n
|Sk |/

√
k − bd,n

d→ Ỹ . (2.6)

It is easy to see that condition (2.5) is satisfied if E|X |2LL|X | < ∞. This latter
condition, however, is more restrictive than (2.5).

It is natural to askwhether this condition is also necessary as in the one-dimensional
case (see Theorem 2 in [6]). This question becomes much more involved in the mul-
tidimensional case, and we get a slightly weaker result, namely that the following
condition

E|X |2 I {|X | ≥ t} = O
(
(LLt)−1

)
as t → ∞ (2.7)

is necessary for (2.6).
To prove this result, we show that if condition (2.7) is not satisfied, then

an max1≤k≤n |Sk |/
√
k − bd,n cannot converge in distribution to any variable of the

form Ỹ + c, where c ∈ R.

If one allows this larger class of limiting distributions, condition (2.7) is
optimal. There are examples where E|X |2 I {|X | ≥ t} = O((LLt)−1) and
an max1≤k≤n |Sk |/

√
k − bd,n converges in distribution to Ỹ + c for some c �= 0

(see Theorem 6.1 below).
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Theorem 2.2 Let X, Xn, n ≥ 1 be i.i.d. mean zero random vectors in R
d such that

E |X |2 < ∞ and Cov(X) = I and suppose that there exists a c ∈ R such that

an max
1≤k≤n

|Sk |/
√
k − bd,n

d→ Ỹ + c, (2.8)

where Ỹ is as in Theorem 2.1. Then, condition (2.7) holds.

Our basic tool for proving the above results is a new strong invariance principle for
sums of i.i.d. random vectors which is valid under a finite second moment assumption.
If one has an approximation with an almost sure error term of order o(

√
n/LLn), one

can obtain the Darling–Erdős theorem directly from the normally distributed case.
The problem is that it is impossible to get such an approximation under the sole
assumption of a finite second moment. In [6], it was shown that one needs the “good”
approximation of order o(

√
n/LLn) only if the sums |Sn| are large and it was shown

that in dimension 1 one can obtain approximations which are particularly efficient
for the random subsequence where the sums are large. Using recent results on d-
dimensional strong approximations (see [9,15]), we are now able to obtain an analogue
of the approximation in [6] in the d-dimensional setting [see Lemma 3.1 and relation
(3.6) below]. As an additional new feature, we also show that an approximation by
Γn
∑n

j=1 Z j is possible where Z j , j ≥ 1 are i.i.d.N (0, I )-distributed random vectors
with N (0,Σ) denoting the d-dimensional normal distribution with mean zero and
covariance matrix Σ. This type of approximation leads to the improved versions of
the Darling–Erdős theorem and Feller’s integral test as indicated in Sect. 1.

Theorem 2.3 Let X, Xn, n ≥ 1 be i.i.d. mean zero random vectors in R
d such that

E |X |2 < ∞ and Cov(X) = Γ 2, where Γ is a symmetric nonnegative definite
(d,d)-matrix. Let cn be a non-decreasing sequence of positive real numbers satisfying
condition (2.2) for large n and let Γn be defined as in (2.3). If the underlying p-space
(Ω,F ,P) is rich enough one can construct independentN (0, I )-distributed random
vectors Zn, n ≥ 1 such that we have for the partial sums Tn :=∑n

j=1 Z j , n ≥ 1,

(a) Sn − Γ Tn = o(
√
nLLn) as n → ∞ with prob. 1,

(b) P{|Sn − ΓnTn| ≥ 2
√
n/LLn, |Sn| ≥ 4

3‖Γ ‖√nLLn infinitely often} = 0, and
(c) P{|Sn − ΓnTn| ≥ 2

√
n/LLn, |Γ Tn| ≥ 4

3‖Γ ‖√nLLn infinitely often} = 0.

Combining our strong invariance principle with the Kolmogorov–Erdős–Petrowski
integral test for d-dimensional Brownian motion, one obtains by the same arguments
as in Section5 of [6] the following result,

Theorem 2.4 Let X, Xn, n ≥ 1 be i.i.d. mean zero random vectors in R
d such that

E |X |2 < ∞ andCov(X) = Γ 2,whereΓ is a symmetric positive definite (d,d)-matrix.
Let cn be a non-decreasing sequence of positive real numbers satisfying condition (2.2)
for large n and let Γn be defined as in (2.3). Then, we have for any non-decreasing
function φ: ]0,∞[→]0,∞[,

P

{
|Γ −1

n Sn| ≤ √
nφ(n) eventually

}
= 1 or = 0
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according as

Id(φ) :=
∞∑

n=1

n−1φd(n) exp(−φ2(n)/2) < ∞ or = ∞.

Note that we can assume w.l.o.g. that all matrices Γn are invertible since they
converge to Γ which is invertible.

Letλn(Λn)be the smallest (largest) eigenvalue ofΓn, n ≥ 1.Assuming thatCov(X )
= I , we can infer from Theorem 2.4,

Id(φ) < ∞ ⇒ P
{|Sn| ≤ Λn

√
nφ(n) eventually

} = 1 (2.9)

and
Id(φ) = ∞ ⇒ P

{|Sn| > λn
√
nφ(n) infinitely often

} = 1, (2.10)

which is the d-dimensional version of the result conjectured by Feller [11].
The proof of our strong invariance principle (= Theorem 2.3) will be given in

Sect. 3. In the two subsequent Sects. 4 and 5, we will show how Theorems 2.1 and 2.2
follow from the strong invariance principle. In Sect. 6, we return to the real-valued
case and show that if EX2 I {|X | ≥ t} ∼ c(LLt)−1 that then (1.1) still remains valid if
we replace Ỹ by Ỹ − c. Finally, we answer a question which was posed in [13].

