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Abstract Relations between subexponential densities and locally subexponential dis-
tributions are discussed. It is shown that the class of subexponential densities is neither
closed under convolution roots nor closed under asymptotic equivalence. A remark is
given on the closure under convolution roots for the class of convolution equivalent
distributions.
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1 Introduction and Main Results

In what follows, we denote by R the real line and by R the half line [0, co). Let N
be the totality of positive integers. The symbol 6,(dx) stands for the delta measure
at a € R. Let n and p be probability measures on R. We denote the convolution
of n and p by 1 * p and denote n-th convolution power of p by p"*. Let f(x) and
g(x) be integrable functions on R. We denote by f"®(x) n-th convolution power
of f(x) and by f ® g(x) the convolution of f(x) and g(x). For positive functions
fi1(x) and g1(x) on [a, co) for some a € R, we define the relation f1(x) ~ g1(x) by
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limy_ o f1(x)/g1(x) = 1. We also define the relation a, ~ b, for positive sequences
{an};2 4 and {b,}7° , with A € N by lim,,, oo a, /b, = 1. We define the class P, as
the totality of probability distributions on R . In this paper, we prove that the class of
subexponential densities is not closed under two important closure properties. We say
that a measurable function g(x) on R is a density function if ffooo g(x)dx = 1 and
g(x) > 0forall x € R.

Definition 1.1 (i) A nonnegative measurable function g(x) on R belongs to the class
L if g(x) > 0 for all sufficiently large x > 0 and if g(x + a) ~ g(x) for any
aeR.

(i) A measurable function g(x) on R belongs to the class Ly if g(x) is a density
function and g(x) € L.

(iii) A measurable function g(x) on R belongs to the class Sy if g(x) € L4 and
g ® g(x) ~ 2g(x).

(iv) A distribution p on R belongs to the class L, if there is g(x) € L4 such that
p(dx) = g(x)dx.

(v) A distribution p on R belongs to the class S if there is g(x) € Sy such that
p(dx) = g(x)dx.

Densities in the class Sy are called subexponential densities and those in the class
Ly are called long-tailed densities. The study on the class Sy goes back to Chover et
al. [2]. Let p be a distribution on R. Note that ¢! o((x — ¢, x]) is a density function
on R for every ¢ > 0.

Definition 1.2 (i) Let A := (0, ¢] with ¢ > 0. A distribution p on R belongs to the
class La if p((x,x +¢]) € L.

(i) Let A := (0, ¢] with ¢ > 0. A distribution p on R belongs to the class S if
peLlaand pxp((x,x+c]) ~2p((x,x +c]).

(iii) A distribution p on R belongs to the class L;,. if p € L for each A := (0, c]
with ¢ > 0.

(iv) A distribution p on R belongs to the class Sy, if p € Sa for each A := (0, c]
with ¢ > 0.

(v) A distribution p € Ly, belongs to the class U L, if there exists p(x) € L4 such
that c_lp((x — ¢, x]) ~ p(x) uniformly in ¢ € (0, 1].

(vi) A distribution p € Sj,. belongs to the class US;,, if there exists p(x) € Sy such
that ¢! p((x — ¢, x]) ~ p(x) uniformly in ¢ € (0, 1].

Distributions in the class Sj,. are called locally subexponential; those in the class
US|, are called uniformly locally subexponential. The class Sy was introduced by
Asmussen et al. [1] and the class S;, was by Watanabe and Yamamuro [14]. Detailed
acounts of the classes S; and S are found in the book of Foss et al. [6]. First, we
present some interesting results on the classes Sy and Sjoc-

Proposition 1.1 We have the following.

(i) Let A := (0, c] with ¢ > 0 and let p(x) := c’l,u((x — ¢, x]) for a distribution
wonRy. Then p € Sa if and only if p(x) € Sy. Moreover, 1 € Sjpc N Py if
and only if there exists a density function q(x) on Ry such that q(x) € Sg and
c‘lu,((x —c, x]) ~ q(x) for every ¢ > 0.
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(i) Let p1(dx) := gqi(x)dx be a distribution on Ry. If qi(x) is continu-
ous with compact support and if py € Sjpc N P4, then p; x pa(dx) =

(o a1x = wpadw) dx and [+ q1(x = wpa(du) € So.

