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Abstract The paper is devoted to obtaining the asymptotic expansion and determina-
tion of the structure of the remainder term taking into consideration large deviations
in the Cramér zone for the distribution density function of the standardized com-
pound Poisson process. Following Deltuvienė and Saulis (Acta Appl Math 78:87–97,
2003. doi:10.1023/A:1025783905023; Lith Math J 41:620–625, 2001) and Saulis and
Statulevičius [Limit theorems for large deviations. Mathematics and its applications
(Soviet Series), vol 73, pp 154–187,Kluwer,Dordrecht, 1991], the solution to the prob-
lem is achieved by first using a general lemma presented by Saulis (see Lemma 6.1 in
Saulis andStatulevičius 1991, p. 154) on the asymptotic expansion for the density func-
tion of an arbitrary random variable with zero mean and unit variance and combining
methods for cumulants and characteristic functions. By taking into consideration the
large deviations in the Cramér zone for the density function of the standardized com-
pound Poisson process, the result for the asymptotic expansion extends the asymptotic
expansions for the density function of the sums of non-random number of summands
(Deltuvienė and Saulis 2003, 2001).
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123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10959-016-0696-2&domain=pdf
http://dx.doi.org/10.1023/A:1025783905023


1656 J Theor Probab (2017) 30:1655–1676

1 Introduction

Assume that we have a family {X, X j , j = 1, 2, . . . } of independent identically
distributed (i.i.d.) random variables (r.vs.) that have a common distribution with mean
and finite positive variance:

μ = EX, σ 2 = DX < ∞, FX (x) = P(X < x), x ∈ R, (1)

where R is the set of real numbers. In addition,

EXk = 1

i k
dk

duk
fX (u)

∣
∣
∣
u=0

, Γk(X) = 1

i k
dk

duk
ln fX (u)

∣
∣
∣
u=0

, k = 1, 2, . . . , (2)

denotes the kth-order moments and cumulants, where fX (u) is the characteristic func-
tion (ch.f.)

fX (u) = EeiuX =
∫ ∞

−∞
eiuxdFX (x), u ∈ R, (3)

of the random variable (r.v.) X . The existence of Γk(X) up to order k must be implied
by the existence of all the kth-order absolute moments of X . Here Γ1(X) = EX and
Γ2(X) = DX .

The theory of large deviations deals with the probabilities of rare events that are
exponentially small as a function of some parameter. For example, in insurancemathe-
matics, such problems arise in the approximation for small probabilities of large claims
that occur rarely. The theory of large deviations was originally created for non-random
sums Sn = ∑n

j=1 X j , n ∈ N, whereN = {1, 2, . . . } is the set of natural numbers, and
then extended to a class of random processes [34].

The first fundamental theorem of large deviations for Sn was proved by Cramér
[8] who showed that the rate function is the convex conjugate of the logarithm of the
moment generating function of the underlying common distribution. The cases that
havebeen themost studied (see, e.g., in [34]) arewhen theCramér condition is satisfied,
namely, the characteristic functions of the terms are analytic in a neighborhood of zero:
the Linnik case when all the moments of summands are finite but their growth does not
assure the analyticity of the ch.f. in the neighborhood of zero; the case of the so-called
moderate deviations where the summands have only the finite number of moments;
and the case when Cramér and Linnik conditions are not fulfilled, but the behavior of
distribution tails of summands is regular enough.

Many of the basic ideas and results of theorems on large deviations for the sums
Sn have been presented by Ibragimov and Linnik, Petrov, Nagaev, S.V. [16,30,32]. In
these studies, large deviation theorems have been obtained by the rather complicated
analytical saddle-point method [18] and, as a rule, for sums of i.i.d. r.vs. This is the
simplest case that allows one to conceive the general view of large deviation probabil-
ities. Asymptotic expansions for large deviations were first obtained by Kubilius [24].
Without a detailed exposition on the history of asymptotic expansions and local limit
theorems taking into account large deviations in the scheme of summation of r.vs., we
cite, e.g., [2,7,30,31,33]; see also the books [16,32,34] and references therein.
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The next major step in addressing problems of large deviation theorems was made
when Statulevičius [35] proposed the method of cumulants to consider large deviation
probabilities for various statistics. The cumulant method was developed by Rudzkis,
Saulis, and Statulevičius [34, p. 18]. They proved a general lemma of large deviations
for an arbitrary r.v. X withmeanμ = 0, variance σ 2 = EX2 = 1, and regular behavior
of its cumulants (see condition (Sγ ) below): there exist γ ≥ 0 and Δ > 0 such that

|Γk(X)| ≤ (k!)1+γ

Δk−2 , k = 3, 4, . . . . (Sγ )

The method of cumulants provided a way to obtain large deviation theorems for sums
of independent and dependent r.vs., polynomials forms, multiple stochastic integrals
of random processes, and polynomial statistics in both the Cramér (γ = 0) and the
power Linnik zones (γ > 0). The monograph [34] addresses these issues. Although
cumulant method has been studied to investigate a more precise asymptotic analysis of
the distribution via the rate of convergence and large deviation probabilities, Döring,
Eichelsbacher [11] established moderate deviation principles for a rather general class
of r.vs. fulfilling certain bounds of the cumulants.

For asymptotic expansions and local limit theorems that take into account large
deviations when the cumulant method is used, we only cite [9,10] and [34, p. 154–
187] as these works reflect the area of our interest. In more detail, Saulis [34, p. 154]
presented an asymptotic expansion for the density function of an arbitrary r.v. with
zero mean and unit variance. Based on the aforementioned result, Saulis (see Theorem
6.1 in [34, p. 180]) established an asymptotic expansion in the Cramér zone of large
deviations for the density function of the sum Sn of independent nonidentically distrib-
uted r.vs. Also, the structure of the remainder term of the asymptotic expansion in the
case where γ = 0 was delivered. Asymptotic expansions of large deviations in both
the Cramér and the power Linnik zones for the density function have been generalized
in [9,10] by considering asymptotic expansions in the areas of large deviations for
the density function of sums of independent r.vs. in a triangular array scheme. These
results improve on the results on sums of r.vs. with weights in [6].

