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Abstract We prove a multivariate central limit theorem with explicit error bound in
a non-smooth function distance for sums of bounded decomposable d-dimensional
random vectors. The decomposition structure is similar to that of Barbour et al. (J
Combin Theory Ser 47:125–145, 1989) and is more general than the local dependence
structure considered in Chen and Shao (Ann Probab 32:1985–2028, 2004). The error
bound is of the order d

1
4 n− 1

2 , where d is the dimension and n is the number of
summands. The dependence on d, namely d

1
4 , is the best known dependence even for

sums of independent and identically distributed random vectors, and the dependence

on n, namely n− 1
2 , is optimal. We apply our main result to a random graph example.

Keywords Stein’s method · Multivariate normal approximation · Non-smooth
function distance · Rate of convergence · Random graph counting
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1 Introduction

Let W = 1√
n

∑n
i=1 Xi be a standardized sum of independent and identically dis-

tributed d-dimensional random vectors such that E(X1) = 0, Cov(X1) = Id , and
E(|X1|3) < ∞where Id denotes the d-dimensional identitymatrix and |·| denotes the
Euclidean norm of a vector. Bentkus [5] proved the following bound on a non-smooth
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function distance between the distribution of W and the standard d-dimensional
Gaussian distribution:

sup
A∈A

|P(W ∈ A) − P(Z ∈ A)| � CE(|X1|3)d 1
4 n− 1

2 (1.1)

where A denotes the collection of all the convex sets in Rd , Z is a d-dimensional
standard Gaussian vector, and C is an absolute constant.

In this paper, we aim to prove a multivariate central limit theorem with an error
bound having the same order ofmagnitude in terms of d and n for the same non-smooth
function distance as in (1.1), but for general bounded dependent random vectors. The
dependence structure we consider is similar to that of Barbour et al. [4] and is more
general than the local dependence structure considered in Chen and Shao [10]. The
approach we use is the recursive approach in Stein’s method for multivariate normal
approximation.

Stein’s method was introduced by Stein [18] for normal approximation and has
become a powerful tool in proving distributional approximations. We refer to Barbour
andChen [3] for an introduction to Stein’smethod. Stein’smethod formultivariate nor-
mal approximation was first studied in Götze [13]. Along with an inductive argument
for sums of independent random vectors, he proved an error bound whose dependence

on the dimension is d
3
2 for the distance in (1.1). The dependence on the dimension was

improved to d
1
4 in Bentkus [5] [cf. (1.1)] and Bentkus [6] by using the same induc-

tive approach and a Lindeberg-type argument. Using the recursive approach in Stein’s
method, Rinott and Rotar [17] proved a multivariate normal approximation result for
sums of bounded random vectors that allow for a certain decomposition. The error

bound they obtained for the distance in (1.1) is typically of the order Od(n− 1
2 log n)

with unspecified dependence on d and an additional logarithmic factor. Recently, Fang
and Röllin [11] proved a multivariate normal approximation result under the general
framework of Stein coupling [cf. Fang and Röllin [9]]. For sums of locally dependent
bounded random vectors, their bound for the distance in (1.1) is typically of the order

d
7
4 n− 1

2 . Compared with the existing literature on bounding the non-smooth function
distance in (1.1) for multivariate normal approximation for sums of bounded random
vectors, our new result not only applies to a decomposition structure more general
than local dependence, but also obtains an error bound typically of the same order as
for sums of independent and identically distributed random vectors in (1.1). Stein’s
method has also been used to prove smooth function distances for multivariate normal
approximation under various dependence structures; see, for example, Goldstein and
Rinott [12], Raič [15], Chatterjee and Meckes [7], and Reinert and Röllin [16].

Many problems in random graph counting satisfy the decomposition structure con-
sidered in this paper. See, for example, Barbour et al. [4], Janson and Nowicki [14],
Avram and Bertsimas [1], and Rinott and Rotar[17]. We will study an example from
Rinott and Rotar [17] and show that the error bound obtained by our main theorem is
better than that by Rinott and Rotar [17].

The paper is organized as follows. In the next section, we state our main result.
In Sect. 3, we study a random graph counting problem. In Sect. 4, we prove our
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main result. Throughout this article, | · | denotes the Euclidean norm of a vector or
the cardinality of a set, and Idd denotes the d-dimensional identity matrix. Define
[n] := {1, . . . , n} and XN := ∑

i∈N Xi for an index set N .

