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Abstract Relations between subexponential densities and locally subexponential dis-
tributions are discussed. It is shown that the class of subexponential densities is neither
closed under convolution roots nor closed under asymptotic equivalence. A remark is
given on the closure under convolution roots for the class of convolution equivalent
distributions.
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1 Introduction and Main Results

In what follows, we denote by R the real line and by R+ the half line [0,∞). Let N
be the totality of positive integers. The symbol δa(dx) stands for the delta measure
at a ∈ R. Let η and ρ be probability measures on R. We denote the convolution
of η and ρ by η ∗ ρ and denote n-th convolution power of ρ by ρn∗. Let f (x) and
g(x) be integrable functions on R. We denote by f n⊗(x) n-th convolution power
of f (x) and by f ⊗ g(x) the convolution of f (x) and g(x). For positive functions
f1(x) and g1(x) on [a,∞) for some a ∈ R, we define the relation f1(x) ∼ g1(x) by
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limx→∞ f1(x)/g1(x) = 1. We also define the relation an ∼ bn for positive sequences
{an}∞n=A and {bn}∞n=A with A ∈ N by limn→∞ an/bn = 1. We define the class P+ as
the totality of probability distributions on R+. In this paper, we prove that the class of
subexponential densities is not closed under two important closure properties. We say
that a measurable function g(x) on R is a density function if

∫ ∞
−∞ g(x)dx = 1 and

g(x) ≥ 0 for all x ∈ R.

Definition 1.1 (i) A nonnegativemeasurable function g(x) onR belongs to the class
L if g(x) > 0 for all sufficiently large x > 0 and if g(x + a) ∼ g(x) for any
a ∈ R.

(ii) A measurable function g(x) on R belongs to the class Ld if g(x) is a density
function and g(x) ∈ L.

(iii) A measurable function g(x) on R belongs to the class Sd if g(x) ∈ Ld and
g ⊗ g(x) ∼ 2g(x).

(iv) A distribution ρ on R belongs to the class Lac if there is g(x) ∈ Ld such that
ρ(dx) = g(x)dx .

(v) A distribution ρ on R belongs to the class Sac if there is g(x) ∈ Sd such that
ρ(dx) = g(x)dx .

Densities in the class Sd are called subexponential densities and those in the class
Ld are called long-tailed densities. The study on the class Sd goes back to Chover et
al. [2]. Let ρ be a distribution on R. Note that c−1ρ((x − c, x]) is a density function
on R for every c > 0.

Definition 1.2 (i) Let � := (0, c] with c > 0. A distribution ρ on R belongs to the
class L� if ρ((x, x + c]) ∈ L.

(ii) Let � := (0, c] with c > 0. A distribution ρ on R belongs to the class S� if
ρ ∈ L� and ρ ∗ ρ((x, x + c]) ∼ 2ρ((x, x + c]).

(iii) A distribution ρ on R belongs to the class Lloc if ρ ∈ L� for each � := (0, c]
with c > 0.

(iv) A distribution ρ on R belongs to the class Sloc if ρ ∈ S� for each � := (0, c]
with c > 0.

(v) A distribution ρ ∈ Lloc belongs to the class ULloc if there exists p(x) ∈ Ld such
that c−1ρ((x − c, x]) ∼ p(x) uniformly in c ∈ (0, 1].

(vi) A distribution ρ ∈ Sloc belongs to the class USloc if there exists p(x) ∈ Sd such
that c−1ρ((x − c, x]) ∼ p(x) uniformly in c ∈ (0, 1].

Distributions in the class Sloc are called locally subexponential; those in the class
USloc are called uniformly locally subexponential. The class S� was introduced by
Asmussen et al. [1] and the class Sloc was by Watanabe and Yamamuro [14]. Detailed
acounts of the classes Sd and S� are found in the book of Foss et al. [6]. First, we
present some interesting results on the classes Sd and Sloc.
Proposition 1.1 We have the following.

(i) Let � := (0, c] with c > 0 and let p(x) := c−1μ((x − c, x]) for a distribution
μ on R+. Then μ ∈ S� if and only if p(x) ∈ Sd . Moreover, μ ∈ Sloc ∩ P+ if
and only if there exists a density function q(x) on R+ such that q(x) ∈ Sd and
c−1μ((x − c, x]) ∼ q(x) for every c > 0.
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(ii) Let ρ1(dx) := q1(x)dx be a distribution on R+. If q1(x) is continu-
ous with compact support and if ρ2 ∈ Sloc ∩ P+, then ρ1 ∗ ρ2(dx) =(∫ x+

0− q1(x − u)ρ2(du)
)
dx and

∫ x+
0− q1(x − u)ρ2(du) ∈ Sd .

