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Abstract In this paper, we study the asymptotic behavior of the outliers of the sum a
Hermitian random matrix and a finite rank matrix which is not necessarily Hermitian.
We observe several possible convergence rates and outliers locating around their limits
at the vertices of regular polygons as in Benaych-Georges and Rochet (Probab Theory
Relat Fields, 2015), as well as possible correlations between outliers at macroscopic
distance as in Knowles and Yin (Ann Probab 42(5):1980–2031, 2014) and Benaych-
Georges and Rochet (2015). We also observe that a single spike can generate several
outliers in the spectrumof the deformedmodel, as already noticed inBenaych-Georges
and Nadakuditi (Adv Math 227(1):494–521, 2011) and Belinschi et al. (Outliers in
the spectrum of large deformed unitarily invariant models 2012, arXiv:1207.5443v1).
In the particular case where the perturbation matrix is Hermitian, our results complete
the work of Benaych-Georges et al. (Electron J Probab 16(60):1621–1662, 2011), as
we consider fluctuations of outliers lying in “holes” of the limit support, which happen
to exhibit surprising correlations.

Keywords Random matrices · Spiked models · Extreme eigenvalue statistics ·
Gaussian fluctuations

Mathematics Subject Classification 15B52 · 60F05

1 Introduction

It is known that adding a finite rank perturbation to a large matrix barely changes
the global behavior of its spectrum. Nevertheless, some of the eigenvalues, called

B Jean Rochet
jean.rochet@parisdescartes.fr

1 MAP5, Université Paris Descartes, 45, rue des Saints-Pères, 75270 Paris Cedex 06, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10959-016-0686-4&domain=pdf
http://arxiv.org/abs/1207.5443v1


J Theor Probab (2017) 30:1624–1654 1625

outliers, can deviate away from the bulk of the spectrum, depending on the strength
of the perturbation. This phenomenon, well known as the BBP transition, was first
brought to light for empirical covariance matrices by Johnstone in [23], by Baik et
al. in [3], and then shown under several hypothesis in the Hermitian case in [6–9,13–
15,17,24,25,29,30]. Non-Hermitian models have been also studied: i.i.d. matrices in
[12,27,32], elliptic matrices in [28], and matrices from the Single Ring Theorem in
[10]. In [10], and lately in [27], the authors have also studied the fluctuations of the
outliers and, due to non-Hermitian structure, obtained unusual results: The distribution
of the fluctuations highly depends on the shape of the Jordan canonical form of the
perturbation; in particular, the convergence rate depends on the size of the Jordan
blocks. Also, the outliers tend to locate around their limit at the vertices of a regular
polygon. At last, they observe correlations between the fluctuations of outliers at a
macroscopic distance with each other.

In this paper, we show that the same kind of phenomenon occurs when we perturb
an Hermitian matrix H with a non-Hermitian one A. More precisely, we study finite
rank perturbations for Hermitian random matricesH whose spectral measure tends to
a compactly supported measureμ and the perturbationA is just a complex matrix with
a finite rank. With further assumptions, we prove that outliers of H + A may appear
at a macroscopic distance from the bulk and, following the ideas of [10], we show
that they fluctuate with convergence rates which depend on the matrix A through its
Jordan canonical form. Remind that any complex matrix is similar to a block diagonal
matrix with diagonal blocks of the type

Rp(θ) :=

⎛
⎜⎜⎜⎜⎜⎝

θ 1 (0)
. . .

. . .

(0)
. . . 1

θ

⎞
⎟⎟⎟⎟⎟⎠

,

so that A ∼ diag
(
Rp1(θ1), . . . ,Rpq (θq)

)
, this last matrix being called the Jordan

Canonical Form of A [22, Chapter 3]. We show, up to some hypothesis, that for any
eigenvalue θ of A, if we denote by

p1, . . . , p1︸ ︷︷ ︸
β1 times

> p2, . . . , p2︸ ︷︷ ︸
β2 times

> · · · > pα, . . . , pα︸ ︷︷ ︸
βα times

the sizes of the blocks associated with θ in the Jordan Canonical Form of A and
introduce the (possibly empty) set

Sθ :=
{
ξ ∈ C, Gμ(ξ) = 1

θ

}

where Gμ(z) :=
∫

1

z − x
μ(dx) is the Cauchy transform of the measureμ, then there

are exactly β1 p1+· · ·+βα pα outliers ofH+A tending to each element ofSθ .We also
prove that for each element ξ inSθ , there are exactly β1 p1 outliers tending to ξ at rate
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N−1/(2p1), β2 p2 outliers tending to ξ at rate N−1/(2p2), etc... (see Fig. 2). Furthermore,
the limit joint distribution of the fluctuations is explicit, not necessarily Gaussian, and
might show correlations even between outliers at a macroscopic distance with each
other. This phenomenon of correlations between the fluctuations of two outliers with
distinct limits has already been proved for non-Gaussian Wigner matrices when A
is Hermitian (see [25]), while in our case, Gaussian Wigner matrices can have such
correlated outliers: Indeed, the correlations that we bring to light here are due to the
fact that the eigenspaces of A are not necessarily orthogonal or that one single spike
generates several outliers. Indeed, we observe that the outliers may outnumber the
rank of A. This had already been noticed in [8, Remark 2.11] when the support of the
limit spectral measure of H has some “holes” or in the different model of [5], where
the authors study the case where A is Hermitian but with full rank and is invariant in
distribution by unitary conjugation. Here, the phenomenon can be proved to occur even
when the support of the limit spectral measure of H is connected. At last, if we apply
our results in the particular case where A is Hermitian, we also see that two outliers
at a macroscopic distance with each other are correlated if they both are generated
by the same spike (which can occur only if the limit support is disconnected) and are
independent otherwise (see Fig. 3). From this point of view, this completes the work
of [6], where fluctuations of outliers lying in “holes” of the limit support had not been
studied.

The fact to consider a non-Hermitian deformation on a Hermitian random matrix
has already been studied in theoretical physics (see [18–21]) in the particular case
where H is a GOE/GUE matrix and A is a nonnegative Hermitian matrix times i (the
square root of −1). They proved a weaker version of Theorem 2.3 in this specific case
but did not study the fluctuations.

The proofs of this paper rely essentially on the ideas of the paper [10] about outliers
in the Single Ring Theorem and on the results proved in [6,30,31]. More precisely,
the study of the fluctuations reproduces the outlines of the proofs of [10] as long as
the model fulfills some conditions. Thanks to [30,31], we show that these conditions
are satisfied for Wigner matrices. At last, using [6] and the Weingarten calculus, we
show the same for Hermitian matrices invariant in distribution by unitary conjugation.
In the appendix, as a tool for the outliers study, we prove a result on the fluctuations
of the entries of such matrices.

2 General Results

At first, we formulate the results in general settings, and we shall give, in the next
section, examples of random matrices on which these results apply.

2.1 Convergence of the Outliers

2.1.1 Setup and Assumptions

For all N ≥ 1, let HN be an Hermitian random N × N matrix whose empirical
spectral measure, as N goes to infinity, converges weakly in probability to a compactly
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supported measure μ

μN := 1

N

N∑
i=1

δλi (H) −→ μ. (1)

We shall suppose thatμ is non-trivial in the sense thatμ is not a single Dirac measure.
Also, we suppose that HN does not possess any natural outliers, i.e.,

Assumption 2.1 As N goes to infinity, with probability tending to one,

sup
λ∈Spec(HN )

dist(λ, supp(μ)) −→ 0.

