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1 Introduction

Given a real number, there are various ways to represent it as an expansion of digits,
such as continued fractions (seeKhintchine [20]) and series expansions (seeGalambos
[14]) including β-expansions [29], Lüroth expansions [22], Engel expansions [8] and
alternating Engel expansions [32]. Perhaps the most well-known representation of real
numbers is continued fractions. Over the last thirty years, considerable interests are
shown in various continued fraction expansions. Examples of such continued fraction
expansions include, for example, backward continued fractions [1], a/b-continued
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fractions [4], Oppenheim continued fractions [9], multidimensional continued frac-
tions [17], α-continued fractions [27] and Rosen continued fractions [5,31]. Most of
these continued fraction expansions have invariant and ergodic measures which are
absolutely continuous with respect to Lebesgue measure. Bymeans of the ergodic the-
ory and probability theory, some metric and statistical properties of these continued
fraction expansions have been well studied when the real number is sampled from the
uniform distribution in some interval. Besides, series expansions of real numbers also
gave rise to a fruitful study of their ergodic and statistical properties. The history of this
topic may begin with Borel, Sierpiński, Kuzmin, Lévy and continue with the seminal
work of the Hungarian school (Erdős, Turán, Rényi, Szüsz, Révész, Galambos). Such
a theory of using probability theory to answer questions of number theory is called the
probabilistic number theory; see Elliott [7], Rényi [30] and Tenenbaum [33]. Essen-
tially these classical studies for continued fractions and series expansionsmainly focus
on the distribution law, the law of large numbers, the central limit theorem and the
law of the iterated logarithm for the digit sequence occurring in these expansions.
However, it is worth pointing out that these classical limit theorems basically concern
that the averages taken over large samples converge to expected values in some sense,
but say little or nothing about the rate of convergence. One way to address this is the
theory of large deviations in modern probability theory.

Let (Ω,F ,P) be a probability space and {Xn : n ≥ 1} be a sequence of real-valued
random variables defined on (Ω,F ,P). A function I : R → [0,∞] is called a good
rate function if it is lower semi-continuous and has compact level sets. We say that
the sequence {Xn : n ≥ 1} satisfies a large deviation principle (LDP for short) with
speed n and good rate function I if for any Borel set Γ ,

− inf
x∈Γ ◦ I (x) ≤ lim inf

n→∞
1

n
logP(Xn ∈ Γ ) ≤ lim sup

n→∞
1

n
logP(Xn ∈ Γ ) ≤ − inf

x∈Γ

I (x),

where Γ ◦ and Γ denote the interior and the closure of Γ , respectively. We use the
notation E(ξ) to denote the expectation of a random variable ξ with respect to the
probability measure P. Gärtner–Ellis theorem (see Theorem 2.3.6 in [6]) tells us that
the rate function is often given in term of the Legendre transform of the pressure
function. That is, I (x) = supθ∈R {θx − Λ(θ)}, where the pressure function Λ(·) is
defined as

Λ(θ) := lim
n→∞

1

n
logE(enθ ·Xn ) (1.1)

for any θ ∈ R when it exists. For instance, we can study the probability that the
empiricalmeanof a sequence of randomvariables deviates away from its ergodicmean.
These probabilities are exponentially small in general and follow the large deviation
principle. Formally, there is no distinction between the large deviation principle and
the moderate deviation principle (MDP for short). Usually LDP characterizes the
convergence speed of the law of large numbers, while MDP describes the speed of
convergence between the law of large numbers and the central limit theorem. For
more details about large and moderate deviations, we refer the reader to Dembo and
Zeitouni [6], Touchette [34] and Varadhan [35].
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The theory of large deviations plays an important role in the framework of the sto-
chastic processes. Nowadays, it has been developed quite rapidly in different directions
andmany applications arise, for example, inmathematics, statistics, computer science,
physics, and in other fields. In this paper, we will investigate the large and moderate
deviation principles for Engel continued fractions (see Sect. 2) which is a new type
of continued fraction expansion with non-decreasing partial quotients. Recently, such
kinds of problems have been considered by Zhu [38], Hu [19], Fang [10,11], and
Fang and Wu [12]. Zhu studied the large deviations for Engel expansions (see [8]),
whose digit sequence is also non-decreasing. Erdős et al. [8] proved that the digit
sequence of Engel expansions forms a time-homogeneous Markov chain with explicit
transition probability functions. And they also gave an explicit computation for the
distribution of the digit and its asymptotic analysis. These properties play an important
role in Zhu’s work. However, the Engel continued fraction system is not Markovian
(see Remark 5). That is where the difficulty is. In [10], the author studied the large
deviations for modified Engel continued fractions. This new continued fraction system
is a small modification of Engel continued fractions, but its partial quotient sequence
is strictly increasing. In [11], the author established the large deviations for alternating
Engel expansions. This alternating expansion can be treated as the Engel expansion
with alternating terms while its digit sequence is strictly increasing. Although these
two expansions share the same classical limit theorems (see [36,37]), the author also
remarked that there is a difference between these expansions in the context of large
deviations. Here we remark that the rate functions of the large deviations in [10] and
[11] are same but different from Zhu’s. The authors in [12] considered two interesting
discrete Markov processes introduced by Williams [37], which share the same clas-
sical limit theorems but have a difference in the context of large deviations. Besides,
the theory of large deviations also has been applied to the analytic number theory;
see Féray et al. [13], Giuliano and Macci [16], Mehrdad and Zhu [25,26] and Radzi-
will [28]. It seems that the large and moderate deviations might have the potential to
become the useful tools in studying probabilistic and analytic number theory.

This paper is organized as follows. Section 2 is devoted to stating the large and
moderate deviation principles for Engel continued fractions. In Sect. 3, we recall the
basic properties of the Engel continued fraction expansion and show that the partial
quotient sequence of Engel continued fractions is not Markovian (see Remark 5) but
very close to a homogeneous Markov chain (see Proposition 3.4), which plays an
important role in our proofs. The proofs of our main results are given in Sect. 4.

2 Main Results

In 2002, Hartono et al. [18] introduced a new continued fraction algorithm with
non-decreasing partial quotients, called the Engel continued fraction (ECF, for short)
expansion. The name of this new continued fraction expansion is borrowed from the
classical Engel expansion (see Erdős et al. [8]). Now we give the algorithm of this
new continued fraction expansion. Let TE : (0, 1] −→ (0, 1] be the ECF map given
by
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TE x = 1
[ 1
x

] ·
(
1

x
−
[
1

x

])
,

where [x] denotes the greatest integer not exceeding x . Then every real number x ∈
(0, 1] can be uniquely written as

x = 1

b1(x) + b1(x)

b2(x) + . . . + bn−1(x)

bn(x) + . . .