(iii) Let μ be a distribution on R+. If there exist distributions ρc for c > 0 such that,
for every c > 0, the support of ρc is included in [0, c] and ρc ∗ μ ∈ Sloc, then
μ ∈ Sloc.

Definition 1.3 (i) We say that a class C of probability distributions on R is closed
under convolution roots if μn∗ ∈ C for some n ∈ N implies that μ ∈ C.

(ii) Let p1(x) and p2(x) be density functions on R. We say that a class C of density
functions is closed under asymptotic equivalence if p1(x) ∈ C and p2(x) ∼
cp1(x) with c > 0 implies that p2(x) ∈ C.

The class Sac is a proper subclass of the class USloc because a distribution in USloc
can have a point mass. Moreover, the class USloc is a proper subclass of the class Sloc
as the following theorem shows.

Theorem 1.1 There exists a distribution μ ∈ Sloc\USloc such that μ2∗ ∈ Sac.

Corollary 1.1 We have the following.

(i) The class Sac is not closed under convolution roots.
(ii) The class USloc is not closed under convolution roots.
(iii) The class Lac is not closed under convolution roots.
(iv) The class ULloc is not closed under convolution roots.

The class Sd is closed under asymptotic equivalence in the one-sided case. See (ii)
of Lemma 2.1 below. However, Foss et al. [6] suggest the possibility of non-closure
under asymptotic equivalence for the class Sd in the two-sided case. We exactly prove
it as follows.

Theorem 1.2 The class Sd is not closed under asymptotic equivalence; that is, there
exist p1(x) ∈ Sd and p2(x) /∈ Sd such that p2(x) ∼ cp1(x) with c > 0.

In Sect. 2, we prove Proposition 1.1. In Sect. 3, we prove Theorems 1.1 and 1.2. In
Sect. 4, we give a remark on the closure under convolution roots.

2 Proof of Proposition 1.1

We present two lemmas for the proofs of main results and then prove Proposition 1.1.

Lemma 2.1 Let f (x) and g(x) be density functions on R+.
(i) If f (x) ∈ Ld , then f n⊗(x) ∈ Ld for every n ∈ N.
(ii) If f (x) ∈ Sd and g(x) ∼ c f (x) with c > 0, then g(x) ∈ Sd .
(iii) Assume that f (x) ∈ Ld . Then, f (x) ∈ Sd if and only if

lim
A→∞ lim sup

x→∞
1

f (x)

∫ x−A

A
f (x − u) f (u)du = 0.
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Proof Proof of assertion (i) is due to Theorem 4.3 of [6]. Proofs of assertions (ii) and
(iii) are due to Theorems 4.8 and 4.7 of [6], respectively. 
�
Lemma 2.2 (i) Let � := (0, c] with c > 0. Assume that ρ ∈ L� ∩ P+. Then,

ρ ∈ S� if and only if

lim
A→∞ lim sup

x→∞
1

ρ((x, x + c])
∫ (x−A)−

A+
ρ((x − u, x + c − u])ρ(du) = 0.

(ii) Assume that ρ ∈ Lloc ∩ P+. Then, ρn∗ ∈ Lloc for every n ∈ N. Moreover,
ρ((x − c, x]) ∼ cρ((x − 1, x]) for every c > 0.

(iii) Let ρ2 ∈ P+. If ρ1 ∈ Sloc ∩ P+ and ρ2((x − c, x]) ∼ c1ρ1((x − c, x]) with
c1 > 0 for every c > 0, then ρ2 ∈ Sloc ∩ P+.

Proof Proof of assertion (i) is due to Theorem 4.21 of [6]. First assertion of (ii) is due
to Corollary 4.19 of [6]. Second one is proved as (2.6) in Theorem 2.1 of [14]. Proof
of assertion (iii) is due to Theorem 4.22 of [6]. 
�
Proof of (i) of Proposition 1.1 Let ρ(dx) := c−11[0,c)(x)dx . First, we prove that if
μ ∈ Sloc ∩ P+, then ρ ∗ μ ∈ Sac. We can assume that c = 1. Suppose that μ ∈ Sloc.
Let p(x) := μ((x−1, x]).Wehaveρ∗μ(dx) = μ((x−1, x])dx andhence p(x) ∈ Ld .
Let A be a positive integer and let X,Y be independent random variables with the same
distribution μ. Then, we have for x > 2A + 2

∫ x−A

A
p(x − u)p(u)du

= 2
∫ x/2

A
p(x − u)p(u)du

= 2
∫ x/2

A
P(x − u − 1 < X ≤ x − u, u − 1 < Y ≤ u)du

≤ 2
∫ x/2

A
P(X > A,Y > A, x − 2 < X + Y ≤ x, u − 1 < Y ≤ u)du

≤ 2
∞∑

n=A

∫ n+1

n
P(X > A,Y > A, x − 2 < X + Y ≤ x, n − 1 < Y ≤ n + 1)du

≤ 4P(X > A,Y > A, x − 2 < X + Y ≤ x)

≤ 4
∫ (x−A)−

A+
μ((x − 2 − u, x − u])μ(du).

