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Abstract Consider a multidimensional obliquely reflected Brownian motion in the
positive orthant, or, more generally, in a convex polyhedral cone. We find sufficient
conditions for existence of a stationary distribution and convergence to this distribution
at an exponential rate, as time goes to infinity, complementing the results ofDupuis and
Williams (Ann Probab 22(2):680–702, 1994) and Atar et al. (Ann Probab 29(2):979–
1000, 2001). We also prove that certain exponential moments for this distribution are
finite, thus providing a tail estimate for this distribution. Finally, we apply these results
to systems of rank-based competing Brownian particles, introduced in Banner et al.
(Ann Appl Probab 15(4):2296–2330, 2005).
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1 Introduction

A multidimensional obliquely reflected Brownian motion in a convex polyhedron
D ⊆ R

d has been extensively studied in the past few decades. This is a stochastic
process Z = (Z(t), t ≥ 0) which takes values in D; in the interior of D, it behaves
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as a Brownian motion, and as it hits the boundary ∂D, it is reflected inside D, but not
necessarily normally. For every face Di of the boundary ∂D, there is a vector ri on this
face, pointing inside ri , which governs the reflection. If ri is the inward unit normal
vector to D, then this reflection is normal; otherwise, it is oblique. Special care should
be taken for the reflection at the intersection of two or more faces. A formal definition
is given in Sect. 2.

One particularly important case is the positive orthant D = R
d+, where R+ :=

[0,∞). The concept of a semimartingale reflected Brownian motion (SRBM) in the
orthant was introduced in [29,30], as a diffusion limit for series of queues, when
traffic intensity at each queue tends to one (the so-called heavy traffic limit). Later,
it was applied in the theory of competing Brownian particles (systems of rank-based
Brownian particles, when each particle has drift and diffusion coefficients depending
on its current ranking relative to the other particles), see [3,4]. The gap process (vector
of gaps, or spacings, between adjacent particles) turns out to be anSRBMin the orthant.

We refer the reader to the comprehensive survey [57] about an SRBM in the orthant.
Reflected Brownian motion in a convex polyhedron was introduced in [56] using a

submartingale problem, and in [15] in a semimartingale form: semimartingale reflected
Brownianmotion, or an SRBM.The paper [15] contains a sufficient condition forweak
existence and uniqueness in law; it is stated in Sect. 2.

In this paper, we assume that the condition mentioned above holds; then an SRBM
in a convex polyhedron D exists and is unique in the weak sense, and versions of this
SRBM starting from different points x ∈ D form a Feller continuous strong Markov
family.

Of particular interest is a stationary distribution for an SRBM in a convex polyhe-
dron D: a probability distribution π on D such that if Z(0) ∼ π , then Z(t) ∼ π for
all t ≥ 0. This was a focus of extensive research throughout the last four decades.

For the orthant (and, more generally, for a convex polyhedron), a necessary and
sufficient condition for existence of a stationary distribution is not known. However,
there are fairly general sufficient conditions and necessary conditions for the orthant,
see [11,16,24,28]. For dimensions d = 2 and d = 3, a necessary and sufficient
condition is actually known, see [32] and [27, Appendix A] for d = 2, and [7,12] for
d = 3. For a convex polyhedron (more specifically, a convex polyhedral cone), see
[1,2,8] for sufficient condition for existence of a stationary distribution. It was shown
in [13,16] that if a stationary distribution exists, then it is unique.

Exact form of this stationary distribution is known only in a few cases, the most
important of which is the so-called skew-symmetry condition. Under this condition,
the stationary distribution has a product-of-exponentials form, see [30,31,57]. Other
known cases (sums of products of exponentials) are studied in [18,26].Anecessary and
sufficient condition for a probability distribution to be stationary is a certain integral
equation, called the Basic Adjoint Relationship. However, it is not known how to solve
this equation in the general case. Other properties of the stationary distribution were
studied in [16].

We complement the results above by finding some new conditions for existence of
a stationary distribution for an SRBM in the orthant and in a convex polyhedral cone.
To this end, we find a Lyapunov function: this is a function V : D → [1,∞) such that
for some constants k, b > 0 and a set C ⊆ D which is “small” in a certain sense (we
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specify later what this means; for now, it is sufficient to take a compactC) the process

V (Z(t)) − V (Z(0)) −
∫ t

0
(−kV (Z(s)) + b1C (Z(s))) ds

is a supermartingale. This is a more general definition than is usually used (with the
generator of an SRBM). Under some additional technical conditions (so-called irre-
ducibility and aperiodicity, more on this later), if such function V can be constructed,
then there exists a unique stationary distribution π , and the SRBM Z = (Z(t), t ≥ 0)
converges weakly to π as t → ∞; moreover, the convergence is exponentially fast in
t . There is an extensive literature on Lyapunov functions and convergence, see [42–44]
for discrete-time Markov chains and [19–21,25,45,46] for continuous-time Markov
processes. These methods were applied to an SRBM in the orthant in [9,24] and to an
SRBM in a convex polyhedral cone in [2,8]. However, in these articles they construct
a Lyapunov function indirectly. In this article, we come up with an explicit formula:

V (x) = eλϕ(U (x)), U (x) := [x ′Qx]1/2, x ∈ D,

where Q is a d × d symmetric matrix such that x ′Qx > 0 for x ∈ D \ {0}, λ > 0 is a
certain constant (to be determined later), ϕ : R+ → R+ is a C∞ function with

ϕ(s) :=
{
0, s ≤ s1;
s, s ≥ s2,

for some 0 < s1 < s2. (1)

We can also conclude that
∫
D V (x)π(dx) < ∞. This explicit form of the function V

allows us to find tail estimates for the stationary distribution π . Let us also mention
the papers [14,27], which study tail behavior of π in case d = 2. A companion paper
[51] studies Lyapunov functions for jump-diffusion processes in R

d , as well as for
reflected jump diffusions.

The paper is organized as follows. In Sect. 2, we introduce all necessary concepts
and definitions, explain the connection between Lyapunov functions, existence of a
stationary distribution, and exponential convergence. InSect. 3,we state themain result
and compare itwith already known conditions for existence of a stationary distribution;
then, we prove thismain result. Section 4 is devoted to systems of competing Brownian
particles.