The theory of large deviations offers interesting problems when the number of sum-
mands is itself a r.v. Let us consider Nt , t ≥ 0, as themost popular Poissonprocess—the
homogeneous Poisson process (see in [27])with linearmean value function�(t) = λt ,
t ≥ 0, for some λ > 0, and the distribution

qm = P(Nt = m) = e−λt (λt)
m

m! , m ∈ N0, (4)

where N0 = {0, 1, 2, . . . }. In addition,

ENt = λt, DNt = λt. (5)

Throughout, we assume that Nt is independent of {X, X j , j = 1, 2, . . . }. If Nt is a
homogeneous Poisson process, then
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SNt =
Nt∑

j=1

X j , S0 = 0, (6)

is a compound Poisson process.
Since r.v. X1, X2, . . . and Nt are independent, and {X, X j , j = 1, 2, . . . } are i.i.d.,

then according to (1), (4), (5),

ESNt =
∞
∑

m=0

E

⎛

⎝

Nt∑

j=1

X j |Nt = m

⎞

⎠ = μ

∞
∑

m=0

mqm = λtμ, (7)

ES2Nt
= E

⎛

⎝

Nt∑

j=1

X j

⎞

⎠

2

=
∞
∑

m=0

⎛

⎝E
m

∑

j=1

X2
j + E

m
∑

i, j=1, i �= j

Xi X j

⎞

⎠ qm

=
∞
∑

m=0

⎛

⎝EX2
m

∑

j=1

mqm + μ2
m

∑

j=1

m(m − 1)qm

⎞

⎠

= EX2λt + μ2EN 2
t − μ2λt,

DSNt = ES2Nt
− (ESNt )

2 = λt (μ2 + σ 2). (8)

For instance, in the continuous dynamic models of an insurance stock [27, p. 152],
Rt = R0+ Pt − SNt , t ≥ 0, can express the surplus Rt at time t . Here, R0 is the initial
reserve and Pt is the total premium received up to time t . That is, the company sells
insurance policies and receives a premium according to Pt . The sum (6) is the total
claim amount process in the time interval [0, t]. In this example, X j , j = 1, 2, . . .,
denotes the jth claim, and Nt is the number of claims by time t .

Because Nt is independent of X j , j = 1, 2, . . . , according to (3) and (4), the ch.f.

fSNt (u) = EeiuSNt =
∞
∑

m=0

f mX (u)qm = e−λt (1− fX (u)), u ∈ R, (9)

of (6) exist if the ch.f. (3) of the r.v. X exist.
Let us consider standardized compound Poisson process

S̃Nt = SNt − ESNt
√

DSNt

, DSNt > 0, t > 0. (10)

Hence, it follows from (7)–(9) that

f S̃Nt
(u) = f λt

SN1−μ(ū), ū = u/
√

DSNt , (11)

where
fSN1−μ(ū) = exp{ fX (ū) − 1 − iμū}
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is the ch.f. of the r.v. SN1 − μ = ∑N1
j=1 X j − μ, with N1 a Poisson r.v. with the

parameter 1. Also, E(SN1 − μ) = 0 and D(SN1 − μ) = EX2. As discussed in [4,22],
the representation (11) shows that the asymptotic behavior of (11) asλt → ∞ is similar
to that of the ch.f. of the r.v.

∑n
j=1 X j/

√

DSNt as n � λt → ∞ (wewrite u(x) � v(x)
for real functions u(x) and v(x) if u(x) = O(v(x)) and v(x) = O(u(x))), where the
X j are independent r.vs. The asymptotic properties of Poisson random sums are to a
great extent similar to the corresponding properties of sums of the same r.vs. with a
non-random number of summands [3]. However, this analogy is not absolutely exact
as, for example, the distribution function

FSNt (x) = e−λt F0(x) +
∞
∑

m=1

qmF
∗m
X (x), x ∈ R, (12)

of the compound Poisson process is not absolutely continuous for all x ∈ R because
of the presence of an atom at zero. Here F∗m

X (x) is the m-fold convolution of the
distribution function FX (x) of the r.v. X with itself, and F0(x) is the distribution
function with a single unit jump at zero.

Central limit problems for Poisson random sums have been addressed, for example,
in [4,21]; see also the books [3,27] and references therein. Local limit theorems for
Poisson random sums are available in [22], where the results for non-random sums
presented in [23] are extended. For treatments of asymptotic expansions for Poisson
random sums, we refer the reader, for example, to [1,3].

Presently, there are many strong results, for example, [5,12,26,29], on approxima-
tions of exponential bounds of tail probabilities for compound Poisson sums under
different assumptions andwith various applications.More specifically, Embrechts [12]
considered saddle-point approximations in the context of the compound Poisson sum.
Saddle-point approximations of ruin probabilities in other contexts have also been
well studied; see [18] for references within. On Edgeworth expansions for compound
Poisson processes, we refer to [1]. Cramér-type moderate deviations for a studentized
compound Poisson process have been addressed in [17]. For some special classes of
heavy-tailed distributions; see, for example, [28,29].

As we are here interested not only in the convergence to the normal distribution but
also in a more accurate asymptotic analysis, we must first find a suitable bound for the
kth-order cumulants of the standardized compound Poisson process S̃Nt defined by
(10). To obtain upper bounds for Γk(S̃Nt ), k = 3, 4, . . . , we must impose conditions
for the kth-order moments of the r.v. X that has a common distribution with mean and
finite positive variance (1). Consequently, we say that the r.v. X satisfies condition
(B̄0) if there exists constant K > 0 such that

|E(X − μ)k | ≤ k!Kk−2σ 2, k = 3, 4, . . . . (B̄0)

Condition (B̄0) is often called Bernstein condition. Note that, if Cramér’s condition
holds, that is, there exists a > 0 such thatE exp{a|X |} < ∞, then X satisfies condition
(B̄0). Condition (B̄0) ensures the existence of all order moments of the r.v. X .
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Taking into account the fact that Γk(X) = Γk(X − μ), k = 3, 4, . . . , and using
Lemma 3.1 in [34, p. 42], we take up the position that

Proposition 1.1 If the r.v. X satisfies condition (B̄0), then

|Γk(X)| ≤ k!Mk−2σ 2, M = 2max{σ, K }, k = 2, 3, . . . . (13)

We shall also need the following proposition.

