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Abstract In this paper we extend a central limit theorem of Peligrad for uniformly
strong mixing random fields satisfying the Lindeberg condition in the absence of
stationarity property. More precisely, we study the asymptotic normality of the partial
sums of uniformly α-mixing non-stationary random fields satisfying the Lindeberg
condition, in the presence of an extra dependence assumption involving maximal
correlations.
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1 Introduction

In applications of statistics to data indexed by location, there is often an apparent
lack of both stationarity and independence, but with a reasonable indication of “weak
dependence” between data whose locations are “far apart.” This has motivated a large
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amount of research on the theoretical question of to what extent central limit theo-
rems hold for non-stationary random fields. This paper will examine that theoretical
question for “arrays of (non-stationary) random fields” under mixing assumptions
analogous to those studied by Peligrad [3] in central limit theorems for “arrays of
random sequences.”

Let (Ω,F ,P) be a probability space. For any two σ -fieldsA, B ⊆ F , define now
the strong mixing coefficient

α(A,B) := sup
A∈A,B∈B

|P(A ∩ B) − P(A)P(B)|

and the maximal coefficient of correlation

ρ(A,B) := sup |Corr( f, g)|, f ∈ L2
real(A), g ∈ L2

real(B).

Suppose d is a positive integer and X := (Xk, k ∈ Z
d) is not necessarily a strictly

stationary randomfield. In this context, for each positive integer n, define the following
quantity:

α(X, n) := supα(σ(Xk, k ∈ Q), σ (Xk, k ∈ S)),

where the supremum is taken over all pairs of nonempty, disjoint sets Q, S ⊂ Z
d with

the following property: There exist u ∈ {1, 2, . . . , d} and j ∈ Z such that Q ⊂ {k :=
(k1, k2, . . . , kd) ∈ Z

d : ku ≤ j} and S ⊂ {k := (k1, k2, . . . , kd) ∈ Z
d : ku ≥ j + n}.

The random field X := (Xk, k ∈ Z
d) is said to be “strongly mixing” (or “α-

mixing”) if α(X, n) → 0 as n → ∞.
Also, for each positive integer n, define the following quantity:

ρ′(X, n) := sup ρ(σ(Xk, k ∈ Q), σ (Xk, k ∈ S)),

where the supremum is taken over all pairs of nonempty, finite disjoint sets Q, S ⊂ Z
d

with the following property: There exist u ∈ {1, 2, . . . , d} and nonempty disjoint sets
A, B ⊂ Z, with dist (A, B) := mina∈A,b∈B |a − b| ≥ n such that Q ⊂ {k :=
(k1, k2, . . . , kd) ∈ Z

d : ku ∈ A} and S ⊂ {k := (k1, k2, . . . , kd) ∈ Z
d : ku ∈ B}.

The random field X := (Xk, k ∈ Z
d) is said to be “ρ′-mixing” if ρ′(X, n) → 0 as

n → ∞.
Again, suppose d is a positive integer. For a given random field X := (Xk, k ∈ Z

d)

and for each L := (L1, L2, . . . , Ld) ∈ N
d , define the “box”

B(L) := {k := (k1, k2, . . . , kd) ∈ N
d : ∀u ∈ {1, 2, . . . , d}, 1 ≤ ku ≤ Lu}. (1.1)

Obviously, the number of elements in the set B(L) is L1 · L2 · . . . · Ld .
For any given L ∈ N

d and any given “collection” X := (Xk, k ∈ B(L)), the
dependence coefficients mentioned above can be defined for n ∈ N in the following
way for convenience: One can trivially extend that collection X to a random field
˜X := (Xk, k ∈ Z

d) by defining Xk = 0 for each k ∈ Z
d − B(L), and then one can
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define the dependence coefficients introduced in the previous section in the following
way: For example, for n ∈ N, ρ′(X, n) := ρ′(˜X , n).

We are interested in obtaining CLT’s for non-stationary strongly mixing random
fields, in the presence of an extra condition involving the maximal correlation coeffi-
cient ρ′(X, n) defined above.

Our main result presents a central limit theorem for sequences of random fields that
satisfy a Lindeberg condition and uniformly satisfy both strong mixing and an upper
bound less than 1 on ρ′(· , 1), in the absence of stationarity. There is no requirement of
either a mixing rate assumption or the existence of moments of order higher than two.
The additional assumption of a uniform upper bound less than 1 for ρ′(· , 1) cannot
simply be deleted altogether from the theorem, even in the case of strict stationarity. For
the case d = 1, that can be seen from any (finite-variance) strictly stationary, strongly
mixing counterexample to the CLT such that the rate of growth of the variances of
the partial sums is at least linear; for several such examples, see, e.g., [1], Theorem
10.25 and Chapters 30–33. Our main theorem and an extension of it, given at the end
of the paper, extend certain central limit theorems of Peligrad [3] involving “arrays of
random sequences.”

The main result of this paper will be given in Theorem 1.1. Then the material of
this article will be divided as follows: Background results necessary in the proof of
the main result will be given in Sect. 2. Sections 3, 4 and 5 will contain the proof of
Theorem 1.1. More precisely, Sect. 3 will set up the induction assumption of the proof
and contains two special cases introduced, respectively, in Lemma 3.1 and Lemma 3.2,
which imply our result. The general casewill be presented in Lemma 4.1, which covers
Sect. 4 entirely. Section 5 of the paper will deal with the Lindeberg condition and the
truncation argument. Finally, Sect. 6 will state an extension of Theorem 1.1 to a more
general setup.