2 Main Results

For a sum of standardized d-dimensional random vectorsW = ∑n
i=1 Xi with a certain

decomposition structure, we aim to bound the quantity

dc
(
L (W ),L (Z)

) = sup
A∈A

|P(W ∈ A) − P(Z ∈ A)|, (2.1)

where Z has standard d-dimensional Gaussian distribution and A denotes the collec-
tion of all the convex sets inRd . The following is our main theorem.

Theorem 2.1 Let W = ∑n
i=1 Xi be a sum of d-dimensional random vectors such

that E(Xi ) = 0 and Cov(W ) = Id . Suppose W can be decomposed as follows:

∀ i ∈ [n], ∃ i ∈ Ni ⊂ [n] such that W − XNi is independent of Xi ; (2.2)

∀ i ∈ [n], j ∈ Ni , ∃ Ni ⊂ Ni j ⊂ [n] such that W − XNi j

is independent of {Xi , X j }; (2.3)

∀ i ∈ [n], j ∈ Ni , k ∈ Ni j , ∃ Ni j ⊂ Ni jk ⊂ [n] such that W − XNi jk

is independent of {Xi , X j , Xk}. (2.4)

Suppose further that for each i ∈ [n], j ∈ Ni and k ∈ Ni j ,

|Xi | � β, |Ni | � n1, |Ni j | � n2, |Ni jk | � n3. (2.5)

Then there is a universal constant C such that

dc(L (W ),L (Z)) � Cd1/4nβ3n1
(
n2 + n3

d

)
, (2.6)

where dc is defined as in (2.1) and Z is a d-dimensional standard Gaussian random
vector.

Remark 2.2 Under the conditions of Theorem 2.1 but with Cov(W ) = �, by consid-
ering �−1/2W , we have

dc(L (W ),L (�1/2Z)) � Cd1/4n||�−1/2||3β3n1
(
n2 + n3

d

)
,

where ||�−1/2|| is the operator norm of �−1/2.

Remark 2.3 The decomposition (2.2) and (2.3) is the same as that of Barbour et al. [4]
and, as observed there, is more general than the local dependence structure studied
in Chen [8] and later in Chen and Shao [10]. Condition (2.4) is a natural extension
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of the decomposition of Barbour et al. [4]. We need this extra condition to obtain the
bound in (2.6).

Remark 2.4 As mentioned at the beginning of the Introduction, the dependence on
the dimension d in (2.6) is the best known dependence even for sums of independent
and identically distributed random vectors. In typical applications, β is of the order

O(n− 1
2 ). From the decomposition (2.2)–(2.4), the neighborhood sizes n2 and n3 are

typically of the same order as n1. On the other hand, in the local dependence structure
studied in Chen [8] and Chen and Shao [10], quantities corresponding to n2 and n3 are
typically of the order O(n21) and O(n31), respectively. Rinott and Rotar [17] proved a
bound similar to (2.6) for a different decomposition structure. Their bound does not
have explicit dependence on d and has an additional log n term. Recently, Fang and
Röllin [11] proved a general multivariate central limit theorem for the non-smooth
function distance under the framework of Stein coupling (cf. Chen and Röllin [9])
with boundedness conditions. Although their bound is more widely applicable, it does
not yield optimal dependence on d and does not directly apply to the decomposition
structure considered in this paper.

3 An Application

Let n � 2,m � 1, d � 2 be positive integers. Consider a regular graph with n vertices
and vertex degree m. Let N = nm/2 be the total number of edges. We color each
vertex independently with one of the colors ci , 1 � i � d, with the probability of ci
being πi , where

∑d
i=1 πi = 1. For i ∈ {1, . . . , d}, let Wi be the number of edges

connecting vertices both of color ci . Formally, with edges indexed by j ∈ {1, . . . , N },
we set

Wi =
N∑

j=1

X ji ,

where X ji is the indicator of the event that the edge j connects two vertices both of
color ci . Let

W = (W1, . . . ,Wd)
t . (3.1)

Let λ = E(W ), � = Cov(W ). It is known that

λ = (Nπ2
1 , . . . , Nπ2

d )t ,

and [cf. (3.1) of Rinott and Rotar [17]]

Var(Wi ) = Nπ2
i (1 − π2

i ) + 2N (m − 1)(π3
i − π4

i ),

Cov(Wi ,Wj ) = −N (2m − 1)π2
i π2

j , for i �= j.

