
J Theor Probab (2018) 31:159–205
https://doi.org/10.1007/s10959-016-0707-3

Local Convergence of Large Critical Multi-type
Galton–Watson Trees and Applications to Random
Maps

Robin Stephenson1

Received: 30 June 2015 / Revised: 28 July 2016 / Published online: 31 August 2016
© Springer Science+Business Media New York 2016

Abstract We show that large critical multi-type Galton–Watson trees, when condi-
tioned to be large, converge locally in distribution to an infinite tree which is analogous
to Kesten’s infinite monotype Galton–Watson tree. This is proven when we condition
on the number of vertices of one fixed type, and with an extra technical assumption
if we count at least two types. We then apply these results to study local limits of
random planar maps, showing that large critical Boltzmann-distributed random maps
converge in distribution to an infinite map.
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1 Introduction

A planar map is a proper embedding of a finite connected planar graph in the sphere,
taken up to orientation-preserving homeomorphisms. These objects were first studied
from a combinatorial point of view in the works of Tutte in the 1960s (see notably
[32]) and have since been of use in different domains ofmathematics, such as algebraic
geometry (see, e.g., [18]) and theoretical physics (as in [4]). There has been great
progress in their probabilistic study ever since the work of Schaeffer [30], which has
among other things led to finding the scaling limit of many large random maps (we
mention [26] and [19]).
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Our subject of interest here is the local convergence of large random maps, which
means that we are not interested in scaling limits but in the combinatorial structure of
a map around a chosen root. Such problems were first studied by Angel and Schramm
[5] and Krikun [16], who showed that the distributions of uniform triangulations and
quadrangulations with n vertices converge weakly as n goes to infinity. Each limit is
the distribution of an infinite random map, respectively known as the uniform infinite
planar triangulation (UIPT) and the uniform infinite planar quadrangulation (UIPQ).
Of particular interest to us is the paper [10]where the convergence to theUIPQ is shown
by a method involving the well-known Cori–Vauquelin–Schaeffer bijection [30].

We will generalize this to a large family of random maps called the class of
Boltzmann-distributed random maps. Let q = (qn)n∈N be a sequence of nonnega-
tive numbers. We assign to every finite planar map a weight which is equal to the
product of the weights of its faces, the weight of a face being qd where d is the number
of edges adjacent to said face, counted with multiplicity. If the sum of all the weights
of all the maps is finite, then one can normalize this into a probability distribution.

The use of the so-called Bouttier–Di Francesco–Guitter bijection (see [8], or
Sect. 5.3) allows us to obtain the convergence to infinite maps for a fairly large class
of weight sequences q. For q in this class, let (Mn, En) be a q-Boltzmann rooted map
conditioned to have n vertices (or n edges or n faces) our main Theorem 6.1 states
that this sequence converges in distribution to a random map (M∞, E∞), which we
call the infinite q-Boltzmann map. Due to combinatorial reasons, we have to restrict n
to a sublattice of Z+.

The classes of weight sequences for which this is true are the class of critical
sequences when we condition by the number of vertices, and regular critical when
we condition by the number of edges or faces (both are defined in Sect. 5.2). These
classes contain all sequenceswithfinite support (up tomultiplicative constants). Taking
qn = 1{n=p} with p � 3 gives us the case of the uniform p-angulation, making our
results an extension of what was known about the UIPT and UIPQ.

Local limits of Boltzmann random maps have notably been studied recently in [7].
A key difference with our work here is the fact that the maps are supposed to be
bipartite in [7] (the weight sequence q is supported on the even integers). In this
context, conditioning maps by their number of edges ends up being more natural than
in our work, and it is sufficient to only assume criticality and not regular criticality.

The proof of convergence to an infinite map hinges on a similar result for criti-
cal multi-type Galton–Watson trees and forests (Theorem 3.1). This theorem itself
generalizes the well-known fact that critical monotype Galton–Watson trees, when
conditioned to be large, converge to an infinite tree formed by a unique infinite spine
to which many finite trees are grafted. This infinite tree was first indirectly mentioned
in [15], Lemma 1.14, and many details about the convergence are given in [2] and
[13]. One of its properties is that one can obtain its distribution from the distribution
of the finite tree by a size-biasing process, as explained in [20].

In the multi-type case, as with maps, we have two different kinds of conditionings.
If the tree is simply critical, then we must condition it by the number of vertices of one
type early, while if it is regular critical (criticality and regular criticality being defined
in Sect. 2.1), we can condition it by its “size,” for a general notion of size where we
count all the vertices, giving some integer weight to each vertex depending on its type.
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The distribution of the infinite limiting tree can once again be described by a biasing
process from the original tree, as explained in Proposition 3.1, something which was
anticipated in [17].

A fairly important issue in Theorem 3.1 is the problem of periodicity: as with maps,
a multi-type Galton–Watson tree cannot have any number of vertices. To be precise,
the size of the tree is always in α + dZ+, where d and α are integers which depend
on the offspring distribution and the type of the root (for α only). Particular care must
thus be taken when counting the vertices of forests or specific subtrees.

We end this introduction by mentioning two papers which deal with similar limits
and have appeared since the start of work. In [28] is studied the limit of the multi-
type Galton–Watson process associated to the tree, while the authors of [3] are also
interested in the local limit of the tree. The difference is that they are focused on the
aperiodic case and that they condition on the vector of population sizes of each types,
and not a linear function of it. It is, however, shown in [3] that, when we condition on
only one type, our result can be deduced from theirs.

The paper is split into two halves: we start byworking on trees and later on apply the
results to maps. To be precise, after recalling facts about multi-type Galton–Watson
trees in Sect. 2, we state in Sect. 3 the convergence of large critical multi-type Galton–
Watson forests to their infinite counterpart, the proof of which is done in Sect. 4.
Section 5 then states the basic background on planar maps, and we state and prove
Theorem 6.1, our main theorem of convergence of maps, in Sect. 6. The final section
is then dedicated to an application, namely showing that the infinite Boltzmann map
is almost surely a recurrent graph.

2 Background on Multi-type Galton–Watson Trees

2.1 Basic Definitions

Multi-type Plane Trees We recall the standard formalism for family trees, first intro-
duced by Neveu [27]. We denote by N the set of strictly positive integers, and Z+ the
set of nonnegative integers. Let

U =
∞⋃

k=0

N
k

be the set of finite words on N, also known as the Ulam–Harris tree. Elements of U
are written as sequences u = u1u2 . . . uk , and we call |u| = k the height of u. We also
let u− = u1u2 . . . uk−1 be the father of u when k > 0. In the case of the empty word
∅, we let |∅| = 0 and we do not give it a father. If u = u1 . . . uk and v = v1 . . . vl are
two words, we define their concatenation uv = u1 . . . ukv1 . . . vl .

A plane tree is a subset t of U which satisfies the following conditions:

• ∅ ∈ t,
• u ∈ t\{∅} ⇒ u− ∈ t,
• ∀u ∈ t, ∃ku(t) ∈ Z+,∀ j ∈ N, u j ∈ t ⇔ j � ku(t).
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Given a tree t and an integer n ∈ Z+, we let tn = {u ∈ t, |u| = n} and t�n = {u ∈
t, |u| � n}. We call height of t the supremum ht (t) of the heights of all its elements.
If u ∈ t, we let tu = {v ∈ U , uv ∈ t} be the subtree of t rooted at u.

Note that the finiteness of ku(t) for any vertex u implies that all the trees which we
consider are locally finite: a vertex can only have a finite number of neighbors. We do,
however, allow infinite trees.

Let now K ∈ N be an integer. We call [K ] = {1, 2, . . . , K } the set of types. A
K -type tree is then a pair (t, e) where t is a plane tree and e is a function: t → [K ],
which gives a type e(u) to every vertex u ∈ t. For a vertex u ∈ t, we also let
wt(u) = (

e(u1), . . . , e(uku(t))
)
be the list of types of the ordered offspring of u.

Note of course that the knowledge of e(∅) and of all the wt(u), u ∈ t gives us the
complete type function e.

We let

WK =
∞⋃

n=0

[K ]n .

be the set of finite type-lists. Given such a list w ∈ WK and a type i ∈ [K ], we let
pi (w) = #{ j, w j = i} and p(w) = (pi (w))i∈[K ]. This defines a natural projection
from WK onto (Z+)K . We also let |w| = ∑

i pi (w) be the length of w. Elements of
WK should be seen as orderings of types, such that the type i appears pi (w) times in
the order w.
Offspring Distributions We call ordered offspring distribution any sequence ζ =
(ζ (i))i∈[K ] where, for all i ∈ [K ], ζ (i) is a probability distribution on WK . Letting
for all i μ(i) = p∗ζ (i) be the image measure of ζ (i) on (Z+)K by p, we then call
μ = (μ(i))i∈[K ] the associated unordered offspring distribution.

We will always assume the condition

∃i ∈ [K ], μ(i)

⎛

⎝

⎧
⎨

⎩z ∈ (Z+)k,

K∑

j=1

z j �= 1

⎫
⎬

⎭

⎞

⎠ > 0

to avoid degenerate cases which lead to infinite linear trees.
Uniform Orderings Let us give details about a particular case of ordered off-
spring distribution. For n = (ni )i∈[K ] ∈ (Z+)K , we call uniform ordering of n
any uniformly distributed random variable on the set of words w ∈ WK satis-
fying p(w) = n. Such a random variable can be obtained by taking the word
(1, 1, . . . , 1, 2, . . . , 2, 3, . . . , K , . . . , K ) (where each i is repeated ni times) and
applying a uniform permutation to it. Now let μ = (μ(i))i∈[K ] be a family of dis-
tributions on (Z+)K , we call uniform ordering of μ the ordered offspring distribution
ζ = (ζ (i))i∈[K ] where, for each i , ζ (i) is the distribution of a uniform ordering of a
random variable with distribution μ(i).
Galton–Watson DistributionsWe can now define the distribution of a K -type Galton–
Watson tree rooted at a vertex of type i ∈ [K ] and with ordered offspring distribution
ζ , which we call P(i)

ζ , by
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P
(i)
ζ (t, e) = 1{e(∅)=i}

∏

u∈t

ζ (e(u))(wt(u)) (2.1)

for any finite tree (t, e). This formula only defines a subprobability measure in gen-
eral; however, in the cases which interest us (namely critical offspring distributions,
see the next section) we will indeed have a probability distribution. In practice, we
are not interested in this formula as much as in the branching property, which also
characterizes these distributions: the types of the children of the root of a tree (T, E)

with law P
(i)
ζ are determined by a random variable with law ζ (i) and, conditionally on

the offspring of the root being equal to a word w, the subtrees rooted at points j with
j ∈ [|w|] are independent, each one with distribution P

( j)
ζ .

Criticality Let M = (mi, j )i, j∈[K ] be the K × K matrix defined by

mi, j =
∑

z∈(Z+)K

z jμ
(i)(z), ∀i, j ∈ [K ].

We assume that M is irreducible, which means that, for all i and j in [K ], there exists
some power p such that the (i, j)th entry of Mp is nonzero. In this case, we know by
the Perron–Frobenius theorem that the spectral radius ρ of M is in fact an eigenvalue
of M . We say that ζ (or μ, or M) is subcritical if ρ < 1 and critical if ρ = 1, which
both in particular imply that Eq. (2.1) does define a probability distribution and that
Galton–Watson trees with ordered offspring distribution ζ are almost surely finite. We
will always assume criticality in the rest of the paper. The Perron–Frobenius theorem
also tells us that, up to multiplicative constants, the left and right eigenvectors of M
for ρ are unique.We call them a = (a1, . . . , aK ) and b = (b1, . . . , bK ) and normalize
them such that

∑
i ai = ∑i ai bi = 1, in which case their components are all strictly

positive.
The fact that b is a right eigenvector of M translates as

bi =
∑

z∈(Z+)K

μ(i)(z)b · z,

where · is the usual dot product. One can deduce from this the existence of amartingale
naturally associated with the Galton–Watson tree. Let (T, E) have distribution P(i)

ζ for

some i ∈ [K ] and, for all n ∈ N and j ∈ [K ], let Z ( j)
n be the number of vertices of T

which have height n and type j , and set Zn = (Z ( j)
n ) j∈[K ]. Define then, for n ∈ Z+,

Xn = b · Zn =
K∑

j=1

b j Z
( j)
n . (2.2)

The process (Xn)n∈Z+ is then a martingale.
Finally, we say that ζ (or μ) is regular critical if, in addition to being critical, ζ has

small exponential moments in the following sense:

∃z > 1,∀i ∈ [K ],
∑

w∈WK

ζ (i)(w)z|w| < ∞

123



164 J Theor Probab (2018) 31:159–205

Spatial Trees Later on in this paper we will be looking at spatial K -type trees, that
is trees coupled with labels on their vertices. We define a K -type spatial tree to be
a triple (t, e, l) where (t, e) is a K -type tree and l is any real-valued function on t.
Note that, given t, e and l(∅), the rest of l is completely determined by the differences

l(u) − l(u−) for u ∈ t\{∅}. This is why we let, for u ∈ t, yu =
(

l(u1) − l(u), l(u2) −
l(u), . . . , l

(
uku(t)

)− l(u)
)

∈ R
|wt(u)| be the list of ordered label displacements of the

offspring of u.
Consider, for all types i ∈ [K ] and words w ∈ WK , a probability distribution ν

(i)
w

on R
|w|, as well as a number ε. We let P(i,ε)

ζ,ν be the distribution of a triple (T, E, L)

where (T, E) is a K -type tree with distribution P(i)
ζ , the root ∅ has label ε and the label

displacements
(
L(u1) − L(u), L(u2) − L(u), . . . , L(uku(T)) − L(u)

)
(with u ∈ T)

are all independent, each one having distribution ν

(
E(u)
)

wT(u) conditionally on E(u) and
wT(u).
ForestsWewill not only look at trees but also atmulti-type (and,whenneeded, labelled)
forests, a forest being defined as an ordered finite collection of trees: elements of the
form (f, e, l) = ((t1, e1, l1), . . . , (t p, ep, lp)

)
.

