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Abstract We propose a new way to condition random trees, that is, conditioning
random trees to have large maximal outdegree. Under this conditioning, we show that
conditioned critical Galton–Watson trees converge locally to size-biased trees with
a unique infinite spine. For the subcritical case, we obtain the local convergence to
size-biased trees with a unique infinite node. We also study the tail of the maximal
outdegree of subcritical Galton–Watson trees, which is essential for the proof of the
local convergence.
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1 Introduction

In the seminal paper [9], Kesten studied the local convergence of critical or subcritical
Galton–Watson trees (GW trees) conditioned to have large height. The local limits
are certain size-biased trees with a unique infinite spine, which we call Kesten’s trees
throughout this paper. Since then, several other conditionings have also been con-
sidered: large total progeny and large number of leaves. In particular, Jonnsson and
Stefánsson [8] noticed that some subcritical GW trees conditioned to have large total
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progeny do not converge locally to Kesten’s trees. They proved that instead those large
conditioned trees converge locally to certain size-biased trees with a unique infinite
node, which we call condensation trees. Janson [7] completed this result by proving
that any subcritical GW tree conditioned to have large total progeny converges locally
to a condensation tree, if not to a Kesten’s tree. Recently, Abraham and Delmas [1,2]
provided a convenient framework for the local convergence of conditioned GW trees,
and then they studied, in particular, the local convergence of GW trees under the condi-
tioning of large number of individuals with outdegree in a given set, which generalizes
the conditionings of large total progeny and large number of leaves. Specifically, in [1]
they provided a framework for the local convergence of finite random trees to Kesten’s
trees, and in [2], they provided a framework for the local convergence of finite random
trees to condensation trees.

In this paper, we consider a new conditioning of random trees, that is, we condition
GW trees to have large maximal outdegree and use the convenient framework in [1,2]
to study the local convergence of large conditioned trees. The maximal outdegree
of a discrete tree is the maximum of the numbers of offsprings of all nodes in the
tree, see (1) for the precise definition. We say that a probability distribution p =
(p0, p1, p2, . . .) on nonnegative integers is bounded if the set {n; pn > 0} is bounded,
and unbounded otherwise. For any critical and unbounded distribution p, we show in
Theorem 4.1 the local convergence of the GW tree with the offspring distribution p
conditioned to have large maximal outdegree, to the Kesten’s tree with the offspring
distribution p. For any subcritical and unbounded distribution p, we show in Theorem
4.2 the local convergence of the conditioned GW tree with the offspring distribution
p, to the condensation tree with the offspring distribution p. Note that our results are
complete: for a bounded distribution p, the corresponding GW tree cannot have very
large maximal outdegree; for a supercritical distribution p, the situation is essentially
trivial, by the well-known decomposition of supercritical GW trees (see e.g. Theorem
3 on page 52 in [4]). We also study in Proposition 3.2 the tail of the maximal outdegree
of subcritical GW trees and prove that the tail of the offspring distribution p and the tail
of the maximal outdegree of the corresponding GW tree are asymptotically equivalent
up to a certain factor. This result is essential for the proof of the local convergence in
the subcritical case.

This paper is organized as follows. In Sect. 2, we recall several notations of trees,
the local convergence of random trees, and a characterization of condensation trees.
In Sect. 3, we study the tail of the maximal outdegree of subcritical GW trees. Finally
Sect. 4 is devoted to our main results, Theorem 4.1 for the critical case and Theorem
4.2 for the subcritical case.

2 Preliminaries

This section is extracted from [1,2]. For more details and proofs, refer to [1,2]. We
denote by N = {1, 2, . . .} the set of positive integers and by Z+ = {0, 1, 2, . . .} the
set of nonnegative integers.

123



844 J Theor Probab (2017) 30:842–851

2.1 Notations of Discrete Trees

Denote by

U =
⋃

n≥0

N
n

the set of finite sequences of positive integers with the convention N0 = {∅}. If u and
v are two sequences of U , we denote by uv the concatenation of the two sequences,
with the convention that uv = u if v = ∅ and uv = v if u = ∅. The set of ancestors
of u is the set:

Au = {v ∈ U; there exists w ∈ U , w �= ∅, such that u = vw}.