Theorem 1.1 Suppose d is a positive integer. For each n ∈ N, suppose Ln :=
(Ln1, Ln2, . . . , Lnd) is an element of Nd , and suppose X (n) :=

(

X (n)
k , k ∈ B(Ln)

)

is an array of random variables such that for each k ∈ B(Ln), E X (n)
k = 0 and

E
(

X (n)
k

)2
< ∞. Suppose the following mixing assumptions hold:

α(m) := sup
n

α(X (n),m) → 0 as m → ∞ and (1.2)

ρ′(1) := sup
n

ρ′(X (n), 1) < 1. (1.3)

For each n ∈ N, define the random sum S(X (n), Ln) = ∑

k∈B(Ln)
X (n)
k , define the

quantity σ 2
n := E(S(X (n), Ln))

2, and assume that σ 2
n > 0. Suppose also that the

Lindeberg condition

∀ε > 0, lim
n→∞

1

σ 2
n

∑

k∈B(Ln)

E
(

X (n)
k

)2
I
(∣

∣

∣X
(n)
k

∣

∣

∣ > εσn

)

= 0 (1.4)
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holds. Then

σ−1
n S(X (n), Ln) ⇒ N (0, 1) as n → ∞.

(Here and throughout the paper ⇒ denotes convergence in distribution.)
This result extends a theorem of Peligrad (see [3], Theorem 2.2), which is Theo-

rem 1.1 for the case d = 1. Later on, Peligrad and Utev [5] obtained an invariance
principle for random elements associated to sums of strongly mixing triangular arrays
of randomvariables associatedwith the interlacedmixing coefficients ρ∗

n . Their invari-
ance principle generalizes the corresponding results for independent random variables
treated, e.g., by Prohorov [6]. For the strictly stationary case see Peligrad [4].

For a sequence of strictly stationary random fields that are uniformly ρ′-mixing and
satisfy a Lindeberg condition, a central limit theorem is obtained in [7] for sequences of
“rectangular” sums from the given random fields. The “Lindeberg CLT” is then used
to prove a CLT for some kernel estimators of probability density for some strictly
stationary random fields satisfying ρ′-mixing, and whose probability density and joint
densities are absolutely continuous, generalizing the results in [2], under ρ∗-mixing.

2 Background Results

The proof of Theorem 1.1 uses frequently the following results. The first one is a
consequence of Theorem 28.10(I) [1] which gives an upper bound for the variance of
partial sums.

Theorem 2.1 Suppose d is a positive integer, L ∈ N
d , and X := (Xk, k ∈ B(L)) is

a (not necessarily strictly stationary) random field such that for each k ∈ B(L), the
random variable Xk has mean zero and finite second moments. Suppose ρ′(X, j) < 1
for some j ∈ N. Then for any nonempty finite set S ⊆ B(L),

E

∣

∣

∣

∣

∣

∑

k∈S
Xk

∣

∣

∣

∣

∣

2

≤ C
∑

k∈S
E (Xk)

2 , (2.1)

where C := jd
(

1 + ρ′(X, j)
)d

/
(

1 − ρ′(X, j)
)d

.

The second result is a consequence of Theorem 28.9 [1] which gives lower and
upper bounds for the variance of partial sums.

Theorem 2.2 Suppose d is a positive integer, L ∈ N
d , and X := (Xk, k ∈ B(L)) is

a (not necessarily strictly stationary) random field such that for each k ∈ B(L), the
random variable Xk has mean zero and finite second moments. Suppose ρ′(X, 1) < 1.
Then for any nonempty finite set S ⊆ B(L),

C−1
∑

k∈S
E |Xk |2 ≤ E

∣

∣

∣

∣

∣

∑

k∈S
Xk

∣

∣

∣

∣

∣

2

≤ C
∑

k∈S
E |Xk |2 , (2.2)

where C := (1 + ρ′(X, 1))d/(1 − ρ′(X, 1))d .
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The next result used is a particular case of the Rosenthal inequality (see Theorem
29.30, [1]) for the exponent 4.

Theorem 2.3 Suppose d and m are each a positive integer and r ∈ [0, 1). Then there
exists a constant C := C(d, 4, r,m) such that the following holds:

Suppose L ∈ N
d and X := (Xk, k ∈ B(L)) is a (not necessarily strictly station-

ary) random field such that for each k ∈ B(L), E Xk = 0 and E |Xk |4 < ∞, and
ρ′(X,m) ≤ r . Then for any nonempty finite set S ⊆ B(L), one has that

E

∣

∣

∣

∣

∣

∑

k∈S
Xk

∣

∣

∣

∣

∣

4

≤ C ·
⎡

⎣

∑

k∈S
E |Xk |4 +

(

∑

k∈S
E |Xk |2

)2
⎤

⎦ . (2.3)

3 Induction Assumption

The proof of Theorem 1.1 will be done by induction on d. For d = 1, Theorem 1.1
was proved by Peligrad ([3], Theorem 2.2). Now suppose d is an integer such that
d ≥ 2. As the induction hypothesis, suppose Theorem 1.1 holds in the case where d is
replaced by the particular integer d − 1. To complete the induction step (and thereby
the proof of Theorem 1.1), it suffices to prove Theorem 1.1 in the case of the given
integer d.

To carry out the induction step, we will first treat the case where

inf
n∈N

σ 2
n > 0 (3.1)

and

θn := sup
k∈B(Ln)

∥

∥

∥X
(n)
k

∥

∥

∥∞ → 0. (3.2)

Notice that (3.2) [together with (3.1)] implies the Lindeberg condition (1.4). Our goal

in Sects. 3 and 4 is to show that for X (n) :=
(

X (n)
k , k ∈ B(Ln)

)

satisfying (1.2), (1.3),

(3.1), and (3.2), the CLT holds, that is

1

σn

∑

k∈B(Ln)

X (n)
k ⇒ N (0, 1) as n → ∞. (3.3)

Then in Sect. 5, the induction argument will be completed with the use of a standard
truncation argument to reduce to the case of the restrictions (3.1)–(3.2).

In what follows, for convenience, we shall use the notation Ln := L(n) :=
(

L(n)
1 , L(n)

2 , . . . , L(n)
d

)

.