A Galton–Watson random forest will be a forest where the trees are mutually
independent, and each one has a Galton–Watson distribution with the same ordered
offspring distribution (and label increment distribution, in the labelled case). We can
thus let, for w ∈ WK , P

(w)
ζ be the distribution of (Ti , Ei )i∈[|w|] where the (Ti , Ei ) are

independent, and each (Ti , Ei ) has distribution P
(wi )
ζ and, given also a list of initial

labels ε = (ε1, . . . , ε|w|), P(w),(ε)
ζ,ν be the distribution of (Ti , Ei , Li )i∈[|w|] where the

terms of the sequence are independent and, for a given i , (Ti , Ei , Li ) has distribution
P

(wi ,εi )
ζ,ν .

All previous notation will be adapted to forests; for example, the height of a forest
f is the maximum of the heights of its elements, f�n is the forest where each tree has
been cut at height n, and so on.
Remarks Concerning Notation For readability, we will throughout the paper use the
canonical variable (T, E), which is simply the identity function of the space of K -type
trees, as well as (T, E, L), (F, E) (F, E, L) when looking at labelled trees or forests.
Thus, we will, for instance, write P(i)

ζ

(
(T, E) = (t, e)

)
instead of P(i)

ζ (t, e), for a given
type i and a given K -type tree (t, e).

Moreover, since we will never change the types and labels of vertices of a tree, we
will often drop e and l from the notation, once again for readability, and, in the same
vein, since we only consider one offspring distribution at a time, we also often drop ζ

from the Pζ notation.
Local Convergence of Multi-type Trees and Forests Take a sequence of K -type forests
(f (n), e(n))n∈N. We say that this sequence converges locally to a K -type forest (f, e)
if, for all k ∈ N, and n ∈ N large enough (depending on k), we have (f (n)

�k , e(n)
�k) =

(f�k, e�k). This convergence can be metrized: we can, for example, set, for two K -
type forests (f, e) and (f ′, e′), d

(
(f, e), (f ′, e′)

) = 1
1+p where p is the supremum of

all integers k such that (f�k, e�k) = (f ′
�k, e′

�k).
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Convergence in distribution of random forests for this metric is simply char-
acterized: if (F(n), E(n))n∈N is a sequence of random K -type forests, it converges
in distribution to a certain random forest (F, E) if and only if, for all k ∈ N

and finite K -type forests (f, e), the quantity P
(
(F(n)

�k, E(n)
�k) = (f, e)

)
converges to

P
(
(F�k, E�k) = (f, e)

)
.

All these definitions can directly be adapted to the case of spatial forests: when
asking for equality between the forests below height k, we also ask equality of the
labels below this height.

2.2 Cutting a Tree at the First Generation of Fixed Type

In this section, we fix a reference type j ∈ [K ].We are interested in the first generation
of type j , that is, in a K -type tree t, the set of vertices of t with type j which have
no ancestors of type j , except maybe for the root. We then call C j (t) the tree formed
by all the vertices which lie below or on the first generation of type j , including all
vertices which lie on branches with no individuals of this type. If T has distribution
P

(i)
ζ for some type i , we let P(i)

cut j be the distribution of C j (T) and let μi, j be the
distribution of the number of leaves of C j (T) which have type j (that is, the size of
the first generation of type j in T). Finally, if T has distribution P( j), we let ξi, j be the
distribution of the number of vertices of type i in C j (T) (excluding the root, so that
when i = j we end up with ξ j, j = μ j, j ).

The following proposition gives a few properties of the moments of the μi, j and
ξi, j . Most of them are already proven in [25].

Proposition 2.1 Let i and j be two different types.

(i)

∞∑

k=0

kμi, j (k) = bi
b j

.

(ii)

∞∑

k=0

kξi, j (k) = ai
a j

.

(iii) Assume that ζ has finite second moments. Then

Var(μi,i ) = σ 2

aib2i
,

where the number σ > 0 is defined by σ 2 =∑i, j,k ai b j bk Q
(i)
j,k , with

Q(i)
j, j = ∑

z∈(Z+)K μ(i)(z)z j (z j − 1) and Q(i)
j,k = ∑

z∈(Z+)K μ(i)(z)z j zk for
j �= k.
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(iv) Assume that ζ is regular critical. Then μi,i and ξi, j also have some finite expo-
nential moments:

∃z > 1,
∑

n∈Z+

μi,i (n)zn < ∞ and
∑

n∈Z+

ξi, j (n)zn < ∞.

Proof We start with point (i). We fix j ∈ [K ] and, for all i ∈ [K ], let ci =∑∞
k=0 kμi, j (k). The proof that ci = bi

b j
for all i is done in two steps: first show

that c j = 1 and then that the vector c = (ci )i∈[K ] is a right eigenvector of M for the
eigenvalue 1.

The fact that c j = 1 is proven in [25], Proposition 4, (i). It is obtained by removing
the types different from j one by one, and noticing that criticality is conserved at every
step until we are left with a critical monotype Galton–Watson tree.

To prove that c is a right eigenvector of M , consider a type i ∈ [K ] and apply the
branching property at height 1 in a tree with distribution P

(i)
ζ , we get

ci =
∑

z∈(Z+)K

μ(i)(z)
( ∑

l∈[K ]\{ j}
zlcl + z j

)

=
∑

z∈(Z+)K

μ(i)(z)
( K∑

l=1

zlcl
)

=
K∑

l=1

mi,l cl .

Since
∑k

l=1 mi,l cl is the i th component of (Mc), the proof is complete.
Point (i i) was also proven in [25], as part of the proof of Proposition 4, (i i).

Similarly, points (i i i) and (iv) feature in [25], Proposition 4. �

2.3 Size of a Tree and Periodicity

As said earlier, we plan on conditioning trees on being large. To do this extent, we
need to define a notion of “size” of a tree. One natural notion of size would be the total
number of vertices of the tree. Another one, which, as will be shown later, is easier
to work with combinatorially, would be to count only the number of vertices of one
fixed type. We propose a fairly general notion of size which contains the above two
examples: let γ = (γ1, . . . , γK ) be a vector of nonnegative integers, one of them at
least being nonzero. We then let, for a K -type tree (t, e)

|t|γ =
K∑

i=1

γi#i (t)

where #i (t) denotes the number of vertices of t with type i ∈ [K ].
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One consequence of criticality is that, while a Galton–Watson tree with ordered
offspring distribution ζ is almost surely finite, the expected value of its size is infinite.

Lemma 2.1 For all i ∈ [K ], we have

E
(i)[|T|γ

] = ∞.

Proof We just need to check that, for all j ∈ [K ], we have E(i)
[
# jT

] = ∞. Let us
generalize the previous section by calling, recursively, for k > 1, the kth generation
of type j of a tree the set of its vertices of type j whose closest ancestor of type j
is in the (k − 1)th generation of type j . By Proposition 2.1, point (i), the number of
vertices on each of those generations has expected value

b j
bi

> 0, and thus, their sum
has infinite expected value. �

As it happens, when (T, E) is a Galton–Watson tree, then |T|γ cannot take any
integer value. For example, in a classical monotype tree, if an individual can only have
an even number of children, then the total number of vertices in the tree has to be odd.
Here is a precise statement for the general case.

Proposition 2.2 There exists an integer d ∈ N and integers αi in {0, 1, . . . , d − 1}
for all types i ∈ [K ] such that, for n ∈ Z+:

• if P(i)(|T|γ = n) > 0, then n ≡ αi (mod d).
• if n ≡ αi (mod d) and n is large enough, then P

(i)(|T|γ = n) > 0.

Remark 1 This immediately extends to forests: if w ∈ WK , then let αw ∈ {0, . . . , d−
1} such that αw ≡∑|w|

k=1 αwk . Then the size in a forest with distribution P
(w)
ζ is a.s. of

the form αw + dn with n ∈ Z+ and, if n is large enough, the forest has size αw + dn
with nonzero probability.

The proof of Proposition 2.2 requires the following lemma, which is a variant of
the well-known “Frobenius coin problem.”

Lemma 2.2 Let n1, . . . , n p be p nonnegative integers and let d = gcd(n1, . . . , n p).
There exists integers N2, . . . , Np such that the set

{
k∑

i=1

kini : k1 ∈ Z+, ki ∈ {0, . . . , Ni } ∀i ∈ {2, . . . , p}
}

contains all large enough multiples of d.

The values of N2, . . . , Np are of no importance for us in this paper. All we need
to know is that, when adding multiples of n1, . . . , n p, if we allow all multiples of n1,
then we only need a finite amount of multiples of the others.

Proof A straightforward induction shows that, if we can prove Lemma 2.2 in the case
p = 2, then we can generalize it to all p. We will thus restrict ourselves to the case
where p = 2, and can in fact further simplify the problem by dividing n1 and n2 by
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their gcd, making them coprime. In this case, N2 and “large enough” can easily be
explicited: we will show that every integer greater than or equal to n1n2 can be written
as k1n1 + k2n2 with k1 ∈ Z+ and k2 ∈ {0, . . . , n1 − 1}.

Let n � n1n2. Since n1 and n2 are coprime, n2 is invertible modulo n1, and we
know that there exists k2 in {0, . . . , n1 − 1} such that k2n2 ≡ n (mod n1). Therefore,
there exists k1 ∈ Z such that n − k2n2 = k1n1, and since, n � n1n2 and k2 � n1 − 1,
we also have k1 � 0. �

Throughout the following proof, we use for i ∈ [k] the notation T
(i)
ζ for the set of

trees which can be obtained with positive probability starting with a root of type i :

T
(i)
ζ =

{
t : P(i)

ζ

(
T = t

)
> 0
}

Proof of Proposition 2.2 Let j ∈ [K ] be a type such that ζ ( j)(∅) > 0, i.e., an individ-
ual of type j can die without having any children. We start by proving the existence
of d and α j by focusing on what happens when we jump from one generation of type
j to the next. Let

G =
{
n ∈ N,P( j)(|T|γ = n) > 0

}
.

Let us also introduce some notation: if A1, . . . , Ap are subsets of Z, then we let
A1 + . . . + Ap be their sumset, that is the set of integers which can be obtained as
sums

∑p
i=1 ai with ai ∈ Ai for all i . We also let G+p the p-fold iterated sumset of G:

G+p =
{ p∑

i=1

ni : ∀i, ni ∈ G

}

The set G can be obtained inductively by cutting T at its first generation of type j ,
and then grafting new trees at each vertex of this generation. To be precise, take a tree
t ∈ T

( j)
ζ . Let at be the sum of all the γ -weights of all the vertices which do not have

type j in the cut tree C j (t), and let pt be the number of vertices in the first generation
of type j of t. We then have

G =
⋃

t∈T( j)
ζ

{γ j + at} + G+pt

Note of course that there is much redundance in this union, since at and pt only depend
onC j (t) (t up to its first generation of type j). Next, we do some reindexing to remove
the overlap, and at the same time separate the union into three classes:

• the tree with only one vertex (of type j) is isolated in its own class.
• the second class contains the trees with no vertices of type j except for the root.
• the third class contains all the other possible trees cut at their first generation of
type j .
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We thus obtain

G = {γ j } ∪
⋃

x∈X
{γ j + ax } ∪

⋃

y∈Y
{γ j + by} + G+py

where X and Y are two abstract sets which we need not worry about, ax ∈ N for all
x ∈ X and (by, py) ∈ Z+ × N for y ∈ Y . Note that Y is non-empty (by criticality or
aperiodicity).

It then follows that

G =
⎧
⎨

⎩γ j +
∑

x∈X
kxax +

∑

y∈Y
ky(by + pyγ j ) :

∑

x∈X
kx �

∑

y∈Y
ky py

⎫
⎬

⎭ .

From this, let

d = gcd
(
{ax : x ∈ X} ∪ {by + pyγ j : y ∈ Y }

)

and let α j ∈ {0, . . . , d − 1} be the remainder of γ j mod d. Then it is immediate that
G ⊂ α j + dZ+, and Lemma 2.2 ensures that G contains all large enough members
of α j + dZ+ (the condition

∑
x∈X kx �

∑
y∈Y ky py being weaker than the condition

of Lemma 2.2, we in fact only need all the kx and ky to be in a finite set, except for
any one specific ky).