(iii) Let u be a distribution on R... If there exist distributions p. for ¢ > 0 such that,
for every ¢ > 0, the support of p. is included in [0, c] and p. * 1 € Sjp¢, then
€ Spoc-

Definition 1.3 (i) We say that a class C of probability distributions on R is closed
under convolution roots if u"* € C for some n € N implies that u € C.

(i1) Let pj(x) and py(x) be density functions on R. We say that a class C of density
functions is closed under asymptotic equivalence if p;(x) € C and pa(x) ~
cp1(x) with ¢ > 0 implies that py(x) € C.

The class S, is a proper subclass of the class U Sj,. because a distribution in U Sj,¢
can have a point mass. Moreover, the class US;,. is a proper subclass of the class Sy
as the following theorem shows.

Theorem 1.1 There exists a distribution i € Sjpe\USjoc such that p>* € Sge.

Corollary 1.1 We have the following.

(i) The class S, is not closed under convolution roots.
(ii) The class US;, is not closed under convolution roots.
(iii) The class L, is not closed under convolution roots.
(iv) The class UL, is not closed under convolution roots.

The class Sy is closed under asymptotic equivalence in the one-sided case. See (ii)
of Lemma 2.1 below. However, Foss et al. [6] suggest the possibility of non-closure
under asymptotic equivalence for the class Sy in the two-sided case. We exactly prove
it as follows.

Theorem 1.2 The class Sy is not closed under asymptotic equivalence; that is, there
exist p1(x) € Sg and py(x) ¢ Sy such that py(x) ~ cpi(x) with ¢ > 0.

In Sect. 2, we prove Proposition 1.1. In Sect. 3, we prove Theorems 1.1 and 1.2. In
Sect. 4, we give a remark on the closure under convolution roots.

2 Proof of Proposition 1.1

We present two lemmas for the proofs of main results and then prove Proposition 1.1.

Lemma 2.1 Let f(x) and g(x) be density functions on R..

() If f(x) € Ly, then f"®(x) € Ly for everyn € N.

(i) If f(x) € Sg and g(x) ~ cf (x) with ¢ > 0, then g(x) € Sy.
(iii) Assume that f(x) € Lg. Then, f(x) € Sy if and only if

1
lim lim sup
A—>00 x>0 f(x)

x—A
/ Fx —u) f(u)du = 0.
A
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Proof Proof of assertion (i) is due to Theorem 4.3 of [6]. Proofs of assertions (ii) and
(iii) are due to Theorems 4.8 and 4.7 of [6], respectively. O

Lemma 2.2 (i) Let A := (0, c¢] with ¢ > 0. Assume that p € Lx N Py. Then,
p € Sa if and only if

1 (x—A)—
lim limsuyp —— X—u,x+c—u du) = 0.
Jim timsup e [ p(C Do (du)

(ii) Assume that p € Ljoc N Py. Then, p"* € L, for every n € N. Moreover,
p((x —c,x]) ~co((x — 1, x]) for every ¢ > 0.

(iii) Let py € P+. If p1 € Sioe NP+ and pr((x — ¢, x]) ~ c1p1((x — ¢, x]) with
c1 > 0 for every ¢ > 0, then py € Sjpc N P

Proof Proof of assertion (i) is due to Theorem 4.21 of [6]. First assertion of (ii) is due
to Corollary 4.19 of [6]. Second one is proved as (2.6) in Theorem 2.1 of [14]. Proof
of assertion (iii) is due to Theorem 4.22 of [6]. O

