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Abstract A function f = fT is called least energy approximation to a function B on
the interval [0, T ] with penalty Q if it solves the variational problem

∫ T

0

[
f ′(t)2 + Q( f (t) − B(t))

]
dt ↘ min .

For quadratic penalty, the least energy approximation can be found explicitly. If B is
a random process with stationary increments, then on large intervals, fT also is close
to a process of the same class, and the relation between the corresponding spectral
measures can be found. We show that in a long run (when T → ∞), the expectation
of energy of optimal approximation per unit of time converges to some limit which
we compute explicitly. For Gaussian and Lévy processes, we complete this result
with almost sure and L1 convergence. As an example, the asymptotic expression of
approximation energy is found for fractional Brownian motion.
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1 Introduction

Least energy approximations play important role both in pure and in applied mathe-
matics. The most important approximation of this kind is known under the name of
taut string.

Given a target function B(·) and a nonnegative width function r(·) defined on a
time interval [0, T ], the taut string is a function fT providing minimum for the energy
functional

LT (h) :=
∫ T

0
h′(t)2 dt

among all absolutely continuous functions h with given starting and final values and
satisfying

B(t) − r(t) ≤ h(t) ≤ B(t) + r(t), 0 ≤ t ≤ T .

The same function optimizes (under the same restrictions) the graph length∫ T
0

√
1 + h′(t)2dt , variation

∫ T
0 |h′(t)|dt , and other functionals represented as inte-

grals of a convex function of h′.
Taut string is a classical object well known in variational calculus, in mathematical

statistics, see [1,6], and in a broad range of applications such as image processing, see
[11, Chapter 4, Subsection 4.4] or communication theory, see [12].

For the case when a random function B(·) is approximated, very few information is
available. Lifshits and Setterqvist studied in [5] the energy of taut string accompanying
Wiener process.

Unfortunately, the taut string is rather hard to describe and to compute explicitly.
Therefore, the study of other least energy approximations makes sense. One possible
alternative is to replace the rigid boundary restrictions by introducing some penalty
function that controls the deviation from the target function.

A function f = fT is called least energy approximation to a function B on the
interval [0, T ] with penalty Q, if it solves the variational problem

∫ T

0

[
f ′(t)2 + Q( f (t) − B(t))

]
dt ↘ min .

Notice that this approach is very much in the spirit of interpolation theory from func-
tional analysis. The classical taut string can be formally included in this setting by
using time-inhomogeneous penalty

Q(x, t) :=
{
0, |x | ≤ r(t),

+∞, |x | > r(t).

One of the most natural choices for penalty is the quadratic penalty Q(y) = y2

where one can advance sufficiently far with explicit calculations.
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Fig. 1 Least energy approximation of a centered Poisson process

For quadratic penalty, the least energy approximation can be found explicitly. We
study its behavior in a long run (when T → ∞) and show that under weak assumption
on B, it converges to some limit with exponential rate.

In Sect. 2, we provide necessary exact and asymptotic formulas for the least energy
approximation of a deterministic function. In Sect. 3, the central results of the arti-
cle related to the approximation of a random process with stationary increments are
obtained. If B is a random process with stationary increments, then on large intervals,
its least energy approximation (cf. Fig. 1) also is close to a process of the same class,
and the relation between the corresponding spectral measures can be found. We show
that in a long run (when T → ∞), the expectation of energy of optimal approximation
per unit of time converges to some limit. For Gaussian and Lévy processes, we com-
plete this result with almost sure and L1 convergence. As an example, the asymptotic
expression of approximation energy is found for fractional Brownian motion. In view
of the importance of Wiener process, we propose an alternative approach to its least
energy approximation in Sect. 4.

Finally, we wish to notice that our results can be considered as a complement to
those of traditional stochastic control theory, where the best approximating function
is chosen among the adapted ones, i.e., its value at time t must be determined by the
values of the target function B(s), s ≤ t . Adaptive approach is more realistic, but it
leads to the problems solvable mainly for Markov target processes (see, e.g., [4,5],
for the least energy approximation of Wiener process). One may consider our results
as the lower bounds for the least energy achievable by adaptive control in case it is
unknown, or as the evaluation of price to be paid for not knowing the future, in case
when both optimal adaptive and non-adaptive least energy approximations are known.

2 Least Energy Approximation: Deterministic Setting

2.1 Approximation on a Fixed Interval

The following variational problem (which is our starting point) and its solution are
quite standard facts from variational calculus. We provide the proof for the sake of
completeness but postpone it to the end of the article.
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Let B(·) be a fixed deterministic function on an interval [0, T ]. In this section, we
deal with minimization problem of the functional

ET ( f ) :=
∫ T

0

[
f ′(t)2 + Q( f (t) − B(t))

]
dt

over the Sobolev spaceW1
2[0, T ] of all absolutely continuous functions f : [0, T ] →

R having square integrable derivative. Here, Q(·) is an appropriate penalty function.
Proposition 2.1 Let B(·) be ameasurable function on [0, T ], and let Q(·) be a strictly
convex nonnegative differentiable function on R such that

lim
x→±∞ Q(x) = +∞.

Assume that either B is bounded or for some A > 0, p ≥ 0, it is true that B ∈
L p+1[0, T ] and

|Q′(x)| ≤ A(|x |p + 1), x ∈ R. (1)

Then, there exists a unique solution fT of the problem

ET ( f ) ↘ min, f ∈ W
1
2[0, T ]. (2)

This solution has absolutely continuous first derivative f ′
T (·) and satisfies the

equation

2 f ′′
T (t) = Q′( fT (t) − B(t)), for a.e. t ∈ (0, T ),

and the boundary conditions ( fT )′+(0) = ( fT )′−(T ) = 0.

Remark 2.2 In the following, we will apply this proposition to random functions B
that are not necessarily bounded but belong to L2[0, T ] almost surely. Therefore,
assumption (1) is adequate.

For the rest of the paper, we restrict attention to the quadratic penalty Q(y) = y2

because in this case, we are able to obtain explicit and quite meaningful results.

Proposition 2.3 Let B ∈ L2[0, T ]. The solution of the minimization problem with
quadratic penalty

ET ( f ) :=
∫ T

0

[
f ′(t)2 + | f (t) − B(t)|2

]
dt ↘ min

is given for 0 ≤ t ≤ T by

fT (t) = −
∫ t

0
B(s) sinh(t − s) ds +

∫ T
0 B(s) cosh(T − s) ds

eT − e−T

(
et + e−t) . (3)
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Moreover, for 0 < t < T , we have

f ′
T (t) = −

∫ t

0
B(s) cosh(t − s) ds +

∫ T
0 B(s) cosh(T − s) ds

eT − e−T

(
et − e−t) . (4)

Proof FromProposition 2.1,we know that theminimizer fT exists uniquely and solves
the differential equation

f ′′(t) = f (t) − B(t) (5)

with boundary conditions

f ′+(0) = f ′−(T ) = 0.