Now, let i be a different type from j .We first want to show that, if t and t′ are both in
T

(i)
ζ , then |t|γ ≡ |t′|γ (mod d). To this end, consider a tree t0 in T( j)

ζ which contains

at least one vertex u of type i (such a tree exists by virtue of irreducibility). Now let t1

and t2 to be t0 except that we replace the subtree rooted at u by, respectively, t and t′.
Both t1 and t2 also belong to T

( j)
ζ , which implies that |t1|γ ≡ |t2|γ ≡ α j (mod d),

which itself implies |t|γ ≡ |t′|γ (mod d). This shows the existence of αi .
Finally, we want to show that, if n is large enough, then P(i)

(|T|γ = αi + dn
)

> 0.

Take any tree (t, e) ∈ T
(i)
ζ which contains at least one vertex u of type j . Let m

and p be integers such that |t|γ = αi + dm and |tu |γ = α j + dp, where tu is the

subtree rooted at u. We know that, if n is large enough, there exists t′ in T( j)
ζ such that

|t′|γ = α j + d(n+ p−m). Replacing tu by t′ in t then yields a tree with size αi + dn

which itself is in T(i)
ζ , thus ending our proof. �

Proposition 2.2 can be refined in the case where we only count the number of
vertices of one specific type. We leave the proof of the following corollary to the
reader.

Corollary 2.1 Assume that γi = 1i=1. Then:

• the period d is gcd of the support of μ1,1, and α1 = 1.
• for i ∈ {2, . . . , K } the measure μi,1 is supported on αi + dZ+.
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3 Infinite Multi-type Galton–Watson Trees and Forests

In this section we will consider unlabelled trees and forests with a critical ordered
offspring distribution ζ , andwill omit mentioning ζ for readability purposes.We could
in fact work with spatial trees; however, since the labellings are done conditionally
on the tree and in independent fashion for each vertex, the reader can check that the
proofs do not change at all if we add the labellings in.

Just as in the case of critical monotype Galton–Watson trees, multi-type trees have
an infinite variant which is obtained through a size-biasing method which was first
introduced in [17].

3.1 Existence of the Infinite Forest

Proposition 3.1 Let w ∈ W . There exists a unique probability measure P̂(w) on the
space of infinite K -type forests such that, for any n ∈ Z+ and for any finite K -type
forest f with height n,

P̂
(w)
(
F�n = f

) = 1

Zw

⎛

⎝
∑

u∈fn

be(u)

⎞

⎠P
(w)
(
F�n = f

)
, (3.1)

where the normalizing constant Zw is equal to
∑|w|

i=1 bwi = p(w) · b.

Proof Our proof is structured as the one given in [20] for monotype trees. Let n ∈ Z+,
we will first define a probability distribution P̂(w)

n on the space of K -type forests with
height exactly n paired with a point of height n. Let (f, e) be such a forest and u ∈ fn ,
and set

P̂
(w)
n

(
f, u
) = be(u)

Zw
P

(w)
(
F = f

)
.

The martingale property of the process (Xn)n∈Z+ defined by (2.2) under P(w) ensures

us that we do have probability measures: the total mass of P̂(w)
n is 1

Zw
E

(w)
ζ [Xn] =

p(w)·b
Zw

= 1.
We will check that these are compatible in the sense that, for n ∈ Z+, if (F,U )

has distribution P̂
(w)
n+1 then (F�n,U−) has distribution P̂

(w)
n . Fix therefore f a K -type

forest of height n and u a vertex of t at height n. We have

P̂
(w)
n+1

(
(F�n,U

−) = (f, u)
) = 1

Zw
P

(w)
(
F�n = f

) ∑

x∈WK

ζ (e(u))(x)

|x|∑

j=1

bx j

= 1

Zw
P

(w)
(
F�n = f

) ∑

z∈(Z+)K

μ(e(u))(z) z · b

= 1

Zw
P

(w)
(
F�n = f

)
be(u).
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Kolmogorov’s consistency theorem then allows us to define a distribution P̂
(w)∞ on

the set of forests where one of the trees has a distinguished infinite path. Forgetting
the infinite path then gives us the distribution P̂(w) which we were looking for. �

For n ∈ Z+, f a forest of height n + 1 and u ∈ fn+1, we have

P̂
(w)
n+1

(
(F,U ) = (f, u) | (F�n,U

−) = (f�n, u
−)
)

= be(u)

be(u−)

P
(w)
n+1

(
F = f | F�n = f�n

)
.

From this formula follows a simple description of these infinite forests.
Given a type i ∈ [K ], a random tree with distribution P̂

(i) can be described in the
following way: it is made of a spine, that is an infinite ascending chain starting at the
root, on which we have grafted independent trees with ordered offspring distribution
ζ . Elements of the spine have a different offspring distribution, called ζ̂ , which is a
size-biased version of ζ . It is defined by

ζ̂ ( j)(x) = 1

b j

|x|∑

l=1

bxl ζ
( j)(x), (3.2)

with j ∈ [K ] and x ∈ WK . Given an element of the spine u ∈ U and its offspring
x ∈ WK , the probability that the next element of the spine is u j for j ∈ [|x|] is
proportional to bx j , and therefore equal to

bx j
∑|x|

l=1 bxl
.

To get a forest with distribution P̂(w), let first J be a random variable taking values
in [|w|] such that J = j with probability proportional to bw j . Conditionally on J , let
TJ be a tree with distribution P̂

(J ), and let Ti , for i ∈ [|w|], i �= J be a tree with
distribution P(i), all these trees being mutually independent. Then the forest (Ti )i∈[|w|]
has distribution P̂(w).

Remark 2 Recall that a tree with law P
(i) is finite for any i ∈ [K ]. Therefore, a forest

with distribution P̂
(w) can only have one infinite path, and thus, we do not lose any

information by going from P̂
(w)∞ to P̂(w).

3.2 Convergence to the Infinite Forest

Recall from Sect. 2.3 the notations d and αw: the size of a forest with distribution P
(w)
ζ

is always of the form αw + dn.

Theorem 3.1 Assume one of the following:

• γ j = 1 j=1 for j ∈ [K ].
• ζ is regular critical.
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As n tends to infinity, a forest F with distribution P
(w), conditioned on |F|γ =

αw + dn, converges in distribution to a forest with distribution P̂
(w). In other words,

given a forest (f, e) of height k, we have

P
(w)
(
F�k = f | |F|γ = αw + dn

) −→
n→∞ P̂

(w)
(
F�k = f

)

This theorem is split into two quite distinct parts. For the first part, we assume
that the notion of size of a tree we take is simply the amount of vertices of one fixed
type, which we can take as 1 by symmetry. In this case, the theorem will be proved
with purely combinatorial tools, notably ratio limit theorems for random walks. In
the second part, we do not make any assumptions on γ , and in exchange for that we
have to restrict ourselves to the case where the offspring distribution has exponential
moments. The result will then be proved with the help of techniques from analytic
combinatorics.

4 Proof of Theorem 3.1

4.1 The Main Ingredient

Whether we count only one type of vertex or the offspring distribution is regular
critical, the proof of Theorem 3.1 will rely on the following asymptotic equivalence,
indexed by any word w ∈ WK :

P
(w)(|F|γ = αw + dn) ∼

n→∞
Zw

b1
P

(1)(|T|γ = α1 + d(n + p)
)
, ∀p ∈ Z (Hw)

What equation (Hw) means is that, when we ask for a forest to have size of order
dn with large n, then exactly one of its tree components will have size or order dn,
while the others will be comparatively microscopic.
Proof that Theorem 3.1 Follows from (Hw) Take a K -type forest f with height k ∈ N,
and let x ∈ WK be the word obtained by taking the types of the vertices of f with
height k (the order of the elements x actually has no influence). For n large enough,
we have

P
(w)
(
F�k = f | |F|γ = αw + dn

) = P
(w)
(
F�k = f, |F|γ = αw + dn

)

P(w)(|F|γ = αw + dn)

= P
(w)
(
F�k = f

)P(x)(|F|γ = αw + dn − q)

P(w)(|F|γ = αw + dn)

where q = |f�k−1|γ . By the results of Sect. 2.3, if P(w)
(
F�k = f

)
> 0 then αw − q

must be congruent to αx modulo d, giving us

P
(w)
(
F�k = f | |F|γ = αw + dn

) = P
(w)
(
F�k = f

)P(x)
(|F|γ = αx + d(n + p)

)

P(w)
(|F|γ = αw + dn

)
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for some signed integer p. Now if we let n tend to infinity, using both (Hw) and (Hx),
we obtain

P
(x)
(|F|γ = αx + d(n + p)

)

P(w)
(|F|γ = αw + dn

) −→
n→∞

Zx

Zw
= 1

Zw

⎛

⎝
∑

u∈fk

be(u)

⎞

⎠ ,

which concludes the proof of Theorem 3.1, assuming (Hw). �

4.2 Proving (Hw) When Counting Only One Type

We assume from now on that γ j = 1 j=1 for all j ∈ [K ], and will therefore from
now on write #1T for |T|γ . Recall from Sect. 2.3 in particular that d is the gcd of the
support of μ1,1 and that α1 = 1.

Obtaining (Hw) for every word w will be done in several small steps. We will first
prove it for some fairly simple words and gradually enlarge the class of w for which
it holds, until we have every element of WK .

4.2.1 Ratio Limit Theorems for a Random Walk

Let (Sn)n∈N be a random walk which starts at 0 and whose jumps are all greater than
or equal to−1, their distribution being given by P(S1 = k) = μ1,1(k+1) for k � −1.

Lemma 4.1 For all α ∈ {0, . . . , d − 1} we have

P(Sα+dn = −α) ∼
n→∞ P(Sdn = 0) ∼

n→∞ P(Sd(n+1) = 0)

Proof Thefirst thing to notice is that the randomwalk (
Sdn
d )n∈N is irreducible, recurrent

and aperiodic on Z. First, it is indeed integer-valued because, by definition, for every
n, Sn+1 ≡ Sn − 1 (mod d), and thus, we stay in the same class modulo d if we take d
steps at a time. Irreducibility comes from the fact that steps of (Sn)n∈N has a nonzero
probability of being equal to −1 because μ j, j (0) > 0, and thus, (

Sdn
d )n∈N can have

positive jumps or jumps equal to −1. Since the jumps of (Sn)n∈N are centered by
Proposition 2.1, point (i) this makes (

Sdn
d )n∈N an irreducible and centered random

walk on Z, so that it is recurrent (see, e.g., Theorem 8.2 in [14]). Finally, aperiodicity
is obtained from the fact that, if μ j, j (n) > 0, then P(Sn = 0) > 0 by jumping straight
to n − 1 and going down to 0 one step at a time.

As a consequence of this, we can apply Spitzer’s strong ratio theorem (see [31],
p.49) to the random walk (

Sdn
d )n∈N. We obtain that, for any k ∈ Z,

P(Sdn = 0) ∼
n→∞ P(Sd(n+1) = 0) ∼

n→∞ P(Sdn = dk).

This proves the second half of Lemma 4.1 and can also be used to prove the first half.
Let μ∗α

j, j be the distribution of the sum of α independent variables with distribution
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μ j, j . For n ∈ N, we then have

P(Sα+dn = −α) =
∑

p∈Z
P(Sdn = −α − p)μ∗α

j, j (p + α).

Fatou’s lemma then gives us

lim inf
n→∞

P(Sα+dn = −α)

P(Sdn = 0)
�
∑

p∈Z
μ∗α

j, j (p + α) = 1

A similar argument also shows that

lim inf
n→∞

P(Sd(n+1) = 0)

P(Sα+dn = −α)
� 1,

and this ends the proof. �

4.2.2 The Case Where w = (1, 1, . . . , 1)

Consider a tree T with distribution P(1). Consider then the reduced tree
(1)(T)where
all the vertices with types different from 1 have been erased but ancestral lines are kept
(such that the father of a vertex of 
(1)(T ) is its closest ancestor of type 1 in T). This
tree is precisely studied in [25], where it is shown that it is a monotype Galton–Watson
tree, its offspring distribution naturally being μ1,1. As a result, the well-known cyclic
lemma (see [29], Sections 6.1 and 6.2) tells us that

P
(1)(#1T = 1 + dn) = 1

1 + dn
P(S1+dn = −1).

where (Sn)n∈N is the random walk defined in Sect. 4.2.1. One particular consequence
of this is the fact that, thanks to Lemma 4.1, in order to prove (Hw) for a certain word
w, we can restrict ourselves to proving the asymptotic equivalence for a single value
of p, which will we take to be 0.

Consider now a word w = (1, 1, . . . , 1) of length k, where k is any integer. The
cyclic lemma can be adapted to forests (see [29] again), and we have

P
(w)(#1F = k + dn) = k

k + dn
P(Sk+dn = −k),

Lemma 4.1 then implies (Hw) in this case since Zw = kb1 and αw = k.
The cases where w contains types different from 1 will be much less simple, and

we first start with an inequality.
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4.2.3 A Lower Bound for General w

Let w ∈ WK . In order to count the number of vertices of type 1 of a forest with
distribution P(w), we cut it at its first generation of type 1.