Proof of (i) of Proposition 1.1 Let p(dx) := ¢! 10,¢) (x)dx. First, we prove that if
W € Sjoc NPy, then p * u € S;c. We can assume that ¢ = 1. Suppose that u € Sjpe.
Let p(x) := u((x—1, x]). Wehave p*u(dx) = u((x—1, x])dx and hence p(x) € L.
Let A be a positive integer and let X, Y be independent random variables with the same
distribution p. Then, we have for x > 2A 4+ 2

x—A
/ p(x — u)p(u)du
A

x/2
= 2/ p(x —u)p(u)du

A

x/2
:2/ Px—u—1l<X=<x—-uu—-1<Y <uwdu
A

x/2
52/ PX>AY>Ax—-2<X+4+Y<x,u—1<Y <u)du
A

0 n+1

522/ PX>AY>A,x—2<X+4+Y<x,n—1<Y<n+1)du
n=A""

<4P(X>A, Y >A,x—2<X+Y <x)

(x—A)—
54/ w((x —2 —u, x —ul)u(du).
A+

Since € Sjoc, we obtain from (i) of Lemma 2.2 that

x—A
- d
lim lim sup Ja P —wpodu

A—00 x>0 px)

Thus, we see from (iii) of Lemma 2.1 that p(x) € Sy.
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Conversely, suppose that p(x) € S;. Then, we have u € La. Let [y] be the largest
integer not exceeding a real number y. Choose sufficiently large integer A > (. Note
that there are positive constants c¢; for 1 < j < 4 such that

cip(x —n) < p(x —u) < coplx —n) and c3p(n) < p(u) < c4p(n)
forn<u<n+1,A<n<[x+1—A],and x > 2A + 2. Thus, we find that

PA< X, A<Y,x<X+Y<x+1)
[x+1-A]

n+1
e I S R
n=A n

[x+1-A] p41
= > / PO —u+ Dp(du)
n=A n
[x+1—A]
<c Z px—n+Dpmn+1)
n=A
= [x+1-A] g
< — Z / px—u+ Dpu+ 1)du
c1c3 — n
n=A
¢ x+2—A
< — px—u+Dpu+ 1)du
C1C3 JA

Since p(x) € Sy, we establish from (iii) of Lemma 2.1 that

. . PA<X,A<Y x<X+Y<x+1)
lim lim sup =
A—>00 x—00 Px<X<x+1

0.

Thus, u© € Sa by (i) of Lemma 2.2. Note from (ii) of Lemma 2.2 that if u € Sjpe,
then c_lu((x —c,x]) ~ u((x — 1, x]) for every ¢ > 0. Thus, the second assertion is
true. O

Proof of (ii) of Proposition 1.1 Suppose that p;(dx) := gi(x)dx be a distribution
on R4 such that gj(x) is continuous with compact support in [0, N]. Let g(x) :=
foxj q1(x — u)pz(du). For M € N, there are §(M) > 0 and @, = a,(M) > 0
for n € N such that limy s 8(M) = 0 and a, < qi(x) < a, + §(M) for
M_l(n —D<x< M~nand1 <n < MN. Define J(M; x) as

MN
J(M; x) = Zanpz((x —M ' 'n,x =M T =1).

n=I1
Then, we have

MN
J(M; %) ~ pa((x = 1,x]) D anM ™! @1

n=1
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and forx > N
J(M;x) <qx) < J(M;x) +8(M)p2((x — N, x]).

Since limp; o0 §(M) = 0 and

MN N

li -l =

MgnoozanM A q1(x)dx I,
n=1

we obtain from (2.1) that

q(x) ~ p2((x — 1, x]).

Since p2 € Sjpe, We conclude from (i) of Proposition 1.1 that g(x) € Sy.

]

Proof of (iii) of Proposition 1.1 Suppose that the support of p, is included in [0, c]
and p. * . € Sypc forevery ¢ > 0. Let X and Y be independent random variables with
the same distribution u, and let X, and Y, be independent random variables with the
same distribution p.. Define Ji(c; c¢1; a; x) and J>(c; c1; a; x) fora € Rand ¢y > 0

as
Px+a<X+X.<x+c1+a)
Ji(c; er;a;x) ==
Px<X+Xc.<x+4ci+o)
Px+a<X+X.<x+c1+c+a)
D(c;crsa; x) = )
Px<X+X.<x+cy)
We see that

Px4+a<X<x+4c+a)

Ji(c;ep5a;x) < < J2(c; c15 a; x).