Proposition 1.2 If the r.v. X with 0 < σ 2 < ∞ satisfies condition (B̄0) and Nt , t > 0,
is the homogeneous Poisson process with the probability (4), then

|Γk(S̃Nt )| ≤ k!
Δk−2

t

, Δt =
√

λt (σ 2 + μ2)

K
, K > 0, k = 3, 4, . . . . (14)

Proof (2) and (9) give us the kth-order cumulants of the compound Poisson process
SNt , which is defined by (6):

Γk(SNt ) = dk

ikduk
ln fSNt (u)

∣
∣
∣
u=0

= λtEXk, k = 1, 2, . . . . (15)

Based on (B̄0), for the kth-order moments EXk of the r.v. X with 0 < σ 2 < ∞, we
use the following condition

|EXk | ≤ k!Kk−2EX2, k = 3, 4, . . . .

Therefore, Γk(S̃Nt ) = Γk(SNt )/(DSNt )
k/2, k = 2, 3, . . ., yield (14). Here DSNt is

defined by (8). 
�
Note that for the convergence to the standard normal distribution it is sufficient that

Γk(S̃Nt ) → 0 (λt → ∞) for each k ≥ 3 (Leonov, 1964).
For the normal approximation that takes into consideration large deviations in both

the Cramér and the power Linnik zones for the distribution function of a compound
Poisson process for when the cumulant method is used, we refer the reader to [19,20].
Observe that, under Theorems 1 and 2 in [19, p. 134-135], we deduce the following:

Corollary 1.1 If the r.v. X with 0 < σ 2 < ∞ satisfies conditions (B̄0), and Nt is a
homogeneousPoissonprocesswith the probability (4), then for x ≥ 0, x = O((λt)1/6),
λt → ∞, we have

1 − FS̃Nt
(x)

1 − Φ(x)
= exp

{
x3√
λt

EX3

6(σ 2 + μ2)3/2

}(

1 + O
( x + 1√

λt

))

,

where Φ(x) is the standard normal distribution function.
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Corollary 1.2 If the r.v. X with 0 < σ 2 < ∞ satisfies conditions (B̄0), and Nt is a
homogeneous Poisson process with the probability (4), then

1 − FS̃Nt
(x)

1 − Φ(x)
→ 1,

FS̃Nt
(−x)

Φ(−x)
→ 1

hold for x ≥ 0, x = o((λt)1/6), if λt → ∞.

The main purpose of this paper is an asymptotic expansion that takes into consid-
eration large deviations in the Cramér zone for the distribution density function of
the process (10) (see Proposition 3.1, Theorem 3.1, and Corollary 3.1 in Sect. 3). In
Sect. 3, the result on the asymptotic expansion (33) extends asymptotic expansions for
the density function of the sums of non-random number of summands that takes into
consideration large deviations in the Cramér zone [9,10]. The solution to the problem
of the aforementioned section is obtained by first using a general lemma presented by
Saulis (1980) [34, p. 154] on the asymptotic expansion of the density function for an
arbitrary r.v. with zero mean and unit variance. Among the existing methods for large
deviations (see, e. g., [13–15,18,34]), we rely on the cumulant method [34]. Follow-
ing [9,10,34], to estimate the reminder term (35) of the asymptotic expansion (33),
along with aforementioned methods, Statulevičius’ known estimates for characteristic
functions are used [34, p. 172–174]). Consequently, Sect. 2 is devoted to present the
auxiliary Lemmas 2.1–2.3 that lead to an estimate of the reminder term (35).

2 Auxiliary Lemmas

Suppose that for an arbitrary r.v. X with mean μ = 0, variance σ 2 < ∞, and distrib-
ution function FX (x) = P(X < x) for all x ∈ R, there exists a density function

pX (x) = d

dx
FX (x).

Moreover, let X
′ = X−Y be an arbitrary, symmetrized r.v., where Y is independent of

X and with the same distribution. Clearly, the distribution and characteristic functions
of X

′
are

FX ′ (x) =
∫ ∞

−∞
FX (x + y)dFX (x), fX ′ (u) = | fX (u)|2.

The corresponding density will be denoted by pX ′ (x). Statulevičius proved the fol-
lowing lemmas (see Lemmas 2.1, 2.2, 2.3 in [34, p. 172–174]).

Lemma 2.1 Let X be any r.v. with density pX (x). Then, for any collection M =
{Δi , Ai , i = 1, 2, . . .} of non-overlapping intervalsΔi and positive constants Ai < ∞
for any −∞ < u < ∞, the estimate

| fX (u)| ≤ exp
{

− u2

3

∞
∑

i=1

Q3
i

(|Δi ||u| + 2π)2A2
i

}
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holds, where

Qi =
∫

Δi

min{Ai , pX ′ (x)}dx .

Corollary 2.1 If pX (x) ≤ A < ∞ and σ 2 = EX2 < ∞, then

| fX (u)| ≤ exp
{

− u2

96

1

(2σ |u| + π)2A2

}

,

for all −∞ < u < ∞, where A > 0.

Lemma 2.2 Let a nonnegative function g(u), defined on the interval [b,∞), satisfies
the Lipschitz condition |g(u + s) − g(u)| ≤ K |s|. Moreover, let V := ∫ ∞

b g(u)du <

∞. Then for any ε > 0 and any partition b = u0 < u1 < . . . of the interval [b,∞)

with max
0≤k<∞(uk+1 − uk) ≤ ε, we have the inequality

∞
∑

k=0

(

max
uk≤u≤uk+1

g2(u)

)

Δuk ≤ V

(

2K ε + 4 sup
a≤u<∞

g(u)

)

,

where Δuk = uk+1 − uk.