We prove the following bound on the non-smooth function distance between the stan-
dardized distribution of W and the standard d-dimensional Gaussian distribution.
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Proposition 3.1 Let W be defined as in (3.1). Let λ and� be themean and covariance
matrix of W , respectively. We have

dc(L(�−1/2(W − λ)),L(Z)) � Cd7/4m3/2L3n−1/2 (3.2)

where dc is defined as in (2.1), Z is a d-dimensional standard Gaussian vector, C is
an absolute constant, and

L =
[
min1�i�d{π2

i (1 − πi )}
]−1/2

.

Remark 3.2 Rinott and Rotar [17] proved an upper bound for the left-hand side of
(3.2) as follows [cf. (3.2) of Rinott and Rotar [17]]:

dc(L(�−1/2(W − λ)),L(Z)) � cdm
3/2L3(| log L| + log n)n−1/2, (3.3)

where cd is an unspecified constant depending on d. Compared to (3.3), our bound in
(3.2) has explicit dependence on d and does not have the logarithmic terms.

Proof of Proposition 3.1 Recall that

�−1/2(W − λ) =
N∑

j=1

�−1/2
(
(X j1, . . . , X jd)

t − (π2
1 , . . . , π2

d )t
)

=:
N∑

j=1

ξ j .

Observe that at most one of {X j1, . . . , X jd} can be nonzero. Together with∑d
i=1 πi =

1 and the fact that the elements of�−1/2 are bounded in modulus by N−1/2L (cf. page
339 of Rinott and Rotar [17]), we have

|ξ j | � 2d1/2N−1/2L .

Moreover, the summation
∑N

j=1 ξ j can be easily seen to satisfy the decomposition
structure (2.2)–(2.4) with

|Ni | � 2m, |Ni j | � 3m, |Ni jk | � 4m.

By applying Theorem 2.1, we obtain the bound (3.2). 	


4 Proof of Main Theorem

For given test function h, we consider the Stein equation

� f (w) − wt∇ f (w) = h(w) − E[h(Z)], w ∈ Rd , (4.1)

where � denotes the Laplacian operator and ∇ the gradient operator. If h is not
continuous (as for the indicator function of a convex set), then f is not smooth enough
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to apply Taylor’s expansion to the necessary degree, so more refined techniques are
necessary.

We follow the smoothing technique of Bentkus [5]. Recall that A is the collection
of all the convex sets inRd . For A ∈ A, let hA(x) = IA(x), and define the smoothed
function

hA,ε(w) = ψ

(
dist(w, A)

ε

)

, (4.2)

where dist(w, A) = infv∈A |w − v| and

ψ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, x < 0,

1 − 2x2, 0 � x < 1
2 ,

2(1 − x)2, 1
2 � x < 1,

0, 1 � x .

(4.3)

Define also

Aε = {x ∈ Rd : dist(x, A) � ε}, A−ε = {x ∈ A: dist(x,Rd \ A) > ε}

[note that in general (A−ε)ε �= A].
We will use the following lemmas in the proof of Theorem 2.1.

Lemma 4.1 (Lemma 2.3 of Bentkus [5]) The function hA,ε as defined above has the
following properties:

(i) hA,ε(w) = 1 for all w ∈ A, (4.4)

(ii) hA,ε(w) = 0 for all w ∈ Rd \ Aε, (4.5)

(iii) 0 � hA,ε(w) � 1 for all w ∈ Aε \ A, (4.6)

(iv) |∇hA,ε(w)| � 2ε−1 for all w ∈ Rd , (4.7)

(v) |∇hA,ε(v) − ∇hA,ε(w)| � 8|v − w|ε−2 for all v,w ∈ Rd . (4.8)

Lemma 4.2 (Ball [2], Bentkus [5])We have

sup
A∈A

max{P(Z ∈ Aε \ A),P(Z ∈ A \ A−ε)} � 4d1/4ε, (4.9)

and the dependence on d in (4.9) is optimal.

