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Abstract Let (£,);2, be a nonhomogeneous Markov chain taking values in a finite
state-space X = {1, 2, ..., b}. In this paper, we will study the generalized entropy
ergodic theorem with almost-everywhere and £; convergence for nonhomogeneous
Markov chains; this generalizes the corresponding classical results for Markov chains.
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1 Introduction

We begin with introducing some notations that will be used throughout the paper.
Assume that (£,)5°, is a sequence of arbitrary random variables taking values from
a finite set of X = {1,2,...,b} and (2, F, P) the underlying probability space.
For convenience, denote by &, , the random vector of (§,, ..., &ntn) and xp, , =

(Xms - -, Xm+n), arealization of &, ,. Suppose the joint distribution of &, ,, is
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PCumn =Xmu)=0&Em, - s X)) =p&mn), xx €X, m <k <m+n. (1.1)

Let (an)f;';o and (¢ (n))flo:o be two sequences of nonnegative integers such that ¢ (n)
converges to infinite as n — oo. Let

1

Jan. () (@) = —mlogp("?a,,mn)), (1.2)

where log is the natural logarithm. f, @) (@) will be called generalized entropy
density of &,, ym)- If @y = 0 and ¢(n) = n, f4, ¢m) (@) will become the classical
entropy density of &g, defined as follows

1
Jon(w) = ——log p(Eo.n)- (1.3)

If (§,)52 is a nonhomogeneous Markov chain taking values in finite state-space of
X = {1, 2, ..., b} with the initial distribution

(mo(D), ..., mo(b)), (1.4)

and the transition matrices
Py = (pn(, Noxp, L,jeX, n=1,2..., (1.5)

where p, (i, j) = P(§, = jl§p—1 =), then

an+¢(n)
1
Fanpn@ = ——{1og o, Ea) + > logprEr. &0 b, (16)
¢(f’l) k=a,+1

where 14, (x) is the distribution of &, .

The convergence of f , (w) to aconstant in a sense of £ convergence, convergence
in probability or a.e. convergence, is called Shannon—-McMillan—Breiman theorem or
entropy ergodic theorem or asymptotic equipartition property (AEP), respectively,
in information theory. Shannon [11] first established the entropy ergodic theorem for
convergence in probability for stationary ergodic information sources with finite alpha-
bet. McMillan [10] and Breiman [3] obtained, for finite stationary ergodic information
sources, the entropy ergodic theorem in £ and a.e. convergence, respectively. Chung
[6] considered the case of countable alphabet. The entropy ergodic theorem for general
stochastic processes can be found, for example, in Barron [2], Kieffer [8], or Algoet
and Cover [1]. Yang [12] obtained entropy ergodic theorem for a class of nonhomoge-
neous Markov chains, and Yang and Liu [13], the entropy ergodic theorem for a class
of mth-order nonhomogeneous Markov chains, Zhong, Yang and Liang [14], entropy
ergodic theorem for a class of asymptotic circular Markov chains.

The second term of Eq. (1.6) is actually delayed sums of random variables, which
was first introduced by Zygmund [15] who used it to prove a Tauberian theorem of
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Hardy. Since then, a lot of work has been done to investigate the properties of delayed
sums. For example, by using the limiting behavior of delayed sums, Chow [4] found
necessary and sufficient conditions for the Borel summability of i.i.d. random variables
and simplified the proofs of a number of well-known results such as the Hsu—Robbins—
Spitzer—Katz theorem. Lai [9] studied the analogues of the law of the iterated logarithm
for delayed sums of independent random variables. Recently, Gut and Stradtmiiller
[7] studied the strong law of large numbers for delayed sums of random fields.

Let (&'n)f;‘;o be a nonhomogeneous Markov chain with the transition matrices
(1.5). Yang [12] showed that the classical entropy density fo ,(w) of this Markov
chain converges a.e. to the entropy rate of a Markov chain under the condition that
limy, oo & 3%y 1Pk, /) = pGi, /)] = 0, forall i, j € X, where P = (p(i, j))pxb
is an irreducible transition matrix. In this paper, we will prove that the generalized
entropy density f, 4m)(w) converges a.e. and £ to this entropy rate under some
mild conditions, which is called the generalized entropy ergodic theorem. The results
of this paper generalize the results of those in [12].

To prove the main results, we first establish a strong limit theorem for the delayed
sums of the functions of two variables for nonhomogeneous Markov chains, then we
obtain the strong limit theorems of the frequencies of occurrence of states and the
ordered couples of states in the segment &,,, . .., £4,+¢ () for the Markov chains. At
the end, we present the main results. We also prove that f;, ¢)(w) are uniformly
integrable for arbitrary finite sequence of random variables.