Since μ ∈ Sloc, we obtain from (i) of Lemma 2.2 that

lim
A→∞ lim sup

x→∞

∫ x−A
A p(x − u)p(u)du

p(x)
= 0.

Thus, we see from (iii) of Lemma 2.1 that p(x) ∈ Sd .
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Conversely, suppose that p(x) ∈ Sd . Then, we have μ ∈ L�. Let [y] be the largest
integer not exceeding a real number y. Choose sufficiently large integer A > 0. Note
that there are positive constants c j for 1 ≤ j ≤ 4 such that

c1 p(x − n) ≤ p(x − u) ≤ c2 p(x − n) and c3 p(n) ≤ p(u) ≤ c4 p(n)

for n ≤ u ≤ n + 1, A ≤ n ≤ [x + 1 − A], and x > 2A + 2. Thus, we find that

P(A < X, A < Y, x < X + Y ≤ x + 1)

≤
[x+1−A]∑

n=A

∫ n+1

n
μ((x − u, x + 1 − u])μ(du)

=
[x+1−A]∑

n=A

∫ n+1

n
p(x − u + 1)μ(du)

≤ c2

[x+1−A]∑

n=A

p(x − n + 1)p(n + 1)

≤ c2
c1c3

[x+1−A]∑

n=A

∫ n+1

n
p(x − u + 1)p(u + 1)du

≤ c2
c1c3

∫ x+2−A

A
p(x − u + 1)p(u + 1)du

Since p(x) ∈ Sd , we establish from (iii) of Lemma 2.1 that

lim
A→∞ lim sup

x→∞
P(A < X, A < Y, x < X + Y ≤ x + 1)

P(x < X ≤ x + 1)
= 0.

Thus, μ ∈ S� by (i) of Lemma 2.2. Note from (ii) of Lemma 2.2 that if μ ∈ Sloc,
then c−1μ((x − c, x]) ∼ μ((x − 1, x]) for every c > 0. Thus, the second assertion is
true. 
�
Proof of (ii) of Proposition 1.1 Suppose that ρ1(dx) := q1(x)dx be a distribution
on R+ such that q1(x) is continuous with compact support in [0, N ]. Let q(x) :=∫ x+
0− q1(x − u)ρ2(du). For M ∈ N, there are δ(M) > 0 and an = an(M) ≥ 0
for n ∈ N such that limM→∞ δ(M) = 0 and an ≤ q1(x) ≤ an + δ(M) for
M−1(n − 1) < x ≤ M−1n and 1 ≤ n ≤ MN . Define J (M; x) as

J (M; x) :=
MN∑

n=1

anρ2((x − M−1n, x − M−1(n − 1)]).

Then, we have

J (M; x) ∼ ρ2((x − 1, x])
MN∑

n=1

anM
−1 (2.1)
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and for x > N

J (M; x) ≤ q(x) ≤ J (M; x) + δ(M)ρ2((x − N , x]).

Since limM→∞ δ(M) = 0 and

lim
M→∞

MN∑

n=1

anM
−1 =

∫ N

0
q1(x)dx = 1,

we obtain from (2.1) that

q(x) ∼ ρ2((x − 1, x]).

Since ρ2 ∈ Sloc, we conclude from (i) of Proposition 1.1 that q(x) ∈ Sd . 
�
Proof of (iii) of Proposition 1.1 Suppose that the support of ρc is included in [0, c]
and ρc ∗μ ∈ Sloc for every c > 0. Let X and Y be independent random variables with
the same distribution μ, and let Xc and Yc be independent random variables with the
same distribution ρc. Define J1(c; c1; a; x) and J2(c; c1; a; x) for a ∈ R and c1 > 0
as

J1(c; c1; a; x) := P(x + a < X + Xc ≤ x + c1 + a)

P(x < X + Xc ≤ x + c1 + c)
,

J2(c; c1; a; x) := P(x + a < X + Xc ≤ x + c1 + c + a)

P(x < X + Xc ≤ x + c1)
.

We see that

J1(c; c1; a; x) ≤ P(x + a < X ≤ x + c1 + a)

P(x < X ≤ x + c1)
≤ J2(c; c1; a; x). (2.2)

Since ρc ∗ μ ∈ Lloc, we obtain that

lim
x→∞ J1(c; c1; a; x) = c1

c1 + c

and

lim
x→∞ J2(c; c1; a; x) = c1 + c

c1
.