For all N ≥ 1, let AN be an N × N random matrix independent from HN (which
does not satisfies necessarily A∗

N = AN ) whose rank is bounded by an integer r
(independent from N ). We know that we can write

AN := U

(
A0 0

0 0

)
U∗ (2)

where U is an N × N unitary matrix and A0 is 2r × 2r matrix. We notice that AN

only depends on the 2r -first columns of U so that, we shall write

AN := U2rA0U∗
2r ,

where the N × 2r matrix U2r designates the 2r -first columns of U. We shall assume
that A0 is deterministic and independent from N . We shall denote by θ1, . . . , θ j the
distinct nonzero eigenvalues of A0 and k1, . . . , k j their respective multiplicity1 (note

that
∑ j

i=1 ki ≤ r ).
We consider the additive perturbation

H̃N := HN + AN , (3)

We set

Gμ(z) :=
∫

1

z − x
μ(dx). (4)

the Cauchy transform of the measureμ. We introduce, for all i ∈ {1, . . . , j}, the finite,
possibly empty, set

Sθi :=
{
ξ ∈ C \ supp(μ), Gμ(ξ) = 1

θ i

}
, and mi := CardSθi (5)

We make the following assumption

1 The multiplicity of an eigenvalue is defined as its order as a root of the characteristic polynomial, which
is greater than or equal to the dimension of the associated eigenspace.
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Assumption 2.2 For any δ > 0, as N goes to infinity, we have

sup
dist(z,supp(μ))>δ

∥∥∥U∗
2r (zI − HN )−1 U2r − Gμ(z)I

∥∥∥
op

(P)−→ 0.

2.1.2 Result

Theorem 2.3 (Convergenceof the outliers) For θ1, . . . , θ j , k1, . . . , k j ,Sθ1 , . . . ,Sθ j ,
and m1, . . . ,m j as defined above, with probability tending to one, H̃N := HN +
AN possesses exactly

∑ j

i=1
kimi eigenvalues at a macroscopic distance of suppμ

(outliers). More precisely, for all small enough δ > 0, for all large enough N, for all
i ∈ {1, . . . , j}, if we set

Sθi = {ξi,1, . . . , ξi,mi },
there are mi eigenvalues λ̃i,1, . . . , λ̃i,mi of H̃N in {z, dist(z, supp(μ)) > δ} satisfying

λ̃i,n = ξi,n + o (1) , for all n ∈ {1, . . . ,mi },
after a proper labeling.

Remark 2.4 If all theSθi ’s are empty, there is possibly no outlier at all. This condition
is the analogous of the phase transition condition in [8, Theorem 2.1] in the case where
the θi ’s are real, which is if

1

θ i
/∈
]
lim

x→a− Gμ(x), lim
x→b+ Gμ(x)

[

where a (respectively, b) designates the infimum (respectively, the supremum) of the
support of μ, then θi does not generate any outlier. In our case, if |θi | is large enough,
Sθi is necessarily non-empty2, which means that a strong enough perturbation always
creates outliers.

Remark 2.5 We notice that the outliers can outnumber the rank of A. This phenom-
enon was already observed in [8] in the case where the support of the limit spectral
distribution has a disconnected support (see also [5]). In our case, the phenomenon
occurs even for connected support (see Fig. 1).

2.2 Fluctuations of the Outliers

To study the fluctuations, one needs to understand the limit distribution of

√
N

∥∥∥U∗
2r (zI − HN )−1 U2r − Gμ(z)I

∥∥∥
op

. (6)

2 due to the fact that the Cauchy transform of a compactly supported measure can always be inverted in a
neighborhood of infinity.
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In the particular case where HN is a Wigner matrix, we know from [30] that this
quantity is tight but does not necessarily converge. Hence, we shall need additional
assumptions.

2.2.1 Setup and Assumptions

As AN is not Hermitian, we need to introduce the Jordan Canonical Form (JCF) to
describe the fluctuations. More precisely, we shall consider the JCF of A0 which does
not depend on N . We know that, in a proper basis,A0 is a direct sum of Jordan blocks,
i.e., blocks of the form

Rp(θ) =

⎛
⎜⎜⎜⎜⎜⎝

θ 1 (0)
. . .

. . .

(0)
. . . 1

θ

⎞
⎟⎟⎟⎟⎟⎠

, p × p matrix, θ ∈ C, p ≥ 1 (7)

Let us denote by θ1, . . . , θq the distinct eigenvalues of A0 such that Sθ 	= ∅ (see
(5) for the definition ofSθ ), and for each i = 1, . . . , q, we introduce a positive integer
αi , some positive integers pi,1 > · · · > pi,αi corresponding to the distinct sizes of
the blocks relative to the eigenvalue θi and βi,1, . . . , βi,αi such that for all j , Rpi, j (θi )

appears βi, j times, so that, for a certain 2r × 2r non-singular matrix Q, we have:

J = Q−1A0Q = Â
⊕ q⊕

i=1

αi⊕
j=1

⎛
⎜⎜⎝
Rpi, j (θi )

. . .

Rpi, j (θi )

⎞
⎟⎟⎠

︸ ︷︷ ︸
βi, j blocks

(8)

where⊕ is defined, for square blockmatrices, byM⊕N :=
(
M 0

0 N

)
and Â is a matrix

such that its eigenvalues θ are such that Sθ = ∅ or null.
The asymptotic orders of the fluctuations of the eigenvalues of HN + AN depend

on the sizes pi, j of the blocks. Actually, for each θi and each ξi,n ∈ Sθi =
{ξi,1, . . . , ξi,mi }, we know, by Theorem 2.3, there are

∑αi
j=1 pi j × βi, j eigenvalues

λ̃ of HN + AN which tend to ξi,n : We shall write them with a ξi,n on the top left
corner, as follows:

ξi,n λ̃.

Theorem 2.10 below will state that for each block with size pi, j corresponding to θi
in the JCF of A0, there are pi, j eigenvalues (we shall write them with pi, j on the

bottom left corner :
ξi,n
pi, j λ̃) whose convergence rate will be N−1/(2pi, j ). As there are
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βi, j blocks of size pi, j , there are actually pi, j × βi, j eigenvalues tending to ξi,n with

convergence rate N−1/(2pi, j ) (we shall write them
ξi,n
pi, j

λ̃s,t with s ∈ {1, . . . , pi, j } and
t ∈ {1, . . . , βi, j }). It would be convenient to denote by 	i, j,n the vector with size
pi, j × βi, j defined by

	i, j,n :=
(
N 1/(2pi, j ) ·

(
ξi,n
pi, j λ̃s,t − ξi,n

))
1≤s≤pi, j
1≤t≤βi, j

. (9)

In addition, we make an assumption on the convergence of (6).

Assumption 2.6 (1) The vector

(√
NU∗

2r

((
ξi,n − HN

)−1 − 1

θi

)
U2r

)
1≤ i≤q
1≤n≤mi

con-

verges in distribution, and none of its entries tends to zero.
(2) For all k ≥ 1, all i ∈ {1, . . . , q}, and all n ∈ {1, . . . ,mi },

√
NU∗

2r

((
ξi,n − HN

)−(k+1) −
∫

μ(dx)

(ξi,n − x)k+1

)
U2r

is tight.

or

(0’) For all i ∈ {1, . . . , q} and all n ∈ {1, . . . ,mi }, as N goes to infinity,

√
N

(
1

N
Tr

(
ξi,n − HN

)−1 − 1

θi

)) −→ 0.

(1’) The vector

(√
NU∗

2r

((
ξi,n − HN

)−1 − 1

N
Tr

(
ξi,n − HN

)−1
)
U2r

)
1≤ i≤q
1≤n≤mi

converges in distribution, and none of its entries tends to zero.
(2’) For all k ≥ 1 and for all i ∈ {1, . . . , q},

√
NU∗

2r

((
ξi,n − HN

)−(k+1) − 1

N
Tr

(
ξi,n − HN

)−(k+1)
)
U2r

is tight.