A tree t is a subset of U that satisfies:

• ∅ ∈ t.
• If u ∈ t, then Au ⊂ t.
• For every u ∈ t, there exists ku(t) ∈ Z+ ∪ {∞} such that, for every positive integer

i, ui ∈ t if and only if 1 ≤ i ≤ ku(t).

The node ∅ is called the root of t. The integer ku(t) represents the number of
offsprings of the node u in the tree t, and we call it the outdegree of the node u in the
tree t. We say the node u ∈ t is a leaf if ku(t) = 0 and it is infinite if ku(t) = ∞.
The set of leaves of the tree t is denoted by L(t) = {u ∈ t; ku(t) = 0}. The maximal
outdegree M(t) of a tree t is defined by

M(t) = sup{ku(t); u ∈ t}. (1)

For u ∈ t, we denote the sub-tree of t “above” u by Su(t). For u ∈ t \L(t), denote
the forest “above” u by Fu(t). Note that u ∈ Su(t) and u /∈ Fu(t). For u ∈ t \ {∅},
we also define the sub-tree Su(t) of t “below” u as Su(t) = {v ∈ t, u /∈ Av}. We
denote by T∞ the set of trees, by T the subset of trees with no infinite node, by T0
the subset of finite trees, by T1 the subset of trees with a unique infinite spine but no
infinite node, and by T2 the subset of trees with a unique infinite node but no infinite
spine. For precise definitions of all these notations in this paragraph, refer to [1,2].

2.2 Local Convergence of Random Trees

For the general framework of local convergence of discrete trees, refer to [1,2].
If v = (v1, . . . , vn) ∈ U with n > 0, and k ∈ Z+, we define the shift of v by k as

θ(v, k) = (v1 + k, v2, . . . , vn). If t ∈ T0, x ∈ t, and t′ ∈ T∞, we denote by

t � (x, t′) = t ∪ {xθ(v, kx (t)); v ∈ t′\{∅}} (2)

the tree obtained by grafting the tree t′ at x on “the right” of the tree t, with the
convention that t � (x, t′) = t if t′ = {∅} is the tree reduced to its root. For t ∈ T0,
x ∈ t, and k ∈ Z+, we consider
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T+(t, x, k) = {s ∈ T∞; s = t � (x, t′), t′ ∈ T∞, kx (s) ≥ k}, (3)

the set of trees obtained by grafting a tree at x on “the right” of t, such that x has at
least k offsprings. We recall Lemma 2.2 in [2], which is a very useful characterization
of convergence in distribution in T0 ∪ T2.

Lemma 2.1 Let (Tn, n ∈ N) and T be T∞-valued random variables which belong
a.s. to T0 ∪ T2. The sequence (Tn, n ∈ N) converges in distribution to T if and only
if for every t ∈ T0 and every x ∈ t and k ∈ Z+, we have

lim
n→∞P(Tn ∈ T+(t, x, k)) = P(T ∈ T+(t, x, k)) and lim

n→∞P(Tn = t) = P(T = t).

2.3 GW Trees

Let p = (p0, p1, p2, . . .) be a probability distribution on the set of the nonnegative
integers. We denote by μp the expectation of p and assume that 0 < μp < ∞.

A T-valued random variable τ is a Galton–Watson (GW) tree with the offspring
distribution p if the distribution of k∅(τ ) is p and for n ∈ N, conditionally on {k∅(τ ) =
n}, the sub-trees (S1(τ ),S2(τ ), . . . ,Sn(τ )) are independent and distributed as the
original tree τ . In particular, the restriction of the distribution of τ on the set T0 is
given by:

∀t ∈ T0, P(τ = t) =
∏

u∈t

pku(t). (4)

TheGW tree is called critical (resp. subcritical, supercritical) ifμp = 1 (resp.μp < 1,
μp > 1). We exclude the trivial case p1 = 1. Then in the critical and subcritical case,
a.s. the GW tree τ belongs to T0.