Px<X<x+c)

Since p. * u € Ly, we obtain that

. Cl
lim Ji(c;c1;a;x) =
X—>00 c1+c¢
and
. c1+c¢
lim J(c;ciya;x) = .
X—00 c1

Thus, as ¢ — 0 we have by (2.2)

. Px+a<X<x+4ci1+a) |
1m =
X—00 Px <X <x+cy)

’
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and hence u € Lj,.. We find from p. * u € Sy and (i) of Lemma 2.2 that

PX>AY>Ax<X+Y<x+4c1)

lim lim sup

A—>00 x—00 Px<X<x+c)
. . PX>AY>Ax<X+X,+Y+Y.<x+4c+20)
< lim limsup =0.
A—00 x—00 Px<X+X.<x+cy)
Thus, we see from (i) of Lemma 2.2 that u € Sjpc. O

3 Proofs of Theorems 1.1 and 1.2

For the proofs of the theorems, we introduce a distribution p as follows. Let 1 < xo < b
and choose § € (0, 1) satisfying § < (xo— 1) A (b—x¢). We take a continuous periodic
function 4 (x) on R with period log b such that #(log x) > 0 for x € [1, x9) U (xq, b]
and

0 for x = xo,

h(logx) = -1

———  foreach x with 0 < |x — xg| < 4.
log |x — xo|

Let

¢ (x) = x"“" h(log X) 111,00 (X)

with a > 0. Here, the symbol 1[1 ) (x) stands for the indicator function of the set
[1, 00). Define a distribution u as

p(dx) :== M~ (x)dx,

where M := [ x7!"*h(log x)dx.
Lemma 3.1 We have i € L;pe.
Proof Let{y,}beasequence suchthatl <y, <bandlim,_,~ y, = y forsomey €
[1, b]. Then, we put x,, = b™"y,,, where m,, is a positive integer and lim,,_, o, X, = 00.
In what follows, ¢ > 0 and ¢; > 0.
Case 1. Suppose that y # xo. Let x, + ¢; <u < x,, + ¢1 + ¢. Then, we have

Yo +b7"er <bT"Mu <y, + 07" (1 +0), 3.1
and thereby lim,,_, oo b~"""u = y. This yields that

h(logu) = h(log(b™"""u)) ~ h(logy).

Hence, we obtain that

Xp+c1+c Xp+c1+c
/ ¢ u)du = / u” ' "*h(log u)du
X, X,

ntcCl ntci1
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Xp+cl1+c
~ x;]*"‘/ h(logu)du ~ cx,; ' ~h(log y),
Xp+ci

so that

Xp+c Xp+c1+c
/ ¢ (u)du ~ / ¢ (u)du 3.2)

ntcl
Case 2. Suppose that y = xg. Let x, +¢; <u < x, + c1 + ¢ and put

E,:={u : |b”"™u— xo| <eb ™},

where € > 0. For sufficiently large n, we have foru € E,
—m —m 1
—log|b™""u — xo| > —logeb™"" > Em” logh 3.3)

Set A, := |yn — x0|b™". It suffices that we consider the case where there exists a limit
of A, as n — 00, so we may put A := lim,_, 5 A,. This limit permits infinity. We
divide A in the two cases where A < oo and A = 0.

Case 2-1. Suppose that 0 < A < co. Now, we have

Xp+c1+c
/ h(logu)du
Xntc1

h(logu)du +/ h(logu)du.

/[xn+clvxn+cl+c]\En [xp+c1,xn+c1+clNEy

Letu € [x,, + c1, xp + c1 + c]\ E,. For sufficiently large n, we have by (3.1)

€™ < b7y — xo| < b7 u — yu| + |yn — xol
<b ™™ (c4+c)+b "N, <b™M(cH+cyH+Ar+1).

This implies that
—log |b™"""u — xg| ~ m, logb.