Lemma 3.1 Suppose in addition to the properties (1.2), (1.3), (3.1), and (3.2)
that supn∈N L(n)

1 < ∞. For each n ≥ 1, define the element ˜L(n) ∈ N
d−1 by
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˜L(n) :=
(

L(n)
2 , L(n)

3 , . . . , L(n)
d

)

. For each n ≥ 1, define the random field W (n) :=
(

W (n)
k , k ∈ B(˜L(n))

)

as follows: For each k := (k2, k3, . . . , kd) ∈ B(˜L(n)),

W (n)
k :=

∑

u∈
{

1,2,...,L(n)
1

}

X (n)
(u, k).

Then

1

σn

∑

k∈B(L(n))

X (n)
k =

⎛

⎜

⎝
E

⎛

⎝

∑

k∈B(˜L(n))

W (n)
k

⎞

⎠

2
⎞

⎟

⎠

−1/2

∑

k∈B(˜L(n))

W (n)
k ⇒ N (0, 1)

as n → ∞.

Proof It is easy to see that

E

⎛

⎝

∑

k∈B(˜L(n))

W (n)
k

⎞

⎠

2

= E

⎛

⎜

⎝

∑

k∈B(˜L(n))

L(n)
1
∑

u=1

X (n)
(u,k)

⎞

⎟

⎠

2

= σ 2
n .

The random field W (n) inherits the properties from the parent random field X (n), that
is, the mixing and the moment properties. In addition,

sup
k∈B(˜L(n))

∥

∥

∥W
(n)
k

∥

∥

∥∞ = sup
k∈B(˜L(n))

∥

∥

∥

∥

∥

∥

∥

L(n)
1
∑

u=1

X (n)
(u,k)

∥

∥

∥

∥

∥

∥

∥∞

≤ sup
k∈B(˜L(n))

L(n)
1
∑

u=1

∥

∥

∥X
(n)
(u,k)

∥

∥

∥∞

≤
L(n)
1
∑

u=1

sup
k∈B(˜L(n))

∥

∥

∥X
(n)
(u,k)

∥

∥

∥∞ ≤
L(n)
1
∑

u=1

sup
k∈B(L(n))

∥

∥

∥X
(n)
k

∥

∥

∥∞ = L(n)
1 θn → 0 as n → ∞.

By the induction hypothesis for d − 1, the CLT holds, and the proof of Lemma 3.1 is
complete. ��
Lemma 3.2 Suppose that L(n)

1 → ∞ as n → ∞ together with the properties men-

tioned earlier, namely, (1.2), (1.3), (3.1), and (3.2). For∀n ∈ N, ∀ j ∈ {1, 2, . . . , L(n)
1 },

let us define the random variable

Y (n)
j =

∑

{k=(k1,...,kd )∈B(L(n)):k1= j}
X (n)
k .

Assume also that

sup
j∈{1,2,...,L(n)

1 }

(

s(n)
j

)2 → 0 as n → ∞, where
(

s(n)
j

)2 = E
(

Y (n)
j

)2
. (3.4)
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Then

1

σn

∑

k∈B(L(n))

X (n)
k = 1

σn

L(n)
1
∑

j=1

Y (n)
j ⇒ N (0, 1) as n → ∞. (3.5)

Proof We shall first give some notations and basic observations that will be used in
both the main argument below for Lemma 3.2 and the argument for Lemma 4.1 in
Sect. 4.

For each n ∈ N and each j ∈
{

1, 2, . . . , L(n)
1

}

, define the (“slice”) set

slice(n)
j :=

{

k := (k1, . . . , kd) ∈ B(L(n)) : k1 = j
}

.

Then for each such n and j , Y (n)
j = ∑

k∈slice(n)
j

X (n)
k . By Theorem 2.2, for each

such n and j , the two numbers (s(n)
j )2 = E(Y (n)

j )2 = E(
∑

k∈slice(n)
j

X (n)
k )2 and

∑

k∈slice(n)
j

E(X (n)
k )2 either are both 0 or are both positive and within a constant factor

(in [c−1, c], where c := (1 + ρ′(1))d/(1 − ρ′(1))d ) of each other. Similarly, by (3.1)
and Theorem 2.2, for each n ∈ N, the following three quantities are positive and are
within a constant factor (in the same interval [c−1, c]) of each other:

σ 2
n = E

⎛

⎝

∑

k∈B(Ln)

X (n)
k

⎞

⎠

2

= E

⎛

⎜

⎝

L(n)
1
∑

j=1

Y (n)
j

⎞

⎟

⎠

2

;

L(n)
1
∑

j=1

(

s(n)
j

)2 =
L(n)
1
∑

j=1

E
(

Y (n)
j

)2 =
L(n)
1
∑

j=1

E

⎛

⎜

⎝

∑

k∈slice(n)
j

X (n)
k

⎞

⎟

⎠

2

;

L(n)
1
∑

j=1

∑

k∈slice(n)
j

E
(

X (n)
k

)2 =
∑

k∈B(L(n))

E
(

X (n)
k

)2
.

Finally, by (3.1), σ 2
n � σ 4

n as n → ∞. Here and below, the notation “�” means
O(. . .).

To prove (3.5), the main task will be to show that Lyapounov’s condition holds
(with exponent 4), that is,

lim
n→∞

1

σ 4
n

L(n)
1
∑

j=1

E
(

Y (n)
j

)4 = 0. (3.6)
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For each n ∈ N, applying (1.3) and Theorem 2.3 (and using its constant C) and then

adding up over all j ∈
{

1, 2, . . . , L(n)
1

}

, we obtain that

L(n)
1
∑

j=1

E
(

Y (n)
j

)4 ≤ C

⎡

⎢

⎣

L(n)
1
∑

j=1

∑

k∈slice(n)
j

E
(

X (n)
k

)4 +
L(n)
1
∑

j=1

⎛

⎜

⎝

∑

k∈slice(n)
j

E
(

X (n)
k

)2

⎞

⎟

⎠

2⎤

⎥

⎦

(3.7)

Using (3.2) and Theorem 2.2, the first term in the right-hand side of (3.7) can be
bounded above in the following way:

L(n)
1
∑

j=1

∑

k∈slice(n)
j

E
(

X (n)
k

)4 =
L(n)
1
∑

j=1

∑

k∈slice(n)
j

E

[

(

X (n)
k

)2 (

X (n)
k

)2
]

≤ θ2n

L(n)
1
∑

j=1

∑

k∈slice(n)
j

E
(

X (n)
k

)2 � θ2nσ 2
n � θ2nσ 4

n = o(σ 4
n ) as n → ∞.