Let us assume that X j , j = 1, 2, . . ., are independent, nonidentically distributed r.vs.,
and put B2

n = ∑n
j=1 σ 2

j . Let

ln(Hn) = 1

B2
n

n
∑

j=1

∫

|x |≤Hn

x2 pX ′
j
(x), Jn(u) =

n
∑

j=1

∫ ∞

−∞
〈xy〉2 pX ′

j
(x)dx, Hn > 0,

where 〈b〉 denotes the distance of number b to the nearest integer.

Lemma 2.3 For any n ≥ 1 and Hn > 0, there exists a partition · · · < u(n)
−1 < u(n)

0 =
0 < u(n)

1 < u(n)
2 < . . . of the interval (−∞,∞) satisfying the condition

(6Hn)
−1 ≤ Δu(n)

k ≤ (4Hn)
−1, Δu(n)

k = u(n)
k+1 − u(n)

k ,

such that

Jn(u) ≥ 1

2
ln(Hn)

(

u − u(n)
k0

)2
B2
n ,

provided u ∈ [u(n)
k , u(n)

k+1], where, for a given n, u(n)
k0 equals either u(n)

k or u(n)
k+1

depending on u.

3 Asymptotic Expansion in the Large Deviation Cramér Zone for the
Density Function of the Compound Poisson Process

Along with the condition (B̄0), we assume that for the r.v. X that has a common
distribution with mean and finite positive variance (1), there exists density function
pX (x) = (d/dx)FX (x) such that
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sup
x

pX (x) ≤ A < ∞, A > 0. (D′)

Let us recall that certain difficulties may appear in the formulation of problems
related to local limit theorems for a compound Poisson process (6) as the distribution
function (12) of SNt is not continuous for all x ∈ R, because of the presence of an atom
at zero. Let us consider the case where F0(x) = 1, x > 0, thus if (12) is differentiable,
then

pSNt (x) = d

dx
FSNt (x) =

∞
∑

m=0

pX1+...+Xm(x)qm, x > 0, (16)

where p0(x) = 0. In addition, we may conclude that the fulfillment of the condition
(D′) implies

sup
x

pSNt (x) ≤ A
∞
∑

m=0

qm = A < ∞, A > 0.

Observe that according to the proof of general Lemma 6.1 [34, p. 154], we must
first introduce the conjugate r.v. of an arbitrary r.v. X and conjugate process of the
compound Poisson process SNt that are necessary to establish the purpose of the paper.

Definition 3.1 X (h), h = h(x) > 0 is an arbitrary r.v. conjugate to X , if the respective
density and characteristic functions are

pX (h)(x) = ϕ−1
X (h) exp{hx}pX (x), fX (h)(u) = ϕ−1

X (h)ϕX (h + iu). (17)

where

ϕX (h) =
∫ ∞

−∞
ehx pX (x)dx, h ≥ 0, (18)

is the generating function for the r.v. X .

Moreover, according to [5, p. 361], we assume that the conjugate compound Poisson
process can be defined by

SNt (h)(h) =
Nt (h)
∑

j=1

X j (h), (19)

where Nt (h) and X j (h), t ≥ 0, h > 0, are independent. Additionally, the probability
of Nt (h) is

qm(h) = P(Nt (h) = m) = 1

m! exp{−λtϕX (h)}(λtϕX (h))m, (20)

whereϕX (h) is the generating function (18) of the r.v. X . The quantity h will be defined
later.

The identification of Nt (h) and X (h) can be performed with the help of the Laplace
transform of SNt (h)(h). Note that an arbitrary conjugate r.v. X (h) of an arbitrary r.v.
X is defined by the density function (17). Thus, let us define the conjugate process of
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the compound Poisson process by using (17) with X (h) := SNt (h)(h) and X := SNt

[5]:
pSNt (h)(h)(x) = ϕ−1

SNt
(h)ehx pSNt (x). (21)

By virtue of (18), together with (4) and (16), we can state that the generating function
of SNt is

ϕSNt (h) = e−λt
∞
∑

m=0

(λtϕX (h))m

m! = exp{−λt (1 − ϕX (h))}. (22)

Hence, by the definition of the ch.f. (3) of the r.v. X , and from (17), (21), and (22), we
have

fSNt (h)(h)(u) = ϕ−1
SNt

(h)

∫ ∞

−∞
e(h+iu)x pSNt (x)dx = ϕ−1

SNt
(h)ϕSNt (h + iu)

= exp{−λtϕX (h)(1 − fX (h)(u))}. (23)

Clearly, the same result (23) follows using (19) and (20). Note that qm(0) = qm as
ϕX (0) = 1, where qm is defined by (4).

The use of the definition (2) of the moments of X , together with (17) and (18),
produces the rth-order moments of X (h)

EXr (h) = ϕ−1
X (h)

dr

dhr
ϕX (h) = ϕ−1

X (h)

∞
∑

k=r

EXkhk−r

(k − r)! , r = 1, 2, . . . . (24)

Additionally, based on Lemma 1 in [32, p. 135], together with the definition (2), we
have

Γr (X (h)) = dr

dhr
ln ϕX (h) =

∞
∑

k=r

Γk(X)

(k − r)!h
k−r , r = 1, 2, .... (25)

Hence, it follows from (24) and (25) that

μ(h) = EX (h) = Γ1(X (h)) =
∞
∑

k=1

Γk(X)hk−1

(k − 1)! , (26)

EX2(h) = ϕ−1
X (h)

∞
∑

k=2

EXkhk−2

(k − 2)! , σ 2(h) = DX (h) =
∞
∑

k=2

Γk(X)hk−2

(k − 2)! . (27)