, (2.2)

where b1(x) = [1/x] ∈ N and bn+1(x) = b1(T n
E x) with bn+1(x) ≥ bn(x) for all

n ≥ 1. The representation (2.2) is said to be the ECF expansion of x , and bn(x) are
called the partial quotients of the ECF expansion of x (n ∈ N). Sometimeswewrite the
form (2.2) as [[b1(x), b2(x), . . . , bn(x), . . .]]. Hartono et al. [18] studied the arithmetic
and ergodic properties of TE associated with this new continued fraction expansion.
Moreover, they showed that TE is ergodicwith respect toLebesguemeasure and proved
that TE has no finite invariant measure equivalent to the Lebesgue measure, but has
infinitely many σ -finite invariant measures. This new class of continued fractions can
be applied to designing a pseudorandom bit generator (PRBG) and proposing a new
scheme for image cryptosystems; see Masmoudi et al. [23,24].

Now we denote (Ω,F ,P) by the probability space, where Ω = (0, 1], F is the
Borel σ -algebra on (0, 1] and P denotes the Lebesgue measure on (0, 1]. Kraaikamp
and Wu [21] proved a strong law of large numbers for the partial quotient sequence
{bn : n ≥ 1}, i.e., for P-almost surely x ∈ (0, 1],

lim
n→∞

1

n
log bn(x) = 1.

This implies that the probability of the event that log bn(x)
n deviates away from its

ergodic mean 1 tends to zero as n goes to infinity. However, it does not give this decay
a speed. This leads to the study of large deviations for the ECF expansion.

Theorem 2.1 Let {bn : n ≥ 1} be the partial quotient sequence of the ECF expansion.

Then
{
log bn−n

n : n ≥ 1
}
satisfies a LDP with speed n and good rate function

I (x) =

⎧
⎪⎨

⎪⎩

x − log(x + 1), if x > −
√
5−1
2 ;

−
√
5+1
2 (x + 1) + 2 log

√
5+1
2 , if − 1 ≤ x ≤ −

√
5−1
2 ;

+∞, otherwise.

(2.3)

Remark 1 As we have pointed out at the end of introduction, the rate functions of the
large deviations in [10] and [11] are same but different from Zhu’s and also different
from ours. What is interesting though, is that the rate functions of the large deviations
for Engel continued fractions and Engel expansions are similar in structure (comparing
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our Theorem 2.1 with Theorem 1.2 of Zhu [38]). We think the main reason is that the
digit sequence of modified Engel continued fractions or alternating Engel expansions
is strictly increasing, while the digit sequence of Engel expansions or Engel continued
fractions is non-decreasing (see Remark 6 for more details).

Remark 2 If we consider the large deviations for the sequence
{
log bn−n

n : n ≥ 1
}
with

b1 ≥ b (b ∈ N), we will obtain that it also satisfies a LDP with speed n and good rate
function

Ib(x) =

⎧
⎪⎨

⎪⎩

x − log(x + 1), if x > −1 + ξ−1
b ;

(1 − ξb)(x + 1) + log ξb, if − 1 ≤ x ≤ −1 + ξ−1
b ;

+∞, otherwise,

where ξb = (b2 + 2+ √
b2 + 4b)/(2b). This indicates that the initial value of b1 will

affect the rate function of large deviations for the ECF expansion. Moreover, it is easy
to check I1(x) = I (x) by (2.3) and Ib(x) → I∞(x) as b → ∞, where I∞ is defied
as

I∞(x) =
{
x − log(x + 1), if x > −1;
+∞, otherwise.

Here we emphasize that I∞ is the rate function of large deviations for modified ECF
expansions [10] or alternating Engel expansions [11] or the empirical mean of inde-
pendent and identically distributed exponential random variables with parameter 1
(see [6, Exercise 2.2.23] and [34, Example 3.2]).

As an application of Theorem 2.1, we obtain that the Lebesgue measure of the set
of points x ∈ (0, 1] for which log bn(x)/n deviates away from its ergodic mean 1
decays to zero exponentially as n tends to infinity.

Corollary 1 For any ε > 0, there exist two positive constants α and β (both only
depending on ε) such that for all n ≥ 1, we have

P
{
x ∈ (0, 1] :

∣
∣∣∣
log bn(x)

n
− 1

∣
∣∣∣ ≥ ε

}
≤ αe−βn .

Remark 3 By Borel–Cantelli lemma, we deduce easily that this result implies the
strong law of large numbers for the sequence of partial quotients of ECF expansions
obtained by Kraaikamp and Wu [21] in 2004.

In 2007, Fan et al. [9] established a central limit theorem for the partial quotient
sequence {bn : n ≥ 1}, which tells us by how much the quantity log bn(x) normally
exceeds its ergodic mean 1, namely by an order of

√
n. That is, for every y ∈ R,

lim
n→∞P

{
x ∈ (0, 1] : log bn(x) − n ≥ √

ny
} = 1 − 1√

2π

∫ y

−∞
e−t2/2dt.
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On the other hand, in Corollary 1 we have seen that for any ε > 0, the probability

P
{
x ∈ (0, 1] : log bn(x) − n ≥ nε

}

decays to zero exponentially as n tends to infinity. These two results imply that for
any positive sequence an with

√
n 	 an 	 n, we still have

P
{
x ∈ (0, 1] : log bn(x) − n ≥ an

}

tends to zero as n goes to infinity. However, neither the above central limit theorem
nor the Theorem 2.1 tells us how fast this convergence is. This question is in the remit
of the moderate deviation principle for ECF expansions stated below.

Theorem 2.2 Let {bn : n ≥ 1} be the partial quotient sequence of the ECF expansion
and {an : n ≥ 1} be a positive sequence satisfying

an → ∞,
an√
n log n

→ ∞ and
an
n

→ 0. (2.4)

Then
{
log bn−n

an
: n ≥ 1

}
satisfies an MDP with speed n−1a2n and good rate function

J (x) = x2/2 for any x ∈ R.