P
(w)(#1F = αw + dn) =

|w|∑

i=1

∞∑

ki=0

μwi ,1(ki )P
(1,...,1)(#1F = αw − q + dn)

where q is the number of times 1 appears inw and 1 is repeated k1+k2, . . .+k|w| times
in P

(1,...,1). By Corollary 2.1, whenever μwi ,1(ki ) > 0, we have αwi ≡ ki − 1wi=1
(mod d), and thus, the use of H(1,...,1), combined with Fatou’s lemma, gives us the
following lower bound:

lim inf
n→∞

P
(w)(#1F = αw + dn)

P(1)(#1T = 1 + dn)
�

|w|∑

i=1

∑

ki

kiμwki ,1
(ki ).

We can then use point (i) of Proposition 2.1 to identify the right-hand side and obtain

lim inf
n→∞

P
(w)(#1F = αw + dn)

P(1)(#1T = 1 + dn)
� Zw

b1
. (4.1)

To prove the reverse inequality for the limsup, we will try to fit a forest with
distribution P

(w) “inside” a tree with distribution P
(1). We first need some additional

notions.

4.2.4 The Extension Relation

We describe here a tool which will be useful in the future. Let (t, e) and (t′, e′) be two
K -type trees. We say that t′ extends t, which we write t′ � t (omitting as usual the
type functions for clarity) if t′ can be obtained from t by grafting trees on the leaves
of t′. More precisely, t′ � t if:

• t ⊂ t′.
• ∀u ∈ t, e(u) = e′(u).
• ∀u ∈ t′\t, ∃v ∈ ∂t, w ∈ U : u = vw.

Here, ∂t is the set of leaves of t, that is the set of vertices v of t such that kv(t) = 0.
See Fig. 1 for an example.

This is once again adaptable to forests: if (f, e) and (f ′, e′) are two k-type forests,
then we say that f ′ � f if they have the same number of tree components and each tree
of f ′ extends the corresponding tree of f .

The extension relation behaveswellwithGalton–Watson random forests. For exam-
ple, the following is immediate from the branching property:

123



176 J Theor Probab (2018) 31:159–205

t t′

Fig. 1 An example of a 2-type tree extending another. Here, t′ � t

Lemma 4.2 If (f, e) is a finite forest and w the list of types of the roots of its compo-
nents, then

P
(w)(F � f) =

∏

u∈f\∂f

ζ (e(u))(wf (u))

Moreover, we have a generalization of the branching property: conditionally onF � f ,
F is obtained by appending independent trees at the leaves of f , and for every such
leaf v, the tree grafted at v has distribution P

(e(v)).

For infinite trees, we get a generalization of (3.1):

Lemma 4.3 If (f, e) is a finite forest, let x be the word formed by the types of the
leaves of f in lexicographical order. We have

P̂
(w)(F � f) = Zx

Zw
P

(w)(F � f).

Proof Let n be the height of f . Any forest of height n which extends f can be obtained
by adding after each leaf u of f a tree with height smaller than n− |u|. Let u1, . . . , u p

be the leaves of f , and e1, . . . , ep be their types, wewill append for all i a tree (ti , ei ) to
the leaf ui and call the resulting forest (f̃, ẽ), implicitly a function of f and t1, . . . , t p.
Thus, recalling the notation X for the martingale defined in Eq. (2.2),

P̂
(w)(F � f) =

∑

t1,...,tp

∑

v∈f̃n

bẽ(v)

Zw
P

(w)
(
(F�n, E�n) = (f̃, ẽ)

)

=
∑

t1,...,tp

p∑

i=1

∑

v∈tin−|ui |

bẽ(v)

Zw
P

(w)(F � f)
p∏

i=1

P
(ei )(T�n−|ui | = ti )
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= P
(w)(F � f)

Zw

p∑

i=1

∑

t1,...,tp

∑

v∈tin−|ui |

bei (v)

p∏

i=1

P
(ei )(T�n−|ui | = ti )

= P
(w)(F � f)

Zw

p∑

i=1

E
(ei )[Xn−|ui |]

= P
(w)(F � f)

Zw

p∑

i=1

bei

= Zx

Zw
P

(w)(F � f).

�

4.2.5 The Case Where There is a Tree t such that P(1)(T � t) > 0 and w is the Word
Formed by the Leaves of t

Let (t, e) be a tree with root of type 1 such that P(1)(T � t) > 0. Let w be the
word formed by the types of the leaves of t, we will prove (Hw). We first need an
intermediate lemma.

Lemma 4.4 There exists a countable family of trees t(2), t(3) . . . such that, for any
K -type tree t′ with root of type 1:

• either t � t′.
• or t′ � t.
• or there is a unique i such that t′ � t(i).

Proof For all k ∈ {2, 3, . . . , ht (t)}, take all the trees t′ which have height k and which
satisfy both t′�k−1 = t�k−1 and t′k �= tk . These are in countable amount, and we can
therefore call them (t(i))i�2 in any order. Now for any K -type tree t′ with root of type
1, by considering the highest integer k such that t′�k−1 = t�k−1, we directly obtain
that, if none of t and t′ extend the other, then t′ extends one of the t(i). �

Now let t(1) = t, and, for all i ∈ N, let also wi be the word formed by the types of
the leaves of t(i). Write

P
(1)(#1T = 1 + dn) =

∞∑

i=1

P
(1)(T � t(i), #1T = 1 + dn)

+ P
(1)(t � T, t �= T, #1T = 1 + dn)

=
∞∑

i=1

P
(1)(T � t(i))P(wi )(#1F = 1 − q(i) + dn)

+ P
(1)(t � T, t �= T, #1T = 1 + dn)
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where q(i) is the number of vertices of type 1 of t(i) which are not leaves. Divide by
P

(1)(#1T = 1 + dn) on both sides of the equation to obtain

∞∑

i=1

P
(1)(T � t(i))

P
(wi )(#1F = 1 − q(i) + dn)

P(1)(#1T = 1 + dn)
+ P

(1)(t � T | #1T = 1 + dn) = 1

(4.2)
Note that

P
(1)(t � T | #1T = 1 + dn)

is equal to 0 for n large enough, since t is finite.
By the results of Sect. 2.3, we have 1 − q(i) ≡ αw(i) (mod d) for all i ∈ N, and

thus, using the lower bound (4.1), we have

lim inf
n→∞ P

(1)(T � t(i))
P

(wi )(#1F = 1 − q(i) + dn)

P(1)(#1T = 1 + dn)
� P

(1)(T � t(i))
Zwi

b1

for all i ∈ N. However, by Lemmas 4.3 and 4.4, we have

∞∑

i=1

P
(1)(T � t(i))

Zwi

b1
=

∞∑

i=1

P̂
(i)(T � t(i)) = 1,

and thus, whenever P(1)(T � t(i)) is nonzero, we must have

lim sup
n→∞

P
(wi )(#1F = 1 − q(i) + dn)

P(1)(#1T = 1 + dn)
� Zwi

b1
,

which ends the proof of (Hw).

4.2.6 Removing One Element from w

Lemma 4.5 Let w ∈ WK be such that (Hw) holds. Let m be any integer in [|w|] and
let w̃ be w, except that we remove wm from the list. Then (Hw̃) also holds.

Proof For n ∈ N, we split the event {#1F = αw + dn} according to the first and
second generations of type 1 in the mth tree of the forest. By calling k the number of
vertices in the first generation of type 1 issued from the mth tree, and then i1, . . . , ik
the numbers of vertices in the first generation of type 1 of each corresponding subtree,
we have

P
(w)(#1F = αw + dn)

=
∑

k

μwm ,1(k)
∑

i1,...,ik

k∏

r=1

μ1,1(ir )P
(w̃i1+...+ir )(#1F = αw − k − 1{wm=1} + dn)
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where w̃i1+···+ir is the word w wherewm has been replaced by 1, repeated i1+· · ·+ ir
times. Note that the term of the sum where k = 0 is to be interpreted as P(w̃)(#1F =
αw − 1{wm=1} + dn).

We now use the same argument as in the end of the previous section: we first divide
by P(w)(#1F = αw + dn) to get

∑

k

μwm ,1(k)
∑

i1,...,ik

k∏

r=1

μ1,1(ir )
P

(w̃r )(#1F = αw − k − 1{wm=1} + dn)

P(w)(#1F = αw + dn)
= 1.

For each choice of k and i1, . . . , ik , using lower bound (4.1) as well as (Hw), we have

lim inf
n→∞ μwm ,1(k)

k∏

r=1

μ1,1(ir )
P

(w̃r )(#1F = αw − k − 1{wm=1} + dn)

P(w)(#1F = αw + dn)

� μwm ,1(k)
k∏

r=1

μ1,1(ir )
Zw̃ +∑r ir

Zw
.

A repeated use of point (i) of Proposition 2.1 shows that these add up to 1, and thus,
for k and i1, . . . , ik such that μwm ,1(k)

∏k
r=1 μ1,1(ir ) �= 0, we do have

lim
n→∞

P
(w̃r )(#1F = αw − k − 1{wm=1} + dn)

P(w̃)(#1F = αw + dn)
= Zw̃ +∑k

r=1 ir
Zw

.

By irreducibility, one can find k such that μwm ,1(k) �= 0, and by criticality one has
μ1,1(0) �= 0, meaning that we can take i1, . . . , ik all equal to zero, and this ends the
proof. �

4.2.7 End of the Proof

By applying Lemma 4.5 repeatedly and using the fact that (Hw) stays true if we
permute the terms of w, we obtain that, if w and w′ are two words such that any type
features fewer times in w′ than in w, then (Hw) implies (Hw′). Thus, by Sect. 4.2.5,
we now only need to show the following lemma.

Lemma 4.6 For all nonnegative integers n1, . . . , nK , there exists a K -type tree (t, e)
which has more than ni leaves of type i for all i ∈ [K ], and such that P(1)(T � t) > 0.

Proof The first step is showing that, for p large enough, the pth generation of type 1
of T has positive probability of having more than n1 + · · · + nK vertices, where the
pth generation of type 1 is the set of vertices of type 1 which have exactly p ancestors
of type 1 including the root. This is immediate because the average of μ1,1 is 1 and
we are not in a degenerate tree, and thus, the size of each generation of type 1 has
positive probability of being strictly larger than the previous generation.

Irreducibility then tells us that, after each vertex of the pth generation of type 1,
there is a positive probability of finding a vertex of type i for any i . �

123



180 J Theor Probab (2018) 31:159–205

4.3 Proving (Hw) When ζ is Regular Critical

We now take general γ and assume that ζ is regular critical. Our aim here is to prove
the following refinement of (Hw): there exists a constant C > 0 such that, for all
w ∈ WK

P
(w)
(
|F|γ = αw + dn

)
∼

n→∞ Zw

√
γ · a

2πdσ 2n3
, (H ′

w)

where a is the left eigenvector of the mean matrix M , and σ 2 was defined in Sect. 2.2.
The actual values do not matter much; however, the important part is that the right-
hand side is Zw divided by n3/2, times a constant. We will prove this by using analytic
methods, notably the smooth implicit-function schema theorem (see notably [11],
Section VII.4 and [22]).

4.3.1 Proving (H ′
w) for One-Letter Words

Let i ∈ [K ] and, for appropriate z ∈ C, let

ψi (z) = E
(i)[z|T|γ ] =

∑

n∈Z+

P
(i)(|T|γ = n

)
zn .

This power series has nonnegative coefficients, and, since ζ is critical, its radius of
convergence is 1. This is because ψi (1) = 1 (since ψ(i) is the generating function of
a probability distribution) and ψ ′

i (1) = ∞ (Lemma 2.1). We let D be the open unit
disk. The periodicity structure of Sect. 2.3 lets us rewrite ψi in a more precise way:
there exists another power series φi such that

∀z ∈ D, ψi (z) = zαi φi (z
d),

and all the coefficients of φi , except for a finite amount, are strictly positive. Our aim
is then to show that the coefficient of zn in φi behaves like n−3/2 as n tends to infinity.

Recall from Sect. 2.2 the distribution P(i)
cuti of the Galton–Watson tree cut at its first

generation of type i . Given such a cut tree t, we call pt its number of leaves of type i .
We obtain from the Galton–Watson construction the following equation:

ψi (z) = zγi
∑

t

P
(i)
cuti (t)z

∑
j �=i γ j# j (t)

(
ψi (z)

)pt .

This can be refined with the periodicity structure: we know from Proposition 2.2 that,
if P(i)

cuti (t) > 0, then αi ≡ γi +∑ j �=i γ j# j (t) + ptαi (mod d). We let nt ∈ Z+ be
such that γi +∑ j �=i γ j# j (t) + ptαi = αi + ntd, and then obtain

zαi φi (z
d) =

∑

t

P
(i)
cuti (t)z

αi+dntφi (z
d),
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which reduces to

φi (z) =
∑

t

P
(i)
cuti (t)z

nt
(
φi (z)

)pt .

The function φi thus solves

φi (z) = G
(
z, φi (z)

)

where, for appropriate z and w,

G(z, w) = E
(i)
cuti

[
znTw pT

]
.

We will now apply smooth implicit-function schema theorem, as stated in [11],
Theorem VII.3. We have to check several conditions on the double power series
G(z, w) =∑n,m gm,nzmwn with positive coefficients first.