The general form of the solution for linear equation (5) without boundary conditions
is

f (t) = f∗(t) + C1e
t + C2e

−t

where f∗ is any fixed solution of (5).
Let us check that

f∗(t) := −
∫ t

0
B(s) sinh(t − s)ds = 1

2

[
e−t
∫ t

0
B(s)esds − et

∫ t

0
B(s)e−sds

]

indeed provides a solution of (5). Elementary calculation shows that

f ′∗(t) = −
∫ t

0
B(s) cosh(t − s)ds (6)

and

f ′′∗ (t) = 1

2

[
e−t
∫ t

0
B(s)esds − et

∫ t

0
B(s)e−sds − 2B(t)

]
= f∗(t) − B(t),

and we see that (5) holds.
Next, we adjust the coefficients C1 and C2 by using boundary conditions and (6).

It follows that

C1 = C2 =
∫ T
0 B(s) cosh(T − s) ds

eT − e−T

and we arrive at formulas (3) and (4). 
�
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2.2 Approximation in a Long Run

We are going now to study the behavior of the least energy approximation in a long
run, i.e., when the subject of approximation, function B(·), is fixed while the interval
length T goes to infinity.

In view of future applications, it will bemore convenient for us to let B(·) be defined
on the entire real line. Although approximation problem involves only the restriction
of B on the positive half-line, if necessary, one can always extend B to the negative
half-line by assigning to B zero values there.

Recall that the function fT (·) defined by formula (3) provides the least energy
approximation to B(·) on the interval [0, T ].

We first derive a simple approximative heuristics for fT and then transform this
heuristics into a rigorous result.

2.2.1 Heuristics

We will simplify the expressions for (3) and (4) as follows. Assume that t, T,

T − t, T − s → +∞ and drop all small exponential terms e−t , e−T , e−(T−t), e−(T−s)

where appropriate.
In particular, we let

cosh(T − s)

eT − e−T

(
et + e−t) ≈ 1

2

(
eT−s + es−T

)
e−T et = 1

2

(
et−s + es+t−2T

)

= 1

2

(
et−s + es−t−2(T−t)

)
≈ 1

2
et−s .

By plugging this into (3) and (4), we get

fT (t) ≈
∫ t

0
B(s)

(
sinh(s − t) − 1

2
et−s

)
ds +

∫ T

t
B(s)

1

2
et−sds

= 1

2

∫ t

0
B(s) es−tds + 1

2

∫ T

t
B(s) et−sds

= 1

2

∫ T

0
B(s) e−|s−t |ds.

Similarly,

f ′
T (t) ≈ 1

2

∫ T

0
B(s) sgn(s − t) e−|s−t |ds.

Assuming that the function B(·) is defined on entire R, it is more natural to use
approximations based on “stationary” kernels, i.e., fT (t) ≈ f̂ (t) and f ′

T (t) ≈ f̂ ′(t),
where

f̂ (t) := 1

2

∫ ∞

−∞
B(s) e−|s−t |ds (7)
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and

f̂ ′(t) = 1

2

∫ ∞

−∞
B(s) sgn(s − t) e−|s−t |ds. (8)

Notice that the approximations f̂ and f̂ ′ do not depend on T . This shows a local
nature of the least energy approximation in a long run.

2.2.2 Rigorous Result

The following result shows that the least energy approximation is exponentially close
to its stationary approximation at the bulk values of time.

Proposition 2.4 Assume that

|B(s)| ≤ C(|s| + 1)p, s ∈ R, (9)

for some C, p > 0. Let fT be the least energy approximation given by (3), and let
approximation f̂ be given by (7).

Then, for all T ≥ 1 and all t ∈ [0, T ], we have

| fT (t) − f̂ (t)| ≤ C Ap (T + 1)p
(
e−t + e−T + e−(T−t)

)
, (10)

and

| f ′
T (t) − f̂ ′(t)| ≤ C Ap (T + 1)p

(
e−t + e−T + e−(T−t)

)
, (11)

where a constant Ap depends only on p.

Remark 2.5 Since we are tempted by maximal generality in what concerns B, we will
not use this proposition directly in the stochastic part of the article because of the weak
but still a bit restrictive assumption (9). Instead, we will use the elements of its proof
later on.

Proof of Proposition 2.4 Using the definitions (3) and (7), we see that

| fT (t) − f̂ (t)| ≤ I1 + I2 + I3,

where

I1 = 1

2

∫ 0

−∞
|B(s)|e−(t−s) ds,

I2 =
∫ T

0
|B(s)| ∣∣KT (s, t) − et−s/2

∣∣ ds,
I3 = 1

2

∫ ∞

T
|B(s)|e−(s−t) ds,
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and

KT (s, t) := cosh(T − s)

eT − e−T

(
et + e−t)

= et−s

2

(
1 + e−2(T−s)

) (
1 + e−2t

) (
1 − e−2T

)−1
.

By (9), we have

I1 ≤ Ce−t

2

∫ 0

−∞
(|s| + 1)p es ds := C A(1)

p e−t

and

I3 ≤ Ce−(T−t)

2

∫ ∞

T
(s + 1)pe−(s−T ) ds

= Ce−(T−t)

2

∫ ∞

0
(T + 1 + u)p e−u du

≤ C2pe−(T−t)

2

∫ ∞

0
((T + 1)p + u p) e−u du

≤ C A(2)
p (T + 1)p e−(T−t).

In order to evaluate I2, notice that

KT (s, t) − et−s

2
= et−s

2

[
(1 + h1)(1 + h2)(1 − h3)

−1 − 1
]

where h1 := e−2(T−s), h2 := e−2t , h3 := e−2T . Notice that assumption T ≥ 1 yields
0 ≤ h3 ≤ 1

2 . Therefore, we have

(1 − h3)
−1 = 1 + h3

1 − h3
≤ 1 + 2h3.

Furthermore, inequalities 0 ≤ h1 ≤ 1, 0 ≤ h2 ≤ 1, 0 ≤ h3 ≤ 1
2 yield

(1 + h1)(1 + h2)(1 + 2h3) ≤ 1 + 4h1 + 2h2 + 2h3.