3 Proof of the Strong Invariance Principle

Our proof is divided into three steps.
Step 1 We recall a double truncation argument which goes back to Feller [11] for sym-
metric random variables. This was later extended to non-symmetric random variables
in [6] and finally to random elements in Hilbert space in [7]. To formulate the relevant
result, we need some extra notation. We set

X
′
n := Xn I

{
|Xn| ≤ √

n/(LLn)5
}

, X
′
n := X ′

n − EX ′
n;

X ′′
n := Xn I

{√
n/(LLn)5 < |Xn| ≤ √

nLLn
}

, X
′′
n := X ′′

n − EX ′′
n ;

X ′′′
n := Xn I

{√
nLLn < |Xn|

}
, X

′′′
n := X ′′′

n − EX ′′′
n ;

and we denote the corresponding sums by S′
n, S

′
n, S

′′
n , S

′′
n, S

′′′
n , S

′′′
n .

Then, we have (see [7], Lemmas 11 and 12)

Sn − S
′
n = o(

√
nLLn) a.s. (3.1)

and
P

{
|Sn − S

′
n| ≥ √

n/(LLn), |Sn| ≥ ‖Γ ‖√nLLn i.o.
}

= 0. (3.2)
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Step 2 Let Σn be the sequence of symmetric nonnegative definite matrices such that
Σ2

n is the covariance matrix of X ′
n for n ≥ 1. Furthermore, let A(t) be the symmetric

nonnegative definite matrices satisfying

A(t)2 =
[
EX ( j)X (k) I {|X | ≤ t}

]

1≤ j,k≤d
, t ≥ 0.

It is easy to see that A(t)2, t ≥ 0 is monotone, that is, A(t)2 − A(s)2 is nonnegative
definite if 0 ≤ s ≤ t.

This implies that A(t), t ≥ 0 is monotone as well (see Theorem V.1.9 in [3]).
Consequently, A(cn), n ≥ 1 is amonotone sequenceof symmetric nonnegative definite
matrices whenever cn is non-decreasing. Moreover, A(cn) converges to Γ if cn → ∞.

We have the following strong approximation result, where we set

Γ̃n := A
(√

n/(LLn)5
)

, n ≥ 1.

Lemma 3.1 If the underlying p-space is rich enough, one can construct independent
random vectors Zi ∼ N (0, I ) such that

S
′
n −

n∑

i=1

Γ̃i Zi = o
(√

n/LLn
)
a.s. (3.3)

and

Sn −
n∑

i=1

Γ Zi = o
(√

nLLn
)
a.s. (3.4)

Proof (i) We first show that one can construct independentN (0, I )-distributed ran-
dom vectors such that

S
′
n −

n∑

i=1

Σi Zi = o
(√

n/LLn
)
a.s.

By Corollary 3.2 from [9] and the fact that E|X ′
n|3 ≤ 8E|X ′

n|3, it is enough to
show

∞∑

n=1

E
∣
∣X ′

n

∣
∣3
/( √

n

LLn

)3
< ∞.

Using the simple inequality,

E|X ′
n|3 ≤ E|X |2+δ I {|X | ≤ √

n}√n
1−δ

(LLn)−5(1−δ), 0 < δ < 1,
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we find (setting δ = 2/5) that the above series is

≤
∞∑

n=1

E|X |12/5 I {|X | ≤ √
n}/√n

12/5

Using a standard argument (see for instance, the proof of part (a) of Lemma 3.3
in [9]), one can show that this last series is finite whenever E|X |2 < ∞.

(ii) To complete the proof of (3.3), it is now sufficient to show that

n∑

i=1

(Σi − Γ̃i )Zi = o(
√
n/LLn) a.s.

By a standard argument, this follows if

∞∑

n=1

E

∣
∣
∣
(
Σn − Γ̃n

)
Zn

∣
∣
∣
2

n/(LLn)2
< ∞. (3.5)

Since Zn ∼ N (0, I ), we have

E

∣
∣
∣
(
Σn − Γ̃n

)
Zn

∣
∣
∣
2 ≤ d

∥
∥
∥Σn − Γ̃n

∥
∥
∥
2 ≤ d‖Σ2

n − Γ̃ 2
n ‖,

where we have used Theorem X.1.1 in [3] for the last inequality. From the
definition of Σn and Γ̃n , it is obvious that

〈x, (Γ̃ 2
n − Σ2

n )x〉 =
(
E〈X, x〉I

{
|X | ≤ √

n/(LLn)5
})2

, x ∈ R
d .

The last expression equals
(
E〈X, x〉I {|X | >

√
n/(LLn)5})2 since E〈X, x〉 = 0.

Hence
∥
∥
∥Σ2

n − Γ̃ 2
n

∥
∥
∥ ≤ (E|X |I {|X | >

√
n/(LLn)5})2 ≤ (E|X |2)2n−1(LLn)10.