1.1 Notation

We denote by Ik the k × k-identity matrix, and by 1 the vector (1, . . . , 1)′ (the
dimension is clear from the context). For a vector x = (x1, . . . , xd)′ ∈ R

d , let
‖x‖ := (

x21 + . . . + x2d
)1/2

be its Euclidean norm. The norm of a d × d-matrix A
is defined by

‖A‖ = max‖x‖=1
‖Ax‖ = max{√λ | λ is an eigenvalue of A′A}.
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For any two vectors x, y ∈ R
d , their dot product is denoted by x ·y = x1y1+· · ·+xd yd .

As mentioned before, we compare vectors x and y componentwise: x ≤ y if xi ≤ yi
for all i = 1, . . . , d; x < y if xi < yi for all i = 1, . . . , d; similarly for x ≥ y and
x > y. This includes infinite-dimensional vectors from R

∞. We compare matrices of
the same size componentwise, too. For example, we write x ≥ 0 for x ∈ R

d if xi ≥ 0
for i = 1, . . . , d; C = (ci j )1≤i, j≤d ≥ 0 if ci j ≥ 0 for all i , j .

Fix d ≥ 1, and let I ⊆ {1, . . . , d} be a nonempty subset. Write its elements in
the order of increase: I = {i1, . . . , im}, 1 ≤ i1 < i2 < . . . < im ≤ d. For any
x ∈ R

d , let [x]I := (xi1 , . . . , xim )′. For any d × d-matrix C = (ci j )1≤i, j≤d , let
[C]I := (

cik il
)
1≤k,l≤m .

A one-dimensional Brownian motion with zero drift and unit diffusion, starting
from 0, is called a standard Brownian motion. The symbol mes denotes the Lebesgue
measure on R

d . We write f ∈ C∞(D) for an infinitely differentiable function f :
D → R.

Take a measurable space (X, ν). For any measurable function f : X → R, we
denote (ν, f ) := ∫

X f dν. For a measurable function f : X → [1,∞), define the
norm

‖ν‖ f := sup |(ν, g)| ,

where the supremum is taken over all measurable functions g : X → R such that
|g(x)| ≤ f (x) for all x ∈ X. For f = 1, this is the total variation norm: ‖ν‖TV.

2 Definitions and Background

2.1 Definition of an SRBM in a Convex Polyhedron

Fix the dimension d ≥ 2, and the numberm of edges. Takem unit vectors n1, . . . , nm ,
and m real numbers b1, . . . , bm . Consider the following domain:

D := {x ∈ R
d | x · ni ≥ bi , i = 1, . . . ,m}.

We assume that each face Di of the boundary ∂D:

Di := {x ∈ R
d | x · ni = bi , x · n j ≥ b j , j = 1, . . . ,m, j �= i}, i = 1, . . . ,m,

is (d − 1)-dimensional, and the interior of D is nonempty. Then D is called a convex
polyhedron. For each face Di ,ni is the inward unit normal vector to this face.Define the
following d ×m-matrix: N = [n1| . . . |nm]. Now, take a vector μ ∈ R

d and a positive
definite symmetric d × d-matrix A. Consider also an m × d-matrix R = [r1| . . . |rm],
with ni · ri = 1 for i = 1, . . . ,m. We are going to define a process Z = (Z(t), t ≥ 0)
with values in D, which behaves as a d-dimensional Brownianmotionwith drift vector
μ and covariance matrix A, so long as it is inside D; at each face Di , it is reflected
according to the vector ri . First, we define its deterministic version: a solution to the
Skorohod problem.
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Definition 1 Take a continuous function X : R+ → R
d with X (0) ∈ D. A solution

to the Skorohod problem in D with reflection matrix R and driving function X is
any continuous function Z : R+ → D such that there exist m continuous functions
L1, . . . ,Lm : R+ → R+ which satisfy the following properties:

(i) each Li is nondecreasing, Li (0) = 0, and can increase only when Z ∈ Di ; we
can write the latter property as

Li (t) =
∫ t

0
1(Z(s) ∈ Di )dLi (s), t ≥ 0;

(ii) for all t ≥ 0, we have:

Z(t) = X (t) + RL(t),where L(t) = (L1(t), . . . ,Lm(t))′.

The function Li is called the boundary term corresponding to the face Di .

For the rest of the article, assume the usual setting: a filtered probability space
(�,F , (Ft )t≥0,P) with the filtration satisfying the usual conditions.

Definition 2 Fix z ∈ D. Take an ((Ft )t≥0,P)-Brownian motion W = (W (t), t ≥ 0)
with drift vector μ and covariance matrix A, starting from z. A continuous adapted
D-valued process Z = (Z(t), t ≥ 0), which is a solution to the Skorohod problem
in D with reflection matrix R and driving function W , is called a semimartingale
reflected Brownian motion (SRBM) in D, with drift vector μ, covariance matrix A,
and reflection matrix R, starting from z. It is denoted by SRBMd(D, R, μ, A). For
the case D = R

d+, we denote it simply by SRBMd(R, μ, A).

We shall present a sufficient condition for existence and uniqueness taken from
[15]. First, let us introduce a concept concerning the geometry of the polyhedron D.

Definition 3 For a nonempty subset I ⊆ {1, . . . ,m}, let DI := ∩i∈I Di , and let
D∅ := D. A nonempty subset I ⊆ {1, . . . ,m} is called maximal if DI �= ∅ and for
I � J ⊆ {1, . . . ,m}, we have: DJ � DI .

Now, let us define certain useful classes of matrices.

Definition 4 Take a d × d-matrix M = (mi j )1≤i, j≤d . It is called an S-matrix if for
some u ∈ R

d , u > 0we have:Mu > 0. It is called completely-S if for every nonempty
I ⊆ {1, . . . , d}, we have: [M]I is an S-matrix. It is called a Z-matrix if mi j ≤ 0 for
i �= j . It is called a reflection nonsingular M-matrix if it is both a completely S and
a Z-matrix with diagonal elements equal to one: rii = 1, i = 1, . . . , d. It is called
strictly copositive if x ′Mx > 0 for x ∈ R

d+ \ {0}. It is called nonnegative if all its
elements are nonnegative.

A useful equivalent characterization of reflection nonsingularM-matrices is given
in [53, Lemma 2.3]. Now, let us finally state the existence and uniqueness result, taken
from [15].
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Proposition 2.1 Assume that for every maximal set I ⊆ {1, . . . ,m} the matrices
[N ′R]I and [R′N ]I are S-matrices. Then for every z ∈ D, there exists a weak version
of an SRBMd(D, R, μ, A), and it is unique in law. Moreover, these processes for
z ∈ D form a Feller continuous strong Markov family.