We infer that

0 ≤ KT (s, t) − et−s

2

≤ et−s

2
(4h1 + 2h2 + 2h3)
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≤ 2 et−s
(
e−2(T−s) + e−2t + e−2T

)

= 2
(
e−2T+t+s + e−t−s + et−s−2T

)
. (12)

It follows that

I2 ≤ 2 (I5 + I6 + I7) ,

where

I5 := C e−2T+t
∫ T

0
(s + 1)pes ds ≤ Ce−(T−t)(T + 1)p,

I6 := C e−t
∫ T

0
(s + 1)p e−s ds ≤ C A(3)

p e−t , A(3)
p = e�(p + 1),

I7 := C et−2T
∫ T

0
(s + 1)p e−s ds ≤ C A(3)

p e−(T−t).

By combining all estimates, we obtain (10).
The proof of (11) is completely similar. One should use the function

K̂T (s, t) := cosh(T − s)

eT − e−T

(
et − e−t)

instead of KT (s, t). Then, (12) is replaced by

− e−t−s ≤ K̂T (s, t) − et−s

2
≤
(
e−2T+t+s + et−s−2T

)
, (13)

and all calculations go in the same way. 
�
Once the proposition is proved, we have straightforward integral estimates. Let

|| · ||2,T denote the norm in the space L2[0, T ].
Corollary 2.6 Under assumptions of Proposition 2.1, we have

‖ fT − f̂ ‖2,T ≤ 2C Ap (T + 1)p

and

‖ f ′
T − f̂ ′‖2,T ≤ 2C Ap (T + 1)p. (14)

Proof We have

‖ fT − f̂ ‖22,T =
∫ T

0
‖ fT (t) − f̂ (t)|2dt

≤ C2 A2
p (T + 1)2p

∫ T

0

(
e−t + e−T + e−(T−t)

)2
dt
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≤ 3C2 A2
p (T + 1)2p

∫ T

0

(
e−2t + e−2T + e−2(T−t)

)
dt

≤ 3C2 A2
p (T + 1)2p

(
1

2
+ T e−2T + 1

2

)

≤ 4C2 A2
p (T + 1)2p,

where at the last step we used assumption T ≥ 1.
The proof of (14) is completely similar. 
�

3 Application to Processes with Stationary Increments

3.1 A Brief Reminder on the Processes with Stationary Increments

A complex-valued random process B(t), t ∈ R, is called process with stationary
increments in the wide sense if it has finite second moments, and the mean and the
covariance of the process Bt0(t) := B(t0 + t) − B(t0) are the same for all t0 ∈ R. If
such process is stochastically continuous, then it admits a spectral representation of
the form

B(t) = B0 + D0t +
∫
R\{0}

(eitu − 1)X (du), (15)

where B0, D0 are random variables with finite second moment, and X (du) is a
complex-valued zero mean uncorrelated randommeasure onR\{0}, uncorrelated with
D0, see [13].

Actually, the initial value B0 is irrelevant to our purposes. Indeed, if f (·) is an
optimal approximation to B(·) − B0, then f (·) + B0 is an optimal approximation to
B(·) with the same energy. Therefore, in the following, we assume B0 = 0.

Recall that the covariance structure of B is characterized by a deterministic spectral
measure μB on R\{0} defined by μB(A) := E |X (A)|2. The spectral measure may be
infinite but it must satisfy Lévy’s integrability condition

∫
R\{0}

min(u2, 1)μB(du) < ∞.

In the sequel, B(t), t ∈ R, denotes a stochastically continuous, real-valued process
with stationary increments in the wide sense such that B(0) = 0.We always work with
a measurable version of B. Let us stress that even though B is a real-valued process,
the random measure X may be complex; yet, it must satisfy condition X (−A) =
X (A).

The standard deviation of B grows at most linearly. We will use the following
estimate:
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E |B(t)|2 = E |D0|2t2 +
∫
R\{0}

|eitu − 1|2μB(du)

≤ E |D0|2t2 +
∫ 1

−1
u2μB(du)t2 + 4μB{R\[−1, 1]}

≤ A(t2 + 1),

where

A := max

{
E |D0|2 +

∫ 1

−1
u2μB(du), 4μB{R\[−1, 1]}

}
. (16)

It follows that for any T > 0

E

∫ T

0
|B(t)|2dt < ∞,

therefore B ∈ L2[0, T ] almost surely, and Proposition 2.1 applies to the sample paths
of B with p = 1.

If we additionally assume that the random measure X is Gaussian, then the process
B is also Gaussian. Fractional Brownian motions W (H)(t), 0 < H ≤ 1, are the
most known Gaussian processes with stationary increments. The range of parameter
0 < H < 1 is associated with the family of spectral measures

μH (du) := MH du

|u|2H+1 , MH := �(2H + 1) sin(πH)

2π
,

with D0 = 0. Here and elsewhere, �(·) stands for the classical gamma function. We
have a power-type variance

E |W (H)(t)|2 =
∫ ∞

−∞
|eitu − 1|2 MH du

|u|2H+1

= 2
∫ ∞

−∞
(1 − cos(tu))

MH du

|u|2H+1

= |t |2H .

The case H = 1 is degenerate linear, i.e., W (1)(t) = D0t , with D0 being a standard
Gaussian random variable. The remarkable properties of fractional Brownian motions
are described, e.g., in [10, Section 7.2] and in [2, Chapter 4].

Wiener process W is a special case of fractional Brownian motion corresponding
to H = 1

2 . It has a spectral measure μW (du) = du
2π |u|2 .

3.2 Convergence of Average Least Energy

The following result describes the behavior of the average least energy approximation
for arbitrary process with (wide sense) stationary increments. We call
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ET ( f, B) :=
∫ T

0

[
( f (s) − B(s))2 + f ′(s)2

]
ds

the energy of function f with respect to B on the interval [0, T ]. If the function B is
fixed, we omit it from the notation.

Theorem 3.1 Let B(t), t ∈ R, be a stochastically continuous process with wide sense
stationary increments given by its spectral representation (15). Recall that fT denotes
the minimizer of ET ( f, B) over all f ∈ W

1
2[0, T ]. Then,

lim
T→∞ T−1

E ET ( fT , B) = C, (17)

where

C := E |D0|2 +
∫
R\{0}

u2

1 + u2
μB(du). (18)

The constant Cmeans the smallest average amount of energy per unit of time needed
for approximation of B.

Corollary 3.2 For the fractional Brownian motion, we have

C = �(2H + 1)

2
.

For the Wiener process H = 1
2 , this yields the constant

C = 1

2
(19)

that can be also obtained by other method (see Sect. 4 below).