By (3.4) (and the fact σ 2
n � σ 4

n ), the second term in the right-hand side of (3.7) can
be bounded above in the following way:

L(n)
1
∑

j=1

⎛

⎜

⎝

∑

k∈slice(n)
j

E
(

X (n)
k

)2

⎞

⎟

⎠

2

=
L(n)
1
∑

j=1

⎛

⎜

⎝

∑

k∈slice(n)
j

E
(

X (n)
k

)2

⎞

⎟

⎠

⎛

⎜

⎝

∑

k∈slice(n)
j

E
(

X (n)
k

)2

⎞

⎟

⎠

�
⎡

⎣ sup
j∈{1,2,...,L(n)

1 }

(

s(n)
j

)2

⎤

⎦

L(n)
1
∑

j=1

∑

k∈slice(n)
j

E
(

X (n)
k

)2

�
⎡

⎣ sup
j∈{1,2,...,L(n)

1 }

(

s(n)
j

)2

⎤

⎦ σ 2
n = o(σ 4

n ) as n → ∞.

Hence, (3.6) holds, and as a consequence, the Lindeberg condition is satis-
fied. Applying Peligrad’s CLT for d = 1 (see [3], Theorem 2.2) to the array
(

Y (n)
j , n ∈ N, j ∈

{

1, 2, . . . , L(n)
1

})

, one has that (3.5) holds. The proof of

Lemma 3.2 is complete. ��

4 “General Lemma”

The following lemma deals with the most general case under the restrictions (3.1) and
(3.2).
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Lemma 4.1 Suppose that for each n ∈ N, Ln ∈ N
d , X (n) :=

(

X (n)
k , k ∈ B(Ln)

)

is a

(not necessarily strictly stationary) random field such that for each k ∈ B(Ln), X
(n)
k

has mean zero and finite second moment. Suppose that (1.2), (1.3), (3.1), and (3.2)
are satisfied. Then

1

σn

∑

k∈B(Ln)

X (n)
k ⇒ N (0, 1) as n → ∞.

Proof It suffices to show that for an arbitrary fixed infinite set S ⊆ N, there exists an
infinite set T ⊆ S such that

1

σn

∑

k∈B(Ln)

X (n)
k ⇒ N (0, 1) as n → ∞, n ∈ T . (4.1)

Again we write Ln as L(n) :=
(

L(n)
1 , L(n)

2 , . . . , L(n)
d

)

. We freely use the notations

Y (n)
j ,
(

s(n)
j

)2
and slice(n)

j from Lemma 3.2 and its proof. The observations in the first

part of the proof of Lemma 3.2 (that is, prior to the paragraph containing Eq. (3.6)) hold
in our context here, and will be used freely. (Of course the convergence to 0 in (3.4)
is not assumed, and may not hold, in our context here.) Applying those observations,
without loss of generality (that is, without sacrificing (3.1) or (3.2)), we now normalize
so that

∀n ≥ 1,

L(n)
1
∑

j=1

(

s(n)
j

)2 = 1. (4.2)

The proof of (4.1) (including the choice of an appropriate infinite set T ⊆ S) will be
divided into 12 “steps.”

Step 1:Consider first the case where supn∈S L
(n)
1 < ∞. By Lemma 3.1, the asymp-

totic normality in (4.1) holds with T := S, and for this case we are done.
Step 2: Now henceforth suppose that supn∈S L

(n)
1 = ∞.

Let us choose an infinite set S0 ⊆ S be such that L(n)
1 → ∞ as n → ∞, n ∈

S0. For each n ≥ 1, let p(n, j), j ∈ {1, 2, . . . , L(n)
1 } be a permutation of the set

{1, 2, . . . , L(n)
1 } such that

(

s(n)
p(n,1)

)2 ≥
(

s(n)
p(n,2)

)2 ≥ . . . ≥
(

s(n)

p(n,L(n)
1 )

)2

. (4.3)

By (4.2), we obtain that

L(n)
1
∑

j=1

(

s(n)
p(n, j)

)2 = 1. (4.4)
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As a consequence, by (4.3) and (4.4),

∀n ≥ 1, ∀ j ∈
{

1, 2, . . . , L(n)
1

}

,
(

s(n)
p(n, j)

)2 ≤ 1

j
. (4.5)

Of course since L(n)
1 → ∞ as n → ∞, n ∈ S0, one has that for each l ≥ 1, the index

p(n, l) and the number
(

s(n)
p(n,l)

)2
are defined for all sufficiently large n ∈ S0. That

will be used repeatedly in what follows.
Let us now define the following infinite sets:

S1 ⊆ S0 such that λ1 = lim
n→∞, n∈S1

(

s(n)
p(n,1)

)2
exists;

S2 ⊆ S1 such that λ2 = lim
n→∞, n∈S2

(

s(n)
p(n,2)

)2
exists;

S3 ⊆ S2 such that λ3 = lim
n→∞, n∈S3

(

s(n)
p(n,3)

)2
exists;

and so on. By the Cantor diagonalization method, we obtain an infinite set S00 :=
{̃n1 < ñ2 < ñ3 < . . .} such that ñl ∈ Sl and Sl ⊇ {̃nl , ñl+1, ñl+2, . . .}. For the
resulting infinite set S00, one has that S00 ⊆ S0 ⊆ S, and by (4.3) one also has that

∀l ≥ 1, lim
n→∞, n∈S00

(

s(n)
p(n,l)

)2 = λl; with λ1 ≥ λ2 ≥ λ3 . . . . (4.6)

In addition, ∀m ≥ 1, one has by (4.4) that
∑m

j=1

(

s(n)
p(n, j)

)2 ≤ 1 for all n ∈ S00

sufficiently large such that L(n)
1 ≥ m; and hence for every m ≥ 1,

∑m
j=1 λ j ≤ 1 by

(4.6). Hence

λ :=
∞
∑

j=1

λ j ≤ 1. (4.7)

Step 3: Consider first the case where λ = 0. Then λ j = 0 for all j ≥ 1. By (4.5),

(4.6), and a simple argument, sup
j∈{1,2,...,L(n)

1 }
(

s(n)
p(n, j)

)2 → 0 as n → ∞, n ∈ S00.

