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Abstract We consider on-diagonal heat kernel estimates and the laws of the iterated
logarithm for a switch-walk-switch random walk on a lamplighter graph under the
condition that the random walk on the underlying graph enjoys sub-Gaussian heat
kernel estimates.
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1 Introduction

Let G be a connected infinite graph and consider the situation that on each vertex
of G there is a lamp. Consider a lamplighter on the graph that makes the following
random movements; first, the lamplighter turns on or off the lamp on the site with
equal probability, and then, he/she moves to the nearest neighbor of G with equal
probability, and turns on or off the lamp on the new site with equal probability. The
lamplighter repeats this random movement. Such a movement can be considered as a
random walk on the wreath product of graphs Z2 � G which is roughly a graph putting
Z2 = {0, 1} on each vertex of G (see Definition 2.1 for precise definition), and it is
called a “switch-walk-switch walk” or “lamplighter walk” onZ2 �G. We are interested
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Fig. 1 The Sierpinski gasket
graph

in the long-time behavior of the walk. Some results are known when G is a specific
graph. Pittet and Saloff-Coste [15] established on-diagonal heat kernel asymptotics of
the random walk on Z2 � Zd . More precisely, they obtained the following estimates;
there exist positive constants c1, c2, c3, c4 > 0 such that

c1 exp
[
−c2n

d
d+2

]
≤ h2n(g, g) ≤ c3 exp

[
−c4n

d
d+2

]
(1.1)

for all g ∈ Z2 � Zd , where hn(·, ·) is the heat kernel (see [19,20] for earlier results
for the case of G = Z and [6] for the case that G is a finitely generated group with
polynomial volume growth). Revelle [18] considered the lamplighter walk on the
wreath product H �Zwhen H is either a finite set or in a class of groups, and obtained
some relations between the rate of escape of random walks on H and the law of the
iterated logarithm (LIL in short) on H �Z. In particular, when H = Z2, he proved that
there exist (non-random) constants c1, c2, c3, c4 > 0 such that the following hold for
all x ∈ Z2 � Z:

c1 ≤ lim sup
n→∞

d(Y0, Yn)

n1/2(log log n)1/2
≤ c2,

c3 ≤ lim inf
n→∞

d(Y0, Yn)

n1/2(log log n)−1/2 ≤ c4, Px − a.s., (1.2)

where {Yn} is the lamplighter random walk and d(·, ·) is the graph distance on Z2 �Z.
We are interested in the following question:
(Question) How do the exponents in (1.1), (1.2) change when the graph G is more

general?
In this paper, we will consider the question when G is typically a fractal graph. Figures
1 and 2 illustrate concrete examples of fractal graphs. It is known that the randomwalk
on such a fractal graph behaves anomalously in that it diffuses slower than a simple
randomwalk onZd . It has been proved that the heat kernel hn(x, y) of the randomwalk
{Xn}n≥0 enjoys the following sub-Gaussian estimates; there exist positive constants
c1, c2, c3, c4 > 0 such that
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Fig. 2 The Sierpinski carpet
graph
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(1.3)

for all d(x, y) ≤ 2n (note that h2n(x, y) = 0 when d(x, y) > 2n), where d(·, ·) is the
graph distance, d f is the volume growth exponent of the fractal graph and dw is called
the walk dimension, which expresses how fast the random walk on the fractal spreads
out. Indeed, by integrating (1.3), one can obtain the following estimates; there exist
positive constants c1, c2 > 0 such that

c1n1/dw ≤ Ed(X2n, X0) ≤ c2n1/dw

for all n > 0. For more details on diffusions on fractals and random walks on fractal
graphs, see [1,11,13]. As we see, properties of random walks on graphs are related to
the geometric properties of the graphs. The volume growth is one of such properties.
For the graphs with polynomial volume growth, there are well-established general
methods to analyze the properties of random walks on them. But for the graphs with
exponential volume growth, these methods are not applicable. In this sense, the graphs
with exponential volume growth give us interesting research subject. The wreath prod-
uct Z2 � G belongs to this category, and this is another reason why we are interested
in the lamplighter random walks on fractal graphs.

We consider the random walk on Z2 � G, where the random walk on G enjoys
the sub-Gaussian heat kernel estimates (1.3). The main results of this paper are the
following;

(1) Sharp on-diagonal heat kernel estimates for the random walk on Z2 � G (Theorem
2.3),

(2) LILs for the random walk on Z2 � G (Theorem 2.4).

The on-diagonal heat kernel estimates are heavily related to the asymptotic proper-
ties of the spectrum of the corresponding discrete operator.We can obtain the exponent
d f /(d f + dw) in our framework as the generalization of d/(d + 2).
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For the LILs, we establish the LIL for dZ2�G(Y0, Yn), where {Yn}n≥0 is the random
walk on Z2 � G, and the so-called another law of the iterated logarithm that gives
the almost sure asymptotic behavior of the liminf of dZ2�G(Y0, Yn). Note that in (1.2),
various properties that are specific toZwere used, so the generalization to other graphs
G is highly non-trivial. We have overcome the difficulty by finding some relationship
between the range of the random walk on G and dZ2�G(Y0, Yn). To our knowledge,
these are the first results on the LILs for the wreath product beyond the case of G = Z.

The outline of this paper is as follows. In Sect. 2, we explain the framework and the
main results of this paper. In Sect. 3, we give some consequences of sub-Gaussian heat
kernel estimates. These are preliminary results for Sects. 4 and 5, where we mainly
treat the lamplighter random walks on fractal graphs. In Sect. 4, we prove the on-
diagonal heat kernel estimates. Section 5 has three subsections. In Sect. 5.1, we give a
relation between the range of random walk on G and dZ2�G(Y0, Yn). Here, one of the
keys is to prove the existence of a path that covers a subgraph of G with the length of
the path being (uniformly) comparable to the volume of the subgraph (Lemma 5.3).
In Sect. 5.2, we deduce the LILs for the random walk on Z2 � G from the LILs for the
range of the random walk on G (Theorem 5.5) when G is a strongly recurrent graph.
In Sect. 5.3, we prove the LILs for the random walk on Z2 � G when G is a transient
graph. In the Appendix 1, we give an outline of the proof of Theorem 5.5, on which
the proof in Sect. 5.2 is based.

Throughout this paper, we use the following notation.

Notation (1) For two nonnegative sequences {a(n)}n≥0 and {b(n)}n≥0, we write
– a(n) � b(n) if there exist positive constants c1, c2 > 0 such that c1a(n) ≤

b(n) ≤ c2a(n) for all n.
– a(n) ≈ b(n) if there exist positive constants c1, c2, c3, c4 > 0 such that

c1a(c2n) ≤ b(n) ≤ c3a(c4n) for all n.
(2) We use c, C, c1, c2, · · · to denote deterministic positive finite constants whose val-

ues are insignificant. These constants do not depend on time parameters n, k, · · · ,
distance parameters r, · · · , or vertices of graphs.

2 Framework and Main Results

In this section, we introduce the framework and the main results of this paper.