As in [10], we define now the family of random matrices that we shall use to
characterize the limit distribution of the 	i, j,n’s. For each i = 1, . . . , q, let I (θi )
(respectively, J (θi )) denote the set, with cardinality

∑αi
j=1 βi, j , of indices in {1, . . . , r}

corresponding to the first (respectively, last) columns of the blocksRpi, j (θi ) (1 ≤ j ≤
αi ) in (8).

Remark 2.7 Note that the columns ofQ (respectively, of (Q−1)∗) whose index belongs
to I (θi ) (respectively, J (θi )) are eigenvectors of A0 (respectively, of A∗

0) associated
with θi (respectively, θi ). See [10, Remark 2.7].
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Now, let (
mθi ,n

k,


)
1≤i≤q
1≤n≤mi

(k,
)∈J (θi )×I (θi )

(10)

be the multivariate random variable defined as the limit joint distribution of

(√
Ne∗

kQ
−1U∗

2r

((
ξi,n − HN

)−1 − 1

θi

)
U2rQe


)
1≤i≤q
1≤n≤mi

(k,
)∈J (θi )×I (θi )

(d)−→
jointly

(
mθi ,n

k,


)
1≤i≤q
1≤n≤mi

(k,
)∈J (θi )×I (θi )

(11)

(which does exist by Assumption 2.6) and where e1, . . . , er are the column vectors of
the canonical basis of Cr ).

For each i, j , let K (i, j) (respectively, K (i, j)−) be the set, with cardinality βi, j

(respectively,
∑ j−1

j ′=1 βi, j ′ ), of indices in J (θi ) corresponding to a block of the type
Rpi, j (θi ) (respectively, to a block of the type Rpi, j ′ (θi ) for j ′ < j). In the same way,
let L(i, j) (respectively, L(i, j)−) be the set, with the same cardinality as K (i, j)
(respectively, as K (i, j)−), of indices in I (θi ) corresponding to a block of the type
Rpi, j (θi ) (respectively, to a block of the typeRpi, j ′ (θi ) for j

′ < j). Note that K (i, j)−
and L(i, j)− are empty if j = 1. Let us define the random matrices for each n ∈
{1, . . . ,mi }

Mθi ,I
j,n := [mθi ,n

k,
 ]k∈K (i, j)−

∈L(i, j)−

Mθi ,II
j,n := [mθi ,n

k,
 ]k∈K (i, j)−

∈L(i, j)

Mθi ,III
j,n := [mθi ,n

k,
 ]k∈K (i, j)

∈L(i, j)−

Mθi ,IV
j,n := [mθi ,n

k,
 ]k∈K (i, j)

∈L(i, j)

(12)

and then let us define the βi, j × βi, j matrixMθi
j,n as

Mθi
j,n := θi

(
Mθi ,IV

j,n −Mθi ,III
j,n

(
Mθi ,I

j,n

)−1
Mθi ,II

j,n

)
(13)

Remark 2.8 It follows from the fact that the matrix Q is invertible, that Mθi ,I
j,n is a.s.

invertible and so isMθi
j,n .

Remark 2.9 In the particular casewhereA0 isHermitian (whichmeans thatQ−1 = Q∗
and the θi ’s are real), then the matrices Mθi

j,n are also Hermitian.

Now, we can formulate the result on the fluctuations.
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2.2.2 Result

Theorem 2.10 (1) As N goes to infinity, the random vector

(
	i, j,n

)
1≤i≤q
1≤ j≤αi
1≤n≤mi

defined at (9) converges to the distribution of a random vector

(
	∞

i, j,n

)
1≤i≤q
1≤ j≤αi
1≤n≤mi

with joint distribution defined by the fact that for each 1 ≤ i ≤ q, 1 ≤ j ≤ αi and
1 ≤ n ≤ mi , 	∞

i, j,n is the collection of the pi, j th roots of the eigenvalues of some

random matrixMθi
j,n.

(2) The distributions of the random matrices Mθi
j,n are absolutely continuous with

respect to the Lebesgue measure, and the random vector
(
	∞

i, j,n

)
1≤i≤q
1≤ j≤αi

has no

deterministic coordinate.

Theorem 2.10 is illustrated in Fig. 2 with an example. We clearly see appearing
regular polygons.

Fig. 2 Spectrum of a Wigner matrix of size N = 5000 with perturbation matrix A =
diag (R5(1.5 + 2 i),R3(−2 + 1.5 i), 0, . . . , 0). We see the blue crosses “+” (outliers) forming, respec-
tively, a regular pentagon and an equilateral triangle around the red dots “•” (their limit). We also see a
significant difference between the two rates of convergence, N−1/10 and N−1/6 (Color figure online)
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3 Applications

In this section, we give examples of random matrices which satisfy the assumptions
of Theorem 2.3 and Theorem 2.10.

3.1 Wigner Matrices

LetHN = 1√
N
WN be a symmetric/HermitianWigner matrix with independent entries

up to the symmetry. More precisely, we assume that

Assumption 3.1 Real symmetric case :

• (
WN

)
i, j , 1 ≤ i ≤ j ≤ N , are independent,

• The (WN )i, j ’s for i 	= j (respectively, i = j) are identically distributed,

• E(WN )1,1 = E(WN )1,2 = 0, E(WN )21,1 = 2σ 2, E(WN )21,2 = σ 2,

• c3 := E
∣∣(WN )1,1

∣∣3 < ∞, m5 := E
∣∣(WN )1,2

∣∣5 < ∞.

Hermitian case :

• (
ReWN

)
i, j ,

(
ImWN

)
i, j , 1≤ i < j ≤ N ,

(
WN

)
i,i , 1 ≤ i ≤ N , are independent.

• The (ReWN )i, j ’s, (ImWN )i, j ’s for i 	= j (respectively, (WN )i,i ’s), are

identically distributed,

• E(WN )1,1 = E(WN )1,2 = 0, E(WN )21,1 = σ 2, E(ReWN )21,2 = σ 2

2
,

• c3 := E
∣∣(WN )1,1

∣∣3 < ∞, m5 := E
∣∣(WN )1,2

∣∣5 < ∞.

In this case, we have the following version of Theorem 2.3

Theorem 3.2 (Convergence of the outliers for Wigner matrices) Let θ1, . . . , θ j be
the eigenvalues ofAN such that |θi | > σ . Then, with probability tending to one, for all
large enough N, there are exactly j eigenvalues λ̃1, . . . , λ̃ j of H̃N := 1√

N
WN +AN at

a macroscopic distance of [−2σ, 2σ ] (outliers). More precisely, for all small enough
δ > 0, for all large enough N, for all i ∈ {1, . . . , j},

λ̃i = θi + σ 2

θi
+ o (1) ,

after a proper labeling.

Proof We just need to check that Assumptions 2.1 and 2.2 are satisfied.
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• As long as the entries of WN have a finite fourth moment, we know (see [2,
Theorem5.2]) that Assumption 2.1 is satisfied.

• Now, we need to show that for any δ > 0, as N goes to infinity,

sup
dist(z,supp(μ))>δ

∥∥∥U∗
2r (zI − HN )−1 U2r − Gμsc(z)I

∥∥∥
op

(P)−→ 0.

Since we are dealing with 2r × 2r -sized matrices, it suffices to prove that for any
unite vectors u,v of CN , for any δ > 0 and any η > 0, as N goes to infinity,

P

(
sup

dist(z,supp(μ))>δ

∣∣∣u∗( (zI − HN )−1 − Gμsc(z)I
)
v
∣∣∣ > η

)
−→ 0.