Lemma 4.3 (Lemma 4.2 of Fang and Röllin [11]) For any d-dimensional random
vector W,

dc(L (W ),L (Z)) � 4d1/4ε + sup
A∈A

∣
∣E[hA,ε(W )] − E[hA,ε(Z)]∣∣. (4.10)
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Lemma 4.4 (Lemma 4.3 of Fang and Röllin [11]) For each map a: {1, . . . , d}k → R,
we have

∫

Rd

⎛

⎝
d∑

i1,...,ik=1

a(i1, . . . , ik)
ϕi1...ik (z)

ϕ(z)

⎞

⎠

2

ϕ(z)dz � k!
d∑

i1,...,ik=1

(a(i1, . . . , ik))
2 ,

(4.11)
where ϕ(z) is the density of d-dimensional standard normal distribution and

ϕi1...ik (z) = ∂kϕ(z)/(∂zi1 . . . ∂zik ).

Now fix ε and a convex set A ⊂ Rd . It can be verified directly that defining

gA,ε(w, τ) = − 1

2(1 − τ)

∫

Rd

{
hA,ε(

√
1 − τw + √

τ z) − E[hA,ε(Z)]
}

ϕ(z)dz,

(4.12)
the function

f A,ε(w) =
∫ 1

0
gA,ε(w, τ)dτ (4.13)

is a solution to (4.1) is (cf. Götze [13]). In what follows, we keep the dependence
on A and ε implicit and write g = gA,ε, f = f A,ε and h = hA,ε. For real-valued
functions on Rd , we write fr (x) for ∂ f (x)/∂xr , frs(x) for ∂2 f (x)/(∂xr∂xs) and so
forth. We also write gr (w, τ) = ∂g(w, τ)/∂wr and so on. Moreover, let ∇g(w, τ) =
(g1(w, τ), . . . , gd(w, τ))t and let �g(w, τ) = ∑d

r=1 grr (w, τ).
Using this notation and the integration by parts formula, we have for 1 � r, s, t � d

that

grs(w, τ) = − 1

2τ

∫

Rd
h(

√
1 − τw + √

τ z)ϕrs(z)dz

= 1

2
√

τ

∫

Rd
hs(

√
1 − τw + √

τ z)ϕr (z)dz (4.14)

and

grst (w, τ) =
√
1 − τ

2τ 3/2

∫

Rd
h(

√
1 − τw + √

τ z)ϕrst (z)dz

=
√
1 − τ

2
√

τ

∫

Rd
h jk(

√
1 − τw + √

τ z)ϕr (z)dz. (4.15)

Proof of Theorem 2.1 Fix A ∈ A and ε > 0 (to be chosen later) and let f = f A,ε be
the solution to the Stein equation (4.1) corresponding to h = hA,ε as defined by (4.2).
Let

κ := dc(L (W ),L (Z)). (4.16)

To avoid confusion, we will always use r, s, t to index the components of d-
dimensional vectors. Define
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Wi := W − XNi , Wi j := W − XNi j , Wi jk := W − XNi jk .

By assumption (2.2) and because E(Xi ) = 0, we have

−E[Wt∇g(W, τ )] = −
d∑

r=1

E[(W )r gr (W, τ )]

= −
d∑

r=1

n∑

i=1

E[(Xi )r gr (W, τ )]

=
d∑

r=1

n∑

i=1

E{(Xi )r [gr (Wi , τ ) − gr (W, τ )]}.

Here and subsequently, we use (X)r to denote the r th component of a vector X . By
assumption (2.2) and Cov(W ) = Id , we have

∑n
i=1

∑
j∈Ni

E{(Xi )r (X j )s} = δrs
where δ denotes the Kronecker delta. This implies that

E[�g(W, τ )] = E

⎧
⎨

⎩

d∑

r,s=1

n∑

i=1

∑

j∈Ni

(E[(Xi )r (X j )s])grs(W, τ )

⎫
⎬

⎭
.

Adding and subtracting the corresponding terms and using (2.3), we have

E
{
�g(W, τ ) − Wt∇g(W, τ )

}

= E

⎧
⎨

⎩

d∑

r=1

n∑

i=1

(Xi )r
[
gr (Wi , τ ) − gr (W, τ ) +

d∑

s=1

∑

j∈Ni

(X j )sgrs(W, τ )
]
⎫
⎬

⎭

+E

⎧
⎨

⎩

d∑

r,s=1

n∑

i=1

∑

j∈Ni

(E[(Xi )r (X j )s] − (Xi )r (X j )s)[grs(W, τ ) − grs(Wi j , τ )]
⎫
⎬

⎭

=: R1(τ ) + R2(τ ).