2.1 Framework

Let G = (V (G), E(G)) be an infinite, locally finite, connected graph. We assume
V (G) is a countable set. We say that G is a graph of bounded degree if

M = sup
v∈V (G)

deg v < ∞. (2.1)

We denote d(x, y) the graph distance of x, y in G, i.e., the shortest length of paths
between x and y. When we want to emphasize the graph G, we write dG(x, y) instead
of d(x, y).
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Next, we introduce the wreath product of graphs.

Definition 2.1 (Wreath product) Let G = (V (G), E(G)) and H = (V (H), E(H))

be graphs.We define thewreath product of G and H (denoted by H �G) in the following
way. We define the vertex set of the wreath product as

V (H � G) =
{
( f, v) ∈ V (H)V (G) × V (G)

∣∣∣∣ �Supp f < ∞
}

,

where Supp f = {x ∈ V (G) | f (x) 
= 0} for a fixed element 0 ∈ V (H). For
( f, u), (g, v) ∈ V (H � G), (( f, u), (g, v)) ∈ E(H � G) if either (a) or (b) is satisfied:

(a) f = g and (u, v) ∈ E(G),
(b) u = v, f (x) = g(x) (∀x ∈ V (G)\{u}) and ( f (u), g(u)) ∈ E(H).

We call G the underlying graph of H � G and H the fiber graph of H � G.

Throughout the paper, we will only consider the case H = Z2 that consists of two
vertices {0, 1}, say, and one edge that connects the two vertices (As noted in Remark
2.5(2), the results in this paper hold when H is a finite graph). We denote the elements
of V (Z2 �G) by bold alphabets x, y . . . and the elements of V (G) by standard alphabets
x, y, . . ..

Next, we introduce the notion of weighted graphs. Letμ : V (G)×V (G) → [0,∞)

be a symmetric function such that μxy = μ(x, y) > 0 if and only if (x, y) ∈ E(G).
We call the pair (G, μ) a weighted graph. For a weighted graph (G, μ), we define a
measure m = mG on V (G) by m(A) = ∑

x∈A m(x) for A ⊂ V (G) where m(x) =∑
y:y∼x μxy . We will write V (x, r) = VG(x, r) = m(B(x, r)), where B(x, r) = {y ∈

V (G) | d(x, y) ≤ r}.
Let {Xn}n≥0 be the (time-homogeneous) randomwalk on G whose transition prob-

ability is P = (p(x, y))x,y∈V (G), where p(x, y) = μxy/m(x). We call {Xn}n≥0 the
random walk associated with the weighted graph (G, μ). {Xn}n≥0 is reversible w.r.t.
m, i.e., m(x)p(x, y) = m(y)p(y, x) for all x, y ∈ V (G). Define

pn(x, y) := Px (Xn = y), ∀x, y ∈ V (G).

pn(x, y)/m(y) is called the heat kernel of the random walk.
We next give a set of conditions for the graph and the random walks.

Assumption 2.2 Let (G, μ) be a weighted graph. We consider the following assump-
tions for (G, μ).

(1) (p0-condition): (G, μ) satisfies p0-condition, i.e., there exists p0 > 0 such that
μxy/m(x) ≥ p0 for all x, y ∈ V (G) with {x, y} ∈ E(G).

(2) (d f -set condition): There exist positive constants d f , c1, c2 > 0 such that

c1rd f ≤ V (x, r) ≤ c2rd f (2.2)

for all x ∈ V (G), r ∈ N ∪ {0}. Here, we regard 0d f as 1.
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(3) (On-diagonal heat kernel upper bound): There exists ds > 0 such that the heat ker-

nel
pn(x, y)

m(y)
of {Xn}n≥0 satisfies the following estimate for all x, y ∈V (G), n ≥1:

pn(x, y)

m(y)
≤ c1n−ds/2. (2.3)

(4) (Sub-Gaussian heat kernel estimates): There exists dw > 1 such that the heat

kernel
pn(x, y)

m(y)
of {Xn}n≥0 satisfies the following estimates:

pn(x, y)

m(y)
≤ c1

V (x, n
1

dw )
exp

⎛
⎝−c2

(
d(x, y)dw

n

) 1
dw−1

⎞
⎠ (2.4)

for all x, y ∈ V (G), n ≥ 1, and

pn(x, y)

m(y)
+ pn+1(x, y)

m(y)
≥ c3

V (x, n
1

dw )
exp

⎛
⎝−c4

(
d(x, y)dw

n

) 1
dw−1

⎞
⎠ (2.5)

for x, y ∈ V (G), n ≥ 1 with d(x, y) ≤ n.

We will clarify which of the conditions above are assumed in each statement. As
one can easily see, Assumptions 2.2 (2) and (2.4) imply Assumption 2.2 (3) with

ds/2 = d f /dw.

ds is called the spectral dimension.
The fractal graphs such as the Sierpinski gasket graph and the Sierpinski carpet

graph given in Sect. 1 satisfyAssumption 2.2 (see [3,10]). Note that under Assumption
2.2 (1), G satisfies (2.1) with M = 1/p0. Also note that, under Assumption 2.2 (2),
we have c1 ≤ mG(x) ≤ c2 for all x ∈ V (G) and hence

c1�A ≤ m(A) ≤ c2�A, ∀A ⊂ V (G), (2.6)

where �A is the cardinal number of A. Finally, under Assumption 2.2 (1) (2) we have

0 < inf
x,y∈V (G),x∼y

μxy ≤ sup
x,y∈V (G),x∼y

μxy < ∞. (2.7)

Next, we define the lamplighter walk onZ2 �G. We denote the transition probability
on Z2 by P(Z2) = (p(Z2)(a, b))a,b∈Z2 , where P(Z2) is given by

p(Z2)(a, b) = 1

2
, for all a, b ∈ Z2.
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We can lift P = (p(x, y))x,y∈G and P(Z2) = (p(Z2)(a, b))a,b∈Z2 on Z2 � G, by

p̃(G)(( f, x), (g, y)) =
{

p(x, y) if f = g

0 otherwise
,

p̃(Z2)(( f, x), (g, y)) =
{

1
2 if x = y and f (v) = g(v) for all v 
= x

0 otherwise
.

Let Yn = {(ηn, Xn)}n≥0 be a random walk on Z2 � G whose transition probability
p̃ is given by

p̃(( f, x), (g, y)) = p̃(Z2) ∗ p̃(G) ∗ p̃(Z2)(( f, x), (g, y))

=
∑

(h1,w1),(h2,w2)

p̃(Z2)(( f, x), (h1, w1)) p̃(G)((h1, w1), (h2, w2)) p̃(Z2)((h2, w2), (g, y)).

Note that if ( f, x), (g, y) ∈ V (Z2 � G) satisfy x ∼ y and f (z) = g(z) for all
z 
= x, y then

P(Yn+1 = (g, y) | Yn = ( f, x)) = 1

4
p(x, y),

and otherwise it is zero.
This random walk moves in the following way. Let Xn be the site of lamp-

lighter at time n and ηn be the on-lamp state at time n. The lamplighter changes
the lamp at Xn with probability 1/2, moves on G according to the transition proba-
bility P = (p(x, y))x,y∈G , and then changes the lamp at Xn+1 with probability 1/2.
The lamplighter repeats this procedure (In the first paragraph of Sect. 1, we discussed
the case when {Xn} is a simple random walk on G).