Moreover, as both Gμsc(z) and
∥∥(zI − HN )−1

∥∥
op go to 0 when |z| goes to infinity,

we know there is a large enough constant M such that we just need to prove that

P

(
sup

dist(z,supp(μ))>δ
|z| ≤ M

∣∣∣u∗( (zI − HN )−1 − Gμsc(z)I
)
v
∣∣∣ > η

)
−→ 0.

Then, for any η′ > 0, the compact set K = {z, dist(z, supp(μ)) > δ and |z| ≤
M} admits a η′-net, which is a finite set {z1, . . . , z p} of K such that

∀z ∈ K , ∃i ∈ {1, . . . , p}, |z − zi | < η′,

so that, using the uniform boundedness of the derivative of Gμsc(z) and
u∗ (z − HN )−1 v on K , for a small enough η′, we just need to prove that

P

( p
max
i=1

∣∣∣u∗( (zi I − HN )−1 − Gμsc(zi )I
)
v
∣∣∣ > η/2

)
−→ 0.

Then, we properly decompose each function x �→ 1
zi−x as a sum of a smooth com-

pactly supported function and one that vanishes on a neighborhood of [−2σ, 2σ ]
and conclude using [30, (ii) Theorem 1.6]

Moreover, in the Wigner case, we have

Gμsc(z) = z − √
z2 − 4σ 2

2σ 2 ,

where
√
z2 − 4σ 2 is the branch of the square root with branch cut [−2σ, 2σ ] so that

for any z outside [−2σ, 2σ ], the equation Gμsc(z) = 1
θ
possesses one solution if and

only if |θ | > σ and the unique solution is

θ + σ 2

θ
,
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which means that in the Wigner case, the outliers cannot outnumber the rank of the
perturbation, and the phase transition condition is simply : |θ | > σ . Actually, in
[5] (see Remark 3.2), the authors explain that if μ is �-infinitely divisible, then the
sets Sθi ’s have at most one element, which means that for Wigner matrices, it is not
possible to observe the phenomenon of “outliers outnumber the rank of A.” ��
Remark 3.3 One can find an other proof of Theorem 3.2 in [28] as a particular case
of the Theorem 2.4 (see [28, Remark 2.5]) due to the fact that a Wigner matrix can be
seen as a particular Elliptic matrix. Nevertheless, the authors of [28] do not deal with
the matter of the fluctuations.

To study the fluctuations of the outliers in the Wigner case, we must make an
additional assumption on the perturbation AN .

Assumption 3.4 ThematrixAN has only afinite number (independent of N ) of entries
which are nonzero.

Remark 3.5 Assumption 3.4 is equivalent to suppose thatU2r (the 2r -first columns of
U) possesses only a finite number K (independent of N ) of nonzero rows. Actually,
this assumption is the analogous “the eigenvectors ofA do not spread out” hypothesis
corresponding to the “case a)” in [14].

Remark 3.6 If U is Haar-distributed and independent from W, we can avoid making
Assumption 3.4 (see Sect. 3.2). One can also slightly weaken Assumption 3.4 by
assuming that the 2r -first rows ofU correspond to the N first coordinates of a collection
of non-random vectors u1, . . . ,u2r in 
2(N) (see [30, Theorem 1.7]).

Theorem 3.7 (Fluctuations for Wigner matrices)With assumptions 3.1 and 3.4, The-
orem 2.10 holds. Moreover, the distribution of the random vector

(
mθi

k,


)
1≤i≤q

(k,
)∈J (θi )×I (θi )

,

defined by (10), is

(
e∗
kQ

−1U∗
K ,2rϒ(ξi )UK ,2rQe


)
1≤i≤q

(k,
)∈J (θi )×I (θi )

,

where ξi := θi + σ 2

θi
and where ϒ(z) is a K × K random field defined by

ϒ(z) := (Gμsc(z))
2
(
W(K ) + Y(z)

)
(14)

where W(K ) is the K × K upper-left corner submatrix of a matrix W̃N such

that W̃N
(d)= WN and Y(z) is a K × K Gaussian random field defined by [31,

(2.7),(2.8),(2.9),(2.10),(2.11),(2.12)] in the real case and [31, (2.42),(2.43),(2.44),
(2.45),(2.46),(2.47)] in the complex case.
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Remark 3.8 This provides an example of non-universal fluctuations, in the sense that

the
(
mθi

k,


)
’s are not necessarily Gaussian. However, when HN is a GOE or GUE

matrix, the
(
mθi

k,


)
’s are centered Gaussian variables such that

E

(
mθi

k,
 m
θi ′
k′,
′

)
= ψsc(ξi , ξi ′)

(
e∗
kQ

−1(Q−1)∗ek′ e∗

Q

∗Qe
′ + δk,
′δk′,

)
,

E

(
mθi

k,
 m
θi ′
k′,
′

)
= ψsc(ξi , ξi ′)

(
e∗
kQ

−1(Q−1)∗ek′ e∗

Q

∗Qek′ + δk,
′δk′,

)
, (15)

for the GOE, and

E

(
mθi

k,
 m
θi ′
k′,
′

)
= ψsc(ξi , ξi ′) δk,
′δk′,
,

E

(
mθi

k,
 m
θi ′
k′,
′

)
= ψsc(ξi , ξi ′) e

∗
kQ

−1(Q−1)∗ek′ e∗

′Q∗Qe
, (16)

for the GUE, where

ψsc(z, w) := G2
μsc

(z)G2
μsc

(w)
(
σ 2 + σ 4ϕsc(z, w)

)
,

ϕsc(z, w) :=
∫

1

z − x

1

w − x
μsc(dx).

We notice that if Q−1 	= Q∗, then we might observe correlations between the fluc-
tuations of outliers at a macroscopic distance with each other. This phenomenon has
already been observed in [25] for non-Gaussian Wigner matrices, whereas, here, the
phenomenon may still occur for GUE matrices. Actually, (15) and (16) can be sim-
plified due to the fact

σ 2G2
μsc

(z) − zGμsc(z) + 1 = 0,

so that ϕsc(z, w) = −Gμsc(z) − Gμsc(w)

z − w
satisfies

σ 2Gμsc(z)Gμsc(w)ϕsc(z, w) = ϕsc(z, w) − Gμsc(z)Gμsc(w). (17)

Hence,

G2
μsc

(ξi )G
2
μsc

(ξi ′)
(
σ 2 + σ 4ϕsc(ξi , ξi ′)

)

= σ 2Gμsc(ξi )Gμsc(ξi ′)
[
Gμsc(ξi )Gμsc(ξi ′) + σ 2Gμsc(ξi )Gμsc(ξi ′)ϕsc(ξi , ξi ′)

]

= σ 2Gμsc(ξi )Gμsc(ξi ′)ϕsc(ξi , ξi ′)

= ϕsc(ξi , ξi ′) − Gμsc(ξi )Gμsc(ξi ′) = �sc(ξi , ξi ′).

and we fall back on the expression of the variance for the UCI model (see Sect. 3.2),
which is expected since the GUE belongs to the UCI model.
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Proof Weshow that the assumptions 3.1 and 3.4 implyAssumption 2.6,more precisely
(1) and (2). For (1), we simply use [31, Theorem 2.1/2.5] to show that

√
NU∗

2r

(
(z − HN )−1 − Gμsc(z)I

)
U2r ,

converges weakly (as it is done in [30]). The limit distribution is also given by [31,
Theorem 2.1/2.5].