Remark 1 For a particular important case of the positive orthant: D = R
d+, that is,

whenm = d, ni = ei and bi = 0 for i = 1, . . . , d, we have: N = Id , every nonempty
subset I ⊆ {1, . . . , d} is maximal, and the condition fromProposition 2.1 is equivalent
to the matrix R being completely S (because R is completely S if and only if R′ is
completely S). This turns out to be not just sufficient but a necessary condition, see
[47,55].

A sufficient condition for strong existence and pathwise uniqueness was found in
[29] for the orthant: R must be a reflection nonsingular-Mmatrix. Similar conditions
for the general convex polyhedron were found in [23]. However, we shall not need
strong existence and pathwise uniqueness in this paper. The generator of this process
is given by

A f (x) := μ · ∇ f (x) + 1

2

d∑
i=1

d∑
j=1

ai j
∂2 f (x)

∂xi∂x j
,

with the domain D(A) containing the following subset of functions:

D(A) ⊇ { f ∈ C∞(D) | ri · ∇ f (x)|x∈Di
= 0, i = 1, . . . ,m}.

2.2 Recurrence of Continuous-Time Markov Processes

Let us remind the basic concepts of recurrence, irreducibility, and aperiodicity for
continuous-time Markov processes. This exposition is taken from [9,19,21,45,46].

Take a locally compact separable metric spaceX and denote byB its Borel σ -field.
Let

(
�,F , (Ft )t≥0, (X (t), t ≥ 0), (Px )x∈X

)

be a time-homogeneous Markov family, where X (t) has continuous paths under each
measure Px . Denote by Pt (x, A) = Px (X (t) ∈ A) the transition function, and by Ex

the expectation operator corresponding to Px . Denote by Pt f and νPt the action of
this transition semigroup on functions f : X → R and Borel measures on X. Take a
σ -finite reference measure ν onX. The process X is called ν- irreducible if for A ∈ B
we have:

ν(A) > 0 ⇒ Ex

[∫ ∞

0
1A(X (s))ds

]
> 0 for all x ∈ X.

If such measure exists, then there is a maximal irreducibility measure ψ (every other
irreducibility measure is absolutely continuous with respect to ψ), which is unique up
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to equivalence of measures. A set A ∈ B with ψ(A) > 0 is accessible. A nonempty
C ∈ B is petite if there exists a probability distribution a on R+ and a nontrivial
σ -finite measure νa on B such that

∀x ∈ C,

∫ ∞

0
Pt (x, ·)a(dt) ≥ νa(·).

Suppose that, in addition, this distribution a is concentrated at one point t > 0: a = δt .
Equivalently, there exists a t > 0 and a nontrivial σ -finite measure νa onB such that

∀x ∈ C,

∫ ∞

0
Pt (x, ·)a(dt) ≥ νa(·).

Then the set C is called small. The process is Harris recurrent if, for some σ -finite
measure ν,

ν(A) > 0 ⇒
∫ ∞

0
1A(X (s))ds = ∞ Px − a.s. for all x ∈ X.

Harris recurrence implies ν-irreducibility. A Harris recurrent process possesses an
invariant measure π , which is unique up to multiplication by a constant. If π is finite,
then it can be scaled to be a probability measure, and in this case the process is
called positive Harris recurrent. An irreducible process is aperiodic if there exists
an accessible petite set C and T > 0 such that for all x ∈ C and t ≥ T , we have:
Pt (x,C) > 0.

Definition 5 The process X is called V -uniformly ergodic for a function V : X →
[1,∞) if it has a unique stationary distribution π , and there exists constants K , � > 0
such that for all x ∈ X and t ≥ 0 we have:

‖Pt (x, ·) − π(·)‖ ≤ KV (x)e−�t .

Now, let us state a few auxillary statements. The next proposition was proved in
[42, Chapter 6] for discrete-time processes, but the proof is readily transferred to
continuous-time setting.

Proposition 2.2 For a Feller continuous strong Markov family, every compact set is
petite.

Lemma 2.3 Take a Feller continuous strong Markov family. Assume ψ is a reference
measure such that there exists a compact set C with ψ(C) > 0. If Pt (x, A) > 0 for
all t > 0, x ∈ X and A ∈ B such that ψ(A) > 0, then the process is ψ-irreducible
and aperiodic.

Proof Irreducibility follows from the definition. For aperiodicity, we can take the
compact set C , because it is petite by Proposition 2.2. Ifψ ′ is a maximal irreducibility
measure, then ψ(C) > 0 and ψ � ψ ′, and so ψ ′(C) > 0. The rest is trivial. ��
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Finally, the following statement was proved in [13, Lemma 3.4].

Proposition 2.4 For anSRBMd(D, R, μ, A) under the conditions of Proposition 2.1,
for every t > 0, x ∈ D, and A ⊆ D with mes(A) > 0 we have: Pt (x, A) > 0.

Remark 2 Combining Lemma 2.3 and Proposition 2.4, we get that an SRBMd

(D, R, μ, A) is irreducible and aperiodic.

2.3 Lyapunov Functions and Exponential Convergence

There is a vast literature (some of these were mentioned in Sect. 1) on connection
between Lyapunov functions for Markov processes and their convergence to the sta-
tionary distribution. However, for the purposes of this article, we need to state the result
is a slightly different form. First, let us define the concept of a Lyapunov function.

Definition 6 Take a continuous function V : X → [1,∞). Suppose there exists a
closed petite set C ⊆ X and constants k, b > 0 such that the process

V (X (t)) − V (X (0)) −
∫ t

0
[−kV (X (s)) + b1C (X (s))] ds (2)

is an ((Ft )t≥0,Px )-supermartingale for all x ∈ X. If, in addition, supC V < ∞, then
V is called a Lyapunov function for the process X .

Remark 3 Equivalently, we can request that the process in (2) is a local supermartin-
gale. This is equivalent to it being a supermartingale, because this process is bounded
from below by −V (x)−bT on any time interval [0, T ] under the measure Px . (Every
local supermartingale which is bounded from below is a true supermartingale; this
follows from a trivial application of Fatou’s lemma.)

This definition is taken from [19, Section 3]withminor adjustments,withϕ(s) = ks
in the notation of [19]. This is a slightly more general definition than is often stated
in the literature; a more customary one invloves the generator of the Markov family.
First, let us state an auxillary lemma.