It is easy now to see that the series in (3.5) is finite.
(iii) Finally note that

Sn −
n∑

i=1

Γ Zi = (Sn − S
′
n) +
(

S
′
n −

n∑

i=1

Γ̃i Zi

)

+
n∑

i=1

(Γ̃i − Γ )Zi ,

where the first two terms are of almost sure order o(
√
nLLn) by (3.1) and (3.3),

respectively. Since Γ̃n → Γ as n → ∞, we also have that

n∑

i=1

(Γ̃i − Γ )Zi = o(
√
nLLn) a.s.,
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and we can conclude that indeed Sn −∑n
i=1 Γ Zi = o(

√
nLLn) a.s. Lemma 3.1

has been proven. ��
Step 3 Combining Lemma 3.1 with relations (3.1) and (3.2), we find that

P

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣
Sn −

n∑

j=1

Γ̃ j Z j

∣
∣
∣
∣
∣
∣
≥ 3

√
n/(2LLn), |Γ Tn| ≥ 5

4
‖Γ ‖√nLLn i.o.

⎫
⎬

⎭
= 0. (3.6)

We next show that

P

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

n∑

j=1

(Γn − Γ̃ j )Z j

∣
∣
∣
∣
∣
∣
≥ √

n/(2LLn), |Tn| ≥ 5

4

√
nLLn i.o.

⎫
⎬

⎭
= 0, (3.7)

where

Γn := A(cn), n ≥ 1

and cn is an arbitrary non-decreasing sequence of positive real numbers satisfying
condition (2.2) for large n.

Using that {|Γ Tn| ≥ ‖Γ ‖x} ⊂ {|Tn| ≥ x}, x > 0, we get from (3.6) and (3.7):

P

{

|Sn − ΓnTn| ≥ 2
√
n/LLn, |Γ Tn| ≥ 5

4
‖Γ ‖√nLLn i.o.

}

= 0. (3.8)

Further recall that Sn − Γ Tn = o(
√
nLLn) a.s. (see Lemma 3.1). Consequently,

we can infer from (3.8) that

P

{

|Sn − ΓnTn| ≥ 2
√
n/LLn, |Sn| ≥ 4

3
‖Γ ‖√nLLn i.o.

}

= 0. (3.9)

We see that the proof of Theorem 2.3 is complete once we have established (3.7).
Toward this end, we need the following inequality which is valid for normally distrib-
uted random vectors Y : Ω → R

d with mean zero and covariance matrix Σ :

P{|Y | ≥ x} ≤ exp
(
−x2/(8σ 2)

)
, x ≥ 2E|Y |2, (3.10)

where σ 2 is the largest eigenvalue of Σ (see Lemma 4 in [7]).
From (3.10), we trivially get that

P{|Y | ≥ x} ≤ 2 exp
(
−x2/
(
8E|Y |2

))
, x ≥ 0. (3.11)

Though this last inequality is clearly suboptimal, it will nevertheless be more than
sufficient for the proof of (3.7).
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Proof of (3.7) To simplify notation, we set dn := √
n/(LLn)5, n ≥ 1, nk := 2k and

�k := [2k−1/(Lk)5], k ≥ 0. By the Borel–Cantelli lemma, it is enough to show that

∞∑

k=1

P

⎛

⎝
nk⋃

n=nk−1

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

n∑

j=1

(Γn − Γ̃ j )Z j

∣
∣
∣
∣
∣
∣
≥ √

n/(2LLn), |Tn| ≥ 5

4

√
nLLn

⎫
⎬

⎭

⎞

⎠ < ∞.

Set Ñ := Ñ1 ∩ Ñ2, where

Ñ1 :=
{
k: ‖Γnk − Γ̃�k‖ ≤ ‖Γ ‖(Lk)−5/2

}

and

Ñ2 :=
{
k: ‖Γnk − Γnk−1‖ ≤ (Lk)−2

}
.

Then, it is easy to see that the above series is finite if

∑

k∈Ñ
P

⎧
⎨

⎩
max

nk−1≤n≤nk

∣
∣
∣
∣
∣
∣

n∑

j=1

(Γn − Γ̃ j )Z j

∣
∣
∣
∣
∣
∣
≥ 2(k−1)/2/(2Lk)

⎫
⎬

⎭
< ∞ (3.12)

and
∑

k /∈Ñ
P

{

max
nk−1≤n≤nk

|Tn| ≥ 2(k−1)/2(Lk)1/2
}

< ∞. (3.13)

To bound the series in (3.12), we first note that employing the Lévy inequality for
sums of independent symmetric random vectors, one obtains

P

⎧
⎨

⎩
max

nk−1≤n≤nk

∣
∣
∣
∣
∣
∣

n∑

j=1

(Γn − Γ̃ j )Z j

∣
∣
∣
∣
∣
∣
≥ 2(k−1)/2/(2Lk)

⎫
⎬

⎭

≤ P

⎧
⎨

⎩
max

nk−1≤n≤nk

∣
∣
∣
∣
∣
∣

n∑

j=1

(Γnk − Γ̃ j )Z j

∣
∣
∣
∣
∣
∣
≥ 2(k−1)/2/(4Lk)

⎫
⎬

⎭

+ P

⎧
⎨

⎩
max

nk−1≤n≤nk

∣
∣
∣
∣
∣
∣
(Γnk − Γn)

n∑

j=1

Z j

∣
∣
∣
∣
∣
∣
≥ 2(k−1)/2/(4Lk)

⎫
⎬

⎭

≤ 2P

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

nk∑

j=1

(Γnk − Γ̃ j )Z j

∣
∣
∣
∣
∣
∣
≥ 2(k−1)/2/(4Lk)

⎫
⎬

⎭

+ 2P

⎧
⎨

⎩
‖Γnk − Γnk−1‖

∣
∣
∣
∣
∣
∣

nk∑

j=1

Z j

∣
∣
∣
∣
∣
∣
≥ 2(k−1)/2/(4Lk)

⎫
⎬

⎭
=: 2pk,1 + 2pk,2,
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where we have also used the fact that

‖Γnk − Γn‖ ≤ ‖Γnk − Γnk−1‖ if nk−1 ≤ n ≤ nk .