By Lemma 3.2,

1

σn

L(n)
1
∑

j=1

Y (n)
j = 1

σn

∑

k∈B(L(n))

X (n)
k ⇒ N (0, 1) as n → ∞, n ∈ S00. (4.8)

Thus (4.1) holds with T := S00, and for this case we are done.
Step 4: Now henceforth suppose that λ > 0. (Then by (4.6) and (4.7), λ1 > 0.)

Our task now is to show that (4.1) holds for some infinite set T ⊆ S00.
Recall again that L(n)

1 → ∞ as n → ∞, n ∈ S00. For each q ≥ 1 and each n ∈ S00
such that L(n)

1 > q, define the set
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Γ
(q,n)

1 = {p(n, 1), p(n, 2), . . . , p(n, q)}

and the random variable

W (q,n) :=
∑

j∈Γ
(q,n)
1

Y (n)
j .

Recall that (here in Step 4 and henceforth) λ1 > 0. By (4.6), E
(

Y (n)
p(n,1)

)2 =
(

s(n)
p(n,1)

)2
> λ1/2 for all n ∈ S00 sufficiently large.

For each positive integer q, the following observations hold: Trivially, we have

that
∑

j∈Γ
(q,n)
1

E
(

Y (n)
j

)2 ≥ E
(

Y (n)
p(n,1)

)2 ≥ λ1/2 for all n ∈ S00 sufficiently large.

Hence, by Theorem 2.2, there exists a positive number c0 (not even depending on q)

such that E
(

W (q,n)
)2 ≥ c0 for all n ∈ S00 sufficiently large. That is the analog of

(3.1) for sufficiently large n ∈ S00 when the indices k := (k1, . . . , kd) ∈ B(L(n)) are

restricted to the ones such that k1 ∈ Γ
(q,n)

1 . Hence, one can apply Lemma 3.1, and
one obtains that

W (q,n)

‖W (q,n)‖2 ⇒ N (0, 1) as n → ∞, n ∈ S00.

The convergence above was shown for arbitrary q ≥ 1. By a well-known theorem for
continuous limiting distributions, one now has that

∀q ≥ 1, sup
x∈R

∣

∣

∣FW (q,n)/‖W (q,n)‖2(x) − Φ(x)
∣

∣

∣→ 0 as n → ∞, n ∈ S00.

Here Φ(x) represents the distribution function of a N (0, 1) random variable and FV
is the distribution function of a given random variable V .

Step 5: For each q ≥ 1, let mq ∈ N be such that

α(mq) <
1

q2
. (4.9)

Let n1 < n2 < . . . ∈ S00 be such that for all q ≥ 1, the following hold:

L
(nq )

1 > q2mq; (4.10)

‖W (q,nq )‖2 > 0 and sup
x∈R

∣

∣

∣FW (q,nq )/‖W (q,nq )‖2(x) − Φ(x)
∣

∣

∣ ≤ 1

q
, and (4.11)

∣

∣

∣

∣

∣

∣

q2mq
∑

j=q+1

(

s
(nq )

p(nq , j)

)2 −
q2mq
∑

j=q+1

λ j

∣

∣

∣

∣

∣

∣

≤ 1

q
. (4.12)
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(To justify (4.12), see (4.6).)
For each q ≥ 1, define the following four index sets:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Γ
(q)
1 = {p(nq , 1), p(nq , 2), . . . , p(nq , q)},

Γ
(q)
2 = {p(nq , q + 1), p(nq , q + 2), . . . , p(nq , q2mq)},

Γ
(q)
3 = { j ∈ {1, . . . , L(nq )

1 } − {Γ (q)
1 ∪ Γ

(q)
2 }| ∃i ∈ Γ

(q)
1 such that |i − j | ≤ mq},

Γ
(q)
4 = { j ∈ {1, . . . , L(nq )

1 } − {Γ (q)
1 ∪ Γ

(q)
2 }| ∀i ∈ Γ

(q)
1 , |i − j | > mq}.

(4.13)

For each q ≥ 1, those four sets in (4.13) form a partition of the set
{

1, 2, . . . , L
(nq )

1

}

[see (4.10)]. For a given q ≥ 1, one of the latter two sets Γ
(q)
3 , Γ (q)

4 could perhaps be

empty. Note that for each q ≥ 1, the set Γ (q)
1 here is the set Γ

(q,nq )

1 in the notations in
Step 4.

For each q ≥ 1 and each i ∈ {1, 2, 3, 4}, define the random variable

U (q)
i =

∑

j∈Γ
(q)
i

Y
(nq )

j . (4.14)

Note that for each q ≥ 1, U (q)
1 = W (q,nq ) by (4.14) (see Step 4), and also

4
∑

i=1

U (q)
i =

L
(nq )

1
∑

j=1

Y
(nq )

j =
∑

k∈B
(

L(nq )
)

X
(nq )

k . (4.15)

Step 6: Notice that due to (1.3), Theorem 2.2, followed by (4.2), we obtain that for
each q ≥ 1,

0 ≤
(

1 − ρ′(1)
1 + ρ′(1)

)

∑

j∈Γ
(q)
1

E
(

Y
(nq )

j

)2 ≤ E
(

U (q)
1

)2 ≤
(

1 + ρ′(1)
1 − ρ′(1)

)

∑

j∈Γ
(q)
1

E
(

Y
(nq )

j

)2

≤
(

1 + ρ′(1)
1 − ρ′(1)

)

< ∞.