Lemma 2.5 For some constant c6 > 0, we have:

PsU (x) ≤ c6U (x), x ∈ X, s ∈ [0, 1].

Proof Because U and V are equivalent in the sense of (4), it suffices to prove the
statement of Lemma 2.5 for V instead of U . But this follows from the fact that the
process (2) is a supermartingale. Indeed, take Ex in (2) and get:

PtV (x) − V (x) + k
∫ t

0
PsV (x) − b

∫ t

0
Ps(x,C)ds ≤ 0.

Therefore, PtV (x) ≤ V (x) + bt . But V (x) ≥ 1, so for t ∈ [0, 1], we get: PtV (x) ≤
(1 + b)V (x). This completes the proof of Lemma 2.5. ��
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Next, we present the main result for this subsection.

Theorem 2.6 Assume there exists a Lyapunov function V , and the process is irre-
ducible and aperiodic. Then there exists a unique stationary distributionπ , the process
is V -uniformly ergodic, and we have the following estimate:

(π, V ) ≡
∫
X
V (x)π(dx) < ∞. (3)

Proof Existence and uniqueness of π together with (3) follows from [19, Propo-
sition 3.1]. If the process is irreducible, then the skeleton chain (X (n))n∈Z+ is
irreducible. Apply [19, Theorem 3.3] to the case ϕ(x) = kx , we get that for any
t0 > 0, there exists a function Ṽ : X → [k,∞), an accessible petite set C̃ for the
skeleton chain (X (n))n∈Z+ and a constant b̃ > 0 such that supC̃ Ṽ < ∞,

0 < c1 ≤ Ṽ (x)

V (x)
≤ c2 < ∞, x ∈ X.

and

P1Ṽ ≤ (1 − k)Ṽ + b̃1C̃ .

Taking U := Ṽ /k : X → [1,∞), we get: there exists λ := 1 − k < 1 and b′ =
b̃/k > 0 such that

PTU ≤ −λU + b′1C̃ ,

and

0 < c3 ≤ U (x)

V (x)
≤ c4 < ∞, x ∈ X. (4)

It follows from Proposition 2.4 that the skeleton chain (X (n))n≥0 is irreducible and
aperiodic. By [42, Theorem5.5.7], the petite set C̃ is small for this skeleton chain. Since
this chain is irreducible and aperiodic, by [21, Theorem 2.1(c)] for some constants
c5 > 0 and ρ ∈ (0, 1), we have:

‖Pn(x, ·) − π(·)‖U ≤ c5U (x)ρn . (5)

Next, we follow the proof of [21, Theorem 5.2]. Every t ≥ 0 can be represented as
t = n + s, where n ∈ Z+, s ∈ [0, 1). Since π is stationary, we have: π Ps = π .
Therefore, for any measurable g : X → [1,∞) with |g(x)| ≤ U (x),

Pt g(x) − (π, g) = Pn Psg(x) − (π, Psg).

But from Lemma 2.5 we have:

∣∣Psg(z)
∣∣ ≤ PsU (z) ≤ c6U (z), z ∈ X.
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From (5), because |g(x)| ≤ U (x) for x ∈ X, we get:

∣∣Pn Psg(x) − (π, Psg)
∣∣ ≤ c5c6U (x)ρn .

Since n ≤ t − 1,

∣∣Pt g(x) − (π, g)
∣∣ ≤ c5c6ρ

−1U (x)ρt .

This proves that, for c7 := c5c6ρ−1,

‖Pt (x, ·) − π(·)‖U ≤ c7U (x)e−�t , � := − ln ρ.

This isU -uniform ergodicity. Since the functionsU and V are equivalent in the sense
of (4), this also means V -uniform ergodicity. ��

3 Main Results

3.1 Statement of the General Result

Consider now a special type of a convex polyhedron, namely a convex polyhedral
cone:

D = {x ∈ R
d | Nx ≥ 0},

where N is am×d-matrix, constructed in Sect. 2.2. This fits into the general framework
of Definition 2, if we let b1 = . . . = bm = 0. What follows is the main result of the
paper.

Theorem 3.1 Suppose that conditions of Proposition 2.1 hold. Assume there exists a
symmetric nonsingular d × d-matrix Q such that:

(i) x ′Qx > 0 for x ∈ D \ {0};
(ii) (R′Qx) j ≤ 0 for x ∈ Dj , for each j = 1, . . . ,m;
(iii) x ′Qμ < 0 for x ∈ D \ {0}.

Take a C∞ function ϕ : R+ → R+ defined in (1). Denote

 := 2 min
x∈D\{0}

|Qμ · x |U (x)

x ′QAQx
. (6)

Then for λ ∈ (0,), the function

Vλ(x) = eλϕ(U (x)), U (x) := [
x ′Qx

]1/2
, (7)
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is a Lyapunov function for the SRBMd(D, R, μ, A). Therefore, the SRBMd(D, R,

μ, A) has a unique stationary distribution π , which satisfies

(π, Vλ) ≡
∫
D
Vλ(x)π(dx) < ∞, (8)

and is Vλ-uniformly ergodic.

Remark 4 The quantity is strictly positive. Indeed, the matrix A is positive definite,
and Q is nonsingular; so for x �= 0we have: Qx �= 0 and x ′QAQx = (Qx)′A(Qx) >

0. Also, Qμ · x = x ′Qμ < 0, and U (x) > 0 for x ∈ D \ {0}. Therefore, the fraction
is positive for each x ∈ D \ {0}. Since this fraction is homogeneous (invariant under
scaling), we can take the minimum on the compact set {x ∈ D | ‖x‖ = 1}. The rest
is trivial.

The estimate (8) implies that some exponential moments of π are finite. Namely,
let

K := min
x∈D‖x‖=1

U (x). (9)

This quantity is strictly positive, because U (x) > 0 on the compact set {x ∈ D |
‖x‖ = 1}. Therefore, for large enough ‖x‖ we have:

Vλ(x) ≥ eλK‖x‖,

and
∫
D
eρ‖x‖π(dx) < ∞ for ρ ∈ (0,K ).

From here, we get: for every a ≥ 0,

π{x ∈ D | ‖x‖ ≥ a} ≤ C(ρ)e−aρ for ρ ∈ (0,K ).