Let Pk be the distribution of the forest τ (k) = (τ1, . . . , τk) of k i.i.d. GW trees with
the offspring distribution p. Recall from (1) the definition of the maximal outdegree.
We set

M(τ (k)) = sup
1≤ j≤k

M(τ j ). (5)

When there is no confusion, we shall write τ for τ (k), and M(τ ) for M(τ (k)).

2.4 Kesten’s Trees and Condensation Trees

We recall from Section 1 in [2] the following unified definition of Kesten’s trees in
the critical case and condensation trees in the subcritical case, which first appeared
in Section 5 of [7]. Let p be a critical or subcritical offspring distribution. Let τ ∗(p)

denote the random tree which is defined by:

(i) There are two types of nodes: normal and special.
(ii) The root is special.
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(iii) Normal nodes have the offspring distribution p.
(iv) Special nodes have the biased offspring distribution p′ on Z+ ∪ {∞} defined

by:

p′
k =

{
kpk if k ∈ Z+,

1 − μp if k = ∞.

(v) The offsprings of all the nodes are independent of each others.
(vi) All the offsprings of a normal node are normal.
(vii) When a special node gets a finite number of offsprings, one of them is selected

uniformly at random and is special while the others are normal.
(viii) When a special node gets an infinite number of offsprings, all of them are

normal.

Notice that:

• If p is critical, then a.s. τ ∗(p) has exactly one infinite spine and all its nodes have
finite outdegrees. We call τ ∗(p) a Kesten’s tree.

• If p is subcritical, then a.s. τ ∗(p) has exactly one node of infinite outdegree and no
infinite spine. We call τ ∗(p) a condensation tree.

For t ∈ T0, x ∈ t, we set:

D(t, x) = P(τ = Sx (t))
p0

Pkx (t)(τ = Fx (t)).

For z ∈ R, we set z+ = max(z, 0). Let X be a random variable with the distribution
p. By (4) and the definition of condensation trees given above, one can prove the
following characterization of condensation trees, which is Lemma 3.1 in [2]:

Lemma 2.2 Suppose that p is subcritical. Then the distribution of τ ∗(p) is also char-
acterized by: a.s. τ ∗(p) ∈ T2 and for t ∈ T0, x ∈ t, k ∈ Z+,

P(τ ∗(p) ∈ T+(t, x, k)) = D(t, x)
(
1 − μp + E

[
(X − kx (t))+1{X≥k}

])
.

3 The Tail of the Maximal Outdegree

Webegin with a simple result on the probability distribution of themaximal outdegree.
Write q = (q0, q1, q2, . . .) for the probability distribution of M(τ ). Recall from (1)
that M(τ ) is the maximal outdegree of the GW tree τ .

Lemma 3.1 If p0 > 0, then qn > 0 if and only if pn > 0 for any nonnegative integer
n.

Proof First of all if pn = 0, of course qn = 0. If p0 > 0, then q0 = P [M(τ ) = 0] =
p0 > 0. If p0 > 0 and pn > 0 for n ≥ 1, then P [M(τ ) = n] ≥ pn(p0)n > 0, where
pn(p0)n is the probability of the tree such that the root has n offsprings and these n
offsprings are all leaves. ��
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Use F(n) to denote the cumulative distribution function of p, and F̄(n) = 1− F(n)

the tail function. Similarly use H(n) to denote the cumulative distribution function of
M(τ ), and H̄(n) = 1 − H(n) the tail function. The following is the main result of
this section.