This follows easily from the monotonicity of the sequence Γn .

To bound pk,1, we first note that by Theorem X.1.1 in [3] for 1 ≤ j ≤ �k,

‖Γnk − Γ̃ j‖2 ≤ ‖Γ 2
nk − Γ̃ 2

j ‖ = sup
|x |≤1

E〈x, X〉2 I {d j ∧ cnk < |X | ≤ d j ∨ cnk
}

≤ sup
|x |≤1

E〈x, X〉2 = ‖Γ ‖2. (3.14)

Apply (3.11) with Y =∑nk
j=1(Γnk − Γ̃ j )Z j . Then, clearly EY = 0 and, moreover,

by independence of the random vectors Z j , we have for k ∈ Ñ,

E|Y |2 =
nk∑

j=1

E|(Γnk − Γ̃ j )Z j |2 ≤ d
nk∑

j=1

‖Γnk − Γ̃ j‖2

≤ d‖Γ ‖2
(
�k + (nk − �k)(Lk)

−5
)

≤ 2d‖Γ ‖2nk(Lk)−5.

We conclude that

pk,1 ≤ 2 exp
(
−(Lk)3/

(
512d‖Γ ‖2

))
, k ∈ Ñ1.

Similarly, we obtain

pk,2 ≤ P

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

nk∑

j=1

Z j

∣
∣
∣
∣
∣
∣
≥ 2(k−1)/2Lk/4

⎫
⎬

⎭
≤ 2 exp

(
−(Lk)2/(256d)

)
, k ∈ Ñ2.

It is now clear that the series in (3.12) is finite.
To show that the series in (3.13) is finite, we note that by (3.11) and the Lévy

inequality,

P

{

max
nk−1≤n≤nk

|Tn| ≥ 2(k−1)/2(Lk)1/2
}

≤ 2P
{
|Tnk | ≥ 2(k−1)/2(Lk)1/2

}
≤ 4k−η,

where η = (16d)−1 and it is enough to check that

∑

k /∈Ñ
k−η < ∞.
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To verify that this series is finite, observe that by the argument used in (3.14) we
have,

‖Γnk − Γnk−1‖2 ≤ sup
|x |≤1

E〈x, X〉2 I {cnk−1 < |X | ≤ cnk
}

≤ E|X |2 I {cnk−1 < |X | ≤ cnk
}
,

which implies

∞∑

k=1

‖Γnk − Γnk−1‖2 ≤ E|X |2 < ∞.

We conclude that

∑

k /∈Ñ2

(Lk)−2 < ∞.

So the proof of (3.7) is complete if we show that

∑

k /∈Ñ1

k−η < ∞. (3.15)

We need another lemma.

Lemma 3.2 Consider two sequences ck,i , k ≥ 1 of positive real numbers satisfying
for large enough k,

2k/2 exp(−kδ) ≤ ck,i ≤ 2k/2 exp(kδ), i = 1, 2, (3.16)

where 0 < δ < 1. Set Γk,i := A(ck,i ), i = 1, 2, k ≥ 1. Then, we have,

∞∑

k=1

k−δ‖Γk,1 − Γk,2‖2 < ∞.

Proof Using the same argument as in (3.14), we have for large k,

‖Γk,1 − Γk,2‖2 ≤ E|X |2 I
{
2k/2 exp(−kδ) < |X | ≤ 2k/2 exp(kδ)

}
≤

[k+3kδ]∑

j=[k−3kδ]
β j ,

where β j := E|X |2 I {2 j−1 < |X |2 ≤ 2 j }, j ≥ 1.
We can conclude that for some k0 ≥ 1 and a suitable j0 ≥ 0,

∞∑

k=k0

k−δ‖Γk,1 − Γk,2‖2 ≤
∞∑

j= j0

β j

m2( j)∑

k=m1( j)

k−δ, (3.17)
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where

m1( j) = min
{
k ≥ k0: [k + 3kδ] ≥ j

}

and

m2( j) = max
{
k ≥ k0: [k − 3kδ] ≤ j

}
.

It is easy to see that m1( j) ≥ j − 3 jδ ≥ j/2 and m2( j) ≤ j + 4 jδ for large j .
Consequently, we have for large j,

m2( j)∑

k=m1( j)

k−δ ≤ 2δ(m2( j) − m1( j) + 1) j−δ ≤ 23+δ < ∞. (3.18)

We obviously have
∑∞

j=1 β j < ∞ (as E|X |2 < ∞). Combining relations (3.17)
and (3.18), we obtain the assertion of the lemma. ��

We apply the above lemma with ck,1 = cnk , ck,2 = d�k , k ≥ 1. From condition
(2.2), we readily obtain that for large k,

2k/2 exp(−kε′
k ) ≤ ck,1 ≤ 2k/2 exp(kε′

k ),

where ε′
k := εnk → 0 so that condition (3.16) is satisfied for any δ > 0. This is also

the case for the sequence ck,2. So we can choose δ = η/2, and it follows that

∞ >
∑

k /∈Ñ1

k−η/2‖Γnk − Γ̃�k‖2 ≥ ‖Γ ‖2
∑

k /∈Ñ1

k−η/2(Lk)−5,

which shows that (3.15) holds.