Remark 3.3 We can give an alternative non-spectral representation for the constant
C, namely

C = (E D0)
2 + 1

2

∫ ∞

0
Var(B(s)) e−sds.

Indeed,

(E D0)
2 + 1

2

∫ ∞

0
Var(B(s)) e−sds

= (E D0)
2 + 1

2

∫ ∞

0
Var(D0) s

2e−sds

+ 1

2

∫ ∞

0

(∫
R\{0}

|1 − eisu |2 μB(du)

)
e−sds
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= E D2
0 + 1

2

∫
R\{0}

(∫ ∞

0
(2 − eisu − e−isu) e−sds

)
μB(du)

= E D2
0 + 1

2

∫
R\{0}

(
2 − 1

1 − iu
− 1

1 + iu

)
μB(du)

= E D2
0 +

∫
R\{0}

u2

1 + u2
μB(du) = C.

Remark 3.4 Would we introduce a viscosity constant κ > 0, i.e., change the penalty
to Q(y) = κ2y2, by a linear time change the minimal energy approximation problem
on [0, T ] for B reduces to that for the process B̃(t) := B(t/κ) on the interval [0, κT ]
with κ = 1. Thus, the limit energy constant from (18) becomes

Cκ := E |D0|2 +
∫
R\{0}

κ2u2

κ2 + u2
μB(du)

in this case.

Remark 3.5 It is worthwhile to compare the least energy approximation constant for
Wiener process (19) with analogous result of adaptive control; see [4, p. 319]. It
turns out that the optimal adaptive control requires two times more energy than the
non-adaptive one.

Proof of Theorem 3.1 Consider approximations (7) and (8) related to B. They become

f̂ (t) = D0t + 1

2

∫ ∞

−∞

∫
R\{0}

e−|s−t | (eisu − 1
)
X (du) ds

:= D0t +
∫
R\{0}

K (0)(t, u)X (du)

and

f̂ ′(t) = D0 + 1

2

∫ ∞

−∞

∫
R\{0}

sgn(s − t) e−|s−t | (eisu − 1
)
X (du) ds

:= D0 +
∫
R\{0}

K (1)(t, u)X (du),

where we have expressions for respective kernels

K (0)(t, u) = 1

2

∫ ∞

−∞
e−|s−t | (eisu − 1

)
ds

= 1

2
eitu

∫ ∞

−∞
e−|v|eivudv − 1

= eitu

1 + u2
− 1,

123



J Theor Probab (2017) 30:268–296 281

and

K (1)(t, u) = 1

2

∫ ∞

−∞
sgn(s − t) e−|s−t | (eisu − 1

)
ds

= 1

2
eitu

∫ ∞

−∞
sgn(v) e−|v| eivu dv

= iu eitu

1 + u2
.

We conclude that

f̂ (t) − B(t) =
∫
R\{0}

(
1

1 + u2
− 1

)
eitu X (du) =

∫
R\{0}

−u2

1 + u2
eitu X (du)

and

f̂ ′(t) = D0 +
∫
R\{0}

iu

1 + u2
eitu X (du). (20)

We see that both deviation f̂ −B and derivative f̂ ′ arewide sense stationary processes.
By the well-known isometric property, we have

E | f̂ (t) − B(t)|2 =
∫
R\{0}

u4

(1 + u2)2
μB(du), t ∈ R,

and

E | f̂ ′(t)|2 = E |D0|2 +
∫
R\{0}

u2

(1 + u2)2
μB(du), t ∈ R.

Hence, for any T > 0, we have

E ET ( f̂ , B) =
∫ T

0

[
E | f̂ (t) − B(t)|2 + E | f̂ ′(t)|2

]
dt

= T
[
E | f̂ (0) − B(0)|2 + E | f̂ ′(0)|2

]

= T

[
E |D0|2 +

∫
R\{0}

u4 + u2

(1 + u2)2
μB(du)

]

= T C.

It remains to show that the average energy of the least energy approximation fT and
that of stationary approximation f̂ are sufficiently close, i.e.,

lim
T→∞ T−1[E ET ( fT , B) − E ET ( f̂ , B)] = 0. (21)
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To this aim, consider two elements of L2
([0, T ],R2

)
,

VT := ( fT − B, f ′
T

)
, V̂ := ( f̂ − B, f̂ ′) .

By the triangle inequality, we have

√
ET ( fT − f̂ , 0) = ‖VT − V̂ ‖2 ≥

∣∣∣‖VT ‖2 − ‖V̂ ‖2
∣∣∣

=
∣∣∣∣
√
ET ( fT , B) −

√
ET ( f̂ , B)

∣∣∣∣ .

Notice that the algebraic identity

a − b = (
√
a − √

b)2 + 2(
√
a − √

b)
√
b, a, b ≥ 0,

yields

|a − b| ≤ |√a − √
b|2 + 2|√a − √

b|√b.

Hence,

∣∣ET ( fT , B) − ET ( f̂ , B)
∣∣ ≤ ET ( fT − f̂ , 0) + 2

√
ET ( fT − f̂ , 0)

√
ET ( f̂ , B)

and by Hölder inequality

∣∣E ET ( fT , B) − E ET ( f̂ , B)
∣∣ ≤ E

∣∣ET ( fT , B) − ET ( f̂ , B)
∣∣

≤ E ET ( fT − f̂ , 0) + 2E

(√
ET ( fT − f̂ , 0)

√
ET ( f̂ , B)

)

≤ E ET ( fT − f̂ , 0) + 2
√
E ET ( fT − f̂ , 0) E ET ( f̂ , B)

= E ET ( fT − f̂ , 0) + 2
√
ET ( fT − f̂ , 0) · C T . (22)

We see that

lim
T→∞ T−1 [

E ET ( fT − f̂ , 0)
] = 0 (23)

would imply the desired relation (21).
We first analyze the potential energy and prove that

sup
T>0

sup
0≤t≤T

E | fT (t) − B(t)|2 < ∞, (24)

sup
t≥0

E
∣∣ f̂ (t) − B(t)

∣∣2 < ∞. (25)

The part concerning f̂ is trivial because f̂ − B is stationary. Furthermore, let us
represent
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fT (t) − B(t) =
∫ T

0
RT (s, t)(B(s) − B(t))ds

where for s ∈ [t, T ], we have by (12)

0 ≤ RT (s, t) := KT (s, t)

≤ et−s

2
+ 2

(
e−2T+t+s + e−t−s + et−s−2T

)

= et−s

2
+ 2

(
e(t−s)+2(s−T ) + e(t−s)−2t + e(t−s)−2T

)

≤ 7et−s = 7e−|t−s|,

while for s ∈ [0, t], we have
0 ≤ RT (s, t) := KT (s, t) − sinh(t − s)

=
(
KT (s, t) − et−s

2

)
+ es−t

2

≤
(
e−2T+t+s + e−t−s + et−s−2T

)
+ es−t

2

=
(
e(s−t)−2(T−t) + e(s−t)−2s + e(s−t)−2(T−(t−s))

)
+ es−t

2
≤ 7es−t = 7e−|t−s|.