Taking g(w, τ) = gA,ε(w, τ) in (4.12), it follows from (4.1) and (4.13) that

E[h(W )] − E[h(Z)] =
∫ 1

0
(R1(τ ) + R2(τ ))dτ. (4.17)

In the following, we will first give an upper bound for | ∫ 1
0 R1(τ )dτ | and then argue

that an upper bound for | ∫ 1
0 R2(τ )dτ | can be derived similarly.

To estimate
∫ 1
0 R1(τ )dτ , we consider the cases ε2 < τ � 1 and 0 < τ � ε2

separately. For the first case, we use the first expression of grs(w, τ) in (4.14), Taylor’s
expansion
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f (x + a) − f (x) =
∫ 1

0
at∇ f (x + ua)du = E{at∇ f (x +Ua)},

and the integration by parts formula and get

∫ 1

ε2
R1(τ )dτ = E

⎧
⎨

⎩

d∑

r,s=1

n∑

i=1

∑

j∈Ni

∫ 1

ε2

1

2τ

∫

Rd
[h(

√
1 − τ(W −UXNi )

+√
τ z) − h(

√
1 − τW + √

τ z)]

×(Xi )r (X j )sϕrs(z)dzdτ

⎫
⎬

⎭

= E

⎧
⎨

⎩

d∑

r,s,t=1

n∑

i=1

∑

j,k∈Ni

∫ 1

ε2

√
1 − τ

2τ 3/2

∫

Rd
h(

√
1 − τW

+√
τ z − √

1 − τUV XNi )

×U (Xi )r (X j )s(Xk)tϕrst (z)dzdτ

⎫
⎬

⎭
,

whereU and V are independent random variables distributed uniformly on [0, 1]. By
writing h(

√
1 − τW + √

τ z − √
1 − τUV XNi ) as a sum of differences and using the

independence assumption (2.4), we have

∫ 1

ε2
R1(τ )dτ = R1,1 + R1,2 + R1,3 + R1,4

where

R1,1 = E

⎧
⎨

⎩

d∑

r,s,t=1

n∑

i=1

∑

j,k∈Ni

∫ 1

ε2

√
1 − τ

2τ 3/2

∫

Rd

[
h(

√
1 − τW + √

τ z−√
1−τUV XNi )

− h(
√
1 − τWi jk + √

τ z)
]
U (Xi )r (X j )s(Xk)tϕrst (z)dzdτ

⎫
⎬

⎭
,

R1,2 = E

⎧
⎨

⎩

d∑

r,s,t=1

n∑

i=1

∑

j,k∈Ni

∫ 1

ε2

√
1 − τ

2τ 3/2

∫

Rd

{
E[h(

√
1 − τWi jk + √

τ z)]

−E[h(
√
1 − τW + √

τ z)]
}
U (Xi )r (X j )s(Xk)tϕrst (z)dzdτ

⎫
⎬

⎭
,

R1,3 = E

⎧
⎨

⎩

d∑

r,s,t=1

n∑

i=1

∑

j,k∈Ni

∫ 1

ε2

√
1 − τ

2τ 3/2

∫

Rd

{
E[h((

√
1 − τW + √

τ z)]
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−E[h(
√
1 − τ Z + √

τ z)]
}
U (Xi )r (X j )s(Xk)tϕrst (z)dzdτ

⎫
⎬

⎭
,

R1,4 = E

⎧
⎨

⎩

d∑

r,s,t=1

n∑

i=1

∑

j,k∈Ni

∫ 1

ε2

√
1 − τ

2τ 3/2

∫

Rd
h(

√
1 − τ Z + √

τ z)

×U (Xi )r (X j )s(Xk)tϕrst (z)dzdτ

⎫
⎬

⎭
,

where Z is an independent d-dimensional standard Gaussian random vector.
By the properties of h in (4.4) and (4.5), the boundedness condition (2.5), and the

independence assumption (2.4),

|R1,1| � E

⎧
⎨

⎩

d∑

r,s,t=1

n∑

i=1

∑

j,k∈Ni

∫ 1

ε2

√
1 − τ

4τ 3/2

∫

Rd
I(dist(

√
1 − τWi jk

+√
τ z, Aε\A) �

√
1 − τn3β)

×∣∣(Xi )r (X j )s(Xk)tϕrst (z)
∣
∣dzdτ

⎫
⎬

⎭
.