Then, for (2), we know by [31, (i) of Theorem 2.3/2.7] (respectively, [31, (iii) of
Proposition 2.1]) that, for all k ≥ 1, the diagonal entries (respectively, the off-diagonal
entries) of the matrix

√
N
(
(z − HN )−k−1 −

∫
(z − x)−k−1μsc(dx)I

)

converge in distribution so that

√
NU∗

2r

(
(z − HN )−k−1 −

∫
(z − x)−k−1μsc(dx)I

)
U2r

is tight.

3.2 Hermitian Matrices Whose Distribution is Invariant by Unitary
Conjugation

LetHN be an Hermitian matrix such that for any unitary N × N matrix UN , we have

UNHNU∗
N

(d)= HN . (18)

HN can be written HN = UNDNU∗
N where DN is diagonal, UN is Haar-distributed,

andUN andDN are independent.We also assume thatHN satisfies (1) andAssumption
2.1. We shall call such matrices UCI matrices (for unitary conjugation invariance). In
this case, as we can, we can write

H̃N = HN + AN = UN
(
DN + U∗

NANUN
)
U∗

N ,

so that, without any loss of generality, we can simply assume that HN is a diagonal
matrix, and AN is a matrix of the form

AN = U2rA0U∗
2r

whereU2r is the 2r -first columns of an Haar-distributed matrix independent fromHN .

Theorem 3.9 (Convergence of the outliers for UCI matrices) IfHN is an UCI matrix,
then Theorem 2.3 holds.
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Remark 3.10 Unlike the Wigner case, Theorem 2.3 does not need to be reformulated.
In this case, we do observe the phenomenon of the outliers outnumbering the rank of
AN .

Proof We just need to check that Assumption 2.2 is satisfied. To do so, one can apply a
slightlymodified version of [6, Lemma 2.2], wherewe replace all the “dist(z, [a, b]) >

δ” by “dist(z, supp(μ)) > δ,” which does not change the ideas of the proof. ��
For the fluctuations, we need to assume that for all i ∈ {1, . . . , q} and all n ∈

{1, . . . ,mi }, as N goes to infinity,

√
N

(
1

N
Tr

(
ξi,n − HN

)−1 − 1

θi

)) −→ 0. (19)

Remark 3.11 Actually, in [6], the authors make the same assumption ([6, Hypothesis
3.1]).

Theorem 3.12 (Fluctuations for UCI matrices) If HN is an UCI matrix, then it sat-
isfies Theorem 2.10. More precisely, the

(
mθi ,n

k,


)
1≤i≤q
1≤n≤mi

(k,
)∈J (θi )×I (θi )

,

defined by (10) are centered Gaussian variables such that

E

(
mθi ,n

k,
 m
θi ′ ,n′
k′,
′

)
= �(ξi,n, ξi ′,n′) δk,
′δk′,
,

E

(
mθi ,n′

k,
 m
θi ′ ,n′
k′,
′

)
= �(ξi,n, ξi ′,n′) e∗

kQ
−1(Q−1)∗ek′ e∗


′Q∗Qe
,

where

�(z, w) :=
∫

1

z − x

1

w − x
μ(dx) −

∫
1

z − x
μ(dx)

∫
1

w − x
μ(dx)

=
{

−Gμ(z)−Gμ(w)

z−w
− Gμ(z)Gμ(w) : if z 	= w,

−G ′
μ(z) − (Gμ(z))2 : otherwise.

Remark 3.13 Remind that we supposed that μ is not a single Dirac measure, so that
� is not equal to zero.

Remark 3.14 If AN is Hermitian, the size of all the Jordan blocks is equal to 1 and
the fluctuations are real random variables (see Remark 2.9). We find back that, in the
Hermitian case, fluctuations between outliers at a macroscopic distance are indepen-
dent (see [6]) except if the two outliers come from the same eigenvalue ofA (i.e., they
both belong to the same setSθ ). In this case, the fluctuations of outliers belonging to
the same setSθ are all correlated. This phenomenon is illustrated by Fig. 3a, b.
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Proof We just need to check thatHN satisfies (1′), (2′) of Assumption 2.6 (since (0′)
is assumed below). Actually, for any k ≥ 1 and any i ∈ {1, . . . , q}, the diagonal
matrix

(
ξi,n − HN

)−(k+1) − 1

N
Tr

(
ξi,n − HN

)−(k+1)
,

fulfill the assumptions of Theorem 5.3, so that (2′) is true. Then, (1′) is true thanks to
Theorem 5.5. This theorem also gives us the covariance.

4 Proofs

4.1 Convergence of the Outliers: Proof of Theorem 2.3

In [5], the authors give an interpretation of why the limit is necessarily a solution of
Gμ(z) = 1

θ
with the subordinate functions of the free additive convolution ofmeasures

in the particular case where one of the measures is δ0 (see [5, Example 4.1]). Actually,
our definition of the sets Sθi ’s corresponds to the one of the set Oθ in [5, Definition
4.1]. A quick (but inaccurate) way to see why the limit is G−1

μ ( 1
θ
) and to understand

the approach of the proof is to write

det (z − (HN + AN )) = det (z − HN ) det
(
I − (z − HN )−1AN

)
,

then if (z − HN )−1 ∼ Gμ(z)I, we can write

det (z − (HN + AN )) ∼ det (z − HN )Gμ(z) det

(
1

Gμ(z)
I − AN

)

so that if z is an outlier of HN + AN , 1
Gμ(z) must be an eigenvalue of AN .

To do it properly, we introduce the following function3,

f (z) = det
(
I − U∗

2r (zI − H)−1 U2rA0

)
= det (z − (HN + AN ))

det (z − HN )
, (20)

we know that the zeros of f are eigenvalues of H̃N which are not eigenvalues of HN .
Then, we introduce the function

f0(z) := det
(
I − Gμ(z)A0

)
, (21)

and the proof of Theorem 2.3 relies on the two following lemmas.

3 we used a classical trick of finite rank perturbation models which det(Im +AB) = det(In +BA) for any
m × n matrix A and n × m matrix B
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Lemma 4.1 As N goes to infinity, we have

sup
dist(z,supp(μ))>δ

| f (z) − f0(z)| (P)−→ 0.

Lemma 4.2 Let K be a compact set, and let ε > 0 such that

• dist(K ,

j⋃
i=1

Sθi ) ≥ ε,

• dist(K , supp(μ)) ≥ ε.

Then, with a probability tending to one,

inf
z∈K

∣∣∣det
(
I − (z − HN )−1 AN

)∣∣∣ > 0.

If these lemmas are true, the end of the proof goes as follows. We know that, with
a probability tending to one, there is ε > 0, such that

• there is a constant M > 0 such that HN + AN has no eigenvalues in the area
{z, |z| > M},

• Spec(HN ) ⊂ {z, dist(z, supp(μ)) < ε},
We set

S :=
j⋃

i=1

Sθi

, and we define

S ε :=
j⋃

i=1

⋃
ξ∈Sθi

{z, |z − ξ | < ε} (22)

with the convention that S ε = ∅ if S = ∅. Up to a smaller choice of ε, we can
suppose that none of the disk centered in the element of the Sθi ’s and of radius ε

intersects each other nor intersect {z, dist(z, supp(μ)) < ε}. Then, using Lemma 4.2,
with

K := {z, |z| ≤ M} \ (S ε ∪ {z, dist(z, supp(μ)) < ε}) ,

we deduce all the eigenvalues of H̃N are contained inS ε ∪{z, dist(z, supp(μ)) < ε}.
Indeed, if z is an eigenvalue of H̃N such that dist(z, supp(μ)) > ε, z must be a zero
of f .