4 Proof of Theorem 2.1

We first prove (2.4). Set kn = [exp((Ln)α)], where 0 < α < 1. Then, it follows from
the d-dimensional version of the Hartman–Wintner LIL that for any given ε > 0,with
prob. 1,

|Γ −1
k Sk |/

√
k ≤ λ−1

k

√
2LLk(1 + ε), k ≥ k0(ω, ε),

where λk is the smallest eigenvalue of Γk . As λk ↗ 1, we can conclude that for large
enough n,

max
1≤k<kn

|Γ −1
k Sk |/

√
k ≤ √

2αLLn(1 + 2ε),
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which is ≤ √
2LLn if we choose ε small enough. It follows that

an max
1≤k<kn

|Γ −1
k Sk |/

√
k − bd,n → −∞ a.s. (4.1)

So (2.4) holds if and only if

an max
k∈Kn

|Γ −1
k Sk |/

√
k − bd,n

d→ Ỹ ,

where Kn := {kn + 1, . . . , n}.
We split Kn into two random subsets:

Kn,1(·) :=
{
k ∈ Kn : |Sk − ΓkTk | ≤ 2

√
k/(LLk)

}
, Kn,2(·) := Kn\Kn,1(·).

In view of Theorem 2.3(b) (where we setΓ = I ), there are with prob. 1 only finitely
many k’s such that

|Sk − ΓkTk | > 2
√
k/LLk and |Γ −1

k Sk | ≥ 4
√
kLLk/(3λk),

where λk is again the smallest eigenvalue of Γk .
As λk ↗ 1, we can conclude that with prob. 1 there are only finitely many k’s such

that

|Sk − ΓkTk | > 2
√
k/LLk and |Γ −1

k Sk | ≥ √
2kLLk,

and it follows that

an max
k∈Kn,2(·)

|Γ −1
k Sk |/

√
k − bd,n → −∞ a.s.

We see that (2.4) is equivalent to

an max
k∈Kn,1(·)

|Γ −1
k Sk |/

√
k − bd,n

d→ Ỹ .

From the definition of the sets Kn,1(·), we easily get that

an max
k∈Kn,1(·)

|Γ −1
k Sk |/

√
k − an max

k∈Kn,1(·)
|Tk |/

√
k → 0 a.s.

By Slutsky’s lemma (2.4) holds if and only if

an max
k∈Kn,1(·)

|Tk |/
√
k − bd,n

d→ Ỹ .
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Looking at Theorem 2.3(c), we can also conclude that

an max
k∈Kn,2(·)

|Tk |/
√
k − bd,n → −∞ a.s.

and the proof of (2.4) further reduces to showing

an max
k∈Kn

|Tk |/
√
k − bd,n

d→ Ỹ .

Using the same argument as in (4.1), we also see that

an max
1≤k<kn

|Tk |/
√
k − bd,n → −∞ a.s.

and we have shown that (2.4) holds if

an max
1≤k≤n

|Tk |/
√
k − bd,n

d→ Ỹ .

This is the Darling–Erdős theorem for normally distributed random vectors which
follows from (2.1). Thus, (2.4) has been proven.

We now turn to the proof of (2.6). By Slutsky’s lemma and (4.1), it is enough to
show that

Δn := an

∣
∣
∣
∣ max
kn≤k≤n

|Sk |/
√
k − max

kn≤k≤n
|Γ −1

k Sk |/
√
k

∣
∣
∣
∣

P→ 0,

Using the triangular inequality, it is easy to see that

Δn ≤ an max
kn≤k≤n

∣
∣
∣(I − Γk)Γ

−1
k Sk/

√
k
∣
∣
∣ ≤ an‖I − Γkn‖ max

1≤k≤n
|Γ −1

k Sk |/
√
k.

From (2.4), it follows that (max1≤k≤n |Γ −1
k Sk |/

√
k)/

√
LLn is stochastically

bounded. By assumption (2.5), we also have that ‖I −Γkn‖ = o((LLn)−1). Recalling

that an = √
2LLn, we see that Δn

P→ 0 and our proof of Theorem 2.1 is complete. ��

5 Proof of Theorem 2.2

Using the same arguments as in the proof of Theorem 2.1, we can infer from (2.8) via
relations (3.4) and (3.6) that

Mn := an max
kn≤k≤n

|T ′
k |/

√
k − bd,n

d→ Ỹ + c, (5.1)

where T ′
k =∑k

j=1 Γ̃ j Z j and the randomvectors Z j are i.i.d.withN (0, I )-distribution
and kn ≤ exp((Ln)α) for some 0 < α < 1.
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Our first lemma gives an upper bound ofP{Mn > t} via the corresponding probabil-
ity for themaximum of a subcollection of the random variables {|T ′

k |/
√
k: kn ≤ k ≤ n}

(see Lemma 4.3 in [5] for a related result).
Let 0 < ξ < 1 be fixed. Set

m j = [exp( jξ/LLn)], j ≥ 1 and N = Nn = [LnLLn/ξ ].

Then, mN ≤ n ≤ mN+1. Also note that the sequence m j depends on n and ξ .
Next, set

jn := min{ j :m j ≥ Ln} and kn = m jn

so that jn ∼ ξ−1(LLn)2 and kn ∼ Ln as n → ∞.

Finally to simplify notation, we set fn(y) = (bd,n + y)/an, y ∈ R so that

P{Mn > y} = P

{

max
kn≤k≤n

|T ′
k |/

√
k > fn(y)

}

.

Lemma 5.1 Given 0 < δ < 1, we have for y ∈ R and n ≥ n0 = n0(ξ, δ, y),

(1 − δ) P {Mn > y + δ} ≤ P

{

max
jn≤ j≤N

|T ′
m j

|/√m j > fn(y)

}

+ P {|Z1| ≥ fn(y)} ,

provided that 0 < ξ ≤ δ3/(36d).