Hence,

E | fT (t) − B(t)|2 ≤ E

(
7
∫ T

0
e−|t−s| |B(s) − B(t)| ds

)2

≤ cE
∫ T

0
e−|t−s| |B(s) − B(t)|2 ds

≤ c A
∫ T

0
e−|t−s|[(s − t)2 + 1]ds

with A from (16), and (24) follows. By using also (25), we obtain

sup
T>0

sup
0≤t≤T

E
∣∣ fT (t) − f̂ (t)

∣∣2 < ∞. (26)

This estimate is still too crude, and we continue as follows.

fT (t) − f̂ (t) = −1

2

∫ 0

−∞
e−(t−s)B(s)ds

+
∫ T

0
(KT (s, t) − et−s/2)B(s)ds − 1

2

∫ ∞

T
e−(s−t)B(s)ds

:= G1(t) + G2(t) + G3(t).

123



284 J Theor Probab (2017) 30:268–296

For G1, we have

E |G1(t)|2 ≤ 1

4
e−2t

E

(∫ 0

−∞
es |B(s)|ds

)2

≤ 1

4
e−2t

E

(∫ 0

−∞
es |B(s)|2ds

)

≤ 1

4
e−2t A

∫ 0

−∞
es(|s|2 + 1)ds := c e−2t .

For G3, we have

E |G3(t)|2 ≤ 1

4
e−2(T−t)

E

(∫ ∞

T
eT−s |B(s)| ds

)2

≤ 1

4
e−2(T−t)

E

(∫ ∞

T
eT−s |B(s)|2 ds

)

≤ 1

4
e−2(T−t)A

∫ ∞

T
eT−s(s2 + 1) ds

≤ 1

4
e−2(T−t)A

∫ ∞

T
eT−s(2(s − T )2 + 2T 2 + 1) ds

≤ cA(T 2 + 1) e−2(T−t).

This estimate is not good enough when t is close to T . This is why we need (26). For
G2, we have by (12)

|G2(t)| ≤ 2(G2,1(t) + G2,2(t) + G2,3(t)),

where

G2,1(t) =
∫ T

0
et−2T+s |B(s)|ds,

G2,2(t) =
∫ T

0
e−t−s |B(s)|ds,

G2,3(t) =
∫ T

0
et−s−2T |B(s)|ds.

Moreover,

E |G2,1(t)|2 = e2t−4T
E

(∫ T

0
es |B(s)|ds

)2

≤ e2t−4T
E

(
eT
∫ T

0
es |B(s)|2ds

)
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≤ e2t−3T A
∫ T

0
es(s2 + 1)ds

≤ 2A e−2(T−t)(T 2 + 1),

E |G2,2(t)|2 = e−2t
E

(∫ T

0
e−s |B(s)|ds

)2

≤ e−2t
E

(∫ T

0
e−s |B(s)|2ds

)

≤ e−2t A
∫ T

0
e−s(s2 + 1)ds

≤ 3A e−2t ,

E |G2,3(t)|2 = e2t−4T
E

(∫ T

0
e−s |B(s)|ds

)2

≤ e2t−4T
E

(∫ T

0
e−s |B(s)|2ds

)

≤ e2t−4T
∫ T

0
e−s(s2 + 1)ds

≤ 3Ae−2(T−t).

We summarize the latter calculations as

E | fT (t) − f̂ (t)|2 ≤ cA
(
e−2t + e−2(T−t)(T 2 + 1)

)
. (27)

Now, we proceed with integration over [0, T ]. By applying (27) on the interval [0, T −
3 ln T ] and (26) on the interval [T − 3 ln T, T ], we obtain

E

∫ T

0
| fT (t) − f̂ (t)|2dt ≤ cA(1 + ln T ) = o(T ). (28)

Kinetic energy is studied in the same fashion. By using (13) instead of (12), we replace
(24), (25) with

sup
T>0

sup
0≤t≤T

E
∣∣ f ′

T (t)
∣∣2 < ∞,

sup
t≥0

E
∣∣ f̂ ′(t)

∣∣2 < ∞.

Hence (26) may be replaced by

sup
T>0

sup
0≤t≤T

E
∣∣ fT (t) − f̂ (t)

∣∣2 < ∞.
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Further, using again (13), we replace (27) with

E
∣∣ f ′

T (t) − f̂ ′(t)
∣∣2 ≤ cA

(
e−2t + e−2(T−t)(T 2 + 1)

)
.

Integration yields

E

∫ T

0

∣∣ f ′
T (t) − f̂ ′(t)

∣∣2 dt ≤ cA(1 + ln T ). (29)

By merging (28) and (29), we get

E ET
(
fT − f̂ , 0

) ≤ cA(1 + ln T ), (30)

which is a quantitative version of the remaining relation (23). 
�

3.3 Almost Sure and L1 Convergence

The random variable

Z := |D0|2 − E |D0|2 + C
= |D0|2 +

∫
R\{0}

u2

1 + u2
μB(du)

is a right candidate for the a.s. least energy limit. Notice that if B has no systematic
drift (i.e., D0 = 0), then Z = C is a deterministic constant.

We first develop a reduction tool showing that almost sure and L1 convergence of
the least approximation energy are reduced to the stationary case.

Proposition 3.6 If T−1ET ( f̂ , B)
a.s.→ Z, then T−1ET ( fT , B)

a.s.→ Z.

If T−1ET ( f̂ , B)
L1→ Z, then T−1ET ( fT , B)

L1→ Z.

Proof We know from (22) and (30) that for any T

E
∣∣ET ( fT , B) − ET ( f̂ , B)

∣∣ ≤ cA
√
T (1 + ln T ). (31)

Let us fix any a > 1 and consider geometric sequence of times Tn := an . It follows
from (31) that

E

∞∑
n=1

T−1
n

∣∣ETn ( fTn , B) − ETn ( f̂ , B)
∣∣ < ∞.