Let us compare this result with [1,2,8], where a more general case is considered
(drift vector and covariance matrix depend on the state). There, a sufficient condition
for V -uniform ergodicity is:

(i) that Skorohod problem in D has a unique solution for every driving function and is
Lipschitz continuously dependent on this function, in the metric of C([0, T ], R

d)

for every T > 0;
(ii) there exists a vector b ∈ R

m, b > 0, such that Rb = −μ.

Condition (i) is stronger than the one from Proposition 2.1. However, we were not
able to come up with an example when conditions of Theorem 3.1 hold, but condition
(i) does not hold. Some sufficient conditions for (i) to hold are known from [22].
However, condition (ii) is much simpler than (i)–(iii) from Theorem 3.1. The results
from [1,2,8] also construct a Lyapunov function indirectly, without giving an explicit
formula. This does not allow to construct explicit tails estimates, as in 3.1.
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3.2 Applications to the Case of the Positive Orthant

Now, let D = R
d+, that is, m = d and N = Id . We have the following immediate

corollary of Theorem 3.1.

Corollary 3.2 Assume R is a completely S matrix. Suppose there exists a strictly
copositive nonsingular d × d-matrix Q such that QR is a Z-matrix, and Qμ < 0.
Then an SRBMd(R, μ, A) has a unique stationary distribution π and is Vλ-uniformly
ergodic for λ ∈ (0,), while π satisfies (8). Here, Vλ is defined in (7), and  is
defined in (6).

Proof Condition (i) of Theorem 3.1 follows from the definition of copositivity. Con-
dition (ii) follows from the assumption that QR is aZ-matrix, because then for z ∈ Di

we have: z ≥ 0, but zi = 0, and so

(QRz)i =
d∑
j=1

(QR)i j z j =
∑
j �=i

(QR)i j z j ≤ 0.

Condition (iii) follows from Qμ < 0. ��
A particular example of this is as follows.

Corollary 3.3 Assume R is a d×d-reflection nonsingularM-matrix, and there exists
a diagonal matrix C = diag(c1, . . . , cd) with c1, . . . , cd > 0 such that R = RC is
symmetric. If R−1μ < 0, then the process SRBMd(R, μ, A) has a unique stationary
distribution π , and is Vλ-uniformly ergodic with

Vλ(x) = eλϕ(U (x)), U (x) :=
[
x ′R−1

x
]1/2

for λ ∈ (0,), where the function ϕ is defined in (1), and

 := 2 min
x∈R

d+\{0}
|R−1

μ · x |U (x)

x ′R−1
AR

−1
x

.

In addition, (π, Vλ) < ∞ for λ ∈ (0,).

Proof Just take Q = R
−1 = C−1R−1 in Corollary 3.2. Let us show that the matrix

Q is strictly copositive. From [53, Lemma 2.3], R−1 is a nonnegative matrix with
strictly positive elements on the main diagonal. Since C−1 is a diagonal matrix with

strictly positive elements on the diagonal, the matrix R
−1

is also a nonnegative matrix
with strictly positive elements on the main diagonal. Therefore, for x ∈ R

d+, x �= 0

we have: x ′R−1
x > 0. Now, from R−1μ < 0 it follows that R

−1
μ < 0. The rest is

trivial.
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Example 1 However, Corollary 3.2 can be applied not only to the case when R is a
reflection nonsingular M-matrix. Indeed, let d = 2 and

R =
[
1 0.5
0.5 1

]
μ =

[−1
−1

]

Then R is a completely S matrix. Take the matrix

Q =
[

1 −0.6
−0.6 1

]
then QR =

[
0.7 −0.1

−0.1 0.7

]

is a Z-matrix, and Qμ < 0. However, R is not a reflection nonsingular M-matrix.

It is instructive to compare these resultswith already knownones. It turns out that the
only new statement in Corollary 3.3 is the tail estimate (π, Vλ) < ∞ for an explicitly
constructed function Vλ. Existence (and uniqueness) of a stationary distribution and
V -uniform ergodicity for some function V : R

d+ → [1,∞) are already known from
[24], [9] (only there is no simple formula for the Lyapunov function V in these papers:
it is simply known thatV (x) ≥ a1ea2‖x‖ for some a1, a2 > 0). The paper [24] states the
fluid path condition, which is sufficient for V -uniform ergodicitiy: for every x ∈ R

d+,
any solution of the Skorohod problem in the orthant with reflection matrix R and
driving function x + μt must tend to zero as t → ∞. This turns out to be a necessary
and sufficient condition for the case d = 3. In the case d = 2, another necessary and
sufficient condition is found: R must be nonsingular and R−1μ < 0, see [32] and [27,
Appendix A]. In fact, the following condition is necessary for existence of a stationary
distribution: R is nonsingular and R−1μ < 0, see [16], [7, Appendix C]. For d = 3,
the fluid path condition is weaker than this necessary condition, see [7] and [12].

It is not known for d ≥ 4 whether the fluid path condition is necessary. Therefore,
Corollary 3.2might contain resultswhich are new compared to the fluid path condition.
However, we do not know any counterexamples to fluid path condition (that is, cases
when it is false, but the stationary distribution exists). This is a matter for future
research.

3.3 Proof of Theorem 3.1

Recall from Remark 2 that an SRBMd(D, R, μ, A) is irreducible and aperiodic. The
rest of the proof will be devoted to proving that the function (7) is indeed a Lyapunov
function in the sense of Definition 6. Apply the Itô-Tanaka formula to

Z(t) = W (t) + RL(t), t ≥ 0,

where Z = (Z(t), t ≥ 0) is an SRBMd(D, R, μ, A), W = (W (t), t ≥ 0) is the
driving Brownian motion for Z , and L = (L1, . . . , Lm)′ is the vector of boundary
terms. Because of (1), for x ∈ D such that ‖x‖ ≥ s2, we have:

Vλ(x) = eλU (x).
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First, let us calculate the first- and second-order partial derivatives of U on this set.
Since Q is symmetric and x ′Qx > 0 for x ∈ D such that ‖x‖ ≥ s2, we have:

∂(x ′Qx)

∂xi
= 2(Qx)i , i = 1, . . . , d.

Therefore,

∂U (x)

∂xi
= 1

2U (x)

∂U (x)

∂xi
= (Qx)i

U (x)
, i = 1, . . . , d.

Now,

∂2U (x)

∂xi∂x j
=

∂(Qx)i
∂x j

U (x) − (Qx)i
∂U (x)
∂x j

U 2(x)
= qi jU (x) − (Qx)i

(Qx) j
U (x)

U 2(x)

= qi jU 2(x) − (Qx)i (Qx) j
U 3(x)

= 1

U 3(x)

(
qi j (x

′Qx) − (Qxx ′Q)i j
)
.