Proof Noting that

P {Mn > y + δ} = P

{

max
kn≤k≤n

|T ′
k |/

√
k > fn(y + δ)

}

≤ P

{

max
kn≤k≤n

|T ′
k |/

√
k > fn(y + δ), max

jn≤ j≤N
|T ′

m j
|/√m j ≤ fn(y)

}

+ P

{

max
jn≤ j≤N

|T ′
m j

|/√m j > fn(y)

}

,

it is enough to show that

P

{

max
kn≤k≤n

|T ′
k |/

√
k > fn(y + δ), max

jn≤ j≤N
|T ′

m j
|/√m j ≤ fn(y)

}

(5.2)

≤ δ P

{

max
kn≤k≤n

|T ′
k |/

√
k > fn(y + δ)

}

+ P {|Z1| ≥ fn(y)} ,

if ξ is sufficiently small.
Consider the following stopping time,

τ := inf
{
k ≥ kn : |T ′

k |/
√
k > fn(y + δ)

}
.
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Then, it is obvious that the probability in (5.2) is bounded above by

N−1∑

j= jn+1

m j−1∑

k=m j−1+1

P

{

τ = k, max
jn≤ j≤N

|T ′
m j

|/√m j ≤ fn(y)

}

+ P {mN−1 < τ ≤ n}

(5.3)
Furthermore, we have for jn + 1 ≤ j ≤ N − 1,

m j−1∑

k=m j−1+1

P

{

τ = k, max
jn≤ j≤N

|T ′
m j

|/√m j ≤ fn(y)

}

≤
m j−1∑

k=m j−1+1

P{τ = k}P
{ |T ′

k − T ′
m j+1

|
√
m j+1 − k

>

√
k fn(y + δ) − √

m j+1 fn(y)
√
m j+1 − k

}

.

Next observe that

max
m j−1<k≤m j

P

{ |T ′
k − T ′

m j+1
|

√
m j+1 − k

>

√
k fn(y + δ) − √

m j+1 fn(y)
√
m j+1 − k

}

≤ P

{

|Z1| >

√
m j−1 fn(y + δ) − √

m j+1 fn(y)√
m j+1 − m j−1

}

.

After some calculation, we find that for large enough n,

√
m j−1 fn(y + δ) − √

m j+1 fn(y)√
m j+1 − m j−1

≥ δ

3
√

ξ
− 4
√

ξ ≥ δ

6
√

ξ

where the last inequality holds since ξ ≤ δ/24.We trivially have byMarkov’s inequal-
ity,

P{|Z1| ≥ δ/(6
√

ξ)} ≤ 36ξE[|Z1|2]/δ2 = 36ξd/δ2,

which is ≤ δ by our condition on ξ.

It follows that

N−1∑

j= jn+1

m j−1∑

k=m j−1+1

P

{

τ = k, max
jn≤ j≤N

|T ′
m j

|/√m j ≤ fn(y)

}

≤ δ P{kn ≤ τ ≤ mN−1}.

(5.4)
Concerning the second term in (5.3), simply note that
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P
{
mN−1 < τ ≤ n

}

≤ P

{
mN−1 < τ ≤ n, |T ′

mN+1
|/√mN+1 ≤ fn(y)

}
+ P

{
|T ′
mN+1

|/√mN+1 > fn(y)
}

=
n∑

k=mN−1+1

P

{
τ = k, |T ′

mN+1
|/√mN+1 ≤ fn(y)

}
+ P {|Z1| > fn(y)} .

Arguing as above, we readily obtain,

P {mN−1 < τ ≤ n} ≤ δP {mN−1 < τ ≤ n} + P {|Z1| > fn(y)} . (5.5)

Combining relations (5.4) and (5.5) and recalling (5.3), we see that

P

{

max
kn≤k≤n

|T ′
k |/

√
k > fn(y + δ), max

jn≤ j≤N
|T ′

m j
|/√m j ≤ fn(y)

}

≤ δ P{kn ≤ τ ≤ n} + P{|Z1| > fn(y)}.

This implies (5.2) since

P{kn ≤ τ ≤ n} = P

{

max
kn≤k≤n

|T ′
k |/

√
k > fn(y + δ)

}

,

and the proof of Lemma 5.1 is complete. ��
We finally need the following lemma,

Lemma 5.2 Let Y be a d-dimensional random vector with distribution N (0,Σ),

where d ≥ 2.Assume that the largest eigenvalue ofΣ is equal to 1 and has multiplicity
d − 1. Denote the remaining (smallest) eigenvalue of Σ by σ 2. Then, we have:

P{|Y | ≥ t} ≤ 2√
1 − σ 2

P{|Z | ≥ t}, t > 0,

where Z : Ω → R
d−1 has a normal(0, Id−1)-distribution.

Proof If d ≥ 3, Lemma 5.2 follows by integrating the inequality given in Lemma 1(a)
of [7].

ToproveLemma5.2 ifd = 2,weproceed similarly as in [7].Choose an orthonormal
basis e1, e2 of R2 consisting of two eigenvectors corresponding to the eigenvalues 1
and σ 2 ∈]0, 1[ of Σ. Then,

Y =
2∑

i=1

〈Y, ei 〉ei =: η1e1 + ση2e2

where ηi , 1 ≤ i ≤ 2 are independent standard normal random variables.
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It is then obvious that

Y 2 = η21 + σ 2η22 =: R1 + R2,

where R1 and R2/σ
2 have Chi-square distributions with 1 degree of freedom. Denote

the densities of R1 + R2, R1 and R2 by h, h1, h2.
Then, h2(y) = h1(y/σ 2)/σ 2 and

h(z) = σ−2
∫ z

0
h1(z − y)h1(y/σ

2)dy, z ≥ 0.