Therefore,

T−1
n

∣∣ETn ( fTn , B) − ETn ( f̂ , B)
∣∣→ 0
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almost surely and in L1. Under assumptions of our proposition, we obtain

T−1
n ETn ( fTn , B) → Z

almost surely (respectively, in L1).
Furthermore, since the least approximation energy ET ( fT , B) is an increasing func-

tion of T , we have for any T ∈ [Tn, Tn+1]
∣∣∣T−1ET ( fT , B) − Z

∣∣∣
≤ max

{∣∣∣T−1ETn ( fTn , B) − Z
∣∣∣ ,

∣∣∣T−1ETn+1( fTn+1 , B) − Z
∣∣∣
}

≤ amax
{∣∣∣T−1

n ETn ( fTn , B) − Z
∣∣∣ ,

∣∣∣T−1
n+1ETn+1( fTn+1 , B) − Z

∣∣∣
}

+ (a − 1)Z .

Now, the a.s. convergence (respectively, L1-convergence) of T−1ET ( fT , B) to Z fol-
lows from that of T−1

n ETn ( fTn , B) by letting a ↘ 1. 
�
Proposition 3.7 If the process B is Gaussian and its spectral measure μB has no
atoms, then T−1ET ( fT , B) → Z in L1 and almost surely, as T → ∞.

Proof According to Proposition 3.6, it is sufficient to prove that

T−1ET ( f̂ , B) → Z , as T → ∞,

in L1 and almost surely. We may split the energy into potential and kinetic parts and
check that

T−1
∫ T

0

∣∣ f̂ (t) − B(t)
∣∣2 dt →

∫
R\{0}

u4

(1 + u2)2
μB(du)

and

T−1
∫ T

0

∣∣ f̂ ′(t)
∣∣2 dt → |D0|2 +

∫
R\{0}

u2

(1 + u2)2
μB(du).

Recall that by (20), we have a representation

f̂ ′(t) = D0 + Y (t),

where Y is a centered stationary Gaussian process with the spectral measure

ν(du) = u2

(1 + u2)2
μB(du).
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It follows that

T−1
∫ T

0

∣∣ f̂ ′(t)
∣∣2 dt = |D0|2 + 2T−1D0

∫ T

0
Y (t)dt + T−1

∫ T

0
|Y (t)|2 dt.

Recall that Gaussian stationary processes whose spectral measure has no atoms
are ergodic, see [3,7]. Since both B(t) − f̂ (t) and Y (t) belong to this class, we
may use Birkhoff ergodic theorem and obtain convergence of time averages to the
corresponding expectations in any L p, p ∈ (1,∞), and almost surely, i.e.,

T−1
∫ T

0
| f̂ (t) − B(t)|2dt →

∫
R\{0}

u4

(1 + u2)2
μB(du),

T−1
∫ T

0
Y (t)dt → 0,

T−1
∫ T

0
|Y (t)|2dt →

∫
R\{0}

u2

(1 + u2)2
μB(du),

and we are done. 
�
Another interesting class of examples where we can provide an affirmative answer

for the least energy convergence is given by Lévy processes (i.e., processes with
independent stationary increments).

Proposition 3.8 Let B(t), t ≥ 0, be Lévy process having finite secondmoments. Then,

T−1ET ( fT , B)
L1→ Z, and T−1ET ( fT , B)

a.s.→ Z, as T → ∞, where

Z = C = |E B(1)|2 + Var B(1)

2
.

Proof Without loss of generality, we may extend B to the negative half-axis in such
a way that −B(−t), t ≤ 0, is an independent equidistributed copy of B(t), t ≥ 0.
Looking at B as a process with stationary increments in the wide sense, we see that
its linear part D0t is deterministic, and E B(t) = D0t , while the spectral measure μB

is the same as that of Wiener process up to the numerical factor Var B(1). It follows
that the hypothetic energy limit Z indeed has the form given in proposition.

Given the two-sided process B(t), t ∈ R, we may define an associated Lévy noise
(an independently scattered homogeneous random measure) X (du) on R by

X ((t1, t2]) := B(t2) − B(t1), t1 ≤ t2.

Elementary calculations show that

f̂ (t) − B(t) = 1

2

∫
R

e−|τ |B(t + τ)dτ − B(t)

= 1

2

∫
R

e−|t−u| sgn(t − u)X (du)
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and

f̂ ′(t) = 1

2

∫
R

e−|τ | sgn(τ )B(t + τ)dτ

= 1

2

∫
R

e−|t−u|X (du).

Both processes belong to the class of Ornstein–Uhlenbeck processes driven by Lévy
noise. As such, they are ergodic, cf. [8, Theorem 5], [9], and their squares satisfy
almost sure and L1 ergodic theorems. By applying Proposition 3.6, we complete the
proof. 
�
Remark 3.9 There exist strong invariance principles providing certain closeness
between sample paths of a Wiener process and a Lévy process. However, they do
not seem to be good enough for the transfer of least energy approximation estimates.

We conclude this series of examples by mentioning an interesting open problem.
Let B(t), t ≥ 0, be an α-stable Lévy process with 0 < α < 2. Then, the sample paths
of B are locally bounded; thus, the least energy approximation problem is perfectly
meaningful. However, since B(t) has infinite second moment for any t > 0, the
results of the present paper do not apply. We conjecture that in this case, the least
approximation energy would not grow in a quasi-deterministic linear way, but rather
imitate a stable subordinator of order α/2 with scaling T 2/α because every jump of B
of large size r would be reflected by a fast accumulation of energy for approximation
function of size r2 during a finite time interval. The handling of such different behavior
would be obviously beyond the size of the present contribution.

4 Wiener Process: Alternative Approach

In view of the importance of the Wiener process W := W (1/2), we find it reasonable
to trace an alternative approach to its least energy approximation. We prove that

E ET ( fT ,W ) ∼ T

2
, as T → ∞, (32)

as obtained before in (19). By the scaling property of the Wiener process, the opti-
mization problem

ET ( f,W ) =
∫ T

0

(
| f (t) − W (t)|2 + f ′(t)2

)
dt ↘ min, f ∈ W

1
2[0, T ],

is equivalent to the problem

E∗
T ( f,W ) :=

∫ 1

0

(
T 2| f (t) − W (t)|2 + f ′(t)2

)
dt ↘ min, f ∈ W

1
2[0, 1]. (33)

Let (e j ) j≥1 be the eigenbase of the covariance operator of W in L2[0, 1], and let
(γ j ) j≥1 be the corresponding eigenvalues. It is well known that
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γ j = 1

π2( j − 1/2)2
, e j (t) = √

2 sin
((
j − 1

2

)
π t
)
, j = 1, 2, . . . .

Denoting by w1, w2, . . . independent Gaussian random variables with Ew j = 0 and
Varw j = γ j , we have the Karhunen–Loève expansion of the Wiener process

W (t) =
∞∑
j=1

w j e j (t), t ∈ [0, 1].