According to the definition (2) of cumulants, together with (23),

Γr (SNt (h)(h)) = λtϕX (h)EXr (h) =
∞
∑

k=r

Γk(SNt )h
k−r

(k − r)! , r = 1, 2, . . . , (28)

where Γk(SNt ) is defined by (15).
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For the following, set

S̃Nt (h)(h) = SNt (h)(h) − ESNt (h)(h)
√

DSNt (h)(h)
, DSNt (h)(h) > 0, t > 0, (29)

where by (28),

ESNt (h)(h) = λtϕX (h)EX (h), DSNt (h)(h) = λtϕX (h)EX2(h). (30)

By virtue of (2) and (23), the ch.f.

f S̃Nt (h)(h)
(u) = exp

{ − iESNt (h)(h)ũ − λtϕX (h)(1 − fX (h)(ũ))
}

(31)

holds, where ũ = u/
√

DSNt (h)(h).
Based on [16, p. 213–216], to derive the equation that gives the solution of h =

h(x) > 0, we need to perform the following calculations. By (21),

FSNt (x) = ϕSNt (h)

∫ x

−∞
e−hydFSNt (h)(h)(y).

Thus, according to

FS̃Nt
(y) = FSNt (

√

DSNt y + ESNt ),

FS̃Nt (h)(h)
(y) = FSNt (h)(h)

(√

DSNt (h)(h)y + ESNt (h)(h)
)

,

we have

FS̃Nt
(x) = ϕSNt (h)

√
DSNt x+ESNt∫

−∞
e−hydFSNt (h)(h)(y)

= ϕSNt (h)

∫ z

−∞
e−h(

√
DSNt (h)(h)y+ESNt (h)(h))dFS̃Nt (h)(h)

(y)

= ϕSNt (h)

∫ 0

−∞
e−h(

√
DSNt (h)(h)y+ESNt (h)(h))dFS̃Nt (h)(h)

(y),

with z = (
√

DSNt x − ESNt (h)(h) + ESNt )/
√

DSNt (h)(h), when

x = ESNt (h)(h)
√

DSNt

− ESNt
√

DSNt

, (32)

whereESNt andDSNt are defined by (7), (8) andESNt (h)(h) by (30). Hence, according
to [16], the quantity h = h(x) > 0 should be defined as the solution of equation (32).
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Recall that for the kth-order cumulants of the standardized compound Poisson
process S̃Nt , which is defined by (10), the upper estimate (14) holds. Thus, observe
that S̃Nt satisfies Statulevičius condition (Sγ ) with γ = 0 and Δ := Δt , where Δt is
defined by (14). Accordingly, the general Lemma 6.1 [34, p. 154] yields the following
Proposition 3.1.

We shall use θi , i = 1, 2, ... (with or without an index) to denote a quantity, not
always one and the same, that does not exceed 1 in modulus.

Proposition 3.1 If the r.v. X with 0 < σ 2 < ∞ satisfies conditions (B̄0) and (D′), and
Nt is a homogeneous Poisson process with the probability (4), then for every l ≥ 3,
in the interval 0 ≤ x <

√

λt (σ 2 + μ2)/(24K ), the asymptotic expansion

pS̃Nt
(x)

φ(x)
= exp{Lt (x)}

(

1 +
l−3
∑

v=0

Mt,v(x)

+ θ1q(l)
( K (x + 1)
√

λt (σ 2 + μ2)

)l−2 + θ2Rt (h)

)

(33)

is valid, where λ, t, K > 0, and

φ(x) = e− x2
2√

2π
, q(l) =

(3
√
2e

2

)l + 8(l + 2)243(l+1)Γ
(3l + 1

2

)

, l ≥ 1, (34)

Rt (h) =
∫

|u|≥Ut

| f S̃Nt (h)(h)
(u)|du, (35)

Ut = 1

12

(

1 − Kx
√

λt (σ 2 + μ2)

)
√

λt (σ 2 + μ2)

K
. (36)

Here Γ (α) = ∫ ∞
0 xα−1e−xdx. If α = n ∈ N, then Γ (n) = (n − 1)!. Furthermore,

Lt (x) =
∞
∑

k=3

λ̃t,k x
k,

where the coefficients λ̃t,k (expressed by cumulants of S̃Nt ) coincide with the coeffi-
cients of the Cramér series [32] given by the formula λ̃t,k = −bt,k−1/k, where bt,k
are identified successively from equations

j
∑

r=1

1

r !Γr+1(S̃Nt )
∑

j1+...+ jr= j
ji≥1

r
∏

i=1

bt, ji =
{

1, j = 1,
0, j = 2, 3, · · · .
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In particular,

λ̃t,2 = −1/2, λ̃t,3 = Γ3(S̃Nt )/6, λ̃t,4 = (Γ4(S̃Nt ) − 3Γ 2
3 (S̃Nt ))/24,

λ̃t,5 = (Γ5(S̃Nt ) − 10Γ3(S̃Nt )Γ4(S̃Nt ) + 15Γ 3
3 (S̃Nt ))/120, . . . .

For λ̃t,k , the following estimate is valid:

|λ̃t,k | ≤ 2

k

( 16K
√

λt (σ 2 + μ2)

)k−2
, k = 2, 3, . . . ,

For the polynomials Mt,v(x), the formulas

Mt,v(x) =
v

∑

k=0

Kt,k(x)Qt,v−k(x), Mt,0(x) ≡ 0,

Kt,v(x) =
∗

∑
v

∏

i=1

1

ki ! (−λ̃t,i+2x
i+2)ki , Kt,0(x) ≡ 1,

Qt,v(x) =
∗

∑

Hv+2m(x)
v

∏

i=1

1

ki !
(Γi+2(S̃Nt )

(i + 2)!
)ki

, Qt,0(x) ≡ 1,

hold, where the summation
∑∗ is taken over all nonnegative integer solutions

(k1, k2, . . . , kv), 0 ≤ k1, . . . , kv ≤ v, 1 ≤ m ≤ v, of the equation k1 + 2k2 +
. . . + vkv = v, k1 + k2 + . . . + kv = m. Here Hv(x) denotes the Chebyshev–Hermite
polynomials

Hv(x) = (−1)ve
x2
2

dv

dxv
e− x2

2 , v = 0, 1, . . . .