Thus, as c → 0 we have by (2.2)

lim
x→∞

P(x + a < X ≤ x + c1 + a)

P(x < X ≤ x + c1)
= 1,
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and hence μ ∈ Lloc. We find from ρc ∗ μ ∈ Sloc and (i) of Lemma 2.2 that

lim
A→∞ lim sup

x→∞
P(X > A,Y > A, x < X + Y ≤ x + c1)

P(x < X ≤ x + c1)

≤ lim
A→∞ lim sup

x→∞
P(X > A,Y > A, x < X + Xc + Y + Yc ≤ x + c1 + 2c)

P(x < X + Xc ≤ x + c1)
= 0.

Thus, we see from (i) of Lemma 2.2 that μ ∈ Sloc. 
�

3 Proofs of Theorems 1.1 and 1.2

For the proofs of the theorems,we introduce a distributionμ as follows. Let 1 < x0 < b
and choose δ ∈ (0, 1) satisfying δ < (x0−1)∧(b−x0).We take a continuous periodic
function h(x) on R with period log b such that h(log x) > 0 for x ∈ [1, x0) ∪ (x0, b]
and

h(log x) =
⎧
⎨

⎩

0 for x = x0,−1

log |x − x0| for each x with 0 < |x − x0| < δ.

Let

φ(x) := x−α−1h(log x)1[1,∞)(x)

with α > 0. Here, the symbol 1[1,∞)(x) stands for the indicator function of the set
[1,∞). Define a distribution μ as

μ(dx) := M−1φ(x)dx,

where M := ∫ ∞
1 x−1−αh(log x)dx .

Lemma 3.1 We have μ ∈ Lloc.

Proof Let {yn} be a sequence such that 1 ≤ yn ≤ b and limn→∞ yn = y for some y ∈
[1, b]. Then, we put xn = bmn yn , wheremn is a positive integer and limn→∞ xn = ∞.
In what follows, c > 0 and c1 ≥ 0.
Case 1. Suppose that y �= x0. Let xn + c1 ≤ u ≤ xn + c1 + c. Then, we have

yn + b−mnc1 ≤ b−mnu ≤ yn + b−mn (c1 + c), (3.1)

and thereby limn→∞ b−mnu = y. This yields that

h(log u) = h(log(b−mnu)) ∼ h(log y).

Hence, we obtain that

∫ xn+c1+c

xn+c1
φ(u)du =

∫ xn+c1+c

xn+c1
u−1−αh(log u)du
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∼ x−1−α
n

∫ xn+c1+c

xn+c1
h(log u)du ∼ cx−1−α

n h(log y),

so that

∫ xn+c

xn
φ(u)du ∼

∫ xn+c1+c

xn+c1
φ(u)du (3.2)

Case 2. Suppose that y = x0. Let xn + c1 ≤ u ≤ xn + c1 + c and put

En := {u : |b−mnu − x0| ≤ εb−mn },

where ε > 0. For sufficiently large n, we have for u ∈ En

− log |b−mnu − x0| ≥ − log εb−mn ≥ 1

2
mn log b (3.3)

Set λn := |yn − x0|bmn . It suffices that we consider the case where there exists a limit
of λn as n → ∞, so we may put λ := limn→∞ λn . This limit permits infinity. We
divide λ in the two cases where λ < ∞ and λ = ∞.
Case 2-1. Suppose that 0 ≤ λ < ∞. Now, we have

∫ xn+c1+c

xn+c1
h(log u)du

=
∫

[xn+c1,xn+c1+c]\En

h(log u)du +
∫

[xn+c1,xn+c1+c]∩En

h(log u)du.

Let u ∈ [xn + c1, xn + c1 + c]\En . For sufficiently large n, we have by (3.1)

εb−mn ≤ |b−mnu − x0| ≤ |b−mnu − yn| + |yn − x0|
≤ b−mn (c + c1) + b−mnλn ≤ b−mn (c + c1 + λ + 1).

This implies that

− log |b−mnu − x0| ∼ mn log b.

For sufficiently large n, it follows that

∫

[xn+c1,xn+c1+c]\En

h(log u)du =
∫

[xn+c1,xn+c1+c]\En

h(log b−mnu)du

=
∫

[xn+c1,xn+c1+c]\En

−1

log |b−mnu − x0|du

∼
∫

[xn+c1,xn+c1+c]\En

1

mn log b
du
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As we have

c ≥
∫

[xn+c1,xn+c1+c]\En

du ≥
∫

[xn+c1,xn+c1+c]
du −

∫

En

du ≥ c − 2ε,

it follows that

(1 − ε) · c − 2ε

mn log b
≤

∫

[xn+c1,xn+c1+c]\En

h(log u)du ≤ (1 + ε) · c

mn log b

for sufficiently large n. Furthermore, we see from (3.3) that

∫

[xn+c1,xn+c1+c]∩En

h(log u)du =
∫

[xn+c1,xn+c1+c]∩En

−1

log |b−mnu − x0|du

≤ 2

mn log b

∫

En

du ≤ 4ε

mn log b
.