Using that h1(y) = (2π)−1/2y−1/2e−y/2, y > 0, we can infer that

h(z)/h1(z) = 1

2πσ

∫ z

0
(1 − y/z)−1/2y−1/2e−(σ−2−1)y/2dy

≤ 1√
2πσ

∫ z/2

0
y−1/2e−(σ−2−1)y/2dy + e−(σ−2−1)z/4

√
2πσ

√
z

∫ z

z/2
(1 − y/z)−1/2dy

≤ (2πσ 2(σ−2 − 1))−1/2 + √
2ze−(σ−2−1)z/4(πσ)−1.

Employing the trivial inequality e−x/2 ≤ x−1/2, x > 0, it follows that

h(z)/h1(z) ≤
[
(2π)−1/2 + √

8/π
]
(1 − σ 2)−1/2 ≤ 2(1 − σ 2)−1/2, z ≥ 0.

We can conclude that for t ≥ 0,

P{|Y | ≥ t} =
∫ ∞

t2
h(z)dz ≤ 2√

1 − σ 2

∫ ∞

t2
h1(z)dz = 2√

1 − σ 2
P{|Z | ≥ t}

and Lemma 5.2 has been proven. ��
Recall that dn = √

n/(LLn)5 and Γ̃n = A(dn), n ≥ 1. Let {v1, . . . , vd} be an
orthonormal basis of Rd . Then, it is easy to see that

E|X |2 I {|X | > dn} =
d∑

i=1

E 〈X, vi 〉2 I {|X | > dn}

=
d∑

i=1

〈
vi , (I − Γ̃ 2

n )vi

〉
≤ d‖I − Γ̃ 2

n ‖.

It is now obvious that condition (2.7) is equivalent to

‖I − Γ̃ 2
n ‖ = O((LLn)−1) as n → ∞,
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Furthermore, ‖I − Γ̃ 2
n ‖ is equal to 1 − λ̃2n, where λ̃n is the smallest eigenvalue

of Γ̃n since Γ̃ 2
n is symmetric and I − Γ̃ 2

n is nonnegative definite. So it remains to be
shown that (5.1) implies

1 − λ̃2n = O
(
(LLn)−1

)
as n → ∞. (5.6)

or, equivalently, to show that if (5.6) does not hold, we cannot have (5.1).
To that end, we apply Lemma 5.1 with δ = 1/2 and we get for y ∈ R,

P {Mn ≥ y}
≤ 2P

{

max
jn≤ j≤N

|T ′
m j

|/√m j > fn(y − 1/2)

}

+ 2P {|Z1| ≥ fn(y − 1/2)}
≤ 2NP{|Γ̃n Z1| ≥ fn(y − 1/2} + 2P {|Z1| ≥ fn(y − 1/2)} . (5.7)

Here we have used the monotonicity of the sequence Γ̃k, k ≥ 1 which implies that
Γ̃n − Cov(T ′

m j
/
√
m j ) is nonnegative definite for jn ≤ j ≤ N . This allows us to

conclude that for jn ≤ j ≤ N ,

P{|T ′
m j

|/√m j > x} ≤ P{|Γ̃n Z1| > x}, x ∈ R.

Let Dn be the d-dimensional diagonal matrix with Dn(i, i) = 1, 1 ≤ i ≤ d − 1
and Dn(d, d) = λ̃n . Then, clearly

P{|Γ̃n Z1| ≥ fn(y − 1/2)} ≤ P{|DnZ1| ≥ fn(y − 1/2)}

and we can infer from Lemma 5.2 that

P{|Γ̃n Z1| ≥ fn(y − 1/2)} ≤ 2(1 − λ̃2n)
−1/2

P
{|Z ′| ≥ fn(y − 1/2)

}
, (5.8)

where Z ′ is a (d − 1)-dimensional normal mean zero random vector with covariance
matrix equal to the identity matrix.

Using the fact that the square of the Euclidean norm of a d-dimensional N (0, I )-
distributed random vector X has a gamma distribution with parameters d/2 and 2, one
can show that there exist positive constants C1(d),C2(d) so that

C1(d)td−2 exp(−t2/2) ≤ P{|X | ≥ t} ≤ C2(d)td−2 exp(−t2/2), t ≥ 2d. (5.9)

(see Lemma 1 and Lemma 3 in [8], where more precise bounds are given if d ≥ 3.
If d = 1, this follows directly from well-known bounds for the tail probabilities of
the one-dimensional normal distribution. If d = 2, the random variable |X |2 has an
exponential distribution and (5.9) is trivial).

We can conclude that for large enough n,
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P{|Z ′| ≥ fn(y − 1/2)} ≤ C2(d − 1) fn(y − 1/2)d−3 exp(−( fn(y − 1/2)2/2)

≤ C3(d) fn(y − 1/2)−1
P{|Z1| ≥ fn(y − 1/2)},

where we set C3(d) = C2(d − 1)/C1(d). Returning to inequality (5.8) and noting
that fn(y − 1/2) ≥ √

log log n if n is large, we get in this case,

P{|Γ̃n Z1| ≥ fn(y − 1/2)} ≤ 2C3(d){(1 − λ̃2n) log log n}−1/2
P {|Z1| ≥ fn(y − 1/2)} .