For sufficiently large n, it follows that

h(logu)du = / h(ogb™""u)du
[xp+cr,xp+c1+c\E,

‘/[Xn+01,xn+cl+c]\En
-1
B / e du
[xp+c1.xn+c14+c\E, IOg |b ny — x0|

1
~ / L
[xn+ci,xnt+c1+c\En My log b
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As we have

cz/ duz/ du—/ du > ¢ — 2e,
[xp+cr,xp+c1+c\E, [xp+c1,xn+c1+c] En

it follows that

c—2¢

</ C
my logb [xp+c1,xn+c1+c\E,

I—e€)-

h(logu)du < (1+¢€) -

my logb
for sufficiently large n. Furthermore, we see from (3.3) that

—1

aclxnei+elnE, 10g b7y — xg

2 / 4e
< " du < .
~ mylogh JEg, ~ my,logh

/ h(logu)du :/
[xn+c1,xn+c1+clNE, [x

Hence, we obtain that

Xp+c1+c Xp+c1+c
/ ¢ (u)du ~ x;lf‘x/ h(logu)du
X,

ntc1 XntcC1
—l—a ¢
n

~

my logh’
so that (3.2) holds.
Case 2-2. Suppose that A = oco. For u with x,, + c1+ < u < x,, + ¢1 + ¢, we see from
(3.1) that
|yn — X0l = (¢ +c)b™™" < [b™""u — xo| < |yn — xol + (c +c)b™™",
that is,

(1= (c+ Ay Dlyn — x0l < 167™u — x0l < (1 + (¢ + )y DIy — xol.

This implies that

Xptci+c | Xp+c1+c -1
¢w)du ~ x, _“/ _
/xn-i-cl ! Xntci log [b™"u — x|
~ 1« —C
n 9
log |y, — xol
so we get (3.2). The lemma has been proved. O

Lemma 3.2 We have

x+1
$®P(x) ~ 2M/ ¢ (u)du = 20 ((x. x + 11).
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Proof Let {y,} be a sequence such that 1| < y, < b and lim;,_,c y, = y for some
y € [1, b]. We put x,, = b™ny,, where m,, is a positive integer and lim;,_, o, X, = 00.
Now, we have

xp—1
PR P(xp) = /1 ¢ (xp — u)p (u)du

2_'x,,
=2 / ¢ (tn — )b (u)du
1

(log x,)P 271,
=2 / +/ ¢ (xp —uw)p(u)du =: 2(J1 + J2).
1 (log x,)P

Here, we took § satisfying o > 1. Put K := sup{h(logx) : 1 < x < b}. Then, we
have

271)(” du 2 14«
5 < K2/ . N (—) o (logx,) .
(log x,)# ul*e(x, —u)l+e Xn &

We consider the two cases where y # xg and y = xp.
Case 1. Suppose that y # xo. If 1 < u < (log x,)?, then

h(log(x, — u)) = h(log(y, —b~""u)) ~ h(logy).

Hence, we obtain that
(logxn)f3
Ji = / (e — ) U " R log (x, — u))h(log u)du
1

n

(log x,)”
~ x 1 / u” "R (log(x, — u))h(log u)du
1

~ Mx,; "“h(logy),
so that
b ® ¢ (xn) = 2(J1 + J2) ~ 2J; ~ 2Mx;, ' "h(log y).
Case 2. Suppose that y = xqg. Put y,, := b |y, — xo|(log x,) P and
E, :={u:ly, —xo—b""ul <eb™"},

where 0 < € < 1. It suffices that we consider the case where there exists a limit of y;,,
SO we may put y := lim,_,« ¥,. This limit permits infinity. Furthermore, we divide
y in the two cases where y < oo and y = 0.
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Case 2-1. Suppose that 0 < y < oo. Take sufficiently large n. Set
Ji :=/ u” " h(log(x, — u))h(logu)du,
[1.(og x,)P1\E},
Ji ;=/ u” ' " h(log(x, — u))h(log u)du.
[1,dog x,)P1NE],

Letu € [1, (logxn)ﬂ]\E;. We have

eb™™ < |y, —x0—b"u| < |y, —xol +b"u
< (y +2)b"™ (log x,)".