Moreover, for each i ∈ {1, . . . , j} and each ξ ∈ Sθi , we know that from Lemma
4.1

sup
z,|z−ξ |=ε

| f (z) − f0(z)| −→ 0, and inf
z,|z−ξ |=ε

| f0(z)| > 0.
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We deduce by Rouché Theorem (see [4, p.131]) that f and f0, for all large enough
N , have the same number of zeros inside the domain {z, |z − ξ | < ε}, for each ξ in
theSθi ’s.

Now, we just need to prove the two previous lemmas.

Proof of Lemma 4.1 We know that, for some positive constant C ,

sup
dist(z,supp(μ))>δ

| f (z)− f0(z)|≤C sup
dist(z,supp(μ))>δ

∥∥∥U∗
2r

(
(z−HN )−1−Gμ(z)I

)
U2r

∥∥∥
op

,

and we conclude with Assumption 2.2.

Proof of Lemma 4.2 We write, thanks to Assumption 2.2,

det
(
I − (z − HN )−1 AN

)
= det

(
I − U∗

2r (z − HN )−1 U2rA0

)

= det
(
I − Gμ(z)A0 + o (1)

)

=
k∏

i=1

(
1 − Gμ(z)θi

) + o (1) .

Then, since z ∈ K , it easy to show that for each i , |1 − Gμ(z)θi | > 0.

4.2 Fluctuations

The proof of Theorem 2.10 is the same than [10, Theorem 2.10], and all we need to
do here is to prove this analogous version of [10, Lemma 5.1].

Lemma 4.3 For all j ∈ {1, . . . , αi } and all n ∈ {1, . . . ,mi }, let Fθi
j,n(z) be the

rational function defined by

Fθi
j,n(z) := f

(
ξi,n + z

N 1/(2pi, j )

)
. (23)

Then, there exists a collection of positive constants (γi, j )1≤i≤q
1≤ j≤αi

and a collection

of nonvanishing random variables (Ci, j,n) 1≤i≤q
1≤ j≤αi
1≤n≤mi

independent of z, such that we have

the convergence in distribution (for the topology of the uniform convergence over any
compact set)

(
N γi, j Fθi

j,n(·)
)

1≤i≤q
1≤ j≤αi
1≤n≤mi

−→
N→∞

(
z ∈ C �→ zπi, j · Ci, j,n · det

(
z pi, j − Mθi

j,n

))
1≤i≤q
1≤ j≤αi
1≤n≤mi

where Mθi
j,n is the random matrix introduced at (11) and πi, j := ∑

l> j βi,l pi,l .
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Once this lemma proven, the Theorem 2.10 follows (see section 5.1 of [10] for more
details). To proveLemma4.3,we shall proceed as it is done in [10] to proveLemma5.1.
First, we write, for a fixed θi (= θ), a fixed n ∈ {1, . . . ,mi } and a fixed j ∈ {1, . . . , αi }
(which shall be implicit) and fixed pi, j (= p), recall that A0 = QJQ−1,

Fθ
j,n(z) = det

(
I −

(
ξn + z

N 1/(2p)
− HN

)−1
U2rQJQ−1U∗

2r

)

= det

(
I − Gμ

(
ξn + z

N 1/(2p)

)
J − 1√

N
ZN

(
ξn + z

N 1/(2p)

))

= det

(
I − J

θ
− G ′

μ(ξn)
z

N 1/(2p)

(
1 + o (1)

)
J − 1√

N
ZN

(
ξn + z

N 1/(2p)

))

where

ZN (z) := √
NQ−1U∗

2r

(
(z − HN )−1 − Gμ(z)I

)
U2rQJ.

Remind that by definition, Gμ(ξn) = θ−1. From here, the reasoning to end the proof
is the exact same than the one from [10, Lemma 5.1]. Nevertheless, we still have to
prove that, for all θ and for all n, for all compact set K and for all z ∈ K ,

ZN
(
ξn + z

N 1/(2p)

) = ZN (ξn) + o (1) , and ZN (ξn) converges weakly. (24)

To do so, we write (thanks to 5.1),

ZN

(
ξn + z

N 1/(2p)

)
= √

NQ−1U∗
2r

(
(ξn − HN )−1 − 1

θ

)
U2rQJ

+
p∑

k=1

( −z

N 1/(2p)

)k √
NQ−1U∗

2r

((
ξn − HN

)−(k+1) −
∫

μ(dx)

(ξn − x)k+1

)
U2rQJ

+ 1

N 1/(2p)
QU∗

2r

(
ξn − HN

)−(k+1) (
ξn + z

N 1/(2p)
− HN

)−1
U2rQJ + o (1) .

The last term is a o (1) since dist(ξn,Spec(HN )) > ε and one can conclude if (1), (2)
are satisfied in Assumption 2.6. Otherwise, if it’s (0′), (1′), (2′), we write

ZN

(
ξn + z

N 1/(2p)

)
= √

NQ−1U∗
2r

(
1

N
Tr (ξn − HN )−1 − 1

θ

)
U2rQJ

+ √
NQ−1U∗

2r

(
(ξn − HN )−1− 1

N
Tr (ξn−HN )−1

)
U2rQJ

+
p∑

k=1

( −z

N 1/(2p)

)k √
NQ−1U∗

2r

((
ξn − HN

)−(k+1) − 1

N

Tr (ξn − HN )−1
)
U2rQJ
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+ 1

N 1/(2p)
QU∗

2r

(
ξn − HN

)−(p+1)

(
ξn + z

N 1/(2p)
− HN

)−1
U2rQJ + o (1) .

5 Linear Algebra Lemmas

Lemma 5.1 Let A be a matrix and λ ∈ C be such that both A and A + λI are
non-singular. Then, for all p ≥ 1,

(A + λI)−1 =
p∑

k=1

(−λ)k−1A−k + (−λ)pA−p (A + λI)−1

Lemma 5.2 (Schur’s complement [22]) For any A,B,C,D, one has, when it makes
sense

(
A B

C D

)−1

=
( (

A − BD−1C
)−1 − (

A − BD−1C
)−1 BD−1

−D−1C
(
A − BD−1C

)−1 D−1 + D−1C
(
A − BD−1C

)−1 BD−1

)

5.1 Fluctuations of the Entries of UCI Random Matrices

We give here some results on the fluctuations of the entries of UCI matrices, which
means matrices of the form H := UDU∗ where U is Haar-distributed and D is a
complex diagonal matrix.

Theorem 5.3 (Fluctuations of the entries of UCI randommatrices) LetT be an N×N
diagonal matrix such that

TrT = 0,
1

N
TrTT∗ → σ 2,

1

N
TrT2 → τ 2,

∀k ≥ 1,
1

N
Tr(TT∗)k = O (1) . (25)

Let ut1 , . . . ,utp be p distinct columns of a Haar-distributed unitary matrix. Then,

(√
N
〈
uti , Tut j

〉)p

i, j=1
,

converges in distribution to a centered complex Gaussian vector
(
Gi, j

)p
i, j=1 with

covariance

E
[
Gi, jGk,


] = δi,
δ j,kτ
2 ; E

[
Gi, jG k,


]
= δi,kδ j,
σ

2

Remark 5.4 If H := UDU∗ satisfies (1) and Assumption 2.1, then T := D − 1
N TrD

satisfies (25).

123



1646 J Theor Probab (2017) 30:1624–1654

Here comes a version of Theorem 5.3, with several matrices diagonal T. Due to
the complex values of the diagonal matrices, the following theorem is not a simple
consequence of Theorem 5.3 and Cramér–Wold theorem.