Hence, we obtain that

∫ xn+c1+c

xn+c1
φ(u)du ∼ x−1−α

n

∫ xn+c1+c

xn+c1
h(log u)du

∼ x−1−α
n

c

mn log b
,

so that (3.2) holds.
Case 2-2. Suppose that λ = ∞. For u with xn + c1+ ≤ u ≤ xn + c1 + c, we see from
(3.1) that

|yn − x0| − (c + c1)b
−mn ≤ |b−mnu − x0| ≤ |yn − x0| + (c + c1)b

−mn ,

that is,

(1 − (c + c1)λ
−1
n )|yn − x0| ≤ |b−mnu − x0| ≤ (1 + (c + c1)λ

−1
n )|yn − x0|.

This implies that

∫ xn+c1+c

xn+c1
φ(u)du ∼ x−1−α

n

∫ xn+c1+c

xn+c1

−1

log |b−mnu − x0|du

∼ x−1−α
n

−c

log |yn − x0| ,

so we get (3.2). The lemma has been proved. 
�
Lemma 3.2 We have

φ ⊗ φ(x) ∼ 2M
∫ x+1

x
φ(u)du = 2M2μ((x, x + 1]).
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Proof Let {yn} be a sequence such that 1 ≤ yn ≤ b and limn→∞ yn = y for some
y ∈ [1, b]. We put xn = bmn yn , where mn is a positive integer and limn→∞ xn = ∞.
Now, we have

φ ⊗ φ(xn) =
∫ xn−1

1
φ(xn − u)φ(u)du

= 2
∫ 2−1xn

1
φ(xn − u)φ(u)du

= 2

(∫ (log xn)β

1
+

∫ 2−1xn

(log xn)β

)

φ(xn − u)φ(u)du =: 2(J1 + J2).

Here, we took β satisfying αβ > 1. Put K := sup{h(log x) : 1 ≤ x ≤ b}. Then, we
have

J2 ≤ K 2
∫ 2−1xn

(log xn)β

du

u1+α(xn − u)1+α
≤ K 2

(
2

xn

)1+α

· α−1(log xn)
−αβ.

We consider the two cases where y �= x0 and y = x0.
Case 1. Suppose that y �= x0. If 1 ≤ u ≤ (log xn)β , then

h(log(xn − u)) = h(log(yn − b−mnu)) ∼ h(log y).

Hence, we obtain that

J1 =
∫ (log xn)β

1
(xn − u)−1−αu−1−αh(log(xn − u))h(log u)du

∼ x−1−α
n

∫ (log xn)β

1
u−1−αh(log(xn − u))h(log u)du

∼ Mx−1−α
n h(log y),

so that

φ ⊗ φ(xn) = 2(J1 + J2) ∼ 2J1 ∼ 2Mx−1−α
n h(log y).

Case 2. Suppose that y = x0. Put γn := bmn |yn − x0|(log xn)−β and

E ′
n := {u : |yn − x0 − b−mnu| ≤ εb−mn },

where 0 < ε < 1. It suffices that we consider the case where there exists a limit of γn ,
so we may put γ := limn→∞ γn . This limit permits infinity. Furthermore, we divide
γ in the two cases where γ < ∞ and γ = ∞.
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Case 2-1. Suppose that 0 ≤ γ < ∞. Take sufficiently large n. Set

J ′
11 :=

∫

[1,(log xn)β ]\E ′
n

u−1−αh(log(xn − u))h(log u)du,

J ′
12 :=

∫

[1,(log xn)β ]∩E ′
n

u−1−αh(log(xn − u))h(log u)du.

Let u ∈ [1, (log xn)β ]\E ′
n . We have

εb−mn ≤ |yn − x0 − b−mnu| ≤ |yn − x0| + b−mnu

≤ (γ + 2)b−mn (log xn)
β .

This implies that

− log |yn − x0 − b−mnu| ∼ mn log b.

It follows that

J ′
11 =

∫

[1,(log xn)β ]\E ′
n

u−1−αh(log(yn − b−mnu))h(log u)du

=
∫

[1,(log xn)β ]\E ′
n

u−1−αh(log u)
−1

log |yn − x0 − b−mnu|du

∼ 1

mn log b

∫

[1,(log xn)β ]\E ′
n

u−1−αh(log u)du.