This implies that
—log |y, —xo — b~ u| ~ m, logh.
It follows that

Ji =/ u " h(log(y, — b~ u))h(log u)du
[1.(og x,)P1\E],

-1
=/ u 1 "*n(log u) —du
[1,(logxn)P 1\ E, log |y, — xo — b™"nu|
1

/ u ' " h(log u)du.
mploghb [1,dogx,)PI\E],

Here, we see that, for sufficiently large n,

~

M —€—2eK < / u” ' "h(logu)du < M,
[1,ogx,)P1\E},
and thereby
M — e —2eK
l—e)———— < J, < .
( € mylogbh == +€)mnlogb

Let u € E),. Then, we have

h(log(x, — u)) = h(log(y, — b™"™"u))

= < .
log |y, —xo —b~™mu| = mylogh

Hence, we see that

/ 2 —a—1 4K€
Jip < u h(logu)du < .
my logb [1,(log x,)PINE], my logb
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We consequently obtain that

e
I~ —l—a 7! J! ~ i
1~x, U+ ) oy log b
so that
2Mx 1«
P ®P(xp) =2(J1 + ) ~2J) ~ ———.
my logb

Case 2-2. Suppose that y = oo. Note that [1, (log x)P1N E; is empty for sufficiently
large n. Let 1 < u < (log x,)P. Since

1yn — x0l(1 = ¥, ") < |y —x0 — b~ u| < |yn — xol(1 + 1y, 1),

we see that
log [yn — xo — b~""u| ~ log |y — xol.
This yields that
Ji an*l*"‘/ u” " "*h(logu) - - — du
[1,(log x,)F] log |y, — xo — b="nu|

-M

~ xn—l—a
log |yn — xol

For sufficiently large n, we have

2!*eK?  —log|yn — xol

Ja x Xy (= log |yn — xol) <

a  (logx,)®f
_ 2MeK2 —logy, + m, logh — log(log x,)P
T« (log x,)*#

21+« K2 m, logh
o (log x,)*f’

=

so that lim J>/J; = 0. We consequently obtain that
n—o0

-M

¢ ®¢(xn) = 2(.]1 =+ J2) ~ 2J1 ~ 2-xn_1_a—.
IOg |yn - x0|

Combining the above calculations with the proof of Lemma 3.1, we reach the
following: If y # xo, then

xp+1
¢ ® ¢ (xn) ~ 2Mx,; ' "*h(log y) ~ ZM/ ¢ (u)du.
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Suppose that y = x¢. Recall X in the proof of Lemma 3.1. If 0 < y < oo and A = oo,
then we have —log |y, — xo| ~ my logb. Hence,
—l—«

Xn

¢ Q ¢(xn) ~2M

mylogb
_xflfot

xp+1
~oM—1 ~2M/ ¢ (u)du.
IOg |yn - x0| Xn

IfO<y <ooand 0 < A < oo, then

xflfa xp+1
¢ ® P (xp) ~2M—= ~2M/ ¢ (u)du.

my logb X

If y = oo, then A = oo and
_xflfoz Xp+1

6O (o) ~2M—1 ZM/ ¢ )du.
log |yn — xol Xn
The lemma has been proved. O

Proof of Theorem 1.1 We have i € L, by Lemma 3.1. It follows from Lemma 3.2
that

x+1
o ((x, x +1]) = M—Z/ ¢ @ ¢(u)du
ol
~ 2/ w((u, u+ 1Ddu ~ 2u((x, x + 1]).