Similarly, for each q ≥ 1,

0 ≤ E
(

U (q)
4

)2 ≤
(

1 + ρ′(1)
1 − ρ′(1)

)

< ∞.

Hence, there exists an infinite set T ⊆ N such that
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η21 := lim
q→∞, q∈T E

(

U (q)
1

)2
exists (in R), and

η24 := lim
q→∞, q∈T E

(

U (q)
4

)2
exists (in R).

Our goal now is to prove that for the infinite set T just specified here,

σ−1
nq

∑

k∈B
(

L(nq )
)

X
(nq )

k ⇒ N (0, 1) as q → ∞, q ∈ T .

That will accomplish (4.1) (and therefore complete the proof of Lemma 4.1) with the
set T in (4.1) replaced here by the set {nq : q ∈ T }, which is an infinite subset of S00
and hence of S.

In what follows, the “N (0, 0) distribution” will of course mean the degenerate
“point mass at 0.” It will be tacitly kept in mind and used freely that if a sequence of
random variables converges to 0 in the 2-norm, then it converges to 0 in probability
and hence converges to N (0, 0) in distribution.

Step 7: “The asymptotic normality of U (q)
1 .” By (4.11), we obtain that

sup
x∈R

∣

∣

∣FW (q,nq )/‖W (q,nq )‖2(x) − Φ(x)
∣

∣

∣→ 0 as q → ∞, hence

U (q)
1

∥

∥

∥U
(q)
1

∥

∥

∥

2

⇒ N (0, 1) as q → ∞, q ∈ T .

So, we obtain the asymptotic normality of the random variable U (q)
1 , namely

U (q)
1 ⇒ N (0, η21) as q → ∞, q ∈ T . (4.16)

Step 8: “The asymptotic normality of U (q)
4 .” Recall from (4.10) that L

(nq )

1 → ∞
as q → ∞. In addition, by (4.5) and the definition of Γ

(q)
4 in (4.13),

sup
j∈Γ

(q)
4

E
(

Y
(nq )

j

)2 ≤ 1

q2mq + 1
→ 0 as q → ∞, q ∈ T .

Trivially if η24 = 0, or if instead η24 > 0 then by Lemma 3.2 (with the indices k :=
(k1, . . . , kd) ∈ B

(

L(nq )
)

restricted to the ones such that k1 ∈ Γ
(q)
4 ), one has that

U (q)
4 ⇒ N

(

0, η24
)

as q → ∞, q ∈ T . (4.17)
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Step 9: “Negligibility of U (q)
2 .” By (4.7),

∞
∑

j=q+1

λ j → 0 as q → ∞, q ∈ T .

Therefore,

q2mq
∑

j=q+1

λ j → 0 as q → ∞, q ∈ T,

which gives us by (4.12) that

q2mq
∑

j=q+1

E
(

Y
(nq )

p(nq , j)

)2 → 0 as q → ∞, q ∈ T .

As a consequence, referring to (4.13) and (4.14) and bounding above the second
moment of the random variable U (q)

2 using Theorem 2.2, we obtain that

E

⎛

⎜

⎝

∑

j∈Γ
(q)
2

Y
(nq )

j

⎞

⎟

⎠

2

→ 0 as q → ∞, q ∈ T,

hence

U (q)
2 → 0 in probability as q → ∞, q ∈ T . (4.18)

Step 10: “Negligibility of U (q)
3 .” By (4.13), for each q ≥ 1, card Γ

(q)
1 = q and

hence by a simple argument, card Γ
(q)
3 ≤ 2q ·mq . Using the definition of U

(q)
3 given

in (4.14), by Theorem 2.2 and Eqs. (4.5), (4.10), and (4.13) (and using an obvious
constant C),

E
(

U (q)
3

)2 = E

⎛

⎜

⎝

∑

j∈Γ
(q)
3

Y
(nq )

j

⎞

⎟

⎠

2

≤
(

1 + ρ′(1)
1 − ρ′(1)

)d
∑

j∈Γ
(q)
3

(

s
(nq )

j

)2

≤ C ·
∑

j∈Γ
(q)
3

1

q2mq
≤ C · 2q · mq

q2mq
→ 0 as q → ∞, q ∈ T .

Therefore,

U (q)
3 → 0 in probability as q → ∞, q ∈ T . (4.19)
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Step 11: “A Special Blocking Argument.” We now return to the index sets Γ
(q)
1

and Γ
(q)
4 and the random variables U (q)

1 and U (q)
4 , from (4.13), (4.14), and Steps 6,

7, and 8. We will set up (possibly “porous”) “blocks” that alternate between indices
in Γ

(q)
1 and Γ

(q)
4 . We carry out this process for the case where, for a given q ≥ 1, the

minimum and maximum elements of Γ
(q)
1 ∪ Γ

(q)
4 both belong to Γ

(q)
4 . Then we will

indicate the trivial changes needed for the other cases.

Suppose q ≥ 1. Suppose that min
(

Γ
(q)
1 ∪ Γ

(q)
4

)

and max
(

Γ
(q)
1 ∪ Γ

(q)
4

)

each

belong to Γ
(q)
4 . Recall from (4.13) that card Γ

(q)
1 = q. For some positive integer

h(q) such that h(q) ≤ q, there exists an “alternating sequence” of nonempty, finite,
(pairwise) disjoint subsets of Z, namely β

(q)
1 , γ (q)

1 , β(q)
2 , γ (q)

2 , . . . , β
(q)

h(q), γ
(q)

h(q), and,

β
(q)

h(q)+1 with the following properties:

Γ
(q)
1 =

h(q)
⋃

i=1

γ
(q)
i ;

Γ
(q)
4 =

h(q)+1
⋃

i=1

β
(q)
i ;

∀i ∈ {1, 2, . . . , h(q)}, mq + max β
(q)
i ≤ min γ

(q)
i ;

∀i ∈ {1, 2, . . . , h(q)}, mq + max γ
(q)
i ≤ min β

(q)
i+1.