• We show that G is analytic in a domain {|z| < R, |w| < R} with R > 1. Because
of regular criticality and Proposition 2.1, the number of vertices lying before or
on the first generation of type i is both exponentially integrable variables (in the
sense of “Appendix”), and thus, their sum, which is the total number of vertices
lying before the first generation of type i , is also exponentially integrable. Thus,
there exists z > 1 such that E(i)

cuti

[
z#T
]

< ∞, and then bounding |T|γ by γmax#T
(γmax being the highest value of γi , i ∈ [K ]) and rewriting nT in terms of |T|γ ,
we get R > 1 such that G(R, R) < ∞.

• Unlike the assumptions of [11], it is possible that g0,0 = 0 (e.g., if γi = 0 and an
individual of type i can die without giving birth to any offspring), but this is just
an unneeded normalization assumption. We do know, however, that the coefficient
for g0,1 �= 1 and that g0,n �= 0 for some n � 2 since the measureμi,i has expected
value 1 and nonzero variance.

• The pair (r, s) = (1, 1) lies inside the domain of analyticity of G and satisfies the
so-called characteristic system

G(r, s) = s and ∂wG(r, s) = 1.

Of course, in our setting, we are just saying that the coefficients of G sum up to 1
and that the average of μi,i is 1, which we know since Proposition 2.1.

Knowing all of this and the fact that φi is aperiodic (in the sense of [11], since only
a finite number of its coefficients are not 0), the analytic implicit-function schema
gives us the following estimate for the coefficient of zn in φi :

P
(i)
(
|F|γ = αi + dn

)
∼

n→∞

√
∂zG(1, 1)

2π∂2wwG(1, 1)n3
.

Proposition 2.1 gives us the wanted values for the partial derivatives:
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∂zG(1, 1) = Ecuti

[
nT
]

= 1

d
Ecuti

[
γi + (pT − 1)αi +

∑

j �=i

γ j# j (T)
]

= 1

d

(
γi + 0 +

∑

j �=i

γ j a j

ai

)

= γ · a
dai

,

and

∂2wwG(1, 1) = Ecuti

[
pT(pT − 1)

]

= σ 2

aib2i
,

and this ends our proof. �

4.3.2 Moving on to General Words

The general case of (H ′
w) follows from the following lemma:

Lemma 4.7 Let a > 1 and let X and Y be two independent integer-valued random
variables such that

P(X = n) ∼
n→∞

CX

na
and P(Y = n) ∼

n→∞
CY

na
.

Then we also have

P(X + Y = n) ∼
n→∞

CX + CY

na

Proof We will separately show that

lim sup
n→∞

naP(X + Y = n) � CX + CY

and

lim inf
n→∞ naP(X + Y = n) � CX + CY

For n ∈ Z+, let xn = P(X = n), yn = P(Y = n) and zn = P(X + Y = n) =∑n
k=0 xk yn−k . Cut the sum the following way:

zn =
K∑

k=0

xk yn−k +
n−K−1∑

k=K+1

xk yn−k +
n∑

k=n−K

xk yn−k . (4.3)
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For the lower bound, let ε > 0, and choose K large enough that
∑K

k=0 xk � (1−ε),∑K
k=0 yk � (1 − ε) and, for n larger than K , xn � (1 − ε)CXn−a and yn � (1 −

ε)CYn−a . Now take n � 2K . In the first sum, use yn−k � (1− ε)CY (n − K )−a , and
in the third, use xk � (1 − ε)CX (n − K )−a to obtain

zn � (1 − ε)(n − K )−a(CX

n∑

k=0

yk + CY

n∑

k=0

xk
)

� (1 − ε)2(n − K )−a(CX + CY ).

Taking n to infinity, we get

lim inf
n→∞ nazn � (1 − ε)2(CX + CY ),

and letting ε tend to 0 gives us the lower bound.
The upper bound will require more work. Let ε > 0 and 0 < ε < 1/2, we will do

the same cut as in Eq. (4.3), but with a varying K , equal to �εn�. Take n large enough
such that, for k � �εn�, kaxk � (1 + ε)CX and ka yk � (1 + ε)CY . Write in the first
sum yn−k � (1+ε)CY (n−�εn�)−a and in the third one xk � (1+ε)CX (n−�εn�)−a ,
while for the middle one we use xk yn−k � (1 + ε)2CXCY �εn�−2a . We then have

zn �
�εn�∑

k=0

xk(1 + ε)(n − �εn�)−aCY +
�εn�∑

k=0

yk(1 + ε)(n − �εn�)−aCX

+
n∑

k=0

(1 + ε)2CXCY �εn�−2a

� (1 + ε)(CX + CY )(n − �εn�)−a + (1 + ε)2CXCY (�εn�)n�εn�−2a .

Since a > 1, we have 1 − 2a < a, and thus, the last term is negligible compared to
n−a . Hence, lim sup nazn � (1 + ε)(1 − ε)−a, and letting ε tend to 0 gives us the
wanted bound. �

The case a = 3/2 coupled with a simple induction then proves (H ′
w) for general

w ∈ WK .

5 Background on Random Planar Maps

5.1 Planar Maps

As stated in the Introduction, a planar map is a proper embedding m of a finite con-
nected planar graph in the sphere, in the sense that edges do not intersect. These are
taken up to orientation-preserving homeomorphisms of the sphere, thus making them
combinatorial objects. We call faces of a map m the connected components of its
complement in the sphere, and let Fm be their set. The degree of a face f , denoted
by deg( f ), is the number of edges it is adjacent to, counting multiplicity: we count
every edge as many times as we encounter it when circling around f . The numbers
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of vertices, edges and faces of a map are respectively denoted by #V (m), #E(m) and
#F(m). Finally, the graph distance on m is denoted by d.

We are going to look at maps which are both rooted and pointed. These are triplets
(m, e, r), where m is a planar map, e is an oriented edge of m called the root edge,
starting at a vertex e− and pointing to a vertex e+, and r is a vertex of m. We callM
the set of all such maps and Mn the set of such maps with n vertices for n ∈ N. A
map (m, e, r) will be called positive (resp. null, negative) if d(r, e+) = d(r, e−) + 1
(resp. d(r, e−), d(r, e−) − 1). We call M+, M0 and M− the corresponding sets of
maps and, for n ∈ N,M+

n ,M0
n and M−

n the corresponding sets of maps which have n
vertices. Since there is a trivial bijection between positive and negative maps, we will
mostly restrict ourselves to M+ and M0. By convention, we add to M+ the vertex
map †, which consists of one vertex, no edges and one face.

5.2 Boltzmann Distributions

Let q = (qn)n∈N be a sequence of nonnegative numbers such that there exists i � 3
with qi > 0. For any map m, let

Wq(m) =
∏

f ∈Fm

qdeg( f ).

Note that this quantity only depends on the map m, and not on any root r or point m.
We say that the sequence q is admissible if the sum

Zq =
∑

(m,e,r)∈M
Wq(m)

is finite. When q is admissible, we can define the Boltzmann probability distribution
Bq by setting, for a pointed rooted map (m, e, r),

Bq(m, e, r) = Wq(m)

Zq
.

We also introduce the versions of Bq conditioned to be positive or null: let Z+
q =∑

(m,e,r)∈M+ Wq(m) and Z0
q = ∑

(m,e,r)∈M0 Wq(m) and, for any map (m, e, r),

B+
q (m, e, r) = Wq(m)

Z+
q

if it is positive and B0
q(m, e, r) = Wq(m)

Z0
q

if it is null.

For nonnegative numbers x and y, let

f •(x, y) =
∑

k,k′

(
2k + k′ + 1

k + 1

)(
k + k′

k

)
q2+2k+k′ xk yk

′
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and

f �(x, y) =
∑

k,k′

(
2k + k′

k

)(
k + k′

k

)
q1+2k+k′ xk yk

′
.

It was shown in [24], Proposition 1, that q is admissible if and only if the system

1 − 1

x
= f •(x, y) (5.1)

y = f �(x, y) (5.2)

has a solution with x > 1, such that the spectral radius of the matrix

⎛

⎜⎝
0 0 x − 1

x
y ∂x f

�(x, y) ∂y f �(x, y) 0
x2
x−1∂x f

•(x, y) xy
x−1∂y f

•(x, y) 0

⎞

⎟⎠

is smaller than or equal to 1. The existence of such a solution implies its uniqueness,

with x = Z+
q and y =

√
Z0

q. We let Z�
q =

√
Z0

q.

We then say that q is critical if the spectral radius of the aforementioned matrix
is exactly 1 and that it is regular critical if, moreover, for some ε > 0, we have
f •(Z+

q + ε, Zq� + ε) < ∞.
Random Non-pointed Maps We will also occasionally consider rooted maps (m, e)
without any specified point r . If q is admissible, we let B∅

q be the probability measure
on the set of rooted maps such that, for a rooted map (m, e),

B∅
q (m, e) = Wq(m)

Z∅
q

where Z∅
q is an appropriate constant.

Note that, if a random rooted and pointed map (M, E, R) has distribution Bq, then
the distribution of (M, E) (ignoring R) is not B∅

q , but B
∅
q biased by the number of ver-

tices: if (m, e) is a rooted map with n vertices, then
∑

r∈m Bq(m, e, r) is proportional
to nB∅

q . This is because, there are exactly n ways of pointing (m, e), and they all lead
to a different rooted and pointed map.

5.3 The Bouttier–Di Francesco–Guitter Bijection

In [8] was exposed a bijection between rooted and pointed maps and a certain class
of 4-type labelled trees called mobiles. Let us quickly recall the facts here, with a few
variations to make the bijection more adapted to our study.
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5.3.1 Mobiles

A finite spatial 4-type tree (t, e, l) is called a mobile if the types satisfy the following
conditions:

• The root has type 1 or 2,
• The children of a vertex of type 1 all have type 3,
• If a vertex has type 2, then it has only one child, which has type 4, except if it is
the root, if ∅ has type 2 then it has exactly two children, both of type 4,

• Vertices of types 3 and 4 can only have children of types 1 and 2,

and the labels satisfy the following conditions:

• Vertices of types 1 and 3 have integer labels, and vertices of types 2 and 4 have
labels in Z + 1

2 ,
• The root has label 0 if it is of type 1, 1

2 if it is of type 2,
• Vertices of type 3 or 4 have the same label as their father.
• If u ∈ t has type 3 or 4, let by convention u0 = uku(t) + 1 = u−. Then, for all
i ∈ {0, . . . , ku(t)}, l

(
ui + 1

)− l(ui) � − 1
2 (1{e(ui)=1} + 1{e(ui+1)=1}).

The notation ui + 1 means that we are looking at i + 1 as a letter, the word ui + 1
being the concatenation of u and i + 1.

Traditionally, vertices of type 1 are represented as white circles ©, vertices of type
2 are “flags” � while the other two types are dots •. Notice also that we do not need
to mention the labels of vertices with types 3 and 4 since the label of such a vertex
is the same as that of its father. We let TM be the set of finite mobiles, T+

M be the
set of finite mobiles such that e(∅) = 1 and T

0
M be the set of finite mobiles such that

e(∅) = 2. See Fig. 2 for an illustration of the labelling rule, and Fig. 3 for an example
of a mobile.

0, 1, 2, 3, . . .
−1

2 ,
1
2 ,

3
2 , . . .

−1, 0, 1, 2, . . .

−1
2 ,

1
2 ,

3
2 , . . .

Fig. 2 Authorized labelling differences when circling around a vertex of type 3 or 4
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0

−1 −1
2

−1

1
2

1 1

Fig. 3 An example of a mobile, with root of type 1

5.3.2 The Bijection

Let (t, e, l) be amobile and let us describe how to transform it into amap (an illustration
is given in Fig. 4). Let v1, v2, . . . , vp be, in order, the vertices of type 1 or 2 of
t appearing in the standard contour process and e1, e2, . . . , ep and l1, l2, . . . , l p be
the corresponding types and labels. We refer to v1, . . . , vp as the corners of the tree
because a vertex will be visited a number of times equal to the number of angular
sectors around it delimited by the tree. Draw t in the plane and add an extra type 1
vertex r outside of t, giving it label min

e(u)=1
l(u) − 1. Now, for every i ∈ [p], define the

successor of the i th corner as the next corner of type 1 with label li − 1 if ei = 1 and
li − 1

2 if ei = 2. If there is no such vertex, then let its successor be r . In both cases, draw
an arc between vi and the successor. This construction can be done without having any
of the arcs intersect. Now erase all the original edges of the tree, as well as vertices of
types 3 and 4. Erase as well all the vertices of type 2, merging the corresponding pairs
of arcs. We are left with a planar map, with a distinguished vertex r . The root edge
depends on the type of the root of the tree: if e(∅) = 1 then we let the root edge be the
first arc which was drawn (have it point to ∅ for a positive map, and away from ∅ for
a negative map). If e(∅) = 2 then we let the root edge be the result of the merging of
the two edges adjacent to ∅, pointing to the successor of the first corner encountered
in the contour process.

This construction gives us two bijections: one between T
+
M and M+ and one

between T
0
M and M0, which we both call �.