Note that {Yn}n≥0 is reversible w.r.t. mZ2�G , where

mZ2�G((η, x)) = m(x).

We denote the transition probability of {Yn}n≥0 as p(x, y) (cf. p(x, y) is the transition
probability of {Xn}n≥0). We sometimes write m(x) instead of mZ2�G(x).

2.2 Main Results

In this subsection, we state the main results of this paper.

Theorem 2.3 Suppose that Assumption 2.2 (1), (2) and (4) hold. Then, the following
holds;

p2n(x, x)

mZ2�G(x)
≈ exp[−n

d f
d f +dw ], ∀x ∈ V (Z2 � G).
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Next we state the results on the LILs when ds/2 < 1 and ds/2 > 1, respectively.

Theorem 2.4 Let (G, μ) be a weighted graph.
(I) Assume that Assumption 2.2 (1), (2), (4) and ds/2 < 1 hold. Then, there exist (non-
random) constants c1, c2, c3, c4 > 0 such that the following hold for all x ∈ V (Z2�G):

c1 ≤ lim sup
n→∞

dZ2�G(Y0, Yn)

nds/2(log log n)1−ds/2
≤ c2, Px-a.s. (2.8)

c3 ≤ lim inf
n→∞

dZ2�G(Y0, Yn)

nds/2(log log n)−ds/2
≤ c4, Px-a.s. (2.9)

(II) Assume that Assumption 2.2 (1), (2), (3) and ds/2 > 1 hold. Then, there exist
(non-random) positive constants c1, c2 > 0 such that the following hold for all x ∈
V (Z2 � G):

c1 ≤ lim inf
n→∞

dZ2�G(Y0, Yn)

n
≤ lim sup

n→∞
dZ2�G(Y0, Yn)

n
≤ c2, Px-a.s. (2.10)

Remark 2.5 (1) Note that in Theorem 2.4(II), we do not need Assumption 2.2(4) but
only need the on-diagonal upper bound (2.3). Since the transient case is discussed
under a general framework in [14] (see Sect. 5.3), we do not pursue the minimum
assumption for (2.10) to hold.

(2) We can obtain the same results (by the same proof) if we replace Z2 by a finite
graph H with �H ≥ 2 and p(Z2) by p(H), where p(H) is the transition probability
on H given by

p(H)(a, b) = 1

�H
, for all a, b ∈ V (H).

(3) For each 0 < α < 1, Rau [17, Proposition 1.2] constructed a graph Gα such
thatthe random walk on Gα satisfies the following heat kernel estimates:

p2n(x, x) ≈ exp(−nα). (2.11)

For the case 1/3 ≤ α < 1, the graphs constructed by Rau are the wreath product
onZ, but the fiber graphs are different site by site (The definition ofwreath product
given by Rau is more general than ours). On the other hand, for each d f , dw such
that 2 ≤ dw ≤ 1 + d f and d f ≥ 1, Barlow [2, Theorem 2] constructed weighted
graphs that satisfy Assumption 2.2. Combining this and Theorem 2.3, for any
given 1/3 ≤ α < 1 we can give an alternative example where the heat kernel
enjoys (2.11).

(4) For the case of ds/2 = 1, we have not been able to obtain the LIL in general.
However, one can obtain the LIL for the case ofZ2 as follows (Note that ds/2 = 1
in this case since d f = dw = 2). Define Rn = �{X0, . . . , Xn}. Dvoretzky and
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Erdős [8, Theorem 1,4] proved the following law of large numbers of Rn :

lim
n→∞

Rn

πn/ log n
= 1, P-a.s.

In Propositions 5.1 and 5.2, we will show that 1
4 Rn ≤ dZ2�Z2(Y0, Yn) for all

but finitely many n and that there exists a positive constant C > 0 such that
dZ2�Z2(Y0, Yn) ≤ C Rn for all n. Using these facts, we see that there exist positive
constants c1, c2 > 0 such that for all x ∈ V (Z2 � G)

c1 ≤ lim inf
n→∞

dZ2�Z2(Y0, Yn)

n/ log n
≤ lim sup

n→∞
dZ2�Z2(Y0, Yn)

n/ log n
≤ c2, Px-a.s.

As we see, the exponents differ from those in the cases of ds/2 < 1 and ds/2 > 1.

3 Consequences of Heat Kernel Estimates

In this section, we give preliminary results obtained from the sub-Gaussian heat kernel
estimates (2.3), (2.4) and (2.5). Throughout this section, we assume that Assumption
2.2 (1), (2) hold.

First, the following can be obtained by a simple modification of [1, Lemma 3.9]
(Note that (2.5) is not needed here).

Lemma 3.1 Suppose (2.4). Then, there exist positive constants c1, c2 > 0 such that

Py

(
max
0≤ j≤n

d(x, X j ) ≥ 3r

)
≤ c1 exp

⎛
⎝−c2

(
rdw

n

) 1
dw−1

⎞
⎠

for all n ≥ 1, r ≥ 1, x, y ∈ V (G) with d(x, y) ≤ r .

The following lemma will be used in Sect. 5.1. Note that unlike Lemma 3.1, we
need only weaker condition (2.3) here.

Lemma 3.2 Suppose (2.3). Then, there exist positive constants c1, c2 > 0 such that

Px

(
max
0≤ j≤n

d(x, X j ) ≤ r

)
≤ c1 exp

(
−c2

n

rdw

)
(3.1)

for all x ∈ V (G), n, r ≥ 1.

Proof We first show that there exists a positive constant c1 > 0 and a positive integer
R such that

Px

(
max

0≤ j≤[rdw ]
d(x, X j ) ≤ 2c1r

)
≤ 1

2
(3.2)
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for all x ∈ V (G) and for all r ≥ R, where [rdw ] means the greatest integer which is
less than or equal to rdw . Using (2.3), for r ≥ 1 we have

Px

(
max

0≤ j≤[rdw ]
d(x, X j ) ≤ 2c1r

)
≤ Px (d(x, X[rdw ]) ≤ 2c1r)

≤ c2
1

([rdw ])d f /dw

∑
y∈B(x,2c1r)

m(y) ≤ c3
1

rd f
m(B(x, 2c1r)).

Recall that c4rd f ≤ m(B(x, r)) ≤ c5rd f for r ∈ N∪{0} by (2.2). Take c1 as a positive
constant which satisfies c3(2c1)d f ≤ 1

2c5
. We first consider the case of 2c1r ≥ 1. In

this case, by the above estimate we have

Px

(
max

0≤ j≤[rdw ]
d(x, X j ) ≤ 2c1r

)
≤ c3

1

rd f
m(B(x, 2c1r)) ≤ c3c5(2c1)

d f ≤ 1

2
.