(The last two properties come from the definition of Γ
(q)
4 in (4.13).) Next, define the

following random variables:

∀i ∈ {1, 2, . . . , h(q) + 1}, V (q)
i :=

∑

j∈β
(q)
i

Y
(nq )

j and (4.20)

∀i ∈ {1, 2, . . . , h(q)}, Z (q)
i :=

∑

j∈γ
(q)
i

Y
(nq )

j . (4.21)

Then by (4.14), we have the following identities:

U (q)
1 =

h(q)
∑

i=1

Z (q)
i ; (4.22)

U (q)
4 =

h(q)+1
∑

i=1

V (q)
i . (4.23)

For a given q ≥ 1, those notations were defined in the case where min(Γ (q)
1 ∪ Γ

(q)
4 )

and max(Γ (q)
1 ∪ Γ

(q)
4 ) both belong to Γ

(q)
4 . In the other cases, the notations are the

same, but with one or both of the following trivial changes: (i) If min(Γ (q)
1 ∪ Γ

(q)
4 )
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belongs to Γ
(q)
1 , then the set β(q)

1 is empty and the random variable V (q)
1 is identically

0. (ii) If max(Γ (q)
1 ∪ Γ

(q)
4 ) belongs to Γ

(q)
1 , then the set β

(q)

h(q)+1 is empty and the

random variable V (q)

h(q)+1 is identically 0.
The rest of the argument here in Step 11 will be carried out in the case where for

each q ≥ 1, min
(

Γ
(q)
1 ∪ Γ

(q)
4

)

and max
(

Γ
(q)
1 ∪ Γ

(q)
4

)

both belong to Γ
(q)
4 . The

changes needed in the argument to accommodate all other cases are trivial and need
not be spelled out here.

For each q ≥ 1, construct independent copies of the random variables defined in
(4.20) and (4.21), denoted ˜V (q)

1 , ˜Z (q)
1 , ˜V (q)

2 , ˜Z (q)
2 , . . . , ˜V (q)

h(q), ˜Z
(q)

h(q), and ˜V
(q)

h(q)+1. By
(4.22) and Step 7, we obtain that

h(q)
∑

i=1

Z (q)
i ⇒ N (0, η21) as q → ∞, q ∈ T .

By (4.9), the following holds:

h(q)−1
∑

k=1

α
(

σ
(

Z (q)
i , 1 ≤ i ≤ k

)

, σ
(

Z (q)
k+1

))

≤
h(q)−1
∑

k=1

α(2mq)

≤ q

q2
→ 0 as q → ∞, q ∈ T .

Hence, by [1] (Theorem 25.56),

h(q)
∑

i=1

˜Z (q)
i ⇒ N (0, η21) as q → ∞, q ∈ T . (4.24)

Similarly, we obtain that

h(q)
∑

k=1

α
(

σ
(

V (q)
i , 1 ≤ i ≤ k

)

, σ
(

V (q)
k+1

))

≤
h(q)−1
∑

k=1

α(2mq) ≤ q

q2
→ 0 as q → ∞,

q ∈ T,

and hence,

h(q)+1
∑

i=1

˜V (q)
i ⇒ N (0, η24) as q → ∞, q ∈ T . (4.25)
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By Eqs. (4.24), (4.25), and independence of the random variables ˜V (q)
i , ˜Z (q)

j , with
i ∈ {1, 2, . . . , h(q) + 1} and j ∈ {1, 2, . . . , h(q)}, we obtain that

h(q)
∑

i=1

˜Z (q)
i +

h(q)+1
∑

i=1

˜V (q)
i ⇒ N (0, η21 + η24) as q → ∞, q ∈ T . (4.26)

Next, for the entire “alternating sequence” V (q)
1 , Z (q)

1 , V (q)
2 , Z (q)

2 , . . . , V (q)

h(q)+1, we
note from (4.9) that

2q · α(mq) ≤ 2q

q2
→ 0 as q → ∞, q ∈ T,

and applying again [1] (Theorem 25.56) and (4.26), we obtain the analog of (4.26)
with ˜Z (q)

i and ˜V (q)
i replaced by Z (q)

i and V (q)
i , that is,

U (q)
1 +U (q)

4 ⇒ N (0, η21 + η24)) as q → ∞, q ∈ T . (4.27)

Applying Slutski’s theorem, by (4.18), (4.19), and (4.27), we obtain that

∑

k∈B(L(nq ))

X
(nq )

k =
∑

k∈slice(nq )

j

Y
(nq )

j =
4
∑

i=1

U (q)
i ⇒ N (0, η21 + η24)) as q → ∞, q ∈ T .

(4.28)

Step 12: “Convergence of Variance.” Refer to (3.1), the last paragraph of Step 6
and the last line of Step 11. To complete the proof of Lemma 4.1, we now only need
to show that

σ 2
nq → η21 + η24 as q → ∞, q ∈ T . (4.29)

To accomplish that, it will (by a well know theorem) suffice to show that there is an
upper bound on the fourth moments of the random variables

∑4
i=1U

(q)
i , q ∈ T .

Referring to the first equality in (4.28), one of course has by (4.2), (1.3), and
Theorem 2.2 that the set of numbers σ 2

nq , q ∈ T is bounded.
Since ρ′(1) < 1, by Theorem 2.3, we obtain (for the constant C in Theorem 2.3)

that

E

(

4
∑

i=1

U (q)
i

)4

= E

⎛

⎝

∑

k∈B(L(nq ))

X (n)
k

⎞

⎠

4

≤ C

⎡

⎢

⎣

∑

k∈B(L(nq ))

E
(

X (n)
k

)4 +
⎛

⎝

∑

k∈B(L(nq ))

E
(

X
(nq )

k

)2

⎞

⎠

2
⎤

⎥

⎦
. (4.30)
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Using (3.2) and Theorem 2.2, the first term in the right-hand side of (4.30) can be
bounded above in the following way:

∑

k∈B(L(nq ))

E
(

X
(nq )

k

)4 = ∑

k∈B(L(nq ))

E

[

(

X
(nq )

k

)2 (

X
(nq )

k

)2
]

≤ θ2nq

∑

k∈B(L(nq ))

E
(

X
(nq )

k

)2 � θ2nq · σ 2
nq → 0 as q → ∞, q ∈ T .