It was shown in [24] that the BDFG bijection serves as a link between Galton–
Watson mobiles and Boltzmann maps.
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0

−1 −1
2

−1

1
2

1 1

r

−2

Fig. 4 Having added a vertex with label −2 to the mobile of Fig. 3, we transform it into a map

Proposition 5.1 Consider an admissible weight sequence q and define an unordered
4-type offspring distribution μ by

μ(1)(0, 0, k, 0) = 1

Z+
q

(1 − 1

Z+
q

)k

μ(2)(0, 0, 0, 1) = 1

μ(3)(k, k′, 0, 0) = (Z+
q )k(Z�

q)k
′(2k+k′+1

k+1

)(k+k′
k

)
q2+2k+k′

f •(Z+
q , Z�

q)

μ(4)(k, k′, 0, 0) = (Z+
q )k(Z�

q)k
′(2k+k′

k

)(k+k′
k

)
q1+2k+k′

f �(Z+
q , Z�

q)
.

Let then ζ be the ordered offspring distribution which is uniform ordering of μ, as
explained in Sect. 2.1. This offspring distribution is irreducible, and it is critical (resp.
regular critical) if the weight sequence q is critical (resp. regular critical), while it
is subcritical if q is admissible but not critical. Define also, for all ordered offspring
type-list w, ν

(i)
w as the uniform measure on the set D(i)

w of allowed displacements to
have a mobile, which is precisely D(i)

w = {0}|w| if i = 1 or i = 2 and

D(i)
w =

{
y=(yi )i∈[|w|] : ∀i ∈ {0, 1, . . . , |w|}, yi+1 − yi+1

2
(1{wi=1}+1{wi+1=1}) ∈ Z+

}
,

if i = 3 or i = 4, in which case we set by convention w0 = w|w|+1 = i − 2 and
y0 = y|w|+1 = 0.
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Then:

• if (T, E, L) has distribution P
(1),(0)
ζ,ν , then the random map �(T, E, L) has distri-

bution B
+
q .

• if (F, E, L) is a forest with distribution P
(2,2),( 12 , 12 )

ζ,ν , consider the mobile formed by
merging both tree components at their roots. The image of this mobile by � has
law B

0
q.

Remark 3 The operation of merging two trees at their roots can be formalized the
following way. Consider two trees (t1, e1) (t2, e2) which are such that, in both trees,
the root has type 2 and has a unique child, with type 4. For u ∈ t2\{∅}, we can write
u = 1u2 . . . uk . Let then u′ = 2u2 . . . uk , and let t′2 = {u′, u ∈ t2\{∅}}. We can now
define t = t1 ∪ t′2, which is easily checked to be a tree. Types can then simply be
assigned by setting, for u ∈ t1, e(u) = e1(u) and, for u ∈ t2\{∅}, e(u′) = e2(u).

This operation is of course continuous for the local convergence topology since, for
any k ∈ Z+, the kth generation of t is completely determined by the kth generations
of t1 and t2.

Remark 4 If the weight sequence q is such that q2n+1 = 0 for all n ∈ Z+, then a
q-Boltzmann map is a.s. bipartite, which implies that there will be no vertices of type
2 or 4 in the corresponding tree, in which case we consider the mobile as a tree with
two types, and it stays irreducible. Moreover, we then have Z�

q = 0.

Remark 5 The number of vertices, edges and faces of the map can be read on the tree.

• #V
(
�(T, E, L)

) = 1 + #1T.

• #E
(
�(T, E, L)

) = |T|γ − 1 with γ = (1, 0, 1, 1).
• #F

(
�(T, E, L)

) = |T|γ with γ = (0, 0, 1, 1).

5.4 Infinite Maps and Local Convergence

If (m, e) is a rooted map and k ∈ N, we let Bm,e(k) be the map formed by all vertices
whose graph distance to e+ is less than or equal to k, and all edges connecting such
vertices, except if the distance between each vertex of such an edge and e+ is exactly
k. The map Bm,e(k) is still rooted at the same oriented edge e. For two rooted maps
(m, e) and (m′, e′), let d

(
(m, e), (m′, e′)

) = 1
1+p where p is the supremum of all

integers k such that Bm,e(k) is equivalent to Bm′,e′(k). This defines a metric on the set
of rooted maps. Call thenM the completion of this set. Elements ofMwhich are not
finite maps are then called infinite maps, which we mostly consider as a sequence of
compatible finite maps: (m, e) = (mi , ei )i∈N with (mi , ei ) = Bmi+1,ei+1(i) for all i .
Note in particular that infinite maps are not pointed.

As with trees and forests, convergence in distribution is simply characterized: if
(Mn, En)n∈N is a sequence of random rooted maps, one can check that it converges in
distribution to a certain random map (M, E) if and only if, for all finite deterministic
maps (m′, e′) and all k ∈ N, P

(
B(Mn ,En)(k) = (m′, e′)

)
converges to P

(
B(M,E)(k) =

(m′, e′)
)
.
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6 Convergence to Infinite Boltzmann Maps

We now take a critical weight sequence q, and take μ, ζ and ν as defined in Propo-
sition 5.1. Since, in the BDFG bijection, the number of vertices, edges and faces of
the map correspond to the vertices of certain types of the tree, we expect Theorem 3.1
to tell us that Boltzmann maps with large amounts of vertices converge locally. This
section is dedicated to establishing the fact that this is indeed the case.

We first define three different periodicity factors dV , dE and dF corresponding to
vertices, edges and faces

dV = gcd
(

{n ∈ N : q2n+2 > 0} ∪ {m ∈ 2Z+ + 1 : qm+2 > 0}
)

dE = gcd
(

{n ∈ N : q2n > 0} ∪ {m ∈ 2Z+ + 1 : qm > 0}
)

dF =
{
1 if ∃n ∈ N : q2n > 0

2 otherwise.

Let also αV = 2 and αE = αF = 0.

Theorem 6.1 Let I ∈ {V, E, F}. If I = E or I = F, we also assume that q is regular
critical. For appropriate n ∈ N, let (Mn, En, Rn) be a variable with distribution Bq,
conditioned on #I (M) = n. We then have

(Mn, En) �⇒
n→∞

n∈αI +dI Z+
(M∞, E∞)

in distribution for the local convergence, where (M∞, E∞) is an infinite rooted map
which we call the infinite q-Boltzmann map.

If I = E or I = F, assuming q is regular critical, consider now (Mn, En) with
distribution B∅

q conditioned on #I (M) = n. We then also have

(Mn, En) �⇒
n→∞

n∈αI +dI Z+
(M∞, E∞)

with the same limiting map (M∞, E∞).

The choice of the subsequence (αI + dI n)n∈Z+ is explained by the fact that, just as
with trees, the number of vertices/edges/faces of a map with distribution Bq can only
be of the form αI + dI n for integer n, and this has nonzero probability for n large
enough. This will be explained in Sect. 6.3.1.

The infinite map (M∞, E∞) is moreover planar, in the sense that it is possible to
embed it in the plane in such a way that bounded subsets of the plane only encounter
a finite number of edges, see Lemma 6.3.
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6.1 Two Applications

6.1.1 The Example of Uniform p-Angulations

Here we take an integer p � 3 and consider maps which only have faces of degree
p, which we call p-angulations. The well-known Euler’s formula will show us that
the number of vertices and edges of such a map is determined by its number of
faces. Let m be a finite p-angulation, and let V be its number of vertices, E be its
number of edges and F be its number of faces. Since each edge is adjacent to two
faces, we have p#F(m) = 2#E(m). Euler’s formula, on the other hand, states that
#V (m) − #E(m) + #F(m) = 2. Combining the two shows that

#V (m) = 2 +
( p
2

− 1
)
#F(m).

Note that these relations imply that there is no real difference between pointed and
non-pointed maps when looking at p-angulations, since a uniform pointed map with
a fixed number of faces can be obtain by taking a uniform non-pointed map and
uniformly choosing the specific point afterward.

At this point, we must split the discussion according to the parity of p.
Uniform Infinite 2p-angulation Let p � 2. It has been shown in [21] that the weight
sequence q defined by

qn = (p − 1)p−1

pp
(2p−2
p−1

) 1{n=2p}

is critical, and it is in fact regular critical because it has finite support. Since the weight
of a map here only depends on its number of faces (or vertices), it is immediate that
conditioning the distribution Bq to the set of maps with n face yields the uniform
2p-angulation with n faces. We thus obtain the following.

Proposition 6.1 (Uniform infinite 2p-angulation) Let p � 2 and, for n ∈ N, let
(Mn, En) be a uniform rooted map among the set of rooted 2p-angulation with n
faces. Then (Mn, En) converges locally in distribution as n goes to infinity, the limit
being a random rooted map which we call the uniform infinite 2p-angulation.

In the case where 2p = 4, we obtain the local convergence in distribution of large
uniform quadrangulation to the UIPQwhich was first obtained by Krikun [16]. In fact,
our method here ends up being essentially the same as that of [10], where we have
used the BDFG bijection in a situation where the simpler Cori–Vauquelin–Schaeffer
bijection would have sufficed.
Uniform Infinite 2p + 1-angulation Let p ∈ N and consider 2p + 1-angulations. It
follows from the relation #V (m) = (p − 1/2)#F(m) that a 2p + 1-angulation must
have an even number of faces. As in the even case, a uniform 2p + 1-angulation can
be seen as a conditioned Boltzmann-distributed random map for the weight sequence
q defined by
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qn = α1{n=2p+1},

for any positive number α. It has been shown in [9], Proposition A.2 that there is one
value of α which makes this sequence regular critical. Theorem 6.1 then gives us the
following.

Proposition 6.2 (Uniform infinite 2p + 1-angulation) Let p ∈ N and, for n ∈ N, let
(Mn, En) be a uniform rooted map among the set of rooted 2p + 1-angulation with
2n faces. Then (Mn, En) converges locally in distribution as n goes to infinity, to a
random rooted map called the uniform infinite (2p + 1)-angulation.

6.2 Uniform Planar Maps

It has been shown in [23] that a uniform map chosen among the set of rooted maps
with n edges converges locally in distribution. Our methods also allow us to get this
result, and that it is also true if we take a uniform pointed and rooted map.

Proposition 6.3 (i) For n ∈ N, let (Mn, En, Rn) be a uniform random variable in
the set of rooted and pointed maps with n edges. Then (M•

n , E
•
n) converges locally

in distribution to an infinite map called the uniform infinite planar map (UIPM).
(ii) For n ∈ N, let (Mn, En) be a uniform random variable in the set of rooted maps

with n edges. Then (Mn, En) converges locally in distribution to the UIPM.

Proof Let λ = 1
2
√
3
and define the weight sequence q by qn = λn for n ∈ N. Given

any map (m, e, r), notice that Wq = λ
∑

f ∈Fm deg( f ) = λ#E(m), where #E(m) is the
number of edges of m. Thus, assuming that q is admissible (which we prove in the
following), conditioning amapwith distribution Bq (resp. B∅

q ) on having n edges gives
a uniform rooted map (resp. uniform rooted and pointed map) with n edges.

Since we clearly have dF = 1, all we need to do now is to prove that q is regular
critical. We start by computing the two generating functions f • and f �. Recall the
formulas

∞∑

k=0

(
k + p

k

)
xk = 1

(1 − x)p+1

for p ∈ Z+ and |x | < 1, as well as

∞∑

k=0

(
2k

k

)
zk = 1√

1 − 4z

and

∞∑

k=0

(
2k + 1

k

)
zk = 1 − √

1 − 4z

2z
√
1 − 4z
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for |z| < 1/4. For x � 0 and y � 0, we have, with z = λ2x
(1−λy)2

:

f •(x, y) =
∑

k,k′

(2k + k′ + 1)!
k!(k + 1)!(k′)!λ

2+2k+k′
xk yk

′

= λ2
∑

k,k′

(
2k + 1

k

)(
2k + k′ + 1

k′

)
(λ2x)k(λy)k

′

= λ2
∑

k

(
2k + 1

k

)
(λ2x)k

(1 − λy)2k+2

= λ2
1

(1 − λy)2
∑

k

(
2k + 1

k

)
zk

= λ2
1

(1 − λy)2
1 − √

1 − 4z

2z
√
1 − 4z

.

and

f �(x, y) = λ
∑

k,k′

(2k + k′)!
(k!)2!(k′)! (λ

2x)k(λy)k
′

= λ
∑

k,k′

(
2k

k

)(
2k + k′

k′

)
(λ2x)k(λy)k

′

= λ
∑

k

(
2k

k

)
(λ2x)k

(1 − λy)2k+1

= λ
1

1 − λy

1√
1 − 4z

.

Both series then converge if and only if 4z < 1, otherwise said λ2x < 4(1− λy)2.
We then let the reader check that x = 4/3 and y = 1/

√
3 satisfy the wanted conditions

for criticality and, since they are not on the edge of the domain, we even have regular
criticality. �

6.3 Proof of Theorem 6.1

The proof of Theorem 6.1 starts with the proof of the case of rooted and pointed maps.
This involves showing the convergence for maps conditioned to be null or positive by
using the BDFG bijection and identifying the limiting map as the image of an infinite
tree by the bijection, and then removing the conditionings. To go from pointed to non-
pointedmaps, wewill follow ideas from [6] and [1] to show that if amap is conditioned
to have n faces or edges, then its number of vertices is well concentrated around a
deterministic multiple of n, and thus, biasing by it will not change the convergence.
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6.3.1 On the Trees Associated to Bq

We want to investigate the periodic structure of Galton–Watson trees with ordered
offspring distribution ν. We thus let γV = (1, 0, 0, 0), γE = (1, 0, 1, 1) and γF =
(0, 0, 1, 1) and, for I ∈ {V, E, F}, we let d I and (α I

i )i∈[4] be the periodicity factors
given by Proposition 2.2. Note that we do not yet know that d I = dI , where dI
was defined at the beginning of Sect. 6. This is the main content of the following
proposition:

Lemma 6.1 We have, for I ∈ {V, E, F}:
• d I = dI .
• α I

1 = γ I
1 .