Remark 4 We may obtain this MDP result if the second condition of an in (2.4) is
replaced by an/

√
n → ∞ as n → ∞. However, we need the condition an√

n log n
→ ∞

to avoid some technical difficulties. The main reason is that we cannot find some finer
estimates when we make use of the Gärtner–Ellis theorem. For this reason, we believe
that

lim inf
n→∞

log bn(x) − n√
2n log log n

= −1 and lim sup
n→∞

log bn(x) − n√
2n log log n

= 1

hold for P-almost surely x ∈ (0, 1] since the law of the iterated logarithms can be
obtained by using some moderate deviation inequalities (see [2,3,15]).

As an application of Theorem 2.2, we immediately get the following corollary.

Corollary 2 Let {bn : n ≥ 1} be the partial quotient sequence of the ECF expansion

and an = n p with p ∈ (1/2, 1). Then
{
log bn−n

n p : n ≥ 1
}
satisfies an MDP with speed

n2p−1 and good rate function J (x) = x2/2 for any x ∈ R.

3 Preliminary

In this section, we recall some definitions and several arithmetic and statistical prop-
erties of the ECF expansion. We first give an elementary arithmetic property of the
ECF expansion in representation of real numbers, which is obtained by Hartono et al.
[18].
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Proposition 3.1 ([18, Theorem 2.1]) Let x ∈ (0, 1] be a real number. Then x has a
finite ECF expansion (i.e., T n

E x = 0 for some n ≥ 1) if and only if x is rational.

Definition 3.1 An n-block (b1, b2, . . . , bn) is said to be admissible for ECF expan-
sions if there exists x ∈ (0, 1] such that b j (x) = b j for all 1 ≤ j ≤ n. An infinite
sequence (b1, b2, . . . , bn, . . .) is called an admissible sequence if (b1, b2, . . . , bn) is
admissible for any n ≥ 1.

The following proposition, due to Fan et al. [9], gives a characterization of all
admissible sequences occurring in the ECF expansion.

Proposition 3.2 ([9, Proposition 2.2]) A sequence of positive integers (b1, b2, . . . ,
bn, . . .) is admissible for ECF expansions if and only if for all n ≥ 1,

bn+1 ≥ bn .

Definition 3.2 Let (b1, b2, . . . , bn) be an admissible sequence. We call the set

B(b1, b2, . . . , bn) = {x ∈ (0, 1] : b1(x) = b1, b2(x) = b2, . . . , bn(x) = bn
}

the nth order cylinder. In other words, it is the set of points beginning with
(b1, b2, . . . , bn) in their ECF expansions.

The following proposition is about the structure and the length of cylinders, which
has been obtained in [18] (see also [9]).

Proposition 3.3 Let (b1, b2, . . . , bn) be an admissible sequence. Then the nth order
cylinder B(b1, b2, . . . , bn) is an interval with two endpoints

[[b1, . . . , bn−1, bn]] and [[b1, . . . , bn−1, bn + 1]].

Hence that for all n ≥ 1,

P(B(b1, b2, . . . , bn)) =
∏n−1

i=1 bi
Qn(Qn + Qn−1)

, (3.5)

where the quantity Qn satisfies the recursive formula Qn = bnQn−1 + bn−1Qn−2
under the conventions Q−1 = 0 and Q0 = 1.

Remark 5 The Markov property states that the distribution of the forthcoming state
depends only on the current state and does not depend on the previous ones. So
the partial quotient sequence {bn : n ≥ 1} does not form a homogeneous Markov
chain. In fact, by (3.5), we obtain that P(B(1, 1, 2)) = 1/35, P(B(1, 2, 2)) =
1/44, P(B(2, 2, 2)) = 1/88, P(B(1, 1, 2, 2)) = 1/133, P(B(1, 2, 2, 2)) = 1/165,
P(B(2, 2, 2, 2)) = 1/330 and hence that

P(b4 = 2 | b3 = 2, b2 = 1, b1 = 1) = 5/19 
= 972/3667 = P(b4 = 2 | b3 = 2).
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Although the partial quotient sequence {bn : n ≥ 1} does not form a homogeneous
Markov chain, we have

Proposition 3.4 Let {bn : n ≥ 1} be the partial quotient sequence of the ECF expan-
sion. Then for any k ≥ j ≥ 1,

P(b1 = j) = 1

j ( j + 1)
(3.6)

and the conditional probabilities

j

k(k + 2)
≤ P(bn+1 = k | bn = j) ≤ j + 1

k(k + 1)
for all n ≥ 1. (3.7)

Proof Equation (3.6) is obvious by taking n = 1 in (3.5). Now we prove the inequal-
ities (3.7). For two integers 1 ≤ a ≤ b and real number 0 ≤ y < 1, we define

Φ(a, b, y) = a(1 + y)

(b + ay)(b + 1 + ay)
.

For any n ∈ N and admissible sequence (b1, . . . , bn, dn+1), by (3.5), we deduce that

P(B(b1, . . . , bn, bn+1))

P(B(b1, . . . , bn))
= bnQn(Qn + Qn−1)

Qn+1(Qn+1 + Qn)
= Φ(bn, bn+1, yn), (3.8)

where yn = Qn−1/Qn ≥ 0 and the last equality is from the recursive formula Qn =
bnQn−1 + bn−1Qn−2. This recursive formula of Qn indicates that 0 ≤ bn yn ≤ 1. So,

Φ(bn, bn+1, yn) ≤ bn + 1

bn+1(bn+1 + 1)
.

Since bn+1 ≥ bn and 0 ≤ bn yn ≤ 1, we obtain that

Φ(bn, bn+1, yn) ≥ bn
bn+1(bn+1 + 2)

.

Combing these with (3.8), we have that

bn
bn+1(bn+1 + 2)

≤ P(B(b1, . . . , bn, bn+1))

P(B(b1, . . . , bn))
≤ bn + 1

bn+1(bn+1 + 1)
.

Taking summations for all admissible sequences (b1, . . . , bn), the inequalities (3.7)
are established. ��
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4 Proofs of Main Results

In this section, we will give the proof of Theorems 2.1 and 2.2. To do this, we first give
a simple but useful lemma, which states roughly that the rate of growth for a finite
sum of sequences equals the maximal rate of growth of the summands.