The approach used in this paper is different from the one used in some previous
works [12,13], where the strong law of large numbers for martingale is applied. As
Jan,¢n) (w) 1s the delayed sums of log pi (§x—1, &k), the strong law of large numbers
for martingale cannot be applied. The essence of the technique used in this paper is
first to construct a one parameter class of random variables with means of 1, then,
using Borel-Cantelli lemma, to prove the existence of a.e. convergence of certain
random variables.

The rest of this paper is organized as follows. In Sect. 2, we first establish some
preliminary results that will be used to prove our main results, and present the main
results of this paper and their proofs in Sect. 3.

2 Some Lemmas

Before proving the main results, we first begin with some lemmas.

Lemma 1 Suppose (§,);,2, is a nonhomogeneous Markov chain taking values from a
finite state-space of X = {1, 2, ..., b} with the initial distribution (1.4) and the transi-
tion matrices (1.5). Suppose (al,,)floz0 and (¢ (n))zio are two sequences of nonnegative
integers such that ¢ (n) tends to infinity as n — oo. Let (g, (x, y));’lo=0 be a sequence
of real functions defined on X x X. If for every ¢ > 0

> expl—e¢(n)] < oo, 2.1)

n=1
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and there exists a real number 0 < y < 0o such that

an+¢(n)
lim sup > Ellgirr. &) P81 8lg_=c(yiw) <00 ace., (2.2)
no )

then, we have

1 an+¢(n)
lim Z {8k k-1, 6k) — El8k (5k—1, E)5k—11} =0 a.e. (2.3)
! ¢(l/l) k=a,+1

Remark 1 Obviously, condition (2.1) in Lemma 1 can be easily satisfied. For example,
let ¢ (n) = [n%](a¢ > 0), where [-] is the usual greatest integer function, then (2.1)
holds. If (g, (x, y))72 , are uniformly bounded, then Eq. (2.2) holds.

Remark 2 Since E[gi (§k—1, &) |6x—1]1 = Z?’:l &k &r—1, j)pr(&x—1. j),Eq.(2.3) can
be rewritten as

an+¢(n) b
lim—— > (a1, &) — D &1, Dpeo1, N} =0 ae. (24)
" ¢(}’l) k=a,+1 j=1

Proof Let s be a nonzero real number, define

nt+@(n)
expls > 8k (Er—1, &)}
Agypm) (s, ©) = 2ia ! n=12....

HZn:Zfi”]) E[es8cGe—1.50 | &, _1] '

and note that

ENg, ¢m)(s, w) = E[E[Aqg, ¢m) (S, ©)|60,a,+¢)—1]]

58an+¢m) Gantom)—1-5an+¢(n))
=E | E[A —1(s,
[ an ¢ (n) 1(S C()) E[esgan+¢(n)(§an+¢(n)fl‘éan+¢(n))|gan+¢(n)_l] |%‘0’an+¢(n)_l]
_E Ngy pmy—1(8, 6())E[e‘gganﬂb(")(Eatl+¢(ﬂ)*1'ganer)(ﬂ))|€an+¢(n)71]
B E[esgan+¢(n)(€an+¢(n)—1 Ean+o ) &0, +6n)—1]
=EAg, pm-1(5,0) == ENg, 1(s,0) = 1. (2.5)
For any ¢ > 0, by Markov inequality and Eq. (2.1), we have
o o
—1 .
> P [¢> (n)10g Ag, (n) (5. ©) = s] =D P[Ag.50 (. ©) = exp(@(n)e)]
n=l1 n=1
o
< D 1-exp(—¢(n)e) < oo. (2.6)

n=1
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By Borel-Cantelli lemma and arbitrariness of €, we have

1
lim sup ——log A, ¢(n) (s, @) <0 a.e. 2.7
n o @)
Note that
1 an+¢ (n)
——10g Ag, g (5, @) = —— D {sgr(E—1, &) — log E[e*8 &5 g _]).
$(n) n =
(2.8)
By Egs. (2.7) and (2.8), we have
an+¢(n)
lim sup > s 80 —log Bl @ 0ig )} <0 ae. (29)
A k=a,+1

Letting 0 < s < y, dividing both sides of Eq. (2.9) by s, we obtain

an+¢(n)

> {gk@k_l,sk) —Liog E[esgk@“fk)m_u] <0 ae. (2.10)
S

k=a,+1

lim sup

¢(n)

Using the inequalities logx <x —1(x >0)and0 <e* —1—x < %xzep‘| (x € R),
from Eq. (2.10), we have

an+¢(n)

> g1 &) — Elge(ir. &0l&11)

k=a,+1
an+¢(n)