By the boundedness condition (2.5), the definition of κ in (4.16) and (4.9),

E
[
I(dist(

√
1 − τWi jk + √

τ z, Aε\A) �
√
1 − τn3β)

]

� E
[
I(dist(

√
1 − τW + √

τ z, Aε\A) � 2
√
1 − τn3β)

]

� 4d1/4
(

ε√
1 − τ

+ 4n3β

)

+ 2κ. (4.18)

By the Cauchy–Schwartz inequality, (4.11) and the boundedness condition (2.5),

∫

Rd

d∑

r,s,t=1

|(Xi )r (X j )s(Xk)tϕrst (z)|dz �
√
6β3.

Therefore, using
∫ 1
ε2

1
τ 3/2

dτ � C 1
ε
,

|R1,1| � Cnβ3n21
1

ε

[
d1/4(ε + n3β) + κ

]
. (4.19)

Here and in the remainder of the proof, C denotes an absolute constant, which may
differ from line to line.

By the same argument, |R1,2| has the same upper bound as |R1,1|.
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By the properties of h in (4.4) and (4.5), the definition of κ in (4.16), and (4.9),

E[h(
√
1 − τW + √

τ z) − h(
√
1 − τ Z + √

τ z)]
� E[I(√1 − τW + √

τ z ∈ Aε) − I(
√
1 − τ Z + √

τ z ∈ A)]
= E[I(√1 − τW + √

τ z ∈ Aε) − I(
√
1 − τ Z + √

τ z ∈ Aε)

+I(
√
1 − τ Z + √

τ z ∈ Aε\A)]
� κ + 4d1/4

ε√
1 − τ

.

By the same lower bound and a similar argument as for R1,1, we can bound R1,3 by

|R1,3| � Cnβ3n21
1

ε
(d1/4ε + κ). (4.20)

Using the first expression of grst (w, s) in (4.15), we have

R1,4 = E

⎧
⎨

⎩

d∑

r,s,t=1

n∑

i=1

∑

j,k∈Ni

∫ 1

ε2
UE[(Xi )r (X j )s(Xk)t ]grst (Z , τ )dτ

⎫
⎬

⎭
.

Observe that from (4.12),

E[g(Z + w, τ)] = − 1

2(1 − τ)

∫

Rd

{
E[h(

√
1 − τ(Z + w) + √

τ z)]

−E[h(Z)]
}

ϕ(z)dz

= − 1

2(1 − τ)

∫

Rd
h(

√
1 − τw + z)ϕ(z)dz + 1

2(1 − τ)
E[h(Z)]

= − 1

2(1 − τ)

∫

Rd
h(x)ϕ(x − √

1 − τw)dx + 1

2(1 − τ)
E[h(Z)].

Differentiating with respect to wr , ws , and wt and evaluating at w = 0, we obtain

E[grst (Z , τ )] =
√
1 − τ

2

∫

Rd
h(x)ϕrst (x)dx .

Now with (4.11) and (2.5),
|R1,4| � Cnβ3n21. (4.21)
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For the case 0 < τ � ε2, we use the second expression of grs(w, τ) in (4.14) and
the Taylor expansion

∫ ε2

0
R1(τ )dτ = −E

⎧
⎨

⎩

d∑

r,s=1

n∑

i=1

∑

j∈Ni

∫ ε2

0

1

2
√

τ

∫

Rd
[hs(

√
1 − τ(W −UXNi ) + √

τ z)

− hs(
√
1 − τW + √

τ z)](Xi )r (X j )sϕr (z)dzdτ

⎫
⎬

⎭

= E

⎧
⎨

⎩

d∑

r,s,t=1

n∑

i=1

∑

j,k∈Ni

∫ ε2

0

√
1 − τ

2
√

τ

∫

Rd
hst (

√
1 − τW

+√
τ z − √

1 − τUV XNi )

×U (Xi )r (X j )s(Xk)tϕr (z)dzdτ

⎫
⎬

⎭
,

where we recall thatU and V are independent random variables distributed uniformly
on [0, 1]. By (4.4), (4.5), (4.8), and (2.5),

∣
∣
∣

∫ ε2

0
R1(τ )dτ

∣
∣
∣ � 8

ε2
β2n21E

{
d∑

r=1

n∑

i=1

∫ ε2

0

√
1 − τ

2
√

τ

∫

Rd
I(dist(

√
1 − τWi

+√
τ z, Aε\A) �

√
1 − τn1β) ×U |(Xi )rϕr (z)|dzdτ

⎫
⎬

⎭
.