Proposition 3.2 Suppose that the offspring distribution p = (p0, p1, p2, . . .) is sub-
critical and unbounded, then limn→∞ Hn(n) = 1 and

lim
n→∞

F̄(n)

H̄(n)
= lim

n→∞
pn

qn
= 1 − μp,

where the second limit is understood along the infinite subsequence {n; pn > 0}.
Proof By considering the outdegree of the root, we get

H(n) =
∑

m≤n

pm Hm(n). (6)

By comparing (6) at the values n and n − 1, we see

qn =
∑

1≤m≤n−1

pm[Hm(n) − Hm(n − 1)] + pn Hn(n)

=
∑

1≤m≤n−1

qn pm

∑

1≤i≤m

[Hm−i (n)Hi−1(n − 1)] + pn Hn(n),

or equivalently,

qn

⎛

⎝1 −
∑

1≤m≤n−1

pm

∑

1≤i≤m

[Hm−i (n)Hi−1(n − 1)]
⎞

⎠ = pn Hn(n). (7)

From (7), we get the obvious inequality qn(1 − μp) ≤ pn . So M(τ ) has finite
expectation, then by a well-known result H̄(n) = o (1/n), and consequently

lim
n→∞ Hn(n) = 1. (8)

From the obvious fact that for fixed m,

∑

1≤i≤m

Hm−i (n)Hi−1(n − 1) ≤ m and lim
n→∞

∑

1≤i≤m

Hm−i (n)Hi−1(n − 1) = m,

we get

lim
n→∞

⎛

⎝1 −
∑

1≤m≤n−1

pm

∑

1≤i≤m

[Hm−i (n)Hi−1(n − 1)]
⎞

⎠ = 1 − μp. (9)
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For a subcritical offspring distribution p, clearly p0 > 0, so qn > 0 if and only if
pn > 0 by Lemma 3.1. By combining (7), (8), and (9), we get

lim
n→∞

F̄(n)

H̄(n)
= lim

n→∞
pn

qn
= 1 − μp,

where the second limit is understood along the infinite subsequence {n; pn > 0}, and
the first equality is automatic from the second one. ��

We end this section with two remarks related to Proposition 3.2.

Remark 3.3 Bertoin [5,6] studied the scaling limit and tail of the maximal outdegree
of criticalGW treeswith regularly varying offspring tails. In Section 1 of [5] (in the first
paragraph on page 577) themaximal outdegree of subcritical GW treeswasmentioned,
and combined with a classical result due to Gnedenko (see e.g. Proposition 1.11 in
[10]), it is easy to see that [5] contains the tail part F̄(n)/H̄(n) of our Proposition
3.2 in the case of regularly varying offspring tails. Our Proposition 3.2 deals with all
subcritical and unbounded offspring distributions and gives both the probability part
pn/qn and the tail part. Note that it is impossible to achieve this generality by using
extreme value theory, since some offspring distributions do not belong to the domain
of attraction of any extreme value distribution, e.g. the geometric offspring distribution
(see e.g. [3]).

Remark 3.4 It is interesting to compare our Proposition 3.2 with Corollary 1 in [5]
and Lemma 1 in [6]. In the critical and infinite variance case considered in Corollary
1 of [5], H̄(n)/F̄(n) → ∞ as n → ∞, and M(τ ) has infinite expectation. In the
critical and finite variance case considered in Lemma 1 of [6], H̄(n)/F̄(n) → ∞ as
n → ∞ again, and M(τ ) may have finite or infinite expectation, depending on F̄(n).
In the subcritical case, our Proposition 3.2 shows that the two tails are asymptotically
equivalent up to a certain factor, and M(τ ) has finite expectation.

4 The Main Results

We first deal with the critical case, which is much simpler than the subcritical case.
Recall from (2) the definition of t � (x, t′). Note that for a tree t � (x, t′) with t ∈ T0,
x ∈ L(t), and t′ ∈ T0, when n > M(t), we get M(t � (x, t′)) = n if and only
if M(t′) = n. Then an immediate adaptation of the proof of Theorem 3.1 in [1]
(corresponding to the degenerate case D = 0 of (3.1) in [1]) combined with our
Lemma 3.1 gives the following theorem. Note that for an unbounded and critical or
subcritical offspring distribution p, clearly p0 > 0, so qn > 0 if and only if pn > 0
by Lemma 3.1.