Next, we consider the case of 2c1r < 1. In this case, m(B(x, 2c1r)) = m({x}) ≤ c5.
Take R such that R > (2c3c5)1/d f . By the above estimate, we have

Px

(
max

0≤ j≤[rdw ]
d(x, X j ) ≤ 2c1r

)
≤ c3

1

rd f
m(B(x, 2c1r)) ≤ c3

c5
rd f

≤ 1

2

for r ≥ R. We thus obtain (3.2).
We now prove (3.1). Let r ≥ R. It is enough to consider the case n ≥ [rdw ]

since otherwise (3.1) is immediate by adjusting the constants. Let k ≥ 1 be such that
k[rdw ] ≤ n < (k + 1)[rdw ] and let ti = i[rdw ]. Then, by the Markov property and
(3.2) we have

Px

(
max
0≤ j≤n

d(x, X j ) ≤ c1r

)
≤ Px

⎛
⎝ ⋂

0≤i≤k−1

{
max

ti ≤ j≤ti+1
d(Xti , X j ) ≤ 2c1r

}⎞
⎠

≤
{
sup

y
Py

(
max

0≤ j≤[rdw ]
d(y, X j ) ≤ 2c1r

)}k

≤
(
1

2

)k

≤ c6 exp(−c7k) ≤ c8 exp(−c9nr−dw).

It is immediate for the case of 1 ≤ r ≤ R from the above estimate. Hence, we obtain
(3.1 ) by adjusting the constants. ��

In the next proposition, we show that Lemma 3.2 is sharp up to constants if we
assume both (2.4) and (2.5). The idea of the proof is based on [16, Lemma 7.4.3],
where a similar estimate was given for a class of random walks on Z

d .

Proposition 3.3 Suppose (2.4) and (2.5). Then, there exist N0 ≥ 1 and positive con-
stants c1, c2 > 0 such that
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Px

(
max
0≤ j≤n

d(x, X j ) ≤ r

)
≥ c1 exp

(
−c2

n

rdw

)

for all r ≥ N0 and n ≥ 4
dw

dw−1 .

The proof consists of the following two lemmas.

Lemma 3.4 Under (2.5) there exists ε ∈ (0, 1) such that

Py(d(x, Xn) > r) ≤ 1 − ε

for all r ≥ 1, n ≥ 4
dw

dw−1 with n < rdw and x, y ∈ V (G) with d(x, y) ≤ r .

Proof We follow the argument in [16, Lemma 7.4.7]. Let γ = 1/(dw − 1). Let �x,y

be a geodesic path from x to y in G. Let xn ∈ �x,y be the ([n1/dw ] + 1)-th vertex
from y. Then, B(xn, [n1/dw ]) ⊂ B(x, r − 1) since for all z ∈ B(xn, [n1/dw ]) we have
d(x, z) ≤ d(x, xn) + d(xn, z) ≤ (d(x, y) − [n1/dw ] − 1) + [n1/dw ] ≤ r − 1. Also for
all z ∈ B(xn, [n1/dw ]), we have d(y, z) ≤ d(y, xn)+d(xn, z) ≤ 2[n1/dw ]+1. Hence,
by (2.5) and (2.2) we have

2Py (d(x, Xn) ≤ r) ≥ Py (d(x, Xn−1) ≤ r − 1) + Py (d(x, Xn) ≤ r − 1)

≥ c1
∑

z∈B(xn ,[n1/dw ])

m(z)

V (y, (n − 1)1/dw)
exp

[
−c2

(
d(y, z)dw

n − 1

)γ
]

≥ c3

⎛
⎝ ∑

z∈B(xn ,[n1/dw ])

m(z)

nd f /dw

⎞
⎠ exp

[
−c2(2 · 3dw)γ

]
≥ c4 exp

[
−c2(2 · 3dw)γ

]
,

provided n ≥ 4
dw

dw−1 so that d(y, z) ≤ 2n1/dw + 1 ≤ 3n1/dw ≤ n − 1 for any
z ∈ B(xn, [n1/dw ]). The proof completes by taking ε = 1

2c4 exp
[−c2(2 · 3dw)γ

]
(note that we may take c4 < 1). ��
Lemma 3.5 Let ε be as in Lemma 3.4. Then, under (2.4) and (2.5), there exists η ≥ 1

such that for all x, y ∈ V (G), positive integers r ≥ 8
1

dw−1 with d(x, y) ≤ 2r and for

all integers k ≥ 0 and � ≥ 4
dw

dw−1 with k[rdw ] ≤ � ≤ (k + 1)[rdw ], we have

Py

(
max
0≤ j≤�

d(x, X j ) ≤ 3ηr, d(x, X�) ≤ 2r

)
≥
(ε

2

)k ∧ ε

2
.

Proof We follow the argument in the proof of [16, Lemma 7.4.3]. We prove the
assertion by induction in k.

Step I: We first prove the case k = 0, 1. Let γ = 1/(dw − 1). In general,
1 ≤ P(A) + P(B) + P((A ∪ B)c) holds for any events A, B. As A, B take

123



J Theor Probab (2018) 31:68–92 79

A = {max0≤ j≤� d(x, X j ) > 3ηr}, B = {d(x, X�) > 2r}. Let 4 dw
dw−1 ≤ � ≤ 2[rdw ].

By Lemmas 3.1 and 3.4, we have

1 ≤ Py

(
max
0≤ j≤�

d(x, X j ) > 3ηr

)
+ Py (d(x, X�) > 2r)

+ Py

(
max
0≤ j≤�

d(x, X j ) ≤ 3ηr, d(x, X�) ≤ 2r

)

≤ c1 exp

[
−c2

(
(ηr)dw

�

)γ
]

+ (1 − ε)

+ Py

(
max
0≤ j≤�

d(x, X j ) ≤ 3ηr, d(x, X�) ≤ 2r

)
.

From above and using � ≤ 2[rdw ] we have

Py

(
max
0≤ j≤�

d(x, X j ) ≤ 3ηr, d(x, X�) ≤ 2r

)

≥ ε − c1 exp

[
−c2

(
(ηr)dw

�

)γ
]

≥ ε − c1 exp

[
−c2

(
ηdw

2

)γ
]

.

Taking η >

{
2γ

c2
log

(
2c1
ε

)}1/(γ dw)

∨ 1, we obtain

Py

(
max
0≤ j≤�

d(x, X j ) ≤ 3ηr, d(x, X�) ≤ 2r

)
≥ ε

2

for 4
dw

dw−1 ≤ � ≤ 2[rdw ].
Step II: Let k ≥ 1 and assume that the result holds up to k. Let � satisfy (k +1)[rdw ] ≤
� ≤ (k+2)[rdw ].Define �′ = k[rdw ]. Then, since �′∧(�−�′) ≥ [rdw ] ≥ 1

2rdw ≥ 4
dw

dw−1

by r ≥ 8
1

dw−1 , using the Markov property and induction hypothesis, we have

Py

(
max
0≤ j≤�

d(x, X j ) ≤ 3ηr, d(x, X�) ≤ 2r

)

≥ Py

(
max
0≤ j≤�

d(x, X j ) ≤ 3ηr, d(x, X�) ≤ 2r, d(x, X�′) ≤ 2r

)

= Ey

[
1{max0≤ j≤�′ d(x,X j ) ≤3ηr,d(x,X�′ )≤2r} PX�′

(
d(x, X�−�′)

≤ 2r, max
0≤ j≤�−�′ d(x, X j ) ≤ 3ηr

)]

≥ ε

2
Py

(
max

0≤ j≤�′ d(x, X j ) ≤ 3ηr, d(x, X�′) ≤ 2r

)
≥
(ε

2

)k+1
.
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We thus complete the proof. ��
Given Lemma 3.5, it is straightforward to obtain Proposition 3.3.