In particular,

Mt,1(x) = −Γ3(S̃Nt )x/2,

Mt,2(x) = (5Γ 2
3 (S̃Nt ) − 2Γ4(S̃Nt ))x

2/8 + (3Γ4(S̃Nt ) − 5Γ 2
3 (S̃Nt ))/24,

Mt,3(x) = (34Γ3(S̃Nt )Γ4(S̃Nt ) − 4Γ5(S̃Nt ) − 45Γ 3
3 (S̃Nt ))x

3/48

+ (6Γ5(S̃Nt ) − 35Γ3(S̃Nt )Γ4(S̃Nt ) + 35Γ 3
3 (S̃Nt ))x/48, . . . .

Theorem 3.1 If the r.v. X with 0 < σ 2 < ∞ satisfies conditions (B̄0) and (D′), and
Nt is a homogeneous Poisson process with the probability (4), then for every l ≥ 3, in
the interval 0 ≤ x <

√

λt (σ 2 + μ2)/(24K ), K > 0, the asymptotic expansion (33)
holds. Moreover, for the reminder term Rt (h), which is defined by (35), the estimate

Rt (h) ≤ 1

c1(h)Ut
exp{−c1(h)U 2

t } + c2(h) exp{−λtc3(h)} as λt > 2 (37)
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holds. Here h = h(x) > 0 is the solution of equation (32), and Ut is defined by (36).
In addition,

c1(h) = σ 2(h)/(π2EX2(h)), (38)

c2(h) = 12π
√
2πe2ϕX (h)

√

EX2(h)

σ (h)
A(

√
2πσ(h) + 4H(h)), (39)

c3(h) = ϕX (h)(1 − e−c)3

16(τ (h) + H(h))2A2(h)
, c > 0, (40)

where ϕX (h) and A > 0 are defined, respectively, by (18) and (D′). Furthermore,
H(h), τ(h), A(h) are defined by (47), (59), (60), respectively.

Remark 3.1 For constants c1(h), c2(h), and c3(h), estimates

c1 = σ 2

1.6π2(σ 2 + μ2)
, c2 = 333e4

√
2π

√

σ 2 + μ2MA/σ, c3 = c

(MA)2
, (41)

hold, where 0 < c < 2 · 10−8, M = 2max{σ, K }, K > 0, and A is defined by (D
′
).

Consequently,

Rt (h) ≤ 1.6π2 σ 2 + μ2

σ 2Ut
exp

{

− σ 2U 2
t

1.6π2(σ 2 + μ2)

}

+ 333e4
√
2π

√

σ 2 + μ2

σ
MA exp

{

− λtc

(MA)2

}

.

Observe that, under Proposition 3.1 and Theorem 3.1, we deduce the following corol-
lary.

Corollary 3.1 If the r.v. X with 0 < σ 2 < ∞ satisfies conditions (B̄0) and (D′),
and Nt is a homogeneous Poisson process with the probability (4), then for x ≥ 0,
x = O((λt)1/6), λt → ∞, we have

pS̃Nt
(x)

φ(x)
= exp

{ x3√
λt

EX3

6(σ 2 + μ2)3/2

}(

1 + O
( x + 1√

λt

))

.

Proof of Theorem 3.1 At first let us present a sketch of the proof. To prove Theo-
rem 3.1, by Proposition 3.1, the estimate (37) of the reminder term (35) has to be
verified. Obviously,

Rt (h) =
∫

|u|≥Ut

| f S̃Nt (h)(h)
(u)|du = I1 + I2, (42)

where

I1 =
∫

Ut≤|u|≤Ũt (h)

| f S̃Nt (h)(h)
(u)|du, I2 =

∫

Ũt (h)≤|u|<∞
| f S̃Nt (h)(h)

(u)|du,
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here Ũt (h) defined by (47). Accordingly, the proof of this theorem splits into twomain
steps. The first step consists in getting estimate (50) of I1. For that, we proved that the
upper estimate (49) of f S̃Nt (h)(h)

(u) as |u| ≤ Ũt (h) holds.
Now that we have the upper estimate of I1, we can discuss the second step in the

proof of Theorem 3.1. The second step of the proof is devoted to estimate I2. This
step mainly consists in finding the upper estimate of f S̃Nt (h)(h)

(u) as |u| ≥ Ũt (h). In
order to achieve result of the second step, Lemmas 2.1–2.3 and evaluations presented
in Theorem 6.1 in [34, p. 185] are applied. In more detail, at first using (44)–(46), the
estimate (51) of I2 is proved. From expression of (51) follows that further estimation of
I2 generally consists in estimating exp

{ − λtϕX (h)Ih(u)
}

, where Ih(u) is defined by
(46). Thus, in the first and second subset, the application of Lemmas 2.3, 2.1 let us to
produce the lower estimates (53) and (54) of Ih(u). So actually we proved the second
upper estimate (55) of I2. According to it, for the final estimate of I2, the estimating
of

∑

k sup
uk<u<uk+1

exp{−ϕX (h)(1 − | fX (h)(2πu)|2)}, Q(h), τ(h) and A(h) (see (57)–

(60)) should be performed. In the third subset, Lemma 2.2 leads to the estimate (57) of
∑

k sup
uk<u<uk+1

exp{−ϕX (h)(1− | fX (h)(2πu)|2)}. And in the fourth subset, according
to the proof of Theorem 6.1 in [34, p. 185], lower estimate and equalities (58)–(60) of
Q(h), τ(h), A(h) are achieved.

At last, estimates (50), (61) from the first and second steps lead to the estimate (37)
of the reminder term (35).