Let ¢ > 0. Furthermore, we see from u € L, and (ii) of Lemma 2.2 that
pox p((x, x +cl) ~ e p((x, x +11) and p((x, x +cl) ~ cp((x, x + 1D).
Hence, we get
o p((x, x +cl) ~ 2u((x, x +cl),

and thereby u € Sjyc. Thus, u((x — 1, x]) € Sy by (i) of Proposition 1.1. Since we
see that

x+1
6 ® () ~ 2M/ (u)du = 2M((x. x + 1),

we have ,uz* € S,c by (ii) of Lemma 2.1. However, we have u ¢ UL, because, for
c = b~ with m(n) € N, we see that as n — 0o

M_lqb(u)du ~

C—l /b”x0+c M—lb—(a+1)nx0—01—1
b xg (m(n) +n)logb
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The above relation implies that the convergence of the definition of the class U L; ¢
fails to satisfy uniformity. Since US;,c C ULy, the theorem has been proved. O

Proof of Corollary 1.1 Proofs of assertions (i) and (ii) are clear from Theorem 1.1.
We find from the proof of Theorem 1.1 that u ¢ UL, but w?* € Sue. Since Sy C
Lae C UL, assertions (iii) and (iv) are true. O

Choose x| and x; satisfying that 1 < xo < xo +x1 < x9 +x2 < b. Let {n;}72, be
an increasing sequence of positive integers satisfying > ;- 1//nx = 1. Let By :=
(=b" xp, —b" x1] and Dy, := (b"*kxq, b x¢ + 1] for k € N. Choose a distribution st
satisfying that py (By) = 1//ny for all k € N and 11 ((U2, Br)) = 0.

Lemma 3.3 We have, for c € R,

ok pi (D +c¢)
k—oo (D) -

Proof We have, uniformly in v € [xy, x2],
(" (xo + ), " (x0 4+ v) + 1) ~ Mo~V (xg + v) ™ h(log(xo + v))

and

—(a+1 —a—1
b~ )"xo

(B xo, b"xo +11) ~ M~
nloghb

Thus, there exists ¢; > 0 such that ¢; does not depend on v € [xy, x2] and that

p((b" (xo +v), b" (xo +v) + 11)

lim inf > .
n—00 nu((b"xg, b"xo + 1)
Hence, we obtain from Lemma 3.1 that
D Dy —
lim inf pxp(De+ 0 > lim inf/ Mm(du)
koo pu(Dy) koo Jp Dy
D —
- liminf/ wD =) | du)
k— o0 By H’(Dk)
... Nk
> ¢y liminf —— = o0
k—o00 ni
Thus, we have proved the lemma. O

Proof of Theorem 1.2 Define distributions p; and p; as
p1(dx) := 27180 (dx) + 27 w(dx),  pa(dx) := 27 g (dx) + 27 u(dx).
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Thus, p; € Sjpc by Theorem 1.1 and (iii) of Lemma 2.2. Let p(dx) := f(x)dx, where
f(x) is continuous with compact support in [0, 1]. Define distributions p;(x)dx and
p2(x)dx as

p1(x)dx := p * pr(dx) = 27" f(x)dx + 27 p % p(dx)
and
pa(x)dx = p * pa(dx) =27 p x ey (dx) + 271 p x pu(dr).

Then, we find that p;(x) = pa(x) for all sufficiently large x > 0 and p;(x) € S; by
(ii) of Proposition 1.1. We establish from Lemma 3.3 and Fatou’s lemma that

o ka P2 ® pa(x)dx
lim inf
k—o00 ka p2(x)dx
2 2®
Dy — d
> lim inf Jo MTM( e —u) 0 (u)du
k=00 Jo m(Dy — u) f (u)du

2
D, —
2/ liminfwfm(u)du:oo.
0

k=00 w(Dy)

Thus, we conclude that py(x) ¢ Sy. O

4 A Remark on the Closure Under Convolution Roots

The tail of a measure £ on R is denoted by é(x), that is, §(x) = i((x, o0)) for
x € R. Let y € R. The y-exponential moment of & is denoted by &(y), namely
E(y) == [0  e” E(dx).

Definition 4.1 Let y > 0.

(i) A distribution p on R is said to belong to the class L(y) if p(x) > 0 for every
x € Rand if

plx+a)~e 7p(x) forevery aeR.

(ii) A distribution p on R belongs to the class S(y) if p € L(y) with p(y) < oo and
if

pEp(x) ~2p(y)p(x).

(iii) Let y; € R. A distribution p on R belongs to the class M (y1) if p(y1) < oo.