Lemma 4.1 Let m ≥ 2 be an integer and {cn}n≥1 be a sequence satisfying cn → ∞
as n → ∞. Then

lim sup
n→∞

1

cn
log

(
m∑

k=1

d(k)
n

)

= max
1≤k≤n

lim sup
n→∞

1

cn
log d(k)

n ,

where {d(1)
n }n≥1, . . . , {d(m)

n }n≥1 are nonnegative sequences.

Proof Let m ≥ 2 be an integer. For any n ≥ 1, since

0 ≤ log

(
m∑

k=1

d(k)
n

)

− max
1≤k≤n

log d(k)
n ≤ logm,

we deduce that

lim sup
n→∞

1

cn
log

(
m∑

k=1

d(k)
n

)

= lim sup
n→∞

1

cn
max
1≤k≤n

log d(k)
n = max

1≤k≤n
lim sup
n→∞

1

cn
log d(k)

n .

��
Lemma 4.2 Let θ < 1 be a real number. Then for any j > 1, we have

∞∑

k= j

j

k(k + 2)

(
k

j

)θ

≥ j

j + 2
· 1

1 − θ

and

∞∑

k= j

j + 1

k(k + 1)

(
k

j

)θ

≤
(
1 + 1

j

)
·
(
1 − 1

j

)θ−1

· 1

1 − θ
.

Proof Let θ < 1 be a real number. For any j > 1, we obtain that

∞∑

k= j

1

k2−θ
≥
∫ ∞

j

1

x2−θ
dx = 1

1 − θ
· jθ−1. (4.9)

Since
kθ

k(k + 2)
= 1

k2−θ
· k

k + 2
and

k

k + 2
≥ j

j + 2
for any k ≥ j,
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we have that

∞∑

k= j

j

k(k + 2)

(
k

j

)θ

= j

jθ
·

∞∑

k= j

kθ

k(k + 2)
≥ j

jθ
· j

j + 2
·

∞∑

k= j

1

k2−θ
.

Combing this with (4.9), we deduce that

∞∑

k= j

j

k(k + 2)

(
k

j

)θ

≥ j

jθ
· j

j + 2
· 1

1 − θ
· jθ−1 = j

j + 2
· 1

1 − θ
.

Notice that for any j > 1,

∞∑

k= j

kθ

k(k + 1)
≤

∞∑

k= j

1

k2−θ
≤
∫ ∞

j−1

1

x2−θ
dx = 1

1 − θ
· ( j − 1)θ−1,

we know that

∞∑

k= j

j + 1

k(k + 1)

(
k

j

)θ

= j + 1

jθ
·

∞∑

k= j

kθ

k(k + 1)
≤
(
1 + 1

j

)
·
(
1 − 1

j

)θ−1

· 1

1 − θ
.

��

4.1 Proof of Large Deviation Principle

For any m, n ∈ N, we define

n,m = {(b1, . . . , bn−1,m) : (b1, . . . , bn−1,m) is admissible}

and

n,≤m = {(b1, . . . , bn−1, j) : (b1, . . . , bn−1, j) is admissible for all 1 ≤ j ≤ m} .

We believe that the following result is known in the combinatorial theory, while, to
our knowledge, we cannot find its proof in any book about combination. For the
completeness of this paper, we give its proof here using the mathematical induction.

Lemma 4.3 For any m, n ∈ N,

�n,m = Cm−1
n+m−2 and �n,≤m = Cm−1

n+m−1,

where � denotes the number of elements of a finite set and Cm
n means the number of

possible combinations of m objects from a set of n objects.
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Proof We first prove the first formula by induction and then prove the second for-
mula. In view of Proposition 3.2, we know that the set n,1 only has one element as
(1, 1, . . . , 1). So, �n,1 = 1. It is easy to check that the set n,2 has n elements like
(1, . . . , 1, 2), (1, . . . , 2, 2), . . . , (2, . . . , 2, 2). Thus, �n,2 = n. These indicate that
the formula �n,m = Cm−1

n+m−2 is true for m = 1 and 2. Now we assume that this
formula is true for all m ≤ k, i.e.,

�n,1 = C0
n−1, �n,2 = C1

n , �n,3 = C2
n+1, . . . , �n,k = Ck−1

n+k−2.

For m = k + 1, notice that

�n,k+1 = �n−1,1 + �n−1,2 + �n−1,3 + · · · + �n−1,k + �n−1,k+1,

we obtain that

�n,k+1 − �n−1,k+1 = �n−1,1 + �n−1,2 + �n−1,3 + · · · + �n−1,k

= C0
n−1 + C1

n + C2
n+1 + · · · + Ck−1

n+k−3

= C0
n + C1

n + C2
n+1 + · · · + Ck−1

n+k−3

= C1
n+1 + C2

n+1 + · · · + Ck−1
n+k−3

= · · ·
= Ck−1

n+k−2, (4.10)

where third equality follows from C0
n−1 = C0

n = 1 and the forth equality is from the

basic combination equation C j
n + C j+1

n = C j+1
n+1 . Being similar to (4.10), we deduce

that

�n−1,k+1 − �n−2,k+1 = Ck−1
n+k−3, . . . , �2,k+1 − �1,k+1 = Ck−1

k .

Since C j
n = Cn− j

n , we have that

�n,k+1 = Ck−1
n+k−2 + Ck−1

n+k−3 + · · · + Ck−1
k+1 + Ck−1

k + �1,k+1

= Cn−1
n+k−2 + Cn−2

n+k−3 + · · · + C2
k+1 + C1

k + 1

= Cn−1
n+k−2 + Cn−2

n+k−3 + · · · + C2
k+1 + C1

k+1

= · · ·
= Cn−1

n+k−1 = Ck
n+k−1,

where the second equality follows from1,k+1 = {(k+1)}with only one element and
the third equality is also from the basic combination equation C j

n + C j+1
n = C j+1

n+1 .

This is to say the formula �n,m = Cm−1
n+m−2 is also true for m = k + 1. By induction,

we obtain the desired result. Now we are ready to prove �n,≤m = Cm−1
n+m−1. In fact,

it follows from the first result that
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�n,≤m = �n,1 + �n,2 + �n,3 + · · · + �n,m

= C0
n + C1

n+1 + C2
n+2 + · · · + Cm−1

n+m−2

= C1
n+1 + C2

n+2 + · · · + Cm−1
n+m−2

= · · ·
= Cm−1

n+m−1.