Here, we see that, for sufficiently large n,

M − ε − 2εK ≤
∫

[1,(log xn)β ]\E ′
n

u−1−αh(log u)du ≤ M,

and thereby

(1 − ε)
M − ε − 2εK

mn log b
≤ J ′

11 ≤ (1 + ε)
M

mn log b
.

Let u ∈ E ′
n . Then, we have

h(log(xn − u)) = h(log(yn − b−mnu))

= −1

log |yn − x0 − b−mnu| ≤ 2

mn log b
.

Hence, we see that

J ′
12 ≤ 2

mn log b

∫

[1,(log xn)β ]∩E ′
n

u−α−1h(log u)du ≤ 4K ε

mn log b
.
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We consequently obtain that

J1 ∼ x−1−α
n (J ′

11 + J ′
12) ∼ Mx−1−α

n

mn log b
,

so that

φ ⊗ φ(xn) = 2(J1 + J2) ∼ 2J1 ∼ 2Mx−1−α
n

mn log b
.

Case 2-2. Suppose that γ = ∞. Note that [1, (log xn)β ] ∩ E ′
n is empty for sufficiently

large n. Let 1 ≤ u ≤ (log xn)β . Since

|yn − x0|(1 − γ −1
n ) ≤ |yn − x0 − b−mnu| ≤ |yn − x0|(1 + γ −1

n ),

we see that

log |yn − x0 − b−mnu| ∼ log |yn − x0|.

This yields that

J1 ∼ x−1−α
n

∫

[1,(log xn)β ]
u−1−αh(log u) · −1

log |yn − x0 − b−mnu|du

∼ −M

log |yn − x0| x
−1−α
n .

For sufficiently large n, we have

J2 × x1+α
n (− log |yn − x0|) ≤ 21+αK 2

α
· − log |yn − x0|

(log xn)αβ

= 21+αK 2

α
· − log γn + mn log b − log(log xn)β

(log xn)αβ

≤ 21+αK 2

α
· mn log b

(log xn)αβ
,

so that lim
n→∞ J2/J1 = 0. We consequently obtain that

φ ⊗ φ(xn) = 2(J1 + J2) ∼ 2J1 ∼ 2x−1−α
n

−M

log |yn − x0| .

Combining the above calculations with the proof of Lemma 3.1, we reach the
following: If y �= x0, then

φ ⊗ φ(xn) ∼ 2Mx−1−α
n h(log y) ∼ 2M

∫ xn+1

xn
φ(u)du.
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Suppose that y = x0. Recall λ in the proof of Lemma 3.1. If 0 ≤ γ < ∞ and λ = ∞,
then we have − log |yn − x0| ∼ mn log b. Hence,

φ ⊗ φ(xn) ∼ 2M
x−1−α
n

mn log b

∼ 2M
−x−1−α

n

log |yn − x0| ∼ 2M
∫ xn+1

xn
φ(u)du.

If 0 ≤ γ < ∞ and 0 ≤ λ < ∞, then

φ ⊗ φ(xn) ∼ 2M
x−1−α
n

mn log b
∼ 2M

∫ xn+1

xn
φ(u)du.

If γ = ∞, then λ = ∞ and

φ ⊗ φ(xn) ∼ 2M
−x−1−α

n

log |yn − x0| ∼ 2M
∫ xn+1

xn
φ(u)du.

The lemma has been proved. 
�
Proof of Theorem 1.1 We have μ ∈ Lloc by Lemma 3.1. It follows from Lemma 3.2
that

μ ∗ μ((x, x + 1]) = M−2
∫ x+1

x
φ ⊗ φ(u)du

∼ 2
∫ x+1

x
μ((u, u + 1])du ∼ 2μ((x, x + 1]).

Let c > 0. Furthermore, we see from μ ∈ Lloc and (ii) of Lemma 2.2 that

μ ∗ μ((x, x + c]) ∼ cμ ∗ μ((x, x + 1]) and μ((x, x + c]) ∼ cμ((x, x + 1]).
Hence, we get

μ ∗ μ((x, x + c]) ∼ 2μ((x, x + c]),
and thereby μ ∈ Sloc. Thus, μ((x − 1, x]) ∈ Sd by (i) of Proposition 1.1. Since we
see that

φ ⊗ φ(x) ∼ 2M
∫ x+1

x
φ(u)du = 2M2μ((x, x + 1]),

we have μ2∗ ∈ Sac by (ii) of Lemma 2.1. However, we have μ /∈ ULloc because, for
c = b−m(n) with m(n) ∈ N, we see that as n → ∞

c−1
∫ bnx0+c

bnx0
M−1φ(u)du ∼ M−1b−(α+1)nx−α−1

0

(m(n) + n) log b
.
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The above relation implies that the convergence of the definition of the class ULloc

fails to satisfy uniformity. Since USloc ⊂ ULloc, the theorem has been proved. 
�
Proof of Corollary 1.1 Proofs of assertions (i) and (ii) are clear from Theorem 1.1.
We find from the proof of Theorem 1.1 that μ /∈ ULloc but μ2∗ ∈ Sac. Since Sac ⊂
Lac ⊂ ULloc, assertions (iii) and (iv) are true. 
�

Choose x1 and x2 satisfying that 1 < x0 < x0 + x1 < x0 + x2 < b. Let {nk}∞k=1 be
an increasing sequence of positive integers satisfying

∑∞
k=1 1/

√
nk = 1. Let Bk :=

(−bnk x2,−bnk x1] and Dk := (bnk x0, bnk x0 + 1] for k ∈ N. Choose a distribution μ1
satisfying that μ1(Bk) = 1/

√
nk for all k ∈ N and μ1((∪∞

k=1Bk)
c) = 0.

Lemma 3.3 We have, for c ∈ R,

lim
k→∞

μ ∗ μ1(Dk + c)

μ(Dk)
= ∞.

Proof We have, uniformly in v ∈ [x1, x2],

μ((bn(x0 + v), bn(x0 + v) + 1]) ∼ M−1b−(α+1)n(x0 + v)−α−1h(log(x0 + v))

and

μ((bnx0, b
nx0 + 1]) ∼ M−1 b

−(α+1)nx−α−1
0

n log b
.

Thus, there exists c1 > 0 such that c1 does not depend on v ∈ [x1, x2] and that

lim inf
n→∞

μ((bn(x0 + v), bn(x0 + v) + 1])
nμ((bnx0, bnx0 + 1]) ≥ c1.

Hence, we obtain from Lemma 3.1 that

lim inf
k→∞

μ ∗ μ1(Dk + c)

μ(Dk)
≥ lim inf

k→∞

∫

Bk

μ(Dk − u + c)

μ(Dk)
μ1(du)

= lim inf
k→∞

∫

Bk

μ(Dk − u)

μ(Dk)
μ1(du)

≥ c1 lim inf
k→∞

nk√
nk

= ∞.

Thus, we have proved the lemma. 
�
Proof of Theorem 1.2 Define distributions ρ1 and ρ2 as

ρ1(dx) := 2−1δ0(dx) + 2−1μ(dx), ρ2(dx) := 2−1μ1(dx) + 2−1μ(dx).
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Thus, ρ1 ∈ Sloc by Theorem 1.1 and (iii) of Lemma 2.2. Let ρ(dx) := f (x)dx , where
f (x) is continuous with compact support in [0, 1]. Define distributions p1(x)dx and
p2(x)dx as

p1(x)dx := ρ ∗ ρ1(dx) = 2−1 f (x)dx + 2−1ρ ∗ μ(dx)

and

p2(x)dx := ρ ∗ ρ2(dx) = 2−1ρ ∗ μ1(dx) + 2−1ρ ∗ μ(dx).

Then, we find that p1(x) = p2(x) for all sufficiently large x > 0 and p1(x) ∈ Sd by
(ii) of Proposition 1.1. We establish from Lemma 3.3 and Fatou’s lemma that

lim inf
k→∞

∫
Dk

p2 ⊗ p2(x)dx
∫
Dk

p2(x)dx

≥ lim inf
k→∞

∫ 2
0 μ ∗ μ1(Dk − u) f 2⊗(u)du

∫ 1
0 μ(Dk − u) f (u)du

≥
∫ 2

0
lim inf
k→∞

μ ∗ μ1(Dk − u)

μ(Dk)
f 2⊗(u)du = ∞.

Thus, we conclude that p2(x) /∈ Sd . 
�

4 A Remark on the Closure Under Convolution Roots

The tail of a measure ξ on R is denoted by ξ̄ (x), that is, ξ̄ (x) := ξ((x,∞)) for
x ∈ R. Let γ ∈ R. The γ -exponential moment of ξ is denoted by ξ̂ (γ ), namely
ξ̂ (γ ) := ∫ ∞

−∞ eγ xξ(dx).

Definition 4.1 Let γ ≥ 0.

(i) A distribution ρ on R is said to belong to the class L(γ ) if ρ̄(x) > 0 for every
x ∈ R and if

ρ̄(x + a) ∼ e−γ a ρ̄(x) for every a ∈ R.

(ii) A distribution ρ onR belongs to the class S(γ ) if ρ ∈ L(γ ) with ρ̂(γ ) < ∞ and
if

ρ ∗ ρ(x) ∼ 2ρ̂(γ )ρ̄(x).

(iii) Let γ1 ∈ R. A distribution ρ on R belongs to the class M(γ1) if ρ̂(γ1) < ∞.