Much as in (4.18),

E[I(dist(√1 − τWi + √
τ z, Aε\A) �

√
1 − τn1β)]

� E[I(dist(√1 − τW + √
τ z, Aε\A) � 2

√
1 − τn1β)]

� 4d1/4(
ε√
1 − τ

+ 4n1β) + 2κ.

Together with (2.2), (2.5), and (4.11), we obtain

∣
∣
∣

∫ ε2

0
R1(τ )dτ

∣
∣
∣ � Cnβ3n21

1

ε
[d1/4(ε + n1β) + κ],

and hence, from (4.19), (4.20), and (4.21),

∣
∣
∣

∫ 1

0
R1(τ )dτ

∣
∣
∣ � Cnβ3n21

1

ε
[d1/4(ε + n3β) + κ]. (4.22)
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Now we turn to bounding | ∫ 1
0 R2(s)ds|. Much as for R1(s),

∫ 1

0
R2(τ )dτ = −E

⎧
⎨

⎩

d∑

r,s,t=1

n∑

i=1

∑

j∈Ni

∑

k∈Ni j

∫ 1

ε2

√
1 − τ

2τ 3/2

∫

Rd
h(

√
1 − τW

+√
τ z − √

1 − τUXNi j )

×(Xk)t
{
(Xi )r (X j )s − E[(Xi )r (X j )s]

}
ϕrst (z)dzdτ

⎫
⎬

⎭

−E

⎧
⎨

⎩

d∑

r,s,t=1

n∑

i=1

∑

j∈Ni

∑

k∈Ni j

∫ ε2

0

√
1 − τ

2
√

τ

∫

Rd
hst (

√
1 − τW

+√
τ z − √

1 − τUXNi j )

× (Xk)t
{
(Xi )r (X j )s − E[(Xi )r (X j )s]

}
ϕr (z)dzdτ

⎫
⎬

⎭

where U is a independent random variable distributed uniformly on [0, 1]. By the
same arguments used in bounding | ∫ 1

0 R1(τ )dτ |, we have
∣
∣
∣

∫ 1

0
R2(τ )dτ

∣
∣
∣ � Cnβ3n1n2

1

ε
[d1/4(ε + n3β) + κ]. (4.23)

By (4.10), (4.17), (4.22), and (4.23),

κ � 4d1/4ε + Cnβ3n1n2
1

ε
[d1/4(ε + n3β) + κ]. (4.24)

The final bound (2.6) is obtained by choosing ε = 2Cnβ3n1n2 for the same C as in
(4.24), solving the recursive inequality (4.24) and observing that d � nβ2n1 from
Cov(W ) = Id and (2.5). 	
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4. Barbour, A.D., Karoński,M., Ruciński, A.: A central limit theorem for decomposable random variables
with applications to random graphs. J. Combin. Theory Ser. B 47, 125–145 (1989)

5. Bentkus, V.: On the dependence of the Berry-Esseen bound on dimension. J. Stat. Plan. Inference 113,
385–402 (2003)

6. Bentkus, V.: A Lyapunov type bound in Rd . Theory Probab. Appl. 49, 311–323 (2005)
7. Chatterjee, S., Meckes, E.: Multivariate normal approximation using exchangeable pairs. ALEA Lat

Am. J. Probab. Math. Stat. 4, 257–283 (2008)
8. Chen, L.H.Y.: Two central limit problems for dependent random variables. 2. Wahrsch. Verw. Gebiete

43, 223–243 (1978)
9. Chen, L.H.Y., Röllin, A.: Stein couplings for normal approximation. Preprint. Available at

arXiv:1003.6039 (2010)
10. Chen, L.H.Y., Shao, Q.-M.: Normal approximation under local dependence. Ann. Probab. 32, 1985–

2028 (2004)
11. Fang, X., Röllin, A.: Rates of convergence for multivariate normal approximation with applications

to dense graphs and doubly indexed permutation statistics. To appear in Bernoulli. arXiv:1206.6586
(2014)

12. Goldstein, L.,Rinott,Y.:Multivariate normal approximations byStein’smethod and size bias couplings.
J. Appl. Probab. 33, 1–17 (1996)

13. Götze, F.: On the rate of convergence in the multivariate CLT. Ann. Probab. 19, 724–739 (1991)
14. Janson, S., Nowicki, K.: The asymptotic distributions of generalized U -statistics with applications to

random graphs. Probab. Theory Relat. Fields 90, 341–375 (1991)
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