Applying (5.9) once more, we find that

P{|Z1| ≥ fn(y − 1/2)} = O(N−1) = O
(
(log n log log n)−1

)
as n → ∞.

Recalling (5.7) we can conclude that if

lim sup
n→∞

(1 − λ̃2n) log log n = ∞,

we have for any y ∈ R,

lim inf
n→∞ P {Mn > y} = 0.

Consequently, Mn cannot converge in distribution to any variable of the form
Ỹ + c. ��
Remark 1. Denote the distribution of an max1≤k≤n |Sk |/

√
k−bd,n by Qn . From (3.4)

and (3.6), it follows that this sequence is tight if and only if the distributions of Mn

form a tight sequence. The above argument actually shows that this last sequence
cannot be tight if condition (2.7) is not satisfied. Moreover, it is not difficult to
prove via Theorem 2.1 that (2.7) implies that the sequence {Qn : n ≥ 1} is tight.
Thus, we have

{Qn : n ≥ 1} is tight ⇐⇒ (2.7).

2. Also note that

P

{

an max
1≤k≤n

|Γ −1
k Sk |/

√
k − bn ≤ 0

}

≤ P

{

anΛ
−1
n max

1≤k≤n
|Sk |/

√
k − bn ≤ 0

}

,

where Λn is the largest eigenvalue of Γn which in turn is defined as in (2.3) [here
we can choose any sequence cn satisfying condition (2.2)].
Using this inequality, one can show by the same argument as on p. 255 in [6] that
(2.6) implies

1 − Λ2
n = o

(
(LLn)−1

)
as n → ∞.

This is of course weaker than (2.5) if d ≥ 2.
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6 Some Further Results

We first prove the following Darling–Erdős type theorem with a shifted limiting dis-
tribution.

Theorem 6.1 Let X, Xn, n ≥ 1 be i.i.d. real-valued random variables with EX2 = 1
and EX = 0. Assume that for some c > 0,

EX2 I {|X | ≥ t} ∼ c(LLt)−1 as t → ∞.

Then, we have,

an max
1≤k≤n

|Sk |/
√
k − bn

d→ Ỹ − c,

where Ỹ and bn are defined as in (1.1).

Proof (i) Set σ 2
n = EX2 I {|X | ≤ √

n} and let 1 ≤ kn ≤ exp((Ln)α) for some
0 < α < 1. Then, we have by Theorem 2.1 and the argument in (4.1),

an max
kn≤k≤n

|Sk |/
√
kσk − bn

d→ Ỹ ,

which trivially implies for any sequence ρn of positive real numbers converging
to 1,

ρnan max
kn≤k≤n

|Sk |/
√
kσk − ρnbn

d→ Ỹ (6.1)

Set kn = [exp((Ln)α], where 0 < α < 1. Then, it is easy to see that

P

{

an max
1≤k≤n

|Sk |√
k

− bn ≤ y

}

≤ P

{

σkn an max
kn≤k≤n

|Sk |√
kσk

− bn ≤ y

}

= P

{

σkn an max
kn≤k≤n

|Sk |√
kσk

− σkn bn ≤ y + (1 − σkn )bn

}

Noticing that (1− σkn )bn ∼ (1− σ 2
kn

)(2LLn)/(1+ σkn ) ∼ c(LLkn)−1LLn (since

σ 2
kn

→ EX2 = 1), it is clear that (1 − σkn )bn → c/α as n → ∞.

By (6.1) (with ρn = σkn ), this last sequence of probabilities converges to
P{Ỹ ≤ y + c/α}.
Since this holds for any 0 < α < 1, it follows that

lim sup
n→∞

P

{

an max
1≤k≤n

|Sk |√
k

− bn ≤ y

}

≤ P{Ỹ ≤ y + c}. (6.2)
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(ii) Similarly, we have,

P

{

an max
1≤k≤n

|Sk |√
k

− bn ≤ y

}

≥ P

{

σnan max
1≤k≤n

|Sk |√
kσk

− σnbn ≤ y + (1 − σn)bn

}

,

where (1 − σn)bn → c as n → ∞.

Applying (6.1) (with kn = 1 and ρn = σn), we obtain that

lim inf
n→∞ P

{

an max
1≤k≤n

|Sk |√
k

− bn ≤ y

}

≥ P{Ỹ ≤ y + c}

and Theorem 6.1 has been proven. ��
We finally mention the following result for real-valued random variables given in

[13] where it is shown that if EX = 0,EX2 = 1 and EX2LL|X | < ∞, then one has

2LLn

(

sup
k≥n

|Sk |√
2kLLk

− 1

)

− 3

2
LLLn + LLLLn + log(3/

√
8)

d→ Ỹ . (6.3)

The authors asked whether this result can hold under the finite second moment
assumption.

Using Theorem 2.3 in combination with Theorem 1.1 in [13], we obtain the fol-
lowing general result:

2LLn

(

sup
k≥n

|Sk |√
2kLLkσk

− 1

)

− 3

2
LLLn + LLLLn + log(3/

√
8)

d→ Ỹ ,

where σ 2
n = EX2 I {|X | ≤ cn} and cn is a non-decreasing sequence of positive real

numbers satisfying condition (2.2). As in [6], this implies that (6.3) holds if and only
if condition (2.5) is satisfied.

Acknowledgements The authors would like to thank the referee for some useful suggestions helping us
to improve the presentation of our results.

References

1. Bai, Z.D.: A theorem of Feller revisited. Ann. Probab. 17, 385–395 (1989)
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