Theorem 5.5 Let T1, . . . ,Tq be N × N diagonal matrices such that for all m, n ∈
{1, . . . , q}

TrTm = 0,
1

N
TrTmT∗

n → σ 2
m,n,

1

N
TrTmTn → τ 2m,n,

∀k ≥ 1,
1

N
Tr(TmT∗

m)k = O (1) .

Let ut1 , . . . ,utp be p distinct columns of an Haar-distributed matrix. Then,

(√
N
〈
uti , Tmut j

〉)
1≤i≤p
1≤ j≤p
1≤m≤q

,

converges in distribution to a centered complex Gaussian vector
(
Gi, j,m

)
1≤i≤p
1≤ j≤p
1≤m≤q

with

covariance

E
[
Gi, j,mGk,
,n

] = δi,
δ j,kτ
2
m,n ; E

[
Gi, j,mG k,
,n

]
= δi,kδ j,
σ

2
m,n

Proof of Theorem 5.3 Without any loss of generality, due to the invariance by conju-
gation by a matrix of permutation, we can suppose that t1 = 1, t2 = 2, . . . , tp = p.
Then, we just need to show that

X = √
N Tr

(
U∗TUA

)

where A is a N × N deterministic matrix of the form

A =
(
Ap 0

0 0

)
, Ap = (

ai, j
)p
i, j=1 ∈ M p(C),

is a asymptotically Gaussian. Before starting, we remind some definition. Let
(M1, . . . ,Mq) be q matrices. For any permutation σ ∈ Sq , with cycle decomposition

σ = (i1,1 · · · i1,k1)(i2,1 · · · i2,k2) · · · (ir,1 · · · ir,kr ),

we denote by

Trσ
(
Mt

)q
t=1 :=

r∏
j=1

Tr
(
Mti j,1

· · ·Mti j,r j

)
. (26)
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For example, if σ = (13)(256) ∈ S6, then

Trσ
(
Mt

)6
t=1 = Tr(M1M3)Tr(M2M5M6)Tr(M4).

Let M(2n) be the set of all perfect matching on {1, . . . , 2n} which is a subset of S2n
of the permutation which are the product of n transpositions with disjoint support. For
example,

M(4) = {(12)(34), (13)(24), (14)(23)} .

Then, if the following lemma is true, one can conclude the proof. ��
Lemma 5.6 Let T1, . . . ,Tq be q diagonal matrix such that for all i, j ∈ {1, . . . , q},

TrTi = 0; 1

N
TrTiT j −→ τi, j ; ∀k ≥ 1,

1

N
Tr

(
TiT∗

i

)k = O (1) . (27)

Let A1, . . . ,Aq be q matrices of the form

Ai =
(
A0,i 0

0 0

)

where the A0,i ’s are K × K matrices independent from N where K is a fixed integer.
Let U be a Haar-distributed matrix. Then, as N goes to infinity,

E

[ q∏
t=1

√
N Tr

(
U∗TtUAt

)] −→

⎧⎪⎪⎨
⎪⎪⎩

∑
σ∈M(q)

Trσ
(
Ai

)q
i=1

q/2∏
t=1

τσ(2t−1),σ (2t) if q is even.

0 if q is odd.

Indeed, once we suppose Lemma 5.6 satisfied, we need to compute for all p, q

E

[[√
N TrU∗TUA

]p[√
N TrU∗TUA

]q]

= E

[[√
N TrU∗TUA

]p[√
N TrU∗T∗UA∗]q] ,

in order to apply Lemma 5.7. According to Lemma 5.6, for Tt ≡ T and At ≡ A, we
have

E
[√

N TrU∗TUA
]q −→

{
Card M(q)Tr(A2)q/2τ q/2 if q is even,

0 if q is odd.

(remind that Card M(q) = (q−1)(q−3) · · · 3) whichmeans that the limit distribution
of X already satisfies (30) and (31). Let p ≥ 1 and q ≥ 2 be two fixed integers such
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that p + q is even; then, using notations from (26), we know thanks to Lemma 5.6
that

E

[[√
N TrU∗TUA

]p[√
N TrU∗T∗UA∗]q]

= 1

N
p+q
2

∑
σ∈M(p+q)

Trσ
(
At

)p+q
t=1 Trσ

(
Tt

)p+q
t=1 + o (1) (28)

where

(T1, . . . ,Tp+q) = (T, . . . ,T︸ ︷︷ ︸
p

,T∗, . . . ,T∗
︸ ︷︷ ︸

q

) and (A1, . . . ,Ap+q)

= (A, . . . ,A︸ ︷︷ ︸
p

,A∗, . . . ,A∗
︸ ︷︷ ︸

q

).

We rewrite the right side of (28) summing according to the value of σ(1).

∑
σ∈M(p+q)

Trσ
(
At

)p+q
t=1 Trσ

(
Tt

)p+q
t=1 =

p+q∑
a=2

∑
σ∈M(p+q)

σ (1)=a

Trσ
(
At

)p+q
t=1 Trσ

(
Tt

)p+q
t=1

=
p+q∑
a=2

Tr(A1Aa)Tr(T1Ta)
∑

σ∈M(p+q)
σ (1)=a

Trσ◦(1a)

(
At

)p+q
t=1 Trσ◦(1a)

(
Tt

)p+q
t=1

=
p∑

a=2

TrA2 TrT2
∑

σ∈M(p+q−2)

Trσ
(
Ât

)p+q−2
t=1 Trσ

(
T̂t

)p+q−2
t=1

+
p+q∑

a=p+1

TrAA∗ TrTT∗ ∑
σ∈M(p+q−2)

Trσ
(
Ãt

)p+q−2
t=1 Trσ

(
T̃t

)p+q−2
t=1 ,

where

(Â1, . . . , Âp+q−2) = (A, . . . ,A︸ ︷︷ ︸
p−2

,A∗, . . . ,A∗
︸ ︷︷ ︸

q

) and (Ã1, . . . , Ãp+q−2)

= (A, . . . ,A︸ ︷︷ ︸
p−1

,A∗, . . . ,A∗
︸ ︷︷ ︸

q−1

).

At last, one easily deduces that

E

[[√
N TrU∗TUA

]p[√
N TrU∗T∗UA∗]q]

= 1

N
TrT2 TrA2(p − 1)E

[[√
N TrU∗TUA

]p−2[√
N TrU∗T∗UA∗]q]

+ 1

N
TrTT∗ TrAA∗q E

[[√
N TrU∗TUA

]p−1[√
N TrU∗T∗UA∗]q−1

]
+ o (1)
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and so
√
N Tr(U∗TAU) satisfies (32) which means according to Lemma 5.7 that its

limit distribution is Gaussian.
At last, to compute to covariance of the

(
Gi, j

)
’s, one can simply use [11,

Lemma A.6].