��
Lemma 4.4 Let {bn : n ≥ 1} be the partial quotient sequence of the ECF expansion.
Then for any n ∈ N and j > 1,

P(bn = 1) ≥ A−1 ·
(√

5 + 1

2

)−2n

and P(bn ≤ j) ≤ A · C j−1
n+ j−1 ·

(√
5 + 1

2

)−2n

,

where A > 1 is an absolute constant and the combinatorial number Cm
n is as defined

in Lemma 4.3.

Proof By the non-decreasing property of bn , it follows from Proposition 3.3 that

P(bn = 1) = P(B(1, 1, . . . , 1︸ ︷︷ ︸
n

)) = 1

Qn(Qn + Qn−1)
, (4.11)

where Qn satisfies the recursive formula Qn = Qn−1 + Qn−2 under the conventions
Q−1 = 0 and Q0 = 1. This indicates that {Qn}n≥0 is a sequence of Fibonacci numbers.
So,

Qn = 1√
5

·
⎛

⎝

(
1 + √

5

2

)n+1

−
(
1 − √

5

2

)n+1
⎞

⎠ .

Since −1 ≤ ( 1−
√
5

1+√
5
)n ≤

√
5−1√
5+1

for any n ≥ 1, it is easy to check that

2

5 + √
5

·
(
1 + √

5

2

)n+1

≤ Qn ≤ 2√
5

·
(
1 + √

5

2

)n+1

.

Combing this with (4.11), notice that Qn ≥ Qn−1, we have that

A−1 ·
(√

5 + 1

2

)−2n

≤ 1

2Q2
n

≤ P(bn = 1) ≤ 1

Q2
n

= A ·
(√

5 + 1

2

)−2n

, (4.12)

where A > 1 is an absolute constant. Since

{x ∈ [0, 1) : bn(x) ≤ j} =
⋃

(b1,b2,...,bn)∈n,≤ j

B(b1, b2, . . . , bn)
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and for any (b1, b2, . . . , bn) ∈ n,≤ j ,

P(B(b1, b2, . . . , bn) ≤ P(B(1, 1, . . . , 1︸ ︷︷ ︸
n

)),

combing these with Lemma 4.3 and (4.12), we deduce that

P {x ∈ [0, 1) : bn(x) ≤ j} ≤ �n,≤ j · P(B(1, 1, . . . , 1︸ ︷︷ ︸
n

))

≤ A · C j−1
n+ j−1 ·

(√
5 + 1

2

)−2n

.

To prove Theorem 2.1, we also need the following Lemma 4.5. ��
Lemma 4.5 Let {bn : n ≥ 1} be the partial quotient sequence of the ECF expansion.
Then

lim
n→∞

1

n
logE(bθ

n) =
{
max

{
−2 log

√
5+1
2 , log 1

1−θ

}
, if θ < 1;

+∞, if θ ≥ 1.

Proof Let θ ≥ 1. Notice that bn+1 ≥ bn with b1 ≥ 1 for all n ≥ 1, Eq. (3.6) yields
that for any n ≥ 1,

E(bθ
n) ≥ E(bθ

1) =
∞∑

k=1

P(b1 = k) · kθ =
∞∑

k=1

kθ

k(k + 1)
= +∞.

Therefore, lim
n→∞

1
n log E(bθ

n) = +∞.

In the following, we always assume that θ < 1. Since

lim
j→∞

j

j + 2
= lim

j→∞

(
1 + 1

j

)
·
(
1 − 1

j

)θ−1

= 1,

Proposition 3.8 and Lemma 4.2 imply that for any 0 < ε < 1, there exists positive
integer N = N (ε) such that for all j > N ,

1 − ε

1 − θ
≤

∞∑

k= j

P(bn+1 = k | bn = j) ·
(
k

j

)θ

≤ 1 + ε

1 − θ
. (4.13)

By the definition of expectation, we know that

E(bθ
n) =

∞∑

k=1

P(bn = k) · kθ =
N∑

k=1

P(bn = k) · kθ +
∞∑

k=N+1

P(bn = k) · kθ .
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We will prove

lim
n→∞

1

n
logE(bθ

n) = max

{

−2 log

√
5 + 1

2
, log

1

1 − θ

}

.

The proof is divided into two parts:
Part 1: Lower bound

• By (4.12), it is clear to see that for any n ≥ 1,

N∑

k=1

P(bn = k) · kθ ≥ P(bn = 1) = P(B(1, 1, . . . , 1)) ≥ A−1 ·
(√

5 + 1

2

)−2n

.

• For any n ≥ 1, by the definition of conditional probability, we deduce that

∞∑

k=N+1

P(bn = k) · kθ =
∞∑

k=N+1

k∑

j=1

P(bn = k | bn−1 = j) · P(bn−1 = j) · kθ

=
N∑

j=1

P(bn−1 = j) · jθ

·
∞∑

k=N+1

P(bn = k | bn−1 = j) ·
(
k

j

)θ

+
∞∑

j=N+1

P(bn−1 = j) · jθ

·
∞∑

k= j

P(bn = k | bn−1 = j) ·
(
k

j

)θ

, (4.14)

where the second equality is obtained by inverting the order of summations. Since
the first term of the second equality in (4.14) is nonnegative, we have that

∞∑

k=N+1

P(bn = k) · kθ ≥
∞∑

j=N+1

P(bn−1 = j) · jθ

·
∞∑

k= j

P(bn = k | bn−1 = j) ·
(
k

j

)θ

≥ 1 − ε

1 − θ
·

∞∑

j=N+1

P(bn−1 = j) · jθ ,
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where the last inequality follows from (4.13). Repeating the above procedure
(n − 1) times, we obtain that

∞∑

k=N+1

P(bn = k) · kθ ≥ 1 − ε

1 − θ
·

∞∑

j=N+1

P(bn−1 = j) · jθ

≥ · · ·

≥
(
1 − ε

1 − θ

)n−1

·
∞∑

j=N+1

P(b1 = j) · jθ

:= M1 ·
(
1 − ε

1 − θ

)n−1

,

where M1 := M1(ε, θ) = ∑∞
j=N+1

jθ

j ( j+1) is a positive constant since θ < 1 and
it also only depends on ε and θ .
Therefore,

E(bθ
n) ≥ A−1 ·

(√
5 + 1

2

)−2n

+ M1 ·
(
1 − ε

1 − θ

)n−1

.