Moreover, if the weight sequence q is not only supported on 2N, then we also have

• 2α I
2 ≡ α I

1 (mod d).

Proof We will concentrate on the case where I = V , the other two cases having
similar proofs. We first treat the bipartite case separately. In this case, types 1 and 3
alternate in tree, and it is straightforward that dV = gcd

({m ∈ N, q2m+2 > 0}) and
that α3 = 0. We now assume not to be in this case.

It is immediate that α3 = 0 and α4 = α2 because a vertex of type 1 or 2 can give
birth to a single vertex of type 2 or 4, respectively.

Next, take m ∈ N such that q2m+2 > 0. Using the fact that a vertex of type 3 can
give birth tom vertices of type 1, one obtainsm ≡ 0 (mod dV ). Thus, dV divides the
gcd of {m ∈ N : q2m+2 > 0}.

Now take an odd integerm = 2n+1 such that qm+2 = q2n+3 > 0. A vertex of type
3 can then give birth to n vertices of type 1 and one vertex of type 2, and a vertex of
type 4 can give birth to n + 1 vertices of type 1. We thus obtain n + α2 ≡ 0 (mod d)

and n + 1 ≡ α2 (mod d). Combining these gives us m = 2n + 1 ≡ 0 (mod dV ) and
2α2 ≡ m + 1 ≡ 1 (mod dV ).

We have thus shown 2α2 ≡ 1 (mod dV ) and that dV divides dV . To show that they
are equal we require some more refined analysis.

Notice that for words w = (k, k′, 0, 0) such that μ(3)(w) > 0, we have 2k+ k′ ≡ 0
(mod dV ). Indeed, if k′ is even, letting n = k + k′

2 , we then have q2n+2 > 0, implying
that d ′ divides n, while if k′ is odd, we let n = 2k+k′, and then qn+2 > 0 and therefore
d ′ divides n. Similarly, if μ(4)(w) > 0, then 2k + k′ ≡ 1 (mod dV ). Applying this
repeatedly to a tree (t, e) such that P(1)

ζ (T � t) > 0 and such that all its leaves are of
type 1 or 2, one obtains 2k + k′ = 0 (mod dV ) where k and k′ are respectively the
number of leaves of types 1 and 2 in t. Taking (t, e) which has only one generation of
type 1, and we do obtain that dV divides every member of the support of μ1,1, which
is all we need. �

6.3.2 Infinite Mobiles and the BDFG Bijection

We call infinite mobile any infinite 4-type labelled tree (t, e, l) which satisfies the
conditions of Sect. 5.3.2, which has a unique infinite spine and such that the labels of
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vertices of type 1 of the spine do not have a lower bound. We let TM be the set of all

finite and infinite mobiles, and split it in TM = T
+
M ∪ T

0
M as before.

The BDFG bijection � can be naturally extended to TM . Let (t, e, l) ∈ TM , we let
(un)n∈N be the sequence of the elements of the spine. This sequence splits the tree in
two: the part which is on the left-hand side of the spine, and the part which is on the
right-hand side. To be precise, we say that v ∈ t is on the left-hand side of the spine if
there exists three integers n, k and l and a sequence of integers x such that v = unkx ,
un+1 = unl and k < l, and v is on the right-hand side if we have the same, but with
k > l.

This splitting allows us to define a contour process, but it has to be indexed by Z:
since every subtree branching out of the spine is finite, we can let

(
v(n)

)
n∈N be the

contour process of the left-hand side and
(
v(−n)

)
n∈N be the other half. This determines

a unique sequence
(
v(n)

)
n∈Z. Since we have assumed that the labels of the vertices

of type 1 do not have a lower bound, the notion of successor we used for finite trees is
still valid, and in fact, unlike in the case of a finite tree, we do not need to add an extra
vertex. As in the finite case, we connect every vertex of type 1 or 2 to its successor,
erase all the original edges of the tree, erase vertices of types 2, 3 and 4, merging the
two edges adjacent to every vertex of type 2. This leaves us with an infinite map (by
construction, the arcs do not intersect, while the following Lemma 6.2 implies that it
is locally finite). We give this map a root edge which is determined with the same rules
as in the finite case; however, it is not pointed. We call this rooted map �(t, e, l).

Lemma 6.2 The extended BDFG function � is continuous on TM.

Proof Let (t, e, l) be an infinite mobile. We assume e(∅) = 1, the other case can be
treated the same way. For n ∈ N, we need to find p ∈ N such that, for another mobile
(t′, e′, l′), if (t�p, e�p, l�p) = (t�p, e�p, l�p) then Bm,e(n) = Bm′,e′(n), where
(m, e, r) = �(t, e, l) and (m′, e′, r ′) = �(t′, e′, l′). Let s ∈ N be large enough such
that all the arcs in Bm(n) connect vertices of t�s , let x = inf

v∈t�s
l(v) and let u be any

type 1 vertex of the spine such that l(u) < x − 1. Notice now that there are no arcs
connecting t�s and the subtree above u. Indeed, the successor of any vertex of t�s will
be encountered below u while, if v is above u, l(v) � x would imply that its successor
is also above u, while l(v) � x − 1 would make it impossible for its successor to be
in B(t,l)(s). Taking p to be the height of u then ends the proof. �
Lemma 6.3 For any infinite mobile (t, e, l), the infinite map �(t, e, l) is planar, in
the sense that it can be embedded in the plane in such a way that bounded subsets of
the plane only encounter a finite number of edges.

Proof Wefirst start by embedding themobile in the plane in a convenientway.Wedraw
its infinite spine as the subset {0}×Z+, where the child of (0, n) is (0, n+1) for n ∈ Z+.
Starting from this,we can then embed the tree inZ×Z+ such that the second coordinate
of a vertex is always its graph distance to the root, and also such that the children of
any vertex u always form a set of the type {(n,m), (n+1,m), . . . , (n+ku(t)−1,m)},
with n ∈ Z and m ∈ N and their first coordinates are in the correct order. With such
an embedding, it is also apparent that there exists a continuous function f : R → R
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which is decreasing on (−∞, 0] and increasing on [0,+∞), which has limit +∞ at
both −∞ and +∞ such that t is strictly above the graph of f .

We point out an important fact of the bijection: let u be any corner of type 1 or 2
and let v be its successor. Then, for any corner w of type 1 or 2 which is encountered
between u and v in the contour process of the mobile, the successor of w, which we
call x , is then encountered between w and v, and the arc between w and x is then
enclosed between t and the arc connecting u and v. From this fact, we obtain that all
the arcs which connect two points on the left-hand side of the tree can be embedded
without any issues: first draw the arcs connecting the line of successors starting at the
root, and enclose in each of them the other necessary arcs.

The arcs which originate from the right-hand side of the tree are a more complex
issue, because some of them might start very high on the right-hand side, go around
a large part of the tree and end up high on the left-hand side. To make sure that these
are well separated, we introduce for n ∈ Z+ the “strip”

Sn =
{
(x, y) ∈ R

2 : f (x) − n + 1 � y < f (x) − n
}

Wenow explore the right-hand side of the tree in counterclockwise order and, whenwe
encounter the nth corner of type 1 or 2, we join it to Sn . We point out that it is possible
to do this in such a way that second coordinate along the path is nondecreasing. We
then do the same thing for the corner’s successor, and then join both halves by a path
which stays in Sn .

The paths we have drawn this way still do not intersect because of the “enclosure”
property as before, and this embedding is indeed such that bounded subsets ofR2 only
encounter a finite number of edges. This is because we have split these edges in parts
which are in Sn , of which there is only one for every n, and parts which originate from
vertices of the tree and have nondecreasing second coordinate, of which there are a
finite amount in bounded subsets because there is a finite amount of vertices of t with
bounded second coordinate. �

6.3.3 Behavior of the Labels on the Spine of the Infinite Tree

Let (T, E, L) be a 4-tree with law P̂
(1),(0)
ζ,ν or the tree obtained from merging both

components of a forest with distribution P̂
(2,2),( 12 , 12 )

ζ,ν at their roots. The aim of this
section is to show that it is an infinite mobile, that is, that the labels on the spine do
not have a lower bound. Let us first describe it quickly.

The root of T has either type 1 and label 0, or type 2 and label 1/2, in which case it
has (exceptionally) two children of type 4, one of them (uniformly selected) being on
the spine. The vertices which are not on the spine have offspring distribution ζ , which
was defined in Proposition 5.1 as the uniform ordering of μ, while vertices which are
on the spine have offspring ζ̂ , defined by (3.2). The distribution ζ̂ is itself the uniform
ordering of a distribution μ̂ on (Z+)4 which we defined by

μ̂(i)(k1, k2, k3, k4) = k1b1 + k2b2 + k3b3 + k4b4
bi

μ(i)(k1, k2, k3, k4)
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for i ∈ [4] and k1, k2, k3, k4 ∈ Z+ and where b1, b2, b3, b4 are some positive num-
bers which depend on q. The label displacement distribution ν

(i)
w for a type i ∈ [K ]

and a word w is then the uniform distribution on the set D(i)
w which was defined in

Proposition 5.1.

Lemma 6.4 Let i ∈ {1, 2, 3, 4} and w ∈ W4 such that ζ
(i)
w > 0. Define the

reversed word
←
w = (w|w|, . . . , w1), and, for a label sequence y = (yi )i∈[|w|], let←

y = (−y|w|,−y|w|−1, . . . ,−y1). The function which maps y to
←
y is a bijection

between D(i)
w and D(i)

←
w
, sets which are defined in Proposition 5.1.

Asa corollary,weget that, ifW has distribution ζ̂ (i) for some i andY has distribution

ν
(i)
W conditionally on W, then the pair (

←
W,

←
Y) has the same distribution as (W, Y).

Proof If i = 1 or i = 2 then the result is immediate, since
←
w = w and D(i)

w only has
one element.

If i = 3or i = 4, bijectivity of themap comes from the fact that reversing a sequence
(and eventually changing the signs of its elements) is an involutive operation, and thus,

we only need to check that
←
y ∈ D(i)

←
w

for any displacement list y, which is straightfor-

ward given the definitions, since (−y|w|+1−(i+1)) − (−y|w|+1−i ) = y|w|−i+1 − y|w|−i

for i ∈ {0, . . . , |w|}. �
Lemma 6.5 Let, for n ∈ Z+, Un be the (n + 1)th vertex of type 1 of the spine of T.
We then have

inf
n∈N

L(Un) = −∞.

Proof Note that Un is well defined for all n ∈ Z+, because the number of vertices
of type 1 on the spine of T is a.s. infinite. Indeed, if it were not the case then all the
vertices on the spine after a certain height would have type 2 or 4, but since a vertex of
type 4 has positive probability of having at least one child of type 1, having an infinite
sequence of vertices 2 and 4 has probability 0.

Notice then that
(
L(Un)

)
n∈Z+ is in fact a centered randomwalk in Z. It is a random

walk because of the construction—the set of descendants of a vertex of type 1 of
the spine with label k will have distribution P̂

(1,k)
ζ,ν . We can see that it is centered

thanks to Lemma 6.4. Define the mirrored tree (
←
T,

←
E,

←
L) by reversing the order of

all the offspring of T. To precise, if u = u1u2 . . . un ∈ T, then let, for i ∈ [n],
vi = ku1...ui−1 − i + 1 and let then

←
u = v1 . . . vn . Let then

←
E(

←
u ) = E(u) and, define

the labels
←
L on

←
T by

←
L(∅) = L(∅) and, for all u, y←

u
= ←

yu (as defined in Lemma 6.4).

Since, for i ∈ [4] and w ∈ W4 the distribution ζ (i) is the uniform ordering of μ(i)

and ν
(i)
w is uniform on D(i)

w , we obtain from Lemma 6.4 that (
←
T,

←
E,

←
L) has the same

distribution as (T, E, L). In particular, L(U1) − L(U0) has the same distribution as
L(U0) − L(U1), making its distribution centered. In particular, the centered random
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walk
(
L(Un)

)
n∈Z+ then has a.s. no upper or lower bounds, for example by [14],

Theorem 8.2. �

6.3.4 Removing Conditionings

Take once again I ∈ {V, E, F}. We need for this section some extra notation: for
n ∈ N,Mn is the set of pointed and rooted maps (m, e, r) with #I (m) = n,M+

n and
M0

n are the analogous sets of positive and null maps. The probability measures Bn
q ,

Bn,+
q and Bn,0

q are also the associated conditioned versions of Bq.