Proof of Theorem 5.5 This time, we shall use Lemma 5.8 to show that for any
A1, . . . ,Ar , N × N deterministic matrix of the form

Am =
(
Am,p 0

0 0

)
, Am,p = (

ami, j
)p
i, j=1 ∈ M p(C),

the vector

(
1

N
Tr

(
U∗T1UA1

)
, . . . ,

1

N
Tr

(
U∗TrUAr

))

converges weakly to a Gaussian multivariate. Thanks to Theorem 5.3, we know that
for each m,

1

N
Tr

(
U∗TmUAm

)

is asymptotically Gaussian. Then, we show that

E

[(
1

N
Tr

(
U∗T1UA1

))p1 ( 1

N
Tr

(
U∗T∗

1UA
∗
1

))q1

· · ·
(
1

N
Tr

(
U∗TrUAr

))pr ( 1

N
Tr

(
U∗T∗

rUA
∗
r

))qr]

satisfies (35) and (36) using Lemma 5.6. ��
Proof of Lemma 5.6 We know from [26, Proposition3.4]

E

[ q∏
t=1

√
N Tr

(
U∗TtUAt

)] = Nq/2
∑

σ,τ∈Sq
Wg(τ ◦ σ−1)Trτ

(
Ai

)q
i=1 Trσ

(
Ti

)q
i=1

where Wg is a function called the Weingarten function. Moreover, for σ ∈ Sq , the
asymptotical behavior of Wg(σ ) is at most given by

Wg(σ ) = O
(
N−q) . (29)

First, one should notice that if σ has one invariant point (which means a cycle of
size one in its cycle decomposition), then

Trσ
(
Ti

)q
i=1 = 0,
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also, if σ has r cycles in its cycle decomposition, then, by the Holder inequality,

Trσ
(
Ti

)q
i=1 = O

(
Nr ) .

Actually, the maximum of cycles in its decomposition that can have σ without any

1-sized cycle is
⌊q
2

⌋
so that, using (29)

Nq/2 Wg(σ ◦ τ−1)Trτ
(
Ai

)q
i=1 Trσ

(
Ti

)q
i=1 = O

(
N� q

2 �− q
2

)
,

so that first, if q is odd

E

[ q∏
t=1

√
N Tr

(
U∗TtUAt

)] = o (1) .

Moreover, if q = 2r , then the only way to have

Nq/2 Wg(σ ◦ τ−1)Trτ
(
Ai

)q
i=1 Trσ

(
Ti

)q
i=1 	= o (1)

is to have

• τ = σ ,

• σ is a product of
q

2
= r transpositions with disjoint support.

One easily conclude. ��

5.2 Moments of a Complex Gaussian Variable

The following lemma allows to prove that a random variable is Gaussian if and only
if its moments satisfy an induction relation.

Lemma 5.7 Let Z be a complex Gaussian variable such that

E [Z ] = 0, E

[
Z2

]
= τ 2, E

[
|Z |2

]
= σ 2. (30)

Then, for all p ≥ 1

E

[
Z2p

]
= p!!τ 2p and E

[
Z2p+1

]
= 0,

(
where p!! := (2p)!

2p p!
)

(31)

also, for all p, q ≥ 0,

E

[
Z p+2Z

q+2
]

= σ 2(q + 2)E
[
Z p+1Z

q+1
]

+ τ 2(p + 1)E
[
Z pZ

q+2
]

= σ 2(p + 2)E
[
Z p+1Z

q+1
]

+ τ 2(q + 1)E
[
Z p+2Z

q
]
. (32)
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Conversely, any complex randomvariable Z satisfying (30), (31), and (32) is a complex
Gaussian variable.

Proof First, recall that if Z = X1 + i X2 is a complex random Gaussian such that

E [Z ] = 0, E

[
Z2

]
= τ 2, E

[
|Z |2

]
= σ 2,

, then its Fourier transform is given, for t = t1 + i t2 ∈ C, by

�Z (t) := E exp (i(X1t1 + X2t2))

= exp

(
−1

4

(
(t21 + t22 )σ 2 + (t21 − t22 )Re(τ 2) + 2t1t2 Im(τ 2)

))

We define the differential operators

∂t := ∂1 + i ∂2 ; ∂t := ∂1 − i ∂2 (33)

so that

E

[
Z pZ

q
]

= (− i)p+q∂
p
t ∂

q
t �(t)

∣∣
t=0. (34)

One can easily compute

∂t�(t) = −1

2

(
tσ 2 + tτ 2

)
�(t); ∂t�(t) = −1

2

(
tσ 2 + tτ 2

)
�(t);

therefore, for any p ≥ 0, q ≥ 0,

∂
p+2
t �(t) = ∂

p+1
t

(
−1

2

(
tσ 2 + tτ 2

)
�(t)

)

= −1

2
tσ 2∂

p+1
t �(t) − 1

2
τ 2∂

p+1
t

(
t�(t)

)

= −1

2
tσ 2∂

p+1
t �(t) − 1

2
τ 2t∂ p+1

t �(t) − τ 2(p + 1)∂ p
t �(t)

and

∂
p+2
t ∂

q+2
t �(t) = ∂

p+1
t ∂

q+2
t

(
−1

2

(
tσ 2 + tτ 2

)
�(t)

)

= −1

2
σ 2∂

q+2
t

(
t∂ p+1

t �(t)
) − 1

2
τ 2∂

p+1
t

(
t∂q+2

t �(t)
)

= −σ 2
(
t

2
∂
p+1
t ∂

q+2
t �(t) + (q + 2)∂ p+1

t ∂
q+1
t �(t)

)

− τ 2
(
t

2
∂
p+1
t ∂

q+2
t �(t) + (p + 1)∂ p

t ∂
q+2
t �(t)

)
,
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hence,

E

[
Z p+2

]
= τ 2(p + 1)E

[
Z p] ,

E

[
Z p+2Z

q+2
]

= σ 2(q + 2)E
[
Z p+1Z

q+1
]

+ τ 2(p + 1)E
[
Z pZ

q+2
]

and the same way,

E

[
Z
p+2

]
= τ 2(p + 1)E

[
Z
p
]
,

E

[
Z p+2Z

q+2
]

= σ 2(p + 2)E
[
Z p+1Z

q+1
]

+ τ 2(q + 1)E
[
Z p+2Z

q
]
.

Conversely, one can easily prove by induction that any complex random variable Z
satisfying (30), (31), and (32) has all its moments uniquely determined, and since the
complex Gaussian variable also satisfies (30), (31), and (32), one can conclude. ��

More generally, one can show the following lemma

Lemma 5.8 Let (X1, . . . , Xr ) be a centered complex Gaussian vector. Then, for all
nonnegative integers p1, q1, . . . , pr , qr , for all i ∈ {1, . . . , r}

if pi ≥ 1, E

[
X p1
1 X1

q1 · · · X pr
r Xr

qr
]

= (pi − 1)E
[
X2
i

]
E

[
X p1
1 X1

q1 · · · X pi−2
i Xi

qi · · · X pr
r Xr

qr
]

+
r∑

j=1
j 	=i

p j E
[
Xi X j

]
E

[
X p1
1 X1

q1 · · · X pi−1
i · · · X pj−1

j · · · X pr
r Xr

qr
]

+
r∑
j=1

q j E
[
Xi X j

]
E

[
X p1
1 l X1

q1 · · · X pi−1
i · · · Xq j−1

j · · · X pr
r Xr

qr
]

(35)

if qi ≥ 1, E

[
X p1
1 X1

q1 · · · X pr
r Xr

qr
]

= (qi − 1)E
[
X2
i

]
E

[
X p1
1 X1

q1 · · · X pi
i Xi

qi−2 · · · X pr
r Xr

qr
]

+
r∑
j=1

p j E
[
Xi X j

]
E

[
X p1
1 X1

q1 · · · Xqi−1
i · · · X pj−1

j · · · X pr
r Xr

qr
]

+
r∑

j=1
j 	=i

q j E
[
Xi X j

]
E

[
X p1
1 X1

q1 · · · Xqi−1
i · · · Xq j−1

j · · · X pr
r Xr

qr
]

(36)

with the convention that X−1 = 0.
Conversely, if X1, . . . , Xr are r centered Gaussian variables satisfying (35) and

(36), then (X1, . . . , Xr ) is a centered complex Gaussian vector.
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Proof In the same spirit as the proof of Lemma 5.7, we obtain (35) and (36) by
derivating the Fourier transform. The converse is proved by induction. ��
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