Step 1 (Estimate I1). Suppose that X
′
(h) = X (h) − Y (h) is a symmetrized con-

jugate r.v., where the conjugate r.v. Y (h) is independent of X (h) and with the same
distribution. Clearly, the distribution and characteristic functions of X

′
(h) are as fol-

lows

FX ′
(h)

(x) =
∫ ∞

−∞
FX (h)(x + y)dFX (h)(x), fX ′

(h)
(u) = | fX (h)(u)|2.

The corresponding density will be denoted by pX ′
(h)

(x). Obviously, DX
′
(h) =

2σ 2(h).
Denote

lh(H(h)) = 1

σ 2(h)

∫

|x |<H(h)

x2 pX ′
(h)

(x)dx, H(h) > 0. (43)

Because
1 − | fX (h)(2πu)| ≥ (1 − | fX (h)(2πu)|2)/2 := Ih(u), (44)

by (23), we obtain

| fSNt (h)(h)(2πu)| ≤ exp{−λtϕX (h)(1 − | fX (h)(2πu)|)}
≤ exp{−λtϕX (h)Ih(u)}, (45)
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where

Ih(u) =
∫ ∞

−∞
sin2(πux)pX ′

(h)
(x)dx ≥ 4u2

∫

|x |≤1/(2|u|)
x2 pX ′

(h)
(x)dx

≥ 4u2σ 2(h)lh(1/(2|u|)). (46)

Here lh(1/(2|u|)) is defined by (43).
Let us denote

Ũt (h) = π
√

DSNt (h)(h)/H(h), H(h) = 2(E(X (h) − μ(h))4)1/2/σ(h). (47)

Further,

lh(H(h)) = 1

σ 2(h)

∫ ∞

−∞
x2 pX ′

(h)
(x)dx − 2

σ 2(h)

∫ ∞

H(h)

x2 pX ′
(h)

(x)dx

≥ 2
(

1 − 2E|X (h) − μ(h)|4
σ 2(h)H2(h)

)

≥ 1, (48)

if H(h) = 2
(

E(X (h) − μ(h))4
)1/2

/σ(h). The use of (31) and (45)–(48) gives

| fSNt (h)(h)(2πu)| ≤ exp{−λtϕX (h)4u2σ 2(h)} as |u| ≤ 1/(2H(h)),

and
| f S̃Nt (h)(h)

(u)| ≤ exp
{ − u2σ 2(h)/(π2EX2(h))

}

as |u| ≤ Ũt (h). (49)

Here μ(h), EX2(h), and σ 2(h) are defined by (26) and (27). Also, DSNt (h)(h) is
defined by (30). Consequently,

I1 ≤ 2

Ut

∫ Ũt (h)

Ut

|u| exp
{

− u2
σ 2(h)

π2EX2(h)

}

du ≤ 1

c1(h)Ut
exp{−c1(h)U 2

t }, (50)

according to (49). Here Ut and c1(h) are defined by (36) and (38).
Step 2 (Estimate I2). Now let us estimate I2:

I2 = 2π
√

DSNt (h)(h)

∫

(2H(h))−1≤|u|<∞
| fSNt (h)(h)(2πu)|du

≤ 2π
√

DSNt (h)(h)

∫

(2H(h))−1≤|u|<∞
exp{−(λt − 2)ϕX (h)Ih(u)}

· exp{−2ϕX (h)(1 − | fX (h)(2πu))|}du,
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by (44) and (45) with λt > 2, where Ih(u) is defined by (46). Hence, observing that
exp{2ϕX (h)Ih(u)} ≤ exp{2ϕX (h)} from (46), we arrive at

I2 ≤ 2πe2ϕX (h)
√

DSNt (h)(h)

∫

|u|≥(2H(h))−1
exp

{ − λtϕX (h)Ih(u)
}

· exp{−ϕX (h)(1 − | fX (h)(2πu)|2)}du. (51)

Substep 2.1 (The first lower estimate of Ih(u)): If we set n = 1 and use the conjugate
r.v. X (h) instead of X in Lemma 2.3, then we find that for any H(h) > 0 there exists
a partition . . . < u−1 < u0 = 0 < u1 < u2 < . . . of the interval (−∞,∞) satisfying
the condition

(6H(h))−1 ≤ Δuk ≤ (4H(h))−1, Δuk = uk+1 − uk . (52)

such that
Ih(u) ≥ exp{−2σ 2(h)lh(H(h))(u − uk0)

2}, (53)

provided u ∈ [uk , uk+1], where uk0 is uk or uk+1 depending on u. Here, lh(H(h)) is
defined by (43).

Substep 2.2 (The second lower estimate of Ih(u)): In contrast, employing
Lemma2.1 gives: if X (h) has a density function such that pX (h)(x) ≤ A(h) < ∞, then
for any collection M(h) = {Δ(h), A(h)}, of the interval Δ(h) and positive constant
A(h), the estimate

Ih(u) ≥ Q3(h)

3(|Δ(h)| + 2H(h))2A2(h)
. (54)

holds for all |u| ≥ 1/(2H(h)), H(h) > 0. Here

Q(h) =
∫

Δ(h)

min{A(h), pX ′
(h)

(x)}dx .

The next step is to estimate (51) for (3/4)λtϕX (h)Ih(u) and (1/4)λtϕX (h)Ih(u)

using (54) and (53), respectively. According to (54) and (53),

I2 ≤ 2π
√
2πe2ϕX (h)

√

DSNt (h)(h) exp
{

− λtϕX (h)Q3(h)

4(|Δ(h)| + 2H(h))2A2(h)

}

·
∑

k

∫ uk+1

uk
exp

{

−λtϕX (h)σ 2(h)lh(H(h))(u − uk0)
2/2

}

· exp
{

−ϕX (h)(1 − | fX (h)(2πu)|2)
}

du

≤ 2π
√
2πe2ϕX (h)

√

EX2(h)

σ (h)
exp

{

− λtϕX (h)Q3(h)

4(|Δ(h)| + 2H(h))2A2(h)

}

·
∑

k

sup
uk<u<uk+1

exp
{

−ϕX (h)(1 − | fX (h)(2πu)|2)
}

. (55)
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Substep 2.3
(

Estimate of
∑

k sup
uk<u<uk+1

exp{−ϕX (h)(1 − | fX (h)(2πu)|2)}).
We remark that Lemma 2.2 holds with

g(u) = e−ϕX (h)(1−| fX (h)(2πu)|2) = e−ϕX (h)
∞
∑

k=0

| fX (h)(2πu)|2kϕk
X (h)

k! .