.

The second term in the right-hand side of (4.30) can be bounded above as follows:
As q → ∞, q ∈ T , by Theorem 2.2 again,

⎛

⎝

∑

k∈B(L(nq ))

E
(

X
(nq )

k

)2

⎞

⎠

2

=
⎛

⎝

∑

k∈B(L(nq ))

E
(

X
(nq )

k

)2

⎞

⎠

⎛

⎝

∑

k∈B(L(nq ))

E
(

X
(nq )

k

)2

⎞

⎠

�
(

σ 2
nq

)2 � 1.

Hence, supq∈T E
(

∑4
i=1U

(q)
i

)4
< ∞. That completes the proof of Lemma 4.1. ��

5 Lindeberg Condition and Truncation

Recall the Lindeberg condition in (1.4). Without loss of generality, we can assume
σ 2
n = 1 for each n ∈ N. Then by a simple argument,

∃ε1 ≥ ε2 ≥ . . . ↓ 0 such that lim
n→∞

∑

k∈B(Ln)

E
(

X (n)
k

)2
I
(∣

∣

∣X
(n)
k

∣

∣

∣ > εn

)

= 0. (5.1)

We truncate now at the level εn . Define the following random variables: for every
n ∈ N and every k ∈ B(Ln),

X
′(n)
k := X (n)

k I
(∣

∣

∣X
(n)
k

∣

∣

∣ ≤ εn

)

− EX (n)
k I

(∣

∣

∣X
(n)
k

∣

∣

∣ ≤ εn

)

and (5.2)

X
′′(n)
k := X (n)

k I
(∣

∣

∣X
(n)
k

∣

∣

∣ > εn

)

− EX (n)
k I

(∣

∣

∣X
(n)
k

∣

∣

∣ > εn

)

. (5.3)

Obviously (since EX (n)
k = 0 for each n and k),

∑

k∈B(Ln)

X (n)
k =

∑

k∈B(Ln)

X
′(n)
k +

∑

k∈B(Ln)

X
′′(n)
k . (5.4)
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Since ρ′(1) < 1, we can apply again Theorem 2.2 and by (5.1), we obtain that

0 ≤ E

⎛

⎝

∑

k∈B(Ln)

X
′′(n)
k

⎞

⎠

2

≤
(

1 + ρ′(1)
1 − ρ′(1)

)d
∑

k∈B(Ln)

E
(

X
′′(n)
k

)2

≤ C
∑

k∈B(Ln)

E
(

X (n)
k

)2
I (|X (n)

k | > εn) → 0 as n → ∞.

Therefore,

∑

k∈B(Ln)

X
′′(n)
k → 0 in probability as n → ∞.

As a consequence, by Slutski’s theorem, to prove that

∑

k∈B(Ln)

X (n)
k ⇒ N (0, 1) as n → ∞, (5.5)

we only have left to show that

∑

k∈B(Ln)

X
′(n)
k ⇒ N (0, 1) as n → ∞. (5.6)

Note that ‖X ′(n)
k ‖∞ ≤ 2εn for every n ∈ N and every k ∈ B(Ln). Since εn → 0 as

n → ∞ by (5.1), we have that

sup
k∈B(Ln)

‖X ′(n)
k ‖∞ → 0 as n → ∞.

Hence by Lemma 4.1, (5.6) holds, and hence also (5.5). The proof of Theorem 1.1 is
complete.

6 Generalization

Theorem 6.1 Suppose d is a positive integer. For each n ∈ N, suppose Ln :=
(Ln1, Ln2, . . . , Lnd) is an element of Nd , and suppose X (n) :=

(

X (n)
k , k ∈ B(Ln)

)

is an array of random variables such that for each k ∈ B(Ln), E X (n)
k = 0 and

E
(

X (n)
k

)2
< ∞, and for at least one k ∈ B(Ln), E

(

X (n)
k

)2
> 0. Suppose also that

the mixing assumptions (1.2) and

lim
m→∞ ρ′(m) < 1 (6.1)
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hold, where for each m ∈ N,

ρ′(m) := sup
n∈N

ρ′(X (n),m).

For each n ∈ N, define the random sum S
(

X (n), Ln
) := ∑

k∈B(Ln)
X (n)
k and define

the quantity σ 2
n := E

(

S
(

X (n), Ln
))2

. Suppose there exists a positive constant C such
that for every n ∈ N and every nonempty set S ∈ B(Ln),

E

(

∑

k∈S
X (n)
k

)2

≥ C ·
∑

k∈S
E
(

X (n)
k

)2
. (6.2)

Suppose the Lindeberg condition (1.4) holds. Then

σ−1
n S(X (n), Ln) ⇒ N (0, 1) as n → ∞.

For d = 1, this result was proved by Peligrad ([3], Theorem 2.1), with (6.2) replaced
by a weaker assumption. The proof of Theorem 6.1 again involves induction on the
dimension d, and is just a slight modification of the argument in Sects. 3, 4, and
5 for Theorem 1.1. In essence, in place of (1.3) and Theorem 2.2, one uses (6.1),
Theorem 2.1, and (6.2).

In fact, to make that argument work smoothly, it suffices to have a weaker version of
(6.2) in which, for a given n ∈ N, the sets S ⊆ B(Ln) are restricted to certain special
“rectangles” of the form S = S1 × S2 × . . . × Sd where for each j ∈ {1, 2, . . . , d},
the set S j either is {1, 2, . . . , Ln j } or is {k} for some k ∈ {1, 2, . . . , Ln j }.
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