As ‖x‖ → ∞, these second-order derivatives tend to zero, because U (x) ≥ K‖x‖
for x ∈ D. Now, let us calculate the first- and second-order partial derivatives for Vλ:

∂Vλ(x)

∂xi
= λ

∂U

∂xi
Vλ(x) = λVλ(x)

(Qx)i
U (x)

,

and

∂2Vλ(x)

∂xi ∂x j
= λ

∂Vλ(x)

∂x j

(Qx)i
U (x)

+ λVλ(x)
∂2U (x)

∂xi ∂x j
= λ2Vλ(x)

(Qx)i
U (x)

(Qx) j
U (x)

+ λVλ(x)
∂2U (x)

∂xi ∂x j

= λ2Vλ(x)
(Qxx ′Q)i j

x ′Qx
+ λVλ(x)

∂2U (x)

∂xi ∂x j
.

Since 〈Zi , Z j 〉t = ai jdt for i, j = 1, . . . , d, and Z(t) = W (t) + RL(t), we have:

dVλ(Z(t)) =1

2

d∑
i=1

d∑
j=1

∂2Vλ(Z(t))

∂xi∂x j
d〈Zi , Z j 〉t +

d∑
i=1

μi
∂Vλ(Z(t))

∂xi
dZi (t)

=1

2

d∑
i=1

d∑
j=1

ai j

(
λ2Vλ(Z(t))

(QZ(t)Z(t)′Q)i j

Z(t)′QZ(t)
+ λVλ(Z(t))

∂2U (Z(t))

∂xi∂x j

)
dt

+ λ

d∑
i=1

μi
(QZ(t))i
U (Z(t))

Vλ(Z(t))dt +
m∑
j=1

λ
QZ(t)

U (Z(t))
Vλ(Z(t))r jdL j (t)

+ λVλ(Z(t))
d∑

i=1

μi
(QZ(t))i
U (Z(t))

d (Wi (t) − μi t)

=Vλ(Z(t))βλ(Z(t))dt + dM(t) + dL(t),
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where for x ∈ D \ {0} we let βλ(x) := a(x)λ2 − b(x), where

a(x) =
d∑

i=1

d∑
j=1

ai j
(Qxx ′Q)i j

x ′Qx
= tr(AQxx ′Q)

x ′Qx
= tr(x ′QAQx)

x ′Qx
= x ′QAQx

x ′Qx
,

and

−b(x) := θ(x) + x ′Qμ

U (x)
,whereθ(x) := 1

2

d∑
i=1

d∑
j=1

ai j
∂2U (x)

∂xi∂x j
,

and, in addition,

M(t) := λ

∫ t

0
Vλ(Z(t))

d∑
i=1

μi
(QZ(t))i
U (Z(t))

d (Wi (t) − μi t) ,

L(t) := λ

∫ t

0

m∑
j=1

QZ(t)

U (Z(t))
Vλ(Z(t)) · r jdL j (t).

Lemma 3.4 The process L = (L(t), t ≥ 0) is nonincreasing a.s.

Lemma 3.5 For λ < , there exist r(λ), k(λ) > 0 such that for x ∈ D, ‖x‖ ≥ r(λ),
we have: βλ(x) < −k(λ).

Assuming we proved these two lemmata, let us complete the proof of Theorem 3.1.
Fix λ ∈ (0,). Take a compact set C = {x ∈ D \ ‖x‖ ≤ r(λ)}, with r(λ) from
Lemma 3.5. By Proposition 2.2, this set is petite. The process

Vλ(Z(t)) − Vλ(Z(0)) −
∫ t

0
Vλ(Z(s))βλ(Z(s))ds, t ≥ 0,

is a local supermartingale, because M = (M(t), t ≥ 0) is a local martingale and by
Lemma 3.4. Now,

βλ(x)Vλ(x) ≤ −k(λ)Vλ(x)1D\C (x) + bλ1C (x),

for bλ := maxx∈C [βλ(x)Vλ(x)]. This maximum is well defined, because βλVλ is a
continuous function, and C is a compact set. The rest of the proof is trivial.

Proof of Lemma 3.4. We can write L(t) as

dL(t) = λ

m∑
i=1

(QZ(t)R) j

U (Z(t))
Vλ(Z(t))dL j (t).

But each L j can grow only when Z ∈ Dj , and then (R′QZ(t)) j = QZ(t) · r j ≤ 0.
It suffices to note that Vλ(Z(t)) ≥ 0 and U (Z(t)) ≥ 0. ��
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Proof of Lemma 3.5. For each x ∈ D \ {0} we have: if b(x) > 0, then

λ < (x) := b(x)

a(x)
⇒ βλ(x) < 0.

Note that θ(x) → 0 as ‖x‖ → ∞. From this and conditions (i), (ii), and (iii) of
Theorem 3.1 it is straightforward to see that

lim
‖x‖→∞
x∈D

(x) = .

Also, there exist r0, c0 > 0 such that for x ∈ D, ‖x‖ ≥ r0 we have: a(x), b(x) ≥ c0.
Now, fix λ ∈ (0,). Then there exists δ > 0 such that δ ≤ λ ≤  − 2δ, and there
exists r(λ) such that for x ∈ D, ‖x‖ ≥ r(λ) we have: (x) ≥  − δ. Without loss
of generality, we assume r(λ) ≥ r0. Now, for such x we have:

−βλ(x)=−a(x)λ2+b(x)λ=a(x)λ(−λ+(x))≥c0δ((−δ)−( − 2δ)) ≥ c0δ
2.

This completes the proof of Lemma 3.5. ��

4 Systems of Competing Brownian Particles

4.1 Classical Systems: Definitions and Background

In this subsection, we use definitions from [4]. Assume the usual setting: a filtered
probability space (�,F , (Ft )t≥0,P)with the filtration satisfying the usual conditions.
Let N ≥ 2 (the number of particles). Fix parameters

g1, . . . , gN ∈ R; σ1, . . . , σN > 0.