4 On-Diagonal Heat Kernel

In this section, we give the proof of Theorem 2.3.
The lower bound follows by the same approach as in [16, Section 7] (cf. [15,

Section 7] and [21, Section 15.D]). We use Proposition 3.3 for the proof.

Proof of the lower bound of Theorem 2.3 Let x = (η, x) ∈ V (Z2 � G). As we said
before we write mZ2�G as m. For any finite subset A ⊂ V (Z2 � G), using the Cauchy-
Schwarz inequality, we have

p2n(x, x)

m(x)
=

∑
y∈V (Z2�G)

pn(x, y)pn( y, x)

m(x)

=
∑

y∈V (Z2�G)

pn(x, y)2

m( y)
≥
∑
y∈A

pn(x, y)2

m( y)
≥ 1

m(A)
Px (Yn ∈ A)2 . (4.1)

Set A := { y = ( f, y) ∈ V (Z2 � G) | y ∈ BG(x, r), f (z) = 0 for all z ∈ V (G) such
that d(x, z) > r}. Using (2.2) and (2.6), we have

mZ2�G(A) =
∑

y∈BG (x,r)

mG(y)2�BG (x,r) ≤ c1rd f 2c2rd f
,

and using Proposition 3.3 we have

Px (Yn ∈ A) ≥ Px

(
max
0≤ j≤n

d(x, X j ) ≤ r

)
≥ c3 exp

[
−c4

n

rdw

]

provided n ≥ 4
dw

dw−1 and r ≥ N0. Hence, by (4.1), we have

p2n(x, x)

m(x)
≥ c5 exp

[
−c6

(
d f log r + rd f + n

rdw

)]
.

Optimize the right-hand side (take r = n1/(d f +dw)), then we obtain

p2n(x, x)

m(x)
≥ c exp

[
−Cn

d f
d f +dw

]

provided n ≥ 4
dw

dw−1 ∨ N
d f +dw

0 . The lower bound for 1 ≤ n ≤ 4
dw

dw−1 ∨ N
d f +dw

0 is
obvious, and we thus complete the proof. ��
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We next prove the upper bound of Theorem 2.3 (cf. [15, Section 8] and [21, Sec-
tion 15.D]).

Proof of the upper bound of Theorem 2.3 Without loss of generality, we may and
do assume η0 is identically 0. For the switch-walk-switch random walk {Yn =
(ηn, Xn)}n≥0 on Z2 � G, ηn is equi-distributed on { f ∈∏z∈V (G) Z2 | Supp( f −η0) ⊂
R̄n}, where R̄n = {X0, X1, · · · , Xn}. Hence, setting Rn = �R̄n , we have

Px (Yn = x) =
n+1∑
k=0

Px (Yn = x, Rn = k) ≤
n+1∑
k=0

Ex

[
1{Rn=k}2−k

]
≤ Ex

[
2−Rn

]
.

In [9, Theorem 1.2], Gibson showed the following Donsker–Varadhan type range
estimate: for any ν > 0 and any x ∈ V (G),

− log Ex
[
exp
{−νm(R̄[ndw V (x,n)])

}] � V (x, n).

Note that V (x, n) � nd f . Replacing n with n1/(d f +dw) we have

Ex
[
exp
{−νm(R̄n)

}] ≈ exp
[
−nd f /(d f +dw)

]
.

Since cm(R̄n) ≤ Rn (due to (2.6)), by the above estimates, we obtain the upper
estimate, i.e.,

pn(x, x)

m(x)
≤ c exp

[
−Cn

d f
d f +dw

]
.

We thus complete the proof. ��

5 Laws of the Iterated Logarithm

In this section, we will prove Theorem 2.4.
We first explain the idea of the proof. Let (G, μ) be a weighted graph such that

G is of bounded degree. For notational simplicity, let o ∈ V (G) be a distinguished
point and 0 be the element of (Z2)

V (G) such that 0(v) = 0 for all v ∈ V (G). In
order to realize a given lamp state (η, x) ∈ V (Z2 � G) from the initial lamp state
(0, o) ∈ V (Z2 � G), we need to visit all the “on-lamp vertices”. So,

∑
i∈V (G)

η(i) ≤ dZ2�G((0, o), (η, x))

≤ (the minimum number of steps to visit all the “on-lamp vertices” from o to x)

+
∑

i∈V (G)

η(i). (5.1)
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We apply the above observation to the lamplighter walk {Yn = (ηn, Xn)}n≥0 onZ2 �
G. Note that the lamp at a certain vertex ofG (say z) cannot be changedwithoutmaking
the lamplighter visit at z. From this and (5.1), we see that dZ2�G(Y0, Yn) is heavily
related to the range of random walk {Xn}n≥0 on G. Set Rn = �{X0, X1, · · · , Xn}.
Intuitively,

∑
i∈V (G) ηn(i) is close to 1

2 Rn . Indeed, we will show the following in
Propositions 5.1 and 5.2:

1

4
Rn ≤ dZ2�G(Y0, Yn) for all but finitely many n, a.s., (5.2)

dZ2�G(Y0, Yn) ≤ (2M + 1)Rn, for all n, (5.3)

where M is defined by (2.1). We will prove (5.2) and (5.3) in Sect. 5.1. The behavior
of Rn differs for ds/2 < 1 and ds/2 > 1. In Sect. 5.2 (resp. 5.3), we prove the LILs
of Rn and dZ2�G(Y0, Yn) for ds/2 < 1 (resp. for ds/2 > 1).

5.1 Relations Between the Distance and the Range

The main goal of this subsection is to prove (5.2) and (5.3).

Proposition 5.1 Suppose that Assumption2.2 (1), (2) and (3) hold. Then, the following
holds;

1

4
Rn ≤

∑
i∈{X0,X1,...,Xn}

ηn(i) for all but finitely many n, P(0,x)-a.s., for all x ∈ V (G).

Proof We fix x ∈ V (G) and write P instead of P(0,x). Define Sn =∑i∈{X0,X1,··· ,Xn}
ηn(i). It is easy to see that

P(Sn = l | Rn = k) =
(
1

2

)k (k
l

)

for 0 ≤ l ≤ k. Then, we have

P

(
Sn ≤ 1

4
Rn

)
=

n∑
l=0

P

(
Sn ≤ 1

4
l, Rn = l

)
=

n∑
l=0

[
1
4 l
]

∑
m=0

(
1

2

)l ( l
m

)
P(Rn = l)

≤
n∑

l=0

exp

(
− 1

16
l

)
P(Rn = l) by the Chernoff bound

≤ P
(

Rn ≤ n
1

2dw

)
+ exp

(
− 1

16
n

1
2dw

)
P(Rn ≥ n

1
2dw )

≤ P

(
sup

0≤l≤n
d(X0, Xl) ≤ n

1
2dw

)
+ exp

(
− 1

16
n

1
2dw

)
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≤ c1 exp(−c2n
1
2 ) + exp

(
− 1

16
n

1
2dw

)
, by Lemma 3.2.