In view of Lemma 4.1, we deduce that

lim inf
n→∞

1

n
logE(bθ

n) ≥ lim inf
n→∞

1

n
log

⎛

⎝A−1 ·
(√

5 + 1

2

)−2n

+M1 ·
(
1 − ε

1 − θ

)n−1
⎞

⎠

= max

{

−2 log

√
5 + 1

2
, log

1 − ε

1 − θ

}

.

Since 0 < ε < 1 is arbitrary, we get

lim inf
n→∞

1

n
logE(bθ

n) ≥ max

{

−2 log

√
5 + 1

2
, log

1

1 − θ

}

.

Part 2: Upper bound Let γ = ((
√
5 + 1)/2)−2.

• In view of Lemma 4.4, we have that

N∑

k=1

P(bn = k) · kθ ≤ N · P(bn ≤ N ) ≤ N · A · CN−1
n+N−1 · γ n .

• We first estimate the first term of the second equality in (4.14) and then give an
upper bound for the second term. Notice that

∑N
j=1 P(bn−1 = j) = P(bn−1 ≤

N ) ≤ A · CN−1
n+N−2 · γ n−1, we know that
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N∑

j=1

P(bn−1 = j) · jθ ·
∞∑

k=N+1

P(bn = k | bn−1 = j) ·
(
k

j

)θ

≤
N∑

j=1

P(bn−1 = j) ·
∞∑

k=N+1

j + 1

k(k + 1)
· kθ

≤ (N + 1) ·
N∑

j=1

P(bn−1 = j) ·
∞∑

k=N+1

kθ

k(k + 1)

≤ M1 · (N + 1) · A · CN−1
n+N−2 · γ n−1 := M2 · CN−1

n+N−2 · γ n−1, (4.15)

where the first inequality is from Proposition 3.4, the second inequality is from
j ≤ N and the constant M2 = M1 · (N +1) · A only depends on ε and θ . It follows
from the right inequality in (4.13) that

∞∑

j=N+1

P(bn−1 = j) · jθ ·
∞∑

k= j

P(bn = k | bn−1 = j) ·
(
k

j

)θ

≤ 1 + ε

1 − θ
·

∞∑

j=N+1

P(bn−1 = j) · jθ .

Combing this with (4.14) and (4.15), we obtain that

∞∑

k=N+1

P(bn = k) · kθ ≤M2 · CN−1
n+N−2 · γ n−1 + 1 + ε

1 − θ
·

∞∑

j=N+1

P(bn−1 = j) · jθ .

(4.16)

Similarly, we have that

∞∑

j=N+1

P(bn−1 = j) · jθ ≤M2 · CN−1
n+N−3 · γ n−2+ 1 + ε

1 − θ
·

∞∑

j=N+1

P(bn−2 = j) · jθ .

In view of (4.16), we deduce that

∞∑

k=N+1

P(bn = k) · kθ

≤ M2 · CN−1
n+N−2 · γ n−1 + 1 + ε

1 − θ
· M2 · CN−1

n+N−3 · γ n−2 +
(
1 + ε

1 − θ

)2

·
∞∑

j=N+1

P(bn−2 = j) · jθ
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≤ M2 · CN−1
n+N−2 ·

(
γ n−1 + γ n−2 · 1 + ε

1 − θ

)
+
(
1 + ε

1 − θ

)2

·
∞∑

j=N+1

P(bn−2 = j) · jθ , (4.17)

where the last inequality is from CN−1
n+N−3 ≤ CN−1

n+N−2. Iterating the process in
(4.17), we know that

∞∑

k=N+1

P(bn = k) · kθ ≤ M2 · CN−1
n+N−2 ·

n−2∑

m=0

γ n−m
(
1 + ε

1 − θ

)m

+ M1 ·
(
1 + ε

1 − θ

)n−1

≤ M2 · CN−1
n+N−2 ·

n−1∑

m=0

γ n−m
(
1 + ε

1 − θ

)m

(4.18)

where the first inequality is from the definition ofM1 and the last inequality follows
from CN−1

n+N−2 ≥ 1 and the definition of M2. It is not difficult to check that the
geometric series

n−1∑

m=0

γ n−m
(
1 + ε

1 − θ

)m
= M3 ·

((
1 + ε

1 − θ

)n

− γ n
)

,

where M3 is the constant only depending on ε and θ . Combing this with (4.18),
we have that

∞∑

k=N+1

P(bn = k) · kθ ≤ M · CN−1
n+N−2 ·

((
1 + ε

1 − θ

)n
− γ n

)
,

where M = M2 · M3 is a constant only depending on ε and θ .
Therefore,

E(bθ
n) =

N∑

k=1

P(bn = k) · kθ +
∞∑

k=N+1

P(bn = k) · kθ

≤ N · A · CN−1
n+N−1 · γ n + M · CN−1

n+N−2 ·
((

1 + ε

1 − θ

)n

− γ n
)

= H(n) ·
(√

5 + 1

2

)−2n

+ M · CN−1
n+N−2 ·

(
1 + ε

1 − θ

)n
,
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where CN−1
n+N−2 and H(n) are both polynomials of n. Consequently, we deduce

that

lim sup
n→∞

1

n
logE(bθ

n)

≤ lim sup
n→∞

1

n
log

⎛

⎝H(n) ·
(√

5 + 1

2

)−2n

+ M · CN−1
n+N−2 ·

(
1 + ε

1 − θ

)n
⎞

⎠

= max

{

−2 log

√
5 + 1

2
, log

1 + ε

1 − θ

}

,

where the last equality is obtained by observing that CN−1
n+N−2 and H(n) are both

polynomials of n. Let ε → 0+, we obtain that

lim sup
n→∞

1

n
logE(bθ

n) ≤ max

{

−2 log

√
5 + 1

2
, log

1

1 − θ

}

.

��
Remark 6 Since the digit sequence {qn : n ≥ 1} (the notation follows Zhu [38]) of
Engel expansions is also non-decreasing and forms a homogeneousMarkov chain (see
Erdős et al. [8]), we know that the similar result of Lemma 4.4 in the setting of Engel
expansions can be obtained

P(qn = 2) = 2−n and P(qn ≤ j) ≤ C j−1
n+ j−1 · 2−n . (4.19)

The above method in Lemma 4.5 immediately yields that

lim
n→∞

1

n
logE(qθ

n ) =
{
max

{
− log 2, log 1

1−θ

}
, if θ < 1;

+∞, if θ ≥ 1,

where the quantity log 2 is from (4.19). This limit plays an important role in the proof
of Zhu (see [38, Lemma 1.1]). However, the digit sequence {dn : n ≥ 1} of modified
Engel continued fractions or alternating Engel expansions is increasing. The similar
arguments of Lemmas 4.4 and 4.5 imply that

P(dn = n) = 1

n! and P(qn ≤ j) ≤ C j−1
n+ j−1 · 1

n! .