We wish to define a system of N Brownian particles in which the kth smallest particle
moves a Brownian motion with drift gk and diffusion σ 2

k . These systems were studied
recently in [3,34,35,38,48,49,52,53]. Their applications include: (i) mathematical
finance, namely modeling the real-world feature of stocks with smaller capitaliza-
tions having larger growth rates and larger volatilities; it suffcies to take decreasing
sequences (gk) and (σ 2

k ); see also [10,37,40]; (ii) diffusion limits of a certain type of
exclusion processes, namely asymmetrically colliding random walks, see [39]; (iii) a
discrete approximation to McKean–Vlasov equation, see [17,36,54].

Definition 7 Take i.i.d. standard (Ft )t≥0-Brownian motionsW1, . . . ,WN . For a con-
tinuous R

N -valued process X = (X (t), t ≥ 0), X (t) = (X1(t), . . . , XN (t))′, let us
define pt , t ≥ 0, the ranking permutation for the vector X (t): this is a permutation
on {1, . . . , N }, such that:

(i) Xpt (i)(t) ≤ Xpt ( j)(t) for 1 ≤ i < j ≤ N ;
(ii) if 1 ≤ i < j ≤ N and Xpt (i)(t) = Xpt ( j)(t), then pt (i) < pt ( j).
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Suppose the process X satisfies the following SDE:

dXi (t) =
N∑

k=1

1(pt (k) = i) [gk dt + σk dWi (t)] , i = 1, . . . , N . (10)

Then this process X is called a classical system of N competing Brownian par-
ticles with drift coefficients g1, . . . , gN and diffusion coefficients σ 2

1 , . . . , σ 2
N . For

i = 1, . . . , N , the component Xi = (Xi (t), t ≥ 0) is called the i th named particle.
For k = 1, . . . , N , the process

Yk = (Yk(t), t ≥ 0), Yk(t) := Xpt (k)(t) ≡ X(k)(t),

is called the kth ranked particle. They satisfy Y1(t) ≤ Y2(t) ≤ . . . ≤ YN (t), t ≥ 0. If
pt (k) = i , then we say that the particle Xi (t) = Yk(t) at time t has name i and rank
k.

The coefficients of the SDE (10) are piecewise constant functions of X1(t), . . . ,
XN (t), so weak existence and uniqueness in law for such systems follows from [6].
Consider the gap process: an R

N−1+ -valued process defined by

Z = (Z(t), t ≥ 0), Z(t) = (Z1(t), . . . , ZN−1(t))
′, Zk(t) = Yk+1(t) − Yk(t).

It was shown in [4] that this is an SRBMN−1(R, μ, A) in the orthant S = R
N−1+ with

parameters

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1/2 0 0 . . . 0 0
−1/2 1 −1/2 0 . . . 0 0
0 −1/2 1 0 . . . 0 0
...

...
...

...
. . .

. . .
. . .

0 0 0 0 . . . 1 −1/2
0 0 0 0 . . . −1/2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

μ = (g2 − g1, g3 − g4, . . . , gN − gN−1)
′ , (12)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ 2
1 + σ 2

2 −σ 2
2 0 0 . . . 0 0

−σ 2
2 σ 2

2 + σ 2
3 −σ 2

3 0 . . . 0 0
0 −σ 2

3 σ 2
3 + σ 2

4 −σ 2
4 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . σ 2
N−2 + σ 2

N−1 −σ 2
N−1

0 0 0 0 . . . −σ 2
N−1 σ 2

N−1 + σ 2
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(13)
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4.2 Main Results

In this subsection, we present results about the gap process: existence of a stationary
distribution, Lyapunov functions, and tail estimates. Let gk := (g1 + . . . + gk) /k for
k = 1, . . . , N .

Proposition 4.1 The gap process has a stationary distribution if and only if

gk > gN fork = 1, . . . , N − 1. (14)

In this case, it is V -uniformly ergodic with a certain function V : R
N−1+ → [1,∞).

Proof This resultwas already proved in [4], [3,33,50], but for the sake of completeness
we present a sketch of proof. The matrix R is a reflection nonsingularM-matrix, and

− R−1μ = 2
(
g1 − gN , g1 + g2 − 2gN , . . . , g1 + . . . + gN−1 − (N − 1)gN

)′
.

(15)
Define the quantities

bi = g1 + g2 + . . . + gi − i gN , i = 1, . . . , N − 1. (16)

Then we can rewrite (15) as

−R−1μ = 2b, b = (b1, . . . , bN−1)
′.

Therefore, the gap process has a stationary distribution if and only if each component
of this vector is strictly positive, which is equivalent to the condition (14). In this case,
the fluid path condition holds by [11], and so by [9] the gap process is V -uniformly
ergodic for a certain Lyapunov function V : R

N−1+ → [1,∞). ��
From Corollary 3.3, we get a concrete Lyapunov function V , namely:

Vλ(x) = eλϕ(U (x)), U (x) :=
[
x ′R−1x

]1/2
,

where ϕ is defined in (1). We use the fact that the matrix R is symmetric, so in the
notation of Corollary 3.3 we have:C = IN−1 and R = R. Here, we must have λ < ,
where

 := 2 min
x∈R

d+\{0}
|R−1μ · x |U (x)

x ′R−1AR−1x
.

Let us try to estimate the tail of the stationary distribution π .

Theorem 4.2 Using the definition of b1, . . . , bN−1 from (16), we have:

∫
R

N−1+
eρ‖x‖π(dx) < ∞ for ρ ∈ (0, ρ0), ρ0 := 2

π2

min(b1, . . . , bN−1)

‖A‖ N−2.
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Proof From the results of Theorem 3.1, we have:

∫
R

N−1+
eρ‖x‖π(dx) < ∞ for ρ ∈ (0, K),

where K is defined in (9) (in this notation, Q = R−1). Now, let us estimate K from
below. Define � := {x ∈ R

N−1+ | x1 + . . . + xN−1 = 1}.
Lemma 4.3 (i) The norm of the matrix R−1 is equal to

‖R−1‖ = λ−1
1 =

(
1 − cos

π

N

)−1 ; (17)

(ii) U (x) ≥ 1 for x ∈ �;
(iii)

∣∣R−1μ · x∣∣ ≥ 2min(b1, . . . , bN−1) for x ∈ �;
(iv) x ′R−1AR−1x ≤ ‖R−1‖2‖A‖ for x ∈ �.

Suppose we proved Lemma 4.3. From part (ii) we get: K ≥ 1. Using (ii)–(iv), we
obtain:

 ≥ 2
2min(b1, . . . , bN−1)

‖R−1‖2‖A‖ .

Finally, using (i), we get:

 ≥ 4
(
1 − cos

π

N

)2 min(b1, . . . , bN−1)

‖A‖ .