For any absolutely continuous function f having square integrable derivative, we may
write expansions

f − f (0) :=
∞∑
j=1

f j e j

and

f ′ =
∞∑
j=1

f j e
′
j =

∞∑
j=1

γ
−1/2
j f j γ

1/2
j e′

j .

Since the system of functions (γ
1/2
j e′

j ) j≥1 is orthonormal, we have

∫ 1

0
f ′(t)2dt =

∞∑
j=1

γ −1
j f 2j .

It follows that the problem (33) takes a coordinate form

T 2
∫ 1

0

∣∣∣∣∣∣ f (0) +
∞∑
j=1

( f j − w j )e j

∣∣∣∣∣∣
2

dt +
∞∑
j=1

γ −1
j f 2j

= T 2

⎛
⎝ f (0)2 + 2 f (0)S +

∞∑
j=1

| f j − w j |2
⎞
⎠+

∞∑
j=1

γ −1
j f 2j ↘ min, (34)

where

S :=
∞∑
j=1

( f j − w j )
√
2γ j . (35)

We first optimize over initial value f (0) with other coordinates f j fixed and find
f (0) = −S. Now, the optimization problem becomes

E∗
T ( f,W ) = −T 2S2 +

∞∑
j=1

((
T 2 + 1

γ j

)
f 2j − 2T 2 f jw j + T 2w2

j

)
↘ min . (36)
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Since partial derivatives in each f j must vanish, we find

f j = T 2 S
√
2γ j + w j

T 2 + 1
γ j

, j = 1, 2, . . . . (37)

It follows that

(
T 2 + 1

γ j

)
f 2j = T 4(2S2γ j + 2

√
2γ j Sw j + w2

j )

T 2 + 1
γ j

,

2T 2 f jw j = 2T 4√2γ j Sw j + 2T 4w2
j

T 2 + 1
γ j

.

We plug these expressions into (36), notice that the terms containing Sw j cancel and
obtain the least approximation energy

ET ( fT ,W ) = −T 2S2 +
∞∑
j=1

2T 4γ j

T 2 + 1
γ j

S2 +
∞∑
j=1

⎛
⎝T 2 − T 4

T 2 + 1
γ j

⎞
⎠w2

j .

By using the identity

∞∑
j=1

(2γ j ) = 1, (38)

we may rewrite the least energy as

ET ( fT ,W ) = −
∞∑
j=1

2T 2

T 2 + 1
γ j

S2 +
∞∑
j=1

T 2 1
γ j

T 2 + 1
γ j

w2
j .

Recall that Ew2
j = γ j . We find the average least energy

E ET ( fT ,W ) =
(
−2E [S2] + 1

) ∞∑
j=1

1

1 + 1
T 2γ j

.

Since
∞∑
j=1

1

1 + 1
T 2γ j

∼ T

π

∫ ∞

0

dx

1 + x2
= T

2
, as T → ∞, (39)

and, as we will see,

E S2 ∼ 1

T
, as T → ∞, (40)

we arrive at (32).
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It remains to analyze the behavior of S. By using the definition of S in (35) and
formulae (37), we get an equation

S =
∞∑
j=1

√
2γ j

⎛
⎝T 2 S

√
2γ j + w j

T 2 + 1
γ j

− w j

⎞
⎠ .

Solving it in S, we get

S = A(T )

D(T )

with

A(T ) =
∞∑
j=1

w j
√
2γ j

T 2γ j + 1
,

D(T ) =
⎛
⎝ ∞∑

j=1

2γ j

1 + 1
T 2γ j

⎞
⎠− 1.

Notice that A(T ) is a centered normal random variable with variance

E |A(T )|2 =
∞∑
j=1

2γ 2
j

(T 2γ j + 1)2
∼ 2

π

∫ ∞

0

dx

(1 + x2)2
T−3 ∼ 1

T 3

and for the non-random denominator D(T ) by using (38) and (39), we have

D(T ) = − 2

T 2

∞∑
j=1

1

1 + 1
T 2γ j

∼ − 1

T
.

Now, (40) is confirmed, and we are done.

5 Addendum: Proof of Proposition 2.1

Proof of Proposition 2.1 We first notice that

inf
f ∈W1

2[0,T ]
ET ( f ) ≤ ET (0) =

∫ T

0
Q(−B(t)) dt < ∞.

Indeed, if B(·) is bounded, then Q(−B(·)) is bounded. If (1) holds, then we have

Q(x) ≤ Ã (|x |p+1 + 1), x ∈ R,
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with Ã := 2A + Q(0). Hence, if B ∈ L p+1[0, T ], then
∫ T

0
Q(−B(t)) dt ≤ Ã

∫ T

0
(|B(t)|p+1 + 1) dt < ∞.

Second, we show that we may restrict the minimization in (2) on a subclass

WC,M :=
{
f ∈ W

1
2[0, T ] :

∫ T

0
f ′(t)2dt ≤ C, max

0≤t≤T
| f (t)| ≤ M

}
(41)

with sufficiently large parameters C and M . To justify this statement, it is sufficient
to show that for each r > 0, there exists C, M such that

{ f : ET ( f ) ≤ r} ⊂ WC,M .

Let f be such that ET ( f ) ≤ r . Then,

∫ T

0
f ′(t)2dt ≤ ET ( f ) ≤ r

andwemay letC := r .Moreover, for any 0 ≤ s, t ≤ T , we have | f (s)− f (t)| ≤ √
rT

by using Hölder inequality. Therefore, if | f (s)| ≥ M holds for some s ∈ [0, T ], then
| f (t)| ≥ M − √

rT for all t ∈ [0, T ]. We see that

r ≥ ET ( f ) ≥
∫

{t :|B(t)|≤(M−√
rT )/2}

Q( f (t) − B(t)) dt

≥ Leb{t : |B(t)| ≤ (M − √
rT )/2} inf{Q(x) : |x | ≥ (M − √

rT )/2}.

When M goes to infinity, then the first term tends to T , while the second tends to
infinity due to the assumption limx→±∞ Q(x) = +∞. Therefore, for large M , we
obtain a contradiction. Hence, for such M assumption | f (s)| ≥ M cannot hold, and
(41) is confirmed.

Next, we show that theminimum of the problem (2) is attained. Since the functional
ET (·) is lower semi-continuous with respect to the uniform convergence (notice that
the potential part of the energy is even continuous), and since WC,M is relatively
compact with respect to the topology of uniform convergence, the minimum of ET (·)
onWC,M is indeed attained on some set of minimizers.

Next, since Q(·) is strictly convex, the functional ET (·) is also strictly convex;
hence, the minimizer is unique. Let us denote it fT .