Using the Borel–Cantelli lemma, we complete the proof. ��
Proposition 5.2 Let (G, μ) be a weighted graph such that G is of bounded degree,
and set M = supv∈V (G) deg v(< ∞). Then, for all realization of {Yn}∞n=0 and all
n ≥ 0,

dZ2�G(Y0, Yn) ≤ (2M + 1)Rn .

To prove the above proposition, we need the following lemma. To exclude ambi-
guity, we first introduce some terminology. Let H be a connected subgraph of G.

– A path γ in H is a sequence of vertices v0v1 . . . vk such that vi ∈ V (H) and
vivi+1 ∈ E(H) for all i . For a path γ , we set V (γ ) = {v0, v1, . . . , vk}, and define
the length of γ as |γ | = k. e j = v jv j+1( j = 0, 1, . . . , k − 1) are said to be the
edges of γ .

– For the path γ given above and a given edge e ∈ E(G), we define F(γ, e) = {l ∈
{0, 1, . . . , k − 1} | el = e}.

– We denote −→e = −→uv if the edge e is directed from u to v and call −→e a directed
edge. For two directed edges −→e1 = −−→u1v1 and

−→e2 = −−→u2v2,
−→e1 and −→e2 are equal if

and only if u1 = u2, v1 = v2.

Lemma 5.3 Let G be a graph of bounded degree, M = supv∈V (G) deg v(< ∞) and
H be a finite connected subgraph of G.

(1) Let x, y ∈ V (H). Then, there exists a path γ = w0w1 · · · wk in H such that the
following hold.

(a) {w0, w1, . . . , wk} = V (H).
(b) Define ẽ j = w jw j+1 for j = 0, 1, · · · , k − 1. Then, � { j ∈ {0, 1, . . . , k − 1}

| ẽ j = ẽs
} ≤ 2 for all s = 0, 1, · · · , k − 1.

(c) w0 = x and wk = y.
(2) Let γ be as in (1). Then, |γ | ≤ 2M�V (H).

Proof (1) Take a path η = u0u1 · · · un in H such that u0 = x , un = y and
{u0, u1, · · · , un} = V (H). Define f j = u j u j+1. If each edge f j satisfies �{l ∈
{0, 1, · · · , n − 1} | fl = f j } ≤ 2 for j = 0, 1, . . . , n − 1, then η satisfies
the conditions (a), (b) and (c). So, we may assume that there exists f j such that
�{l ∈ {0, 1, · · · , n − 1} | fl = f j } ≥ 3. For such an edge f j , there exist at
least two elements s, t ∈ F(η, f j ) such that −−−−→usus+1 = −−−→ut ut+1. Let s < t . Define
ηst = usus+1us+2 . . . ut−1ut (see Fig. 3). Replace η = u0 . . . us−1ηst ut+1 . . . un by
η̃ = ũ0ũ1 . . . ũn = u0 . . . us−1η̃st ut+1 . . . un where η̃st = usut−1ut−2 . . . us+2. η̃ is
again a path, V (η̃) = V (H) and �F(η̃, f j ) = �F(η, f j ) − 2 (see Fig. 4). Repeat this
operation to f0, f1, . . . , fn−1 inductively until obtaining a path satisfying (a), (b) and
(c).

(2) Note that w j appears in V (γ ) at most 2 deg(w j ) times for each vertex w j ∈
V (H) . The conclusion can be verified easily. ��
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Fig. 3 An example of the
path η

1
2

3
4 5

6
us us+1

Fig. 4 An example of the
surgery of η

1

2 3

4us us+1

Remark 5.4 While the revision of this paper was under review, PierreMathieu pointed
us out a simpler proof of this lemma (therefore, a simpler proof of Proposition 5.2).
Take a spanning tree of V (H) and let γ ′ be an exploration path of the spanning tree
from x to x (i.e., a path that crosses each bond of the tree exactly twice). Then, one
can produce a desired path γ by an easy modification of γ ′.

Proof of Proposition 5.2 The graph G ′ = (V (G ′), E(G ′)), where V (G ′) = {X0, X1,

. . . , Xn} and E(G ′) = {Xi Xi+1 ∈ E(G) | 0 ≤ i ≤ n − 1}, is itself a connected
subgraph of G. So, applying Lemma 5.3 to G ′, we have

min{|γ | | γ is a path starting at X0, V (γ ) = {X0, X1, . . . , Xn}} ≤ 2M Rn .

By this and (5.1), we obtain dZ2�G(Y0, Yn) ≤ (2M + 1)Rn . ��

5.2 Proof of Theorem 2.4(I)

In this subsection, we prove the LILs for {Yn}n≥0 when ds/2 < 1.

Theorem 5.5 Assume that Assumption 2.2 (1), (2), (4) and ds/2 < 1 hold. Then, there
exist (non-random) constants c1, c2 > 0 such that the following hold:

lim sup
n→∞

Rn

nds/2(log log n)1−ds/2
= c1, Px -a.s. ∀x ∈ V (G),

lim inf
n→∞

Rn

nds/2(log log n)−ds/2
= c2, Px -a.s. ∀x ∈ V (G).

This is a discrete analog of [5, Propositions 4.9 and 4.10]. Note that the proof of
these propositions relies on the self-similarity of the process. Since our random walk
does not satisfy this property, we need non-trivial modifications for the proof. Quite
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recently, Kim et al. [12, Theorem 4.14] proved the LIL of the range for jump processes
without using self-similarity of the process. By easy modifications, we can apply their
argument to our random walk. The proof of Theorem 5.5 will be given in Appendix 1.

Proof of Theorem 2.4(I) Note that Assumption 2.2 (1) implies that G is of bounded
degree. Thus, by (5.1), Propositions 5.1, 5.2 and Theorem 5.5, we obtain (2.8) and
(2.9). ��

5.3 Proof of Theorem 2.4(II)

In this subsection, we prove the LILs for {Yn}n≥0 when ds/2 > 1.
First, we explain the notion of “uniform condition” defined in [14]. We define the

Dirichlet form E on the weighted graph (G, μ) by

E( f, f ) =
∑

x,y∈V (G)

( f (x) − f (y))2μxy,

for f : V (G) → R, and the effective resistance Reff(·, ·) as

Reff(A, B)−1 = inf{E( f, f ); f |A = 1, f |B = 0} (5.4)

for A, B ⊂ V (G) with A ∩ B = ∅. Denote ρ(x, n) = Reff({x}, B(x, n)c) for any
x ∈ V (G), n ∈ N and ρ(x) = limn→∞ ρ(x, n).

Definition 5.6 (Okamura [14]) We say that a weighted graph (G, μ) satisfies the
uniformcondition (U ) ifρ(x, n) converges uniformly in x ∈ V (G) toρ(x) as n → ∞.

For A ⊂ G, define

T +
A = inf{n ≥ 1 | Xn ∈ A}.

We write T +
x instead of T +

{x}.
The following is an improvement of [14, Corollary 2.3].

Proposition 5.7 Let (G, μ) be a weighted graph satisfying (U ) and (2.7) and assume
that G is of bounded degree. If supx∈V (G) Px (M < T +

x < ∞) = O(M−δ) for some
δ > 0, then

1 − F2 ≤ lim inf
n→∞

Rn

n
≤ lim sup

n→∞
Rn

n
≤ 1 − F1, Px -a.s.

for all x ∈ V (G), where F1 = inf x∈V (G) Px (T +
x < ∞)and F2 = supx∈V (G) Px (T +

x <

∞).