Note that lim
n→∞(− log n!)/n = −∞, so we have

lim
n→∞

1

n
logE(dθ

n ) =
{
log
(

1
1−θ

)
, if θ < 1;

+∞, if θ ≥ 1.
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Combing this with Gärtner–Ellis theorem, we obtain the large deviations for modified
Engel continued fractions and alternating Engel expansions (see [10] and [11]).

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1 For any θ ∈ R, we define the function as

Λn(θ) = logE
(
exp

(
log bn − n

n
· θ

))
.

By Lemma 4.5, we know that the pressure function is given as

Λ(θ) = lim
n→∞

1

n
Λn (nθ) =

⎧
⎪⎨

⎪⎩

−θ − 2 log
√
5+1
2 , if θ ≤ −

√
5+1
2 ;

−θ − log(1 − θ), if −
√
5+1
2 < θ < 1;

+∞, if θ ≥ 1.

By Gärtner–Ellis theorem (see [6, Theorem 2.3.6]), we obtain the sequence{
log bn−n

n : n ≥ 1
}
satisfies a LDP with speed n and good rate function

I (x) = sup
θ∈R

{θx − Λ(θ)} for all x ∈ R.

Now we show that I (x) is the same as (2.3). Notice that θx − Λ(θ) = −∞ for all
x ∈ R when θ ≥ 1, so we only need to compute the followings

Φ(x) = sup
−

√
5+1
2 <θ<1

{
θx + θ + log(1 − θ)

}

and

�(x) = sup
θ≤−

√
5+1
2

{

θx + θ + 2 log

√
5 + 1

2

}

.

Thus, I (x) = max{Φ(x),�(x)} for all x ∈ R. We first give that

Φ(x) =
{
x − log(x + 1), if x > −

√
5−1
2 ;

−
√
5+1
2 (x + 1) + 2 log

√
5+1
2 , if x ≤ −

√
5−1
2 .

Let f (θ) = θx + θ + log(1 − θ) for any −(
√
5 + 1)/2 < θ < 1. It is clear to check

f is strictly concave and that θ = x/(x + 1) is the unique maximal point of it. From
the inequalities −(

√
5 + 1)/2 < x/(x + 1) < 1, we know that x > −(

√
5 − 1)/2.

That is to say, when x > −(
√
5 − 1)/2, the function f reaches the maximal value

at the point x/(x + 1) ∈ (−(
√
5 + 1)/2, 1), i.e., Φ(x) = x − log(x + 1) in this

case. Here we claim that f is decreasing on the interval (−(
√
5 + 1)/2, 1) when

x ≤ −(
√
5− 1)/2. In fact, it follows from −1 < x ≤ −(

√
5− 1)/2 that the maximal

123



J Theor Probab (2018) 31:294–318 313

point x/(x+1) ≤ −(
√
5+1)/2. That is to say, the maximal point x/(x+1) locates in

the left of the interval (−(
√
5+1)/2, 1). In otherwords, the function f is decreasing on

the interval (−(
√
5+1)/2, 1). If x ≤ −1, we know that f (θ) = θ(x+1)+ log(1−θ)

is decreasing. As is mentioned above, the function f reaches the maximal value at the
point −(

√
5 + 1)/2. Therefore, Φ(x) is completely determined for any x ∈ R. Next,

we show that

�(x) =
{

−
√
5+1
2 (x + 1) + 2 log

√
5+1
2 , if x ≥ −1;

+∞, if x < −1.

Let g(θ) = θx + θ + 2 log((
√
5 + 1)/2) for any θ ≤ −(

√
5 + 1)/2. In fact, when

x < −1, the function g is decreasing and hence that �(x) = +∞ in this case. If
x > −1, the function g is increasing and hence that g reaches the maximal value at
−(

√
5+ 1)/2. It is easy to see g is constantly 2 log((

√
5+ 1)/2) when x = −1. Now

we claim that

I (x) = sup
θ∈R

{θx − Λ(θ)} =

⎧
⎪⎨

⎪⎩

x − log(x + 1), if x > −
√
5−1
2 ;

−
√
5+1
2 (x + 1) + 2 log

√
5+1
2 , if − 1 ≤ x ≤ −

√
5−1
2 ;

+∞, if x < −1.

Since I (x) = max{Φ(x),�(x)} for all x ∈ R, by the definitions of Φ(x) and �(x),
we easily determine the rate function I (x)when−1 ≤ x ≤ −(

√
5−1)/2 and x < −1.

It remains to compare Φ(x) with �(x) when x > −(
√
5 − 1)/2. To do this, define

the function

h(x) = x − log(x + 1) +
√
5 + 1

2
(x + 1) − 2 log

√
5 + 1

2
.

Then we have that h(−(
√
5 − 1)/2) = 0 and the derivative of h satisfies h′(x) =

x/(x + 1) + (
√
5 + 1)/2 and h′(x) > 0 if x > −(

√
5 − 1)/2. Thus, h(x) ≥ 0 when

x > −(
√
5 − 1)/2. Therefore, the rate function I (x) is completely established. ��

4.2 Proof of Moderate Deviation Principle

As applications of Proposition 3.4 and Lemma 4.2, we obtain the following lemma.

Lemma 4.6 Let n ∈ N and −1/2 < θ < 1/2. Then for any j ≥ 3n − 1, we have

∞∑

k= j

P(bn+1 = k | bn = j) ·
(
k

j

)θ

≤ 1

1 − n−1 · 1

1 − θ
.
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Proof For any j > 1, it follows from Lemma 4.2 that

∞∑

k= j

j + 1

k(k + 1)

(
k

j

)θ

≤
(
1 + 1

j

)
·
(
1 − 1

j

)θ−1

· 1

1 − θ
.

Combing this with Proposition 3.4, we deduce that

∞∑

k= j

P(bn+1 = k | bn = j) ·
(
k

j

)θ

≤
(
1 + 1

j

)
·
(
1 − 1

j

)θ−1

· 1

1 − θ
.