The convolution closure problem on the class S(γ )with γ ≥ 0 is negatively solved
by Leslie [9] for γ = 0 and by Klüppelberg and Villasenor [8] for γ > 0. The same
problem on the class Sd is also negatively solved by Klüppelberg and Villasenor [8].
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On the other hand, the fact that the class S(0) of subexponential distributions is closed
under convolution roots is proved by Embrechts et al. [5] in the one-sided case and by
Watanabe [13] in the two-sided case. Embrechts and Goldie conjecture thatL(γ )with
γ ≥ 0 and S(γ ) with γ > 0 are closed under convolution roots in [3,4], respectively.
They also prove in [4] that ifL(γ )∩P+ with γ > 0 is closed under convolution roots,
then S(γ )∩P+ with γ > 0 is closed under convolution roots. However, Shimura and
Watanabe [12] prove that the class L(γ ) with γ ≥ 0 is not closed under convolution
roots, andwe find that Xu et al. [16] show the same conclusion in the case γ = 0. Pakes
[10] and Watanabe [13] show that S(γ ) with γ > 0 is closed under convolution roots
in the class of infinitely divisible distributions on R. It is still open whether the class
S(γ ) with γ > 0 is closed under convolution roots. Shimura andWatanabe [11] show
that the class OS is not closed under convolution roots. Watanabe and Yamamuro
[15] pointed out that OS is closed under convolution roots in the class of infinitely
divisible distributions.

Let γ ∈ R. For μ ∈ M(γ ), we define the exponential tilt μ〈γ 〉 of μ as

μ〈γ 〉(dx) := 1

μ̂(γ )
eγ xμ(dx).

Exponential tilts preserve convolutions, that is, (μ∗ρ)〈γ 〉 = μ〈γ 〉∗ρ〈γ 〉 for distributions
μ, ρ ∈ M(γ ). Let C be a distribution class. For a class C ⊂ M(γ ), we define the
class Eγ (C) by

Eγ (C) := {μ〈γ 〉 : μ ∈ C}.

It is obvious that Eγ (M(γ )) = M(−γ ) and that (μ〈γ 〉)〈−γ 〉 = μ for μ ∈ M(γ ).
The classEγ (S(γ )) is determined byWatanabe and Yamamuro as follows. Analogous
result is found in Theorem 2.1 of Klüppelberg [7].

Lemma 4.1 (Theorem 2.1 of [14]) Let γ > 0.

(i) We have Eγ (L(γ ) ∩ M(γ )) = Lloc ∩ M(−γ ) and hence Eγ (L(γ ) ∩ M(γ ) ∩
P+) = Lloc ∩ P+. Moreover, if ρ ∈ L(γ ) ∩ M(γ ), then we have

ρ〈γ 〉((x, x + c]) ∼ cγ

ρ̂(γ )
eγ x ρ̄(x) for all c > 0.

(ii) We have Eγ (S(γ )) = Sloc ∩M(−γ ) and thereby Eγ (S(γ )∩P+) = Sloc ∩P+.

Finally, we present a remark on the closure under convolution roots for the three
classes S(γ ) ∩ P+, Sloc ∩ P+, and Sac ∩ P+.

Proposition 4.1 The following are equivalent:

(1) The class S(γ ) ∩ P+ with γ > 0 is closed under convolution roots.
(2) The class Sloc ∩ P+ is closed under convolution roots.
(3) Let μ be a distribution onR+ and let pc(x) := c−1μ((x −c, x]) for c > 0. Then,

{pn⊗
c (x) : c > 0} ⊂ Sd for some n ∈ N implies {pc(x) : c > 0} ⊂ Sd .
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Proof Proof of the equivalence between (1) and (2) is due to Lemma 4.1. Let n ≥ 2.
Suppose that (2) holds and, for some n, pn⊗

c (x) ∈ Sd for every c > 0. Let fc(x) =
c−11[0,c)(x). We have pn⊗

c (x)dx = (( fc(x)dx) ∗ μ)n∗ ∈ Sloc. We see from assertion
(2) that ( fc(x)dx)∗μ ∈ Sloc and hence, by (iii) of Proposition 1.1, we have μ ∈ Sloc,
that is, pc(x) ∈ Sd for every c > 0 by (i) of Proposition 1.1. Conversely, suppose that
(3) holds andμn∗ ∈ Sloc. Note that f n⊗

c (x) is continuous with compact support inR+.
Thus, we see from (ii) of Proposition 1.1 that pn⊗

c (x) = ∫ x+
0− f n⊗

c (x−u)μn∗(du) ∈ Sd

for every c > 0. We obtain from assertion (3) that pc(x) ∈ Sd for every c > 0, that
is, μ ∈ Sloc by (i) of Proposition 1.1. 
�
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