But

1 − cos
π

N
≥ 1

2

( π

N

)2 = π2

2

1

N 2 .

Therefore,

 ≥ 2

π2

min(b1, . . . , bN−1)

‖A‖ N−2.

The rest of the proof is trivial.

Proof of Lemma 4.3. (i) The eigenvalues of R are given by (see, e.g., [41])

λk = 1 − cos
kπ

N
, k = 1, . . . , N − 1.

The eigenvalues of R−1 are λ−1
k , k = 1, . . . , N−1. Thematrix R−1 is symmetric,

so its norm is equal to the absolute value of its maximal eigenvalue. Therefore, we
get (17).
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(ii) The matrix R−1 is symmetric and positive definite. Solving the optimization
problem x ′R−1x → min, x ·1 = 1, we get: the minimum is 1′R1, which is equal
to the sum of all elements of R, which, in turn, equals 1.

(iii) Follows from the fact that R−1μ < 0 and (15).
(iv) Follows from the multiplicative property of the Euclidean norm, and from the

fact that for x ∈ � we have: ‖x‖2 = x21 + . . .+ x2N−1 ≤ (x1 +· · ·+ x2N−1)
2 = 1.

��

4.3 Asymmetric Collisions

One can generalize the classical system of competing Brownian particles fromDefini-
tion 7 in many ways. Let us describe one of these generalizations. Consider a classical
system of competing Brownian particles, as in Definition 7. For k = 1, . . . , N − 1,
let

L(k,k+1) = (L(k,k+1)(t), t ≥ 0)

be the semimartingale local time process at zero of the process Zk = Yk+1 − Yk .
We shall call this the collision local time of the particles Yk and Yk+1. For notational
convenience, let L(0,1)(t) ≡ 0 and L(N ,N+1)(t) ≡ 0. Let

Bk(t) =
N∑
i=1

∫ t

0
1(ps(k) = i)dWi (s), k = 1, . . . , N , t ≥ 0.

It can be checked that 〈Bk, Bl〉t ≡ δkl t , so B1, . . . , BN are i.i.d. standard Brownian
motions. As shown in [3–5], [33, Chapter 3], the ranked particles Y1, . . . ,YN have the
following dynamics:

Yk(t) = Yk(0) + gkt + σk Bk(t) − 1

2
L(k,k+1)(t) + 1

2
L(k−1,k)(t), k = 1, . . . , N .

The collision local time L(k,k+1) has a physical meaning of the push exerted when
the particles Yk and Yk+1 collide, which is needed to keep the particle Yk+1 above the
particle Yk . Note that the coefficients at the local time terms are±1/2. This means that
the collision local time L(k,k+1) is split evenly between the two colliding particles: the
lower-ranked particle Yk receives one half of this local time, which pushes it down, and
the higher-ranked particle Yk+1 receives the other one half of this local time, which
pushes it up.

In the paper [39], they considered systems of Brownian particles when this collision
local time is split unevenly: the part q+

k+1L(k,k+1)(t) goes to the upper particle Yk+1,
and the part q−

k L(k,k+1)(t) goes to the lower particle Yk . Let us give a formal definition.

Definition 8 Fix N ≥ 2, the number of particles. Take drift and diffusion coefficients

g1, . . . , gN ; σ1, . . . , σN > 0,
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and, in addition, take parameters of collision

q±
1 , . . . , q±

N ∈ (0, 1), q+
k+1 + q−

k = 1, k = 1, . . . , N − 1.

Consider a continuous adapted R
N -valued process

Y = (
Y (t) = (Y1(t), . . . ,YN (t))′, t ≥ 0

)
.

Take other N − 1 continuous adapted real-valued nondecreasing processes

L(k,k+1) = (L(k,k+1)(t), t ≥ 0), k = 1, . . . , N − 1,

with L(k,k+1)(0) = 0, which can increase only when Yk+1 = Yk :

∫ ∞

0
1(Yk+1(t) > Yk(t))dL(k,k+1)(t) = 0, k = 1, . . . , N − 1.

Let L(0,1)(t) ≡ 0 and L(N ,N+1)(t) ≡ 0. Assume that

Yk(t) = Yk(0) + gkt + σk Bk(t) − q−
k L(k,k+1)(t) + q+

k L(k−1,k)(t), k = 1, . . . , N .

(18)
Then the process Y is called the system of competing Brownian particles with asym-
metric collisions. The gap process is defined similarly to the case of a classical system.

Strong existence and pathwise uniqueness for these systems are shown in [39,
Section 2.1]. When q±

1 = q±
2 = . . . = 1/2, we are back in the case of symmetric

collisions.

Remark 5 For systems of competing Brownian particles with asymmetric collisions,
we defined only ranked particles Y1, . . . ,YN . It is, however, possible to define named
particles X1, . . . , XN for the case of asymmetric collisions. This is done in [39,
Section 2.4]. The construction works up to the first moment of a triple collision.
A necessary and sufficient condition for a.s. absence of triple collisions is given in
[53]. We will not make use of this construction in our article, instead working with
ranked particles.

It was shown in [39] that the gap process for systems with asymmetric collisions,
much like for the classical case, is an SRBM. Namely, it is an SRBMN−1(R, μ, A),
where μ and A are given by (12) and (13), and the reflection matrix R is given by

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −q−
2 0 0 . . . 0 0

−q+
2 1 −q−

3 0 . . . 0 0
0 −q+

3 1 −q−
4 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 1 −q−
N−1

0 0 0 0 . . . −q+
N−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(19)
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This matrix is also a reflection nonsingular M-matrix. Therefore, there exists a sta-
tionary distribution for this SRBM if and only if R−1μ < 0. In this case, we can apply
the results of [9] again and conclude that the gap process is V -uniformly ergodic with
a certain Lyapunov function V : R

N−1+ → [1,∞). Corollary 3.3 allows us to find an
explicit Lyapunov function and provide explicit tail estimates. A remark is in order:
the matrix R in (19) in general is not symmetric, as opposed to the matrix R in (11).
But if we take the (N − 1) × (N − 1) diagonal matrix

C = diag

(
1,

q+
2

q−
2

,
q+
2 q

+
3

q−
2 q

−
3

, . . . ,
q+
2 q

+
3 . . . q+

N−1

q−
2 q

−
3 . . . q−

N−1

)
,

then the matrix R = RC is diagonal.
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