The work done in the previous sections shows that maps with distribution Bn,+
q

and Bn,0
q converge in distribution along the subsequence (αI + dI n)n∈N (considering

Bn,0
q only in the non-bipartite case). To show that maps with distribution Bn

q converge,
all that is left for us to do is to show that the two quantities Bn

q(M+
n ) and Bn

q(M0
n)

converge (along the same subsequence). Since 2Bn
q(M+

n ) + Bn
q(M0

n) = 1, we can

in fact restrict ourselves to showing that the quotient
Bn

q (M+
n )

Bn
q (M0

n)
converges. Elementary

calculations on conditionings give us

Bn
q(M+

n )

Bn
q(M0

n)
=

Bq

(
(M, E, R) ∈ M+ | (M, E, R) ∈ Mn

)

Bq

(
(M, E, R) ∈ M0 | (M, E, R) ∈ Mn

)

=
B+

q

(
(M, E, R) ∈ Mn

)

B0
q

(
(M, E, R) ∈ Mn

) Bq(M+)

Bq(M0)
.

Recall that, in the BDFG bijection, the number of vertices of the map is exactly one
more than the number of vertices of type 1 in the mobile. As a consequence, we have

B+
q

(
(M, E, R) ∈ Mn

)

B0
q

(
(M, E, R) ∈ Mn

) = P
(1)
ζ

(|T|γI = n − 1
)

P(2,2)
(|F|γI = n − 1)

.

We then deduce from (Hw) and Lemma 6.1 that this quotient indeed converges as n
converges to infinity, along the (αI + dn)n∈N subsequence.

6.3.5 The Non-pointed Case

Wefollowhere themethodgiven in [1], Sect. 6.Wenowassume thatq is regular critical,
and that I ∈ {E, F}, and (Mn, En, Rn) is still a map with distribution Bq conditioned
on #I (Mn) = n. We show that the number of vertices of Mn is concentrated around
a multiple of n.
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Lemma 6.6 There exists m > 0 such that, for δ > 0, there exists Cδ > 0 such that,
for n ∈ N large enough,

P

[∣∣#V (Mn) − mn
∣∣ > δn

]
� exp(−Cδn)

This lemma is itself a consequence of this similar result on trees:

Lemma 6.7 Let K ∈ N and let ν be a non-degenerate, irreducible and regular critical
K -type ordered offspring distribution. Let γ ∈ (Z+)K and γ ′ ∈ (Z+)K be two size
measuring vectors. There then exists m > 0 such that, for any type i ∈ [K ] and δ > 0,
there exists cδ > 0 such that, for n ∈ N large enough,

P
(i)(|T|γ = n,

∣∣∣|T|γ ′ − mn
∣∣∣ � δn

)
� exp(−cδn)

Proof We treat the case where γk = 1k=i (i being the type of the root) and γ ′
k = 1k= j ,

and leave the generalization to all γ and γ ′ to the reader. In this case, the value of m
we are looking for is in fact a j/ai , the average of the measure ξ j,i defined in Sect. 2.2.

Consider an infinite sequence of i.i.d trees (Tn)n∈N with distribution P
(i) and list

the vertices of type i of these trees in lexicographical order. For n in N, call An the
total number of vertices of type j placed between the nth element of this list and the
next generation of type i . Notice now that the event where |# jT1 − a j

ai
n| > δn and

#1T1 = n is included in the event where |A1 + · · · + An − a j
ai
n| > δn, thus giving us

P
(1)
(
|#iT − a j

ai
n| > δn

⋂
#1T = n

)
� P

(|A1 + · · · + An − a j

ai
n| > δn

)
,

Since these variables are i.i.d with distribution ξ j,i and have an exponential moment
thanks to Proposition 2.1, point (iv), we can apply Cramér’s theorem which gives us
a constant cδ > 0 such that, for large enough n ∈ N,

P
(|A1 + · · · + An − a j

a1
n| > δn

)
� exp(−cδn),

thus ending the proof. �
Proving Lemma 6.6 from Lemma 6.7 then simply consists in applying the BDFG

bijection and noticing that conditioning on events of the form {|T|γ = n} does not
change anything here, because the probability of such an event is of order n−3/2, the
inverse of which can be absorbed in the exponential factor. �
Endof The proof of Theorem 6.1, SecondPart Sincewewill simultaneouslymanipulate
pointed and non-pointed maps, we change our notation slightly here: (Mn, En, Rn)

is a rooted and pointed map with distribution Bq conditioned on #I (Mn) = n and
(M∅

n , E∅
n ) is a rooted map with distribution B∅

q conditioned on #I (M∅
n ) = n. As

mentioned earlier, the distribution of (Mn, En) is that of a biased version of (M∅
n , E∅

n ).
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We write this inversely: for bounded functions F , we have

E
[
F(M∅

n , E∅
n )
] = E[ 1

#V (Mn)
]−1

E
[ F(Mn, En)

#V (Mn)

]
.

If we let Xn = mn(#V (Mn))
−1, we get the statement

E
[
F(M∅

n , E∅
n )
] = E

[
F(Mn, En)

Xn

E[Xn]
]
,

which yields

E
[|F(M∅

n , E∅
n ) − F(Mn, En)|

] = E

[
F(Mn, En)

∣∣∣1 − Xn

E[Xn]
∣∣∣
]
.

Proving that Xn converges to 1 in L1 will then end the proof. Take δ > 0 and write

E[|Xn − 1|] � δ + E[|Xn − 1|1{|Xn−1|>δ}].

Let ε = δ(1 − δ)−1, such that the event {|Xn − 1| > δ} is included in the event
{|#V (Mn) − mn| > εn}. Recalling that Xn � mn, we then have

E[|Xn − 1|] � δ + (mn + 1)P(|Yn − mn| > εn),

and Lemma 6.6 ends the proof of Proposition 6.3. �

7 Recurrence of the Infinite Map

The aim of this section is to prove the following:

Theorem 7.1 The random rooted graph (M∞, E+∞) is almost surely recurrent.

Our principal tool for the proof will be the main result of [12]: since (M∞, E+∞) is
the limit in distribution of

(
(Mn, E+

n ), n ∈ N
)
, and since E+

n is chosen according to the
stationary distribution on Mn (that is, a vertex is chosen with probability proportional
to its degree, i.e., its number of adjacent edges), then Theorem 1.1 of [12] states that
if we can find positive constants λ and C such that, for all n ∈ N,

P(deg(E+) � n) � Ce−λn,

then Theorem 7.1 will be proven.
We invite the reader to read Appendix 8 where we discuss a few elementary results

concerning random variables with such exponential tails.
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7.1 The Case of Positive Maps

Picture a mobile (T, E, L) with distribution P̂
(1),(0)
ζ,ν : it has an infinite spine, and on

its right and left sides are grafted some finite trees. Since the BDFG bijection makes
∅ into e+, we will want to show that ∅ has an exponentially integrable number of
successors and is the successor of an exponentially integrable number of vertices. We
start with a simplified case.

Proposition 7.1 Let A be a mobile with distribution P
(1),(0)
ζ,ν conditioned to the event

where ∅ has exactly one child. Let X be the number of corners of A for which ∅ is the
successor. Then X is an E I (λ) variable for a certain λ > 0.

Proof Recall that X is the number of corners labelled 1 or 1
2 met before encountering a

vertex labelled 0while circling counterclockwise around the treeA.Wewill separately
treat corners of types 1 and 2.

Let X1 be the number of corners of type 1 encountered. We claim that, for all n,

P(X1 = n | X1 � n) � α(1 − 1

Z+ ), (7.1)

where α > 0 is the probability that, given a vertex of type 3 labelled 1, its rightmost
offspring is of type 1 and has label 0. The fact that α is strictly positive comes from
the fact that there exists i � 3 such that qi > 0. In the case where such an i is different
from 3, the vertex of type 3 can have offspring with at least one child of type 1, the
uniform ordering of the offspring means that this child can be the rightmost one, and
the distribution of the label displacements shows that it can have label 0. For the case
where q3 > 0 and qi = 0 for i � 4, the type 3 vertex can have a unique child of type
2 with label 1

2 , which can have a unique child of type 4 which can have a unique child
of type 1 with label 0.

Inequality (7.1) is obtained by recalling from Proposition 5.1 that the offspring of
vertices of type 1 is only made of vertices of type 3, and that their number follows a
geometric distribution with parameter 1 − 1

Z+ . Thus, whenever we visit a corner of a
type 1 vertex with label 1, there is a 1− 1

Z+ chance that this vertex has another child.
This immediately gives us (7.1), and a simple induction shows that X1 is indeed an
E I variable.

Let now X2 be the number of vertices of type 2 with label 1
2 encountered before

the first vertex labelled. We insist that we count each vertex exactly once, when we
meet them for the first time on the counterclockwise exploration path. Then the same
argument as for vertices of label 1 shows that P(X2 = n | X2 � n) � α′ for some
strictly positive α′, and X2 is an E I variable.

Since X � X1 + 2X2, we now have our conclusion. �
The following lemma provides some additional on the structure T.

Lemma 7.1 Let n ∈ Z+, and let V be the nth vertex of the spine of T to have type 1.
Let also Nr and Nl be the numbers of subtrees rooted at v on the right and left sides of
the spine. These variables are i.i.d., and their common distribution is geometric with
parameter 1 − 1

Z+ .
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Proof By combining Propositions 5.1 and 3.1, we obtain that the total offspring N of
V follows a size-biased geometric distribution: we have

P(N = k) = k

(Z+)2

(
1 − 1

Z+

)k−1

for k � 1. Recall also that the child of V which is on the spine is chosen uniformly
among the offspring of V . We thus have

P(Nl = k, Nr = k′) = P(N = 1 + k + k′)
1 + k + k′ = (

1

Z+ )(1 − 1

Z+ )k+k′
,

ending the proof. �
Proof of Theorem 7.1 for Positive Maps First off, by Lemma 7.1, we know that ∅
has an EI amount of children, since geometric variables are EI, and therefore has an
EI amount of successors. Next, look at all the subtrees of T which are rooted at ∅,
excluding the subtree containing the spine. These are in EI amount, all independent,
and, by Proposition 7.1, the root ∅ is connected to an EI amount of vertices in each of
them. Lemma 8.2 allows to combine all of this: outside of the subtree containing the
spine, ∅ is connected to an EI amount of vertices. Thus, we now only need to prove a
variation of Proposition 7.1 for this very subtree. This is done in the same way since,
when doing the counterclockwise exploration process, the number of children of a
vertex of type 1 on the spine is still geometric by Lemma 7.1, while vertices of type
2 only correspond to one corner. �

7.2 The Case of Null Maps

The situation for null maps is slightly different, because the vertex E+ is no longer
the root of the mobile. Consider a mobile (T, E, L) obtained by merging at their roots

the two components of a forest with distribution P̂
(2,2),( 12 , 12 )

ζ,ν , and let (M, E, R) be the
map obtained after applying the BDFG bijection. Recall that E+ is the first vertex
of type 1 and label 0 encountered when running the clockwise contour process of T.
Note that it is either on the spine or on its left side.

An adaptation of the reasoning used in the previous section will work and give us
that the number of vertices E+ is connected to is indeed EI. First, for the number
such vertices which are descendants of E+ in T, we find ourselves exactly back to
the positive case: if E+ is not on the spine then we apply Proposition 7.1 to an EI
number of subtrees rooted at E+, and if E+ is on the spine, we separate the subtrees
on the left side of the spine, on the right side of the spine and the subtree containing
the spine. Second, we look for points of which E+ is the successor, but which are
not descendants of E+. These can be obtained by running both the clockwise and
counterclockwise contour processes, starting at the root, and stopping them the first
time we reach a 0 label. The same arguments as in the proof of Proposition 7.1 show
that we encounter an EI number of vertices of labels 1 and 1

2 on the way, thus ending
the complete proof of Theorem 7.1. �
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8 Appendix: Around Exponentially Integrable Variables

We recall here a few basic facts about nonnegative random variables with exponential
moments.
Let X be a nonnegative random variable. We say that X is exponentially integrable
with parameter λ > 0 (which we shorten as E I (λ), and simply E I if we are not
interested in the value of λ) if we have

E[eλX ] < ∞.

The use of Markov’s inequality shows that this implies that the tail of X is bounded
by an exponential with parameter λ:

∀n ∈ N,P(X � n) � E[eλX ]e−λn .

The converse is no quite true, but almost is: if the tail of X is bounded by an exponential
with parameter λ, then X is E I (λ′) for λ′ < λ.

Lemma 8.1 If X and Y are two E I (λ) variables then X + Y is E I (λ′) for λ′ < λ
2 .

Proof Just bound P(X + Y > n) by P(X > n
2 ) + P(Y > n

2 ). �
With an extra independence assumption, one can also do sums with a random

amount of terms:

Lemma 8.2 Let (Xi )i∈N be i.i.d nonnegative variables which are E I (λ) for some
λ > 0. Let N be an independent integer-valued variable which is E I (μ) for some
μ > 0. If E[eλX1 ] � eμ (which is always possible by taking λ small enough), the
variable

Y =
N∑

i=1

Xi

is also E I (λ).

Proof Conditioning on N and integratingwith respect to all of the Xi , one immediately
obtains

E[eλY ] = E

[
E[eλX1 ]N

]
,

and this is enough. �
This could of course be generalized to the case where the (Xi ) do not have the same

distribution, but uniformally bounded exponential moments—we will not need such
a generalization.
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