Here (see [34, p. 186]),

| fX ′
(h)

(2π(u + s)) − fX ′
(h)

(2πu)| ≤ 2πs
(

∞∫

−∞
y2 pX ′

(h)
(y)dy

)1/2 = 2
√
2πσ(h)s.

Hence, |g(u + s) − g(u)| ≤ 2
√
2πσ(h)s. Accordingly, Lemma 2.2 holds with

K := K̃ (h) = 2
√
2πσ(h), V := V (h) =

∫ ∞

−∞
g(u)du ≤ A, (56)

as ∫ ∞

−∞
| fX (h)(2πu)|2du ≤ pX ′

(h)
(0) ≤ A.

Therefore, taking Lemma 2.2 into consideration, together with (52) and (56), we can
write

∑

k

sup
uk<u<uk+1

exp
{

−ϕX (h)(1 − | fX (h)(2πu)|2)
}

≤ 6H(h)A
(4π

√
2σ(h)

4H(h)
+ 4

)

= 6A(
√
2πσ(h) + 4H(h)). (57)

Substep 2.4 (Q(h), τ (h), A(h)). Further, let us find τ(h) such that

Q(h) =
∫

|y|≤τ(h)

pX ′
(h)

(y)dy ≥ 1 − e−c, c > 0. (58)

It was proved in Theorem 6.1 in [34, p. 185] that

∫

|y|≥τ(h)

pX ′
(h)

(y)dy ≤ exp{−( Ã − h)τ (h)}ϕX ′ ( Ã)ϕ−1
X ′ (h),

if Ã > h ≥ 0. Hence

exp{−( Ã − h)τ (h)}ϕX ′ ( Ã)ϕ−1
X ′ (h) ≤ exp{−c}, c > 0.

123



J Theor Probab (2017) 30:1655–1676 1673

It suffices that

τ(h) = c + ln(ϕX ′ ( Ã)/ϕX ′ (h))

Ã − h
> 0, Ã ≥ h > 0, c > 0, (59)

where ϕX ′ ( Ã) and ϕX ′ (h) are defined by (18). Next, if Δ(h) =] − τ(h), τ (h)[, then
recalling (D′), we derive

pX ′
(h)

(y) = ϕ−1
X ′ (h) exp{hy}pX ′ (y) ≤ A(h) < ∞,

where
A(h) = ϕ−1

X ′ (h) exp{hτ(h)}A < ∞, c > 0. (60)

Substituting (57) and (58)–(60) into (55), we derive

I2 ≤ c2(h) exp{−λtc3(h)}, (61)

where c2(h) and c3(h) are defined by (39) and (40).
Finally, (42), (50), and (61) lead to (37). 
�
Let us verify estimates (41) that were mentioned in Remark 3.1. The use of (13),

(27), and (25) gives

σ 2(h) = σ 2
(

1 + θ

∞
∑

k=3

k(k − 1)(1/28)k−2
)

= σ 2(1 + θ0, 231), (62)

Γ4(X (h)) ≤ (σM)2
∞
∑

k=4

k(k − 1)(k − 2)(k − 3)(1/28)k−4 = 28, 79(σM)2, (63)

if 0 ≤ h ≤ 1/(28M). Because

E(X (h) − μ(h))4/σ 2(h) = Γ4(X (h))/σ 2(h) + 3σ 2(h)

by (62) and (63), together with σ ≤ M/2, we evaluate

|E(X (h) − μ(h))4|/σ 2(h) ≤ 38, 36M2. (64)

Hence
H(h) ≤ 2M(38, 36)1/2 (65)

from (refU(h)H(h)) and (64). Employing (24) and (B̄0), togetherwith K ≤ M/2 < M ,
we derive

EX2(h) = ϕ−1
X (h)

(

EX2 + θEX2
∞
∑

k=3

k!
(k − 2)! (Kh)k−2

)

= EX2(1 + θ0, 231)/ϕX (h), (66)
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if 0 ≤ h ≤ 1/(28M).
Further, we need the estimate

ϕX−μ(z) = exp
{ ∞
∑

k=2

1

k!Γk(X)zk
}

= exp
{1

2
σ 2z2

(

1 + θ
1

12

)}

,

from (13), if |z| ≤ Ã = 1/(25M). Thus,

exp{11σ 2z2/24} ≤ |ϕX (z)| ≤ exp{13σ 2z2/24}. (67)

The application of (62), (66), and (67) gives

EX2(h)/σ 2(h) ≤ 1, 6EX2/σ 2. (68)

The next step is to estimate τ(h) and A(h) defined by (59) and (60), respectively.
Recalling (67) and observing that Ã = 1/(25M), σ ≤ M/2, h ≤ 1/(28M) < Ã, we
assert

τ(h) ≤ 24c + 13σ 2 Ã2 + 11σ 2h2

24( Ã − h)
≤ 233

1

3
Mc + 17

200
M, (69)

and
A(h) ≤ exp

{

1/300 + 25c/3
}

A, (70)

where c > 0 and A > 0 are defined by (58) and (D′). Finally, employing (65)–(70)
gives estimates (41).

Remark 3.2 Note that (30) together with (8), (26), and (B̄0) leads to the estimate of
(32),

x = λt
√

DSNt

∞
∑

k=2

EXk

(k − 1)!h
k−1 = √

DSNt h
(

1 + θ
Kh(3 − 2Kh)

(1 − Kh)2

)

if h ≤ 1/M . Subsequently, if h ≤ 1/(28M), then x ≤ √

λt (σ 2 + μ2)/(24K ) as
K < M .
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