Now it is sufficient to prove that

(
1 + 1

j

)
·
(
1 − 1

j

)θ−1

≤ 1

1 − n−1

for any j ≥ 3n − 1. Let n ∈ N. In fact, since −1/2 < θ < 1/2, we deduce that

(
1 + 1

j

)
·
(
1 − 1

j

)θ−1

≤ 1 + 1/j

(1 − 1/j)3/2
. (4.20)

Note that (1 − 1/j)3/2 ≥ 1 − 2/j for any j ≥ 1, we have

(1 − 1/j)3/2

1 + 1/j
≥ 1 − 2/j

1 + 1/j
= 1 − 3

j + 1
≥ 1 − 1

n

for any j ≥ 3n − 1. Combing this with (4.20), we complete the proof. ��
Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2 Let {an : n ≥ 1} be the sequence of positive numbers satisfying
the conditions in (2.4). For anyλ ∈ R, we consider the logarithmicmoment-generating
function (see Dembo and Zeitouni [6, Section 2.3]) of log bn−n

an
,

Λn(λ) = logE
(
exp

(
λ · log bn − n

an

))
.

From the Gärtner–Ellis theorem, in order to obtaining the desired result, it suffices to
show that for any λ ∈ R,

Λ(λ) = lim
n→∞

n

a2n
Λn

(
a2n
n

λ

)
= λ2

2
.

That is,

lim
n→∞

n

a2n
logE

(
exp
{an
n

(log bn − n) λ
})

= λ2

2
. (4.21)
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For any λ ∈ R and n ≥ 1, let

θn := θn(λ) = an
n

λ and ϒn(λ) = E
(
exp{θn(log bn − n)}).

In view of (2.4), it is clear that θn → 0 as n → ∞ and ϒn(λ) can be rewritten as

ϒn(λ) = e−nθnE(bθn
n ). (4.22)

Being similar to the proof of large deviation principle part, to get (4.21), we only need
to estimate the expectation E(bθn

n ). Since θn → 0 as n → ∞, there exists a positive
number N (only depending on λ) such that for all n ≥ N , we have −1/2 < θn < 1/2.
In the following, we always fix such n. Nowwe will give the lower and upper bounded
estimates of E(bθn

n ), respectively.
We first give the lower bound for E(bθn

n ). Being similar to the Part 1 in the proof of
Lemma 4.5, we know that

∞∑

k=1

P(bn = k) · kθn =
∞∑

j=1

P(bn−1 = j) · jθn ·
∞∑

k= j

P(bn = k | bn−1 = j) ·
(
k

j

)θn

≥
∞∑

j=1

P(bn−1 = j) · jθn ·
∞∑

k= j

j

k(k + 2)

(
k

j

)θn

,

where the last inequality follows from Proposition 3.4. Combing this with Lemma 4.2,
we have that

∞∑

k=1

P(bn = k) · kθn ≥
∞∑

j=1

P(bn−1 = j) · jθn · j

j + 2
· 1

1 − θn

≥ 1

1 + 2
· 1

1 − θn
·

∞∑

j=2

P(bn−1 = j) · jθn

since j/( j + 2) ≥ 1/(1 + 2) for any j ≥ 1. Thus, we deduce that

∞∑

k=1

P(bn = k) · kθn ≥ 1

1 + 2
· 1

1 − θn
·

∞∑

j=2

P(bn−1 = j) · jθn .

Similarly, we obtain that

∞∑

k=2

P(bn−1 = k) · kθn ≥ 2

2 + 2
· 1

1 − θn
·

∞∑

j=3

P(bn−2 = j) · jθn .
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Repeating the above procedure, by (3.6) and −1/2 < θn < 1/2, we actually have that

∞∑

k=1

P(bn = k) · kθn ≥
(
1

3
· 2
4

· · · · · n − 1

n + 1

)
·
(

1

1 − θn

)n−1

·
∞∑

j=n

P(b1 = j) · jθn

≥ M(n) · 2

n(n + 1)
·
(

1

1 − θn

)n−1

,

where M(n) =∑∞
j=n

1
( j+1) j3/2

. Therefore,

E(bθn
n ) ≥ M(n) · 2

n(n + 1)
·
(

1

1 − θn

)n−1

. (4.23)

Noth that j ( j + 1) ≤ ( j + 1) j3/2 for any j ≥ 1, we obtain that

1

(n + 1)n3/2
≤ M(n) ≤ 1

n
,

which implies that

lim
n→∞

n

a2n
logM(n) = 0

since limn→∞(n log n)/a2n = 0 in view of (2.4). Combing this with (4.22) and (4.23),
by Taylor formula, we actually deduce that

lim inf
n→∞

n

a2n
logE

(
exp
{an
n

(log bn − n) λ
})

≥ lim inf
n→∞

(
n2

a2n
(−θn) + n2

a2n
log

1

1 − θn

)

= λ2

2
.

Next we give the upper bound for E(bθn
n ). Being similar to the Part 2 in the proof of

Lemma 4.5, let 1+ε = 1/(1−n−1) and N := N (n) = 3n−1. Lemma 4.6 guarantees
that the methods of the Part 2 in the proof of Lemma 4.5 are still valid. Therefore, we
actually obtain that

E(bθn
n ) ≤ U (n) ·

(√
5 + 1

2

)−2n

+ V (n) ·
(

1

1 − n−1 · 1

1 − θn

)n

,

where U (n) and V (n) both are polynomials of n with some degree. Note that

lim
n→∞

n

a2n
logU (n) = lim

n→∞
n

a2n
log V (n) = lim

n→∞
n2

a2n
log

(
1 − 1

n

)
= 0
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and

lim
n→∞

n

a2n
log

(√
5 + 1

2

)−2n

= −2 lim
n→∞

n2

a2n
log

(√
5 + 1

2

)

= −∞,

by Taylor formula, we eventually deduce that

lim sup
n→∞

n

a2n
logE

(
exp
{an
n

(log bn − n) λ
})

≤ lim sup
n→∞

{
n2

a2n
(−θn) − n2

a2n
log

(
1 − 1

n

)
− n2

a2n
log (1 − θn)

}
= λ2

2
.

Thus, the equality (4.21) is established. By the Gärtner–Ellis theorem, we obtain

the sequence
{
log bn−n

an
: n ≥ 1

}
satisfies an MDP with speed n−1a2n and good rate

function

J (x) = sup
λ∈R

{λx − Λ(λ)} = x2/2

for any x ∈ R. ��
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