The convolution closure problem on the class S(y) with y > 0 is negatively solved
by Leslie [9] for y = 0 and by Kliippelberg and Villasenor [8] for y > 0. The same
problem on the class Sy is also negatively solved by Kliippelberg and Villasenor [8].
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On the other hand, the fact that the class S(0) of subexponential distributions is closed
under convolution roots is proved by Embrechts et al. [5] in the one-sided case and by
Watanabe [13] in the two-sided case. Embrechts and Goldie conjecture that £(y) with
y > 0and S(y) with y > 0 are closed under convolution roots in [3,4], respectively.
They also prove in [4] that if £L(y) NP4 with y > 0is closed under convolution roots,
then S(y) NP4 with y > 0 is closed under convolution roots. However, Shimura and
Watanabe [12] prove that the class £(y) with ¥ > 0 is not closed under convolution
roots, and we find that Xu et al. [16] show the same conclusion in the case y = 0. Pakes
[10] and Watanabe [13] show that S(y) with ¥ > 0 is closed under convolution roots
in the class of infinitely divisible distributions on R. It is still open whether the class
S(y) with y > 0is closed under convolution roots. Shimura and Watanabe [11] show
that the class OS is not closed under convolution roots. Watanabe and Yamamuro
[15] pointed out that OS is closed under convolution roots in the class of infinitely
divisible distributions.
Let y € R. For u € M(y), we define the exponential tilt j1(,y of u as

1
Kiy) (dx) := ﬁ(y)e”M(dX).

Exponential tilts preserve convolutions, thatis, (1*0) () = f(y)*pyy) for distributions
u, p € M(y). Let C be a distribution class. For a class C C M(y), we define the
class €, (C) by

€, (C) = {uyy : nell.

It is obvious that ¢, (M(y)) = M(—y) and that (t1(,))(—y) = pu for u € M(y).
The class €, (S(y)) is determined by Watanabe and Yamamuro as follows. Analogous
result is found in Theorem 2.1 of Kliippelberg [7].

Lemma 4.1 (Theorem 2.1 of [14]) Let y > 0.

(i) We have €,(L(y) N M(y)) = Lioe N M(—y) and hence €,(L(y) N M(y) N
P1) = Lioe N Py. Moreover, if p € L(y) N M(y), then we have

,fy e’ p(x) forall c > 0.
p(y)

(ii) We have €, (S(y)) = Sjoc N M(—y) and thereby €,(S(y) NP1) = Sjoc NP

Py ((x, x +c]) ~

Finally, we present a remark on the closure under convolution roots for the three
classes S(y) NPy, Sjoe N P4, and Sy N P4

Proposition 4.1 The following are equivalent:

(1) The class S(y) NPy with y > 0 is closed under convolution roots.

(2) The class Sjoe N P+ is closed under convolution roots.

(3) Let w be a distribution on Ry and let p.(x) := ¢! u((x —c, x]) forc > 0. Then,
{pf‘g’(x) :c > 0} C Sy for some n € Nimplies {p.(x) : ¢ > 0} C S4.
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Proof Proof of the equivalence between (1) and (2) is due to Lemma 4.1. Let n > 2.
Suppose that (2) holds and, for some n, pé’®(x) € Sy forevery ¢ > 0. Let f.(x) =
¢! 1j0.)(x). We have p"®(x)dx = ((fo(x)dx) * )™ € Sjpc. We see from assertion
(2) that (f¢(x)dx) % € Sjc and hence, by (iii) of Proposition 1.1, we have i € Sjoc,
that is, p.(x) € Sy for every ¢ > 0 by (i) of Proposition 1.1. Conversely, suppose that
(3) holds and u** € Sj,c. Note that fg‘®(x) is continuous with compact supportin R .
Thus, we see from (ii) of Proposition 1.1 that p”"® (x) = Oxj fIr®(x—u) ™ (du) € Sy
for every ¢ > 0. We obtain from assertion (3) that p.(x) € Sy for every ¢ > 0, that
is, i € Sypc by (i) of Proposition 1.1. O
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