Remark 5.8 In [14, Corollary 2.3], a stronger condition supx Px (M < T +
x < ∞) =

O(M−1−δ) for some δ > 0 is imposed to prove 1 − F2 ≤ lim infn→∞ Rn
n . As we

prove below, it is enough to assume supx Px (M < T +
x < ∞) = O(M−δ).

123



86 J Theor Probab (2018) 31:68–92

Proof of Proposition 5.7 For the upper bound lim supn→∞ Rn
n ≤ 1 − F1, [14, Proof

of Corollary 2.3] goes through without any modifications.
Hence, we prove 1 − F2 ≤ lim infn→∞ Rn

n under our assumption. Fix ε > 0. By
[14, (2.5), (2.6), (2.7)] there exists a ∈ (0, 1) such that for any n and M we have

Px

(
Rn

n
≤ 1 − F2 − ε

)
≤ 2

ε
sup

x∈V (G)

Px (M < T +
x < ∞) + (M + 1)an/(M+1).

(5.5)

Choose k > 2/δ. Replacing n by nk in (5.5), we have

Px

(
Rnk

nk
≤ 1 − F2 − ε

)
≤ 2

ε
sup

x∈V (G)

Px (M < T +
x < ∞) + (M + 1)ank/(M+1)

= 2

ε
O(M−δ) + (M + 1)ank/(M+1).

Take M = M(n) = nk/2 − 1 and we have

Px

(
Rnk

nk
≤ 1 − F2 − ε

)
≤ 2

ε
O

(
1

nkδ/2

)
+ nk/2ank/2

.

Since kδ/2 > 1, we can apply the Borel–Cantelli lemma and we obtain

1 − F2 ≤ lim inf
n→∞

Rnk

nk
, Px -a.s.

For any m, choose n as nk ≤ m < (n + 1)k , and we then have

Rm

m
≥ nk

m

Rnk

nk
=
(

n

n + 1

)k
(n + 1)k

m

Rnk

nk
≥
(

n

n + 1

)k Rnk

nk
.

Take lim infm→∞ and we obtain 1 − F2 ≤ lim infn→∞ Rn
n . ��

Proof of Theorem 2.4(II) Note that the uniform condition (U ) is satisfied in our frame-
work by [14, Proposition 4.6].

Since ds/2 > 1, we have

Px (M < T +
x < ∞) ≤

∞∑
n=M+1

pn(x, x) ≤ c
∞∑

n=M+1

n−ds/2 = O(M1−ds/2). (5.6)

Note that Assumption 2.2 (1), (2) imply (2.1) and (2.7). By (5.6) and Proposition 5.7,
we have

1 − F2 ≤ lim inf
n→∞

Rn

n
≤ lim sup

n→∞
Rn

n
≤ 1 − F1, Px -a.s. (5.7)
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Define G(x, x) = ∑∞
n=0 pn(x, x), and F(x, x) = ∑∞

n=1 Px (T +
x = n) =

Px (T +
x < ∞). It is well known that

G(x, x) − 1 = F(x, x)G(x, x). (5.8)

Since ds/2 > 1, we have

sup
x∈V (G)

∞∑
n=0

pn(x, x) ≤ c
∞∑

n=1

1

nds/2
< ∞.

By this and (5.8), we have

F2 = sup
x

F(x, x) < 1. (5.9)

Thus, by (5.1), Propositions 5.1, 5.2, (5.7) and (5.9), we conclude that for all x ∈
V (Z2 � G),

0 <
1

4
(1 − F2) ≤ lim inf

n→∞
dZ2�G(Y0, Yn)

n

≤ lim sup
n→∞

dZ2�G(Y0, Yn)

n
≤ (2M + 1)(1 − F1) < ∞, Px-a.s.

Hence, we complete the proof. ��
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Appendix 1: Proof of Theorem 5.5

In this section, we will explain briefly the essential part of the proof of Theorem 5.5,
which is a discrete analog of [5, Propositions 4.9 and 4.10]. Note that the results in [5]
are for the range of Brownian motion on fractals, and the proof heavily relies on the
self-similarity of Brownianmotion. Quite recently, Kim et al. [12, Theorem 4.16] have
obtained the LIL for the range of jump processes on metric measure spaces without
using scaling law of the process. We employ the results and techniques in [5,7,12],
and prove the LIL for the range of the random walk without using scaling law of the
process or of the heat kernel.

The key to prove the LILs for the range of the process is to establish those for the
maximum of local times. We assume d f < dw and define the local times at x ∈ V (G)

up to the time n as
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Ln(x) =
{

1
m(x)

∑n−1
k=0 1{Xk=x} if n ≥ 1,

0 if n = 0,

and the maximum of the local times up to the time n as

L∗
n = sup

x∈V (G)

Ln(x).

Let θ = (dw − d f )/2. Recall (5.4) for the definition of the effective resistance,
and write R(x, y) := Reff({x}, {y}). Also, let R(i)(x, y) := i−(dw−d f ) R(x, y) for all
x, y ∈ V (G) and i > 0. We first cite a result from [7].

Lemma 5.9 ([7, Lemma 6.3 (a)]) Suppose Assumption 2.2 (1), (2), (4) and d f < dw.
Then, there exist constants c0, c1 > 0 such that

sup
i∈[1,∞)

sup
x,y,z∈V (G)

d(x,y)≤i

Pz

(
max

0≤k≤idw

i−(dw−d f )|Lk(x) − Lk(y)| ≥ λ

√
R(i)(x, y)

)

≤ c1 exp(−c0λ)

for all λ ≥ 0. In particular, there exist constants c1, c2 > 0 such that

sup
i∈[1,∞)

sup
x,y,z∈V (G)d(x,y)≤i

Pz

(
max

0≤k≤idw

|Lk(x) − Lk(y)| ≥ λ(id(x, y))θ
)

≤ c1 exp(−c2λ) (5.10)

for all λ ≥ 0.

Proof Note that by [4, Theorem 1.3], we have the following relation between the
resistance metric and the graph distance

R(x, y) � d(x, y)dw−d f , ∀x, y ∈ V (G),

which is a consequence ofAssumption 2.2 (1), (2), (4) andd f < dw. Thefirst statement
is the result of [7, Lemma 6.3 (a)] for the case of κ = T = 1. The second statement
can be proved by applying the above relation between the resistance metric and the
graph distance. ��

The next theorem is an analog of [12, Proposition 4.8]. Since our proof is different
from that of [12, Proposition 4.8] which uses a scaling argument, we give the proof
below.

Theorem 5.10 (Moduli of continuity of local times) Suppose Assumption 2.2 (1), (2),
(4) and d f < dw. Then, there exist constants c, C > 0 such that
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Po

⎛
⎜⎝ max

x,y∈Bd (o,κu1/dw )
d(x,y)≤L

max
0≤t≤u

|Lt (x) − Lt (y)| ≥ A

⎞
⎟⎠

≤ c
(u1/dwκ)2d f

L2d f
exp

(
− C A

(κu1/dw L)θ

)

for all o ∈ V (G), u ≥ 1, κ ≥ 1, 0 < L ≤ 2κu1/dw and A > 0.