Theorem 4.1 Suppose that the offspring distribution p = (p0, p1, p2, . . .) is critical
and unbounded. Then for the GW tree τ with the offspring distribution p, we have as
n → ∞,

dist (τ |M(τ ) = n) → dist (τ ∗(p)),
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where the limit is understood along the infinite subsequence {n; pn > 0}, and as
n → ∞,

dist (τ |M(τ ) > n) → dist (τ ∗(p)).

The subcritical case is more involved.

Theorem 4.2 Suppose that the offspring distribution p = (p0, p1, p2, . . .) is sub-
critical and unbounded. Then for the GW tree τ with the offspring distribution p, we
have as n → ∞,

dist (τ |M(τ ) = n) → dist (τ ∗(p)),

where the limit is understood along the infinite subsequence {n; pn > 0}, and as
n → ∞,

dist (τ |M(τ ) > n) → dist (τ ∗(p)).

Proof We can write P(·|M(τ ) > n) as a linear combination of {P(·|M(τ ) = m); m >

n}, so we only need to prove the first convergence. Since p is subcritical, we have a.s.
τ ∈ T0 and τ ∗(p) ∈ T2. So we will use Lemma 2.1 to prove the convergence.

Recall from (2), (3), and (5), the definitions of t � (x, t′), T+(t, x, k), and the
maximal outdegree of a forest. For a tree s ∈ T+(t, x, k), when n > M(t) it is clear
that M(s) = n if and only if kx (s) = n and the attached forest has the maximal
outdegree at most n, or kx (s) < n and the attached forest has the maximal outdegree
exactly n. Then similar to the proof of Lemma 2.2, for t ∈ T0, x ∈ t, k ∈ Z+,
n > M(t), and � = kx (t), we have

P(τ ∈ T+(t, x, k), M(τ ) = n)

=
∑

s∈T+(t,x,k)

P(τ = s)1{M(s)=n}

= D(t, x)

⎛

⎝pnPn−�(M(τ ) ≤ n) +
n−1∑

j≥max(�+1,k)

p jP j−�(M(τ ) = n)

⎞

⎠ . (10)

Recall the notations qn and H(n) introduced in Sect. 3. By Proposition 3.2, we have

lim
n→∞Pn−�(M(τ ) ≤ n) = lim

n→∞ Hn−�(n) = 1,

and

lim
n→∞

pn

P(M(τ ) = n)
= lim

n→∞
pn

qn
= 1 − μp.

So

lim
n→∞

pnPn−�(M(τ ) ≤ n)

P(M(τ ) = n)
= 1 − μp. (11)
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Since

Pm(M(τ ) = n) = Pm(M(τ ) ≤ n) − Pm(M(τ ) ≤ n − 1)

= Hm(n) − Hm(n − 1)

= qn

∑

1≤i≤m

[Hm−i (n)Hi−1(n − 1)],

we see

Pm(M(τ ) = n)

P(M(τ ) = n)
≤ m and lim

n→∞
Pm(M(τ ) = n)

P(M(τ ) = n)
= m.

So

lim
n→∞

∑n−1
j≥max(�+1,k) p jP j−�(M(τ ) = n)

P(M(τ ) = n)
=

∑

j≥max(�+1,k)

( j − �)p j . (12)

Combining (10), (11), and (12) together, we have as n → ∞,

P(τ ∈ T+(t, x, k)|M(τ ) = n) = P(T+(t, x, k), M(τ ) = n)

P(M(τ ) = n)

→ D(t, x)

⎛

⎝1 − μp +
∑

j≥max(�+1,k)

( j − �)p j

⎞

⎠

= P(τ ∗(p) ∈ T+(t, x, k)),

wherewe usedLemma2.2 for the last equality. Finally for any t ∈ T0, when n > M(t),
clearly

P(τ = t
∣∣M(τ ) = n) = 0 = P(τ ∗(p) = t).

By Lemma 2.1, we have proved the local convergence. ��
Acknowledgements The author would like to thank the anonymous referees for their comments and
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