By Lebesgue theorem, Gâteaux (directional) derivative of ET (·)

δET ( fT , ε) := lim
h→0

h−1 (ET ( fT + hε) − ET ( fT ))

=
∫ T

0

[
2 f ′

T (t)ε′(t) + Q′( fT (t) − B(t))ε(t)
]
dt
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is well defined and must vanish at fT for any ε ∈ W
1
2[0, T ]. We have thus

∫ T

0

[
2 f ′

T (t)ε′(t) + Q′( fT (t) − B(t))ε(t)
]
dt = 0. (42)

To justify the application of Lebesgue dominated convergence theorem to the inte-
grals ∫ T

0
h−1 [Q( fT (t) + hε(t) − B(t)) − Q( fT (t) − B(t))] dt,

notice that both functions fT and ε are bounded, say max | fT (t)| ≤ M1,max |ε(t)| ≤
M2. Thus, if the function B(·) is bounded, say max |B(t)| ≤ M3, then the integrand’s
values are uniformly bounded by the constant M2 sup|x |≤M1+M2+M3

|Q′(x)| for |h| ≤
1, and we use the fact that the derivative of a convex function (if it exists everywhere)
is locally bounded.

Alternatively, if (1) holds, we have

h−1 |Q( fT (t) + hε(t) − B(t)) − Q( fT (t) − B(t))|
= |Q′( fT (t) + θhε(t) − B(t))| |ε(t)|
≤ A((M1 + M2 + |B(t)|)p + 1)M2,

which also provides an integrable majorant due to B ∈ L p[0, T ].
Let us fix some τ ∈ (0, T ] and apply (42) to the functions

εu(t) :=

⎧⎪⎨
⎪⎩
1, 0 ≤ t ≤ τ − u;
0, t ≥ τ ;
u−1(τ − t), τ − u ≤ t ≤ τ,

with 0 < u < τ . We obtain

0 =
∫ T

0

[
2 f ′

T (t)ε′
u(t) + Q′( fT (t) − B(t))εu(t)

]
dt

= −2u−1
∫ τ

τ−u
f ′
T (t)dt

+
∫ τ−u

0
Q′( fT (t) − B(t)) dt +

∫ τ

τ−u
Q′( fT (t) − B(t))εu(t) dt

= −2u−1( fT (τ ) − fT (τ − u))

+
∫ τ−u

0
Q′( fT (t) − B(t)) dt +

∫ τ

τ−u
Q′( fT (t) − B(t))εu(t) dt.

Now, we let u ↘ 0 and see that the left derivative ( fT )′−(τ ) exists and

2 ( fT )′−(τ ) =
∫ τ

0
Q′( fT (t) − B(t)) dt. (43)
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In exactly the same way, one obtains

2 ( fT )′+(τ ) = −
∫ T

τ

Q′( fT (t) − B(t)) dt. (44)

Since f ′
T (·) exists almost everywhere, for some τ ∈ (0, T ), we have ( fT )′−(τ ) =

( fT )′+(τ ), i.e.,

∫ T

0
Q′( fT (t) − B(t)) dt = 0. (45)

This fact in turn proves that ( fT )′−(τ ) = ( fT )′+(τ ) for every τ ∈ (0, T ), i.e., the
function fT (·) is differentiable everywhere, and we have

2 f ′
T (τ ) = −

∫ τ

0
Q′( fT (t) − B(t)) dt, τ ∈ (0, T ).

By (45), the boundary conditions ( fT )′+(0) = ( fT )′−(T ) = 0 also follow from repre-
sentations (43) and (44). 
�

6 Concluding Remark

Of course, one would like to handle the case of more or less general penalty functions
Q. But in this case, the equation replacing (5) is not linear, andwe do not knowwhether
we may proceed with some, may be inexplicit, analogues of exponential functions.
It would be also nice to guess a stationary approximation for least energy functions
related to general penalty Q.

Acknowledgements The work of Mikhail Lifshits was supported by Grants NSh.2504.2014.1, RFBR
13-01-00172, and SPbSU 6.38.672.2013.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Davies, P.L., Kovac, A.: Local extremes, runs, strings and multiresolution. Ann. Stat. 29(1), 1–65
(2001)

2. Embrechts, P., Maejima, M.: Selfsimilar Processes. Princeton University Press, Princeton (2002)
3. Grenander, U.: Stochastic processes and statistical inference. Arkiv Mat. 1, 195–277 (1950)
4. Karatzas, I.: On a stochastic representation for the principal eigenvalue of a second order differential

equation. Stochastics 3, 305–321 (1980)
5. Lifshits, M., Setterqvist, E.: Energy of taut string accompanyingWiener process. Stoch. Process. Their

Appl. 125, 401–427 (2015)
6. Mammen, E., van de Geer, S.: Locally adaptive regression splines. Ann. Stat. 25(1), 387–413 (1997)
7. Maruyama, G.: The harmonic analysis of stationary stochastic processes. Mem. Fac. Sci. Kyusyu Univ.

A4, 45–106 (1949)

123



296 J Theor Probab (2017) 30:268–296

8. Rosinski, J., Zak, T.: Simple conditions for mixing of infinitely divisible processes. Stoch. Process.
Their Appl. 61, 277–288 (1996)

9. Rosinski, J., Zak, T.: The equivalence of ergodicity and weak mixing for infinitely divisible processes.
J. Theor. Probab. 10, 73–86 (1997)

10. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman & Hall, New
York (1994)

11. Scherzer,O., et al.:VariationalMethods in Imaging.AppliedMathematical Sciences, vol. 167. Springer,
New York (2009)

12. Setterqvist, E., Forchheimer, R.: Application of ϕ-stable sets to a buffered real-time communication
system. In: Proceedings of the 10th Swedish National computer networking workshop (2014)

13. Yaglom, A.M.: An Introduction to the Theory of Stationary Random Functions. Prentice Hall Inc.,
Englewood Cliffs (1962). (revised English edition)

123


	Least Energy Approximation for Processes with Stationary Increments
	Abstract
	1 Introduction
	2 Least Energy Approximation: Deterministic Setting
	2.1 Approximation on a Fixed Interval
	2.2 Approximation in a Long Run
	2.2.1 Heuristics
	2.2.2 Rigorous Result


	3 Application to Processes with Stationary Increments
	3.1 A Brief Reminder on the Processes with Stationary Increments
	3.2 Convergence of Average Least Energy
	3.3 Almost Sure and L1 Convergence

	4 Wiener Process: Alternative Approach
	5 Addendum: Proof of Proposition 2.1
	6 Concluding Remark
	Acknowledgements
	References