Proof Let c1, c2 be as inLemma5.9. LetG(i) be a graphwithV (G(i)) = Bd(o, 6i) and
E(G(i)) = {(x, y) ∈ E(G) | x, y ∈ V (G(i))}. We denote by mi (·) = m(· ∩ V (G(i)))

the measure on G(i). Then, the following holds by the proof of [7, Theorem 6.1]; There
exists a positive constant c3 (not depending on i) such that

mi (Bd(x, r)) ≥ c3rd f (5.11)

for all i ∈ [ 16 ,∞), x ∈ V (G(i)) and r ∈ [1, 12i] (In fact, [7, Proof of Theorem 6.1]
discusses the case where i ≥ 1 is an integer, and we can obtain (5.11) for i ∈ [ 16 ,∞)

by adjusting the constant). Set 6i = κu1/dw . By (5.11), we have

min
x∈V (G(i))

mi (Bdi (x, r)) = min
x∈V (G(i))

mi (Bd(x, ir)) ≥ c3id f rd f ,

where di = 1
i di . We now apply a discrete version of Garsia’s Lemma (see [7, Propo-

sition 3.1, Remark 3.2]) to the graph G(i) with distance di = 1
i d, p(x) = xθ ,

ψ(x) = exp(c∗|x |)−1, and the function f (x) = 1

i2θ
Lt (x) on V (G(i)) for 0 ≤ t ≤ u,

where c∗ = 12−θ c2/2. For x, y ∈ V (G(i)) = Bd(o, 6i) with d(x, y) ≤ L and
t ∈ [0, u], we have

1

i2θ
|Lt (x) − Lt (y)| ≤ 4

c∗

∫ 2di (x,y)

0
4θ sθ−1 log

⎛
⎝ �

(
1

i2θ
Lt

)

c23i2d f s2d f /22d f
+ 1

⎞
⎠ ds

≤ 4θ+1

c∗

∫ 2L/ i

0
sθ−1 log

⎛
⎝ �̃

(
1

i2θ
Lu

)

c4i2d f s2d f
+ 1

⎞
⎠ ds, (5.12)

where c4 = c23/2
2d f and

�

(
1

i2θ
Lt

)
:=

∑

x,y∈V (G(i))

exp

(
c∗

|Lt (x) − Lt (y)|
(id(x, y))θ

)
m(x)m(y),

�̃

(
1

i2θ
Lu

)
:=

∑

x,y∈V (G(i))

exp

(
c∗

sup0≤t≤u |Lt (x) − Lt (y)|
(id(x, y))θ

)
m(x)m(y).
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Define v =
�̃
(

1
i2θ

Lu

)

c4i2d f s2d f
. Then, by (5.12), we have

1

i2θ
|Lt (x) − Lt (y)|

≤ 4θ+1

c∗
1

2d f

1

c
θ/2d f
4

1

iθ
�̃

(
1

i2θ
Lu

) θ
2d f
∫ ∞

b

(
1

v

)θ/(2d f )+1

log(v + 1)dv

= c5
1

iθ
�̃

(
1

i2θ
Lu

) θ
2d f
∫ ∞

b

(
1

v

)θ/(2d f )+1

log(v + 1)dv,

where c5 = 4θ+1

c∗
1

2d f

1

c
θ/2d f
4

, b =
�̃
(

1
i2θ

Lu

)

c6L2d f
, c6 = 22d f c4. By easy calculus we

have

∫ ∞

b

(
1

v

)θ/(2d f )+1

log(v + 1)dv ≤ log(b + 1) + 2d f /θ

θ
2d f

· bθ/2d f
.

Thus, we have

1

i2θ
|Lt (x) − Lt (y)| ≤ c7

(
L

i

)θ {
log(b + 1) + 2d f

θ

}
.

where c7 = c5(2d f /θ)c
θ

2d f
6 , so

Po

⎛
⎜⎝ max

x,y∈Bd (o,κu1/dw )
d(x,y)≤L

max
0≤t≤u

|Lt (x) − Lt (y)| ≥ A

⎞
⎟⎠

≤ Po

(
log(b + 1) ≥ A

c7(i L)θ
− 2d f

θ

)

≤ c8

⎛
⎝ Eo

[
�̃
(

1
i2θ

Lu

)]

c6L2d f
+ 1

⎞
⎠ exp

(
−c9

A

(i L)θ

)
.

By (5.10), noting c∗ = 12−θ c2/2, κ ≥ 1 and 6i = κu1/dw (in particular u ≤ (6i)dw ),
we have

Eo

[
�̃

(
1

i2θ
Lu

)]
=

∑

x,y∈V (G(i))

Eo

[
exp

(
c∗

sup0≤t≤u |Lt (x) − Lt (y)|
(id(x, y))θ

)]
m(x)m(y)

≤
∑

x,y∈V (G(i))

∑
n

exp(c∗(n + 1))Po

(
sup0≤t≤u |Lt (x) − Lt (y)|

(id(x, y))θ
≥ n

)
m(x)m(y)
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≤
∑

x,y∈V (G(i))

∑
n

⎧
⎪⎪⎨
⎪⎪⎩

sup
x ′,y′∈V (G)

d(x ′,y′)≤12i

Po

(
sup

0≤t≤(12i)dw

|Lt (x ′) − Lt (y′)| ≥ n

12θ
(12id(x ′, y′))θ

)
⎫
⎪⎪⎬
⎪⎪⎭

× exp (c∗(n + 1)) m(x)m(y)

≤
∑

x,y∈V (G(i))

∑
n

{
c1 exp

(
−c2

n

12θ

)}
exp(c∗(n + 1))m(x)m(y)

≤ c10i2d f ≤ c11u2d f /dwκ2d f .

Therefore, we have

Po

⎛
⎜⎝ max

x,y∈Bd (o,κu1/dw )
d(x,y)≤L

max
0≤t≤u

|Lt (x) − Lt (y)| ≥ A

⎞
⎟⎠

≤ c12

(
u2d f /dwκ2d f

L2d f
+ 1

)
exp

(
−c13

A

(κu1/dw L)θ

)
.

Since we are assuming L ≤ 2κu1/dw , we complete the proof. ��
Given Theorem 5.10, the following theorem can be proved similarly to [12, Proof

of Theorems 4.11 and 4.15]. (See also [5, Propositions 4.7 and 4.8]).

Theorem 5.11 (LILs for the local times) Suppose Assumption 2.2 (1), (2), (4) and
d f < dw. Then, there exist positive constants c1, c2 such that the following hold.

lim sup
n→∞

L∗
n

n1−ds/2(log log n)ds/2
= c1, Px -a.s. for ∀x ∈ V (G),

lim inf
n→∞

L∗
n

n1−ds/2(log log n)ds/2−1 = c2, Px -a.s. for ∀x ∈ V (G).

Given Theorem 5.11, the proof of Theorem 5.5 can be done similarly as in [12, The-
orem 4.16] by using the relation n =∑x∈Rn

Ln(x) ≤ Rn L∗
n (See also [5, Propositions

4.9 and 4.10]).
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