1
> [; log E[e" S8 _1] — Elgi (€1 sk>|sk_1]]

k=a,+1

*Z"’f) { E[(e58E—160 — 1 — s (&1, &) € 1] }

lim sup

no ¢

< lim sup

n o 90

= lim sup

n ¢(n)

N
k=a,+1

an+¢(n)

> ElgiGior. ge Gl g )

k=ap+1

s
— lim sup

2 ¢(n)

IA

1
Esc(y; w) <00 a.e. (2.11)

Letting s | 0 in Eq. (2.11), we obtain

an+¢(n)

Z (8 (Ex—1. &) — E(g(&i—1, E0I&-1D] < 0 ace. (2.12)

lim sup

o),
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Letting —y < s < 0in (2.9), similarly, we obtain that

ap+¢(n)
lim inf > lgkE1. &) — E(1. E0l&-1)]1 = 0 ae.  (213)
k=an+1
Equation (2.3) follows immediately from Eqs. (2.12) and (2.13). O
Let 1(-) be the indicator function and S, ,,(j; @) the number of occurrences of j
in the segment &,,, ..., &,4+n—1. [t is easy to see that
m+n—1

Swa(izo) = > 11&)
k=m

Let Sy, (i, j; w) be the number of occurrences of the pair (i, j) in the sequence of
ordered pairs (Ema Em+1)7 LR (EWH‘I’[*] ’ Eern) Then

m+n—1

Sman (i, J; @) = Z 1 E01j Grrn)

k=m

Corollary 1 Under the conditions of Lemma 1, let Sy, ,(j; @) be defined as before.
Then

1 an+¢(n)
lim ——{Su, g (i @) — D prE1, )} =0 a.e. (2.14)
" ¢(n) k=an+1

Proof Let gi(x,y) = 1y;;(y) in Lemma 1. It is easy to see that {gx(x, y),k > 1}
satisfy the Eq. (2.2) of Lemma 1. Noticing that

an+¢(n) b
> gk 8D — D gkE1. DpeE1. D)
k=a,+1 =1
an+¢(n) b
= > (&) — D 1jOpkE-, D)
k=an+1 =1
an+¢(n)
= Sapom (i ®) + 1) Eaiom) — 1jyGa) — D preor. ). (215)
k=a,+1
Equation (2.14) follows from Lemma 1. O

Corollary 2 Under the conditions of Lemma 1, let Sy, » (i, j; @) be defined as before.
Then

an+e(n)

1
lim ——{S4, g (ir ji @) — D LE—)pe, )} =0 a.e.  (2.16)
n$n) Rt
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Proof Letgi(x, y) = 1j;;(x)1;;;(y) inLemma 1.Itis easy to see that { g, (x, y), k > 1}
satisfy the Eq. (2.2) of Lemma 1. Noticing that

an+¢(n)
D erlEr1. &) — ng(sk 1D P, D)
k=a,+1 =1
an+¢(n)
= > (&1 E) - Zlm(sk D1y (D pr(E—1, D)
k=a,+1 =1
an+¢(n)
= Su,,0m (0, Jj; @) — Z 14— pe(, J), (2.17)
k=a,+1
Equation (2.16) follows from Lemma 1. O

Lemma 2 Let (a,);2 —o and (P (M) o be as in Lemma 1, and h(x) be a bounded
function defined on an interval I, and ()c,,)l‘;o:O a sequence in I. If

an+¢(n)

lim wm >l —x|=0,

Proof The proof of this lemma is similar to that of Lemma 2 in [12], so we omit it.O0

Lemma 3 Let (§,);,° , be a sequence of arbitrary random variables taking values from
a finite state-space of X = {1, 2, ..., b}, and let f,, ¢@n)(®) be defined by Eq. (1.2).
Then fq, ) (@) are uniformly integmble.

Proof To prove that f,, ¢ (@) are uniformly integrable, it is sufficient to verify the
following two conditions (see [5], p.96)

(a) Forevery ¢ > 0, there exists §(¢) > 0 such that for any A € F,
P(A) < 6(e) = / Jan,6 ) (w)dP < & for every n.
A

(b) Efa, ¢n (@) are bounded for all n.
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Let A € F. Itis easy to see that

/ Jap.pm)(@)dP = log p(€a,.¢(n)dP
. ¢< )
1
=— > () 108 PCangm) - PA N0, 600 = Xarpm D)
Xap s-esXap+¢(n)
1
== > ¢ (n) log P(A N {&a,. ¢ () = Xan.0 ) }) - P(A N {8a, 6 () =Xay. 0 D)-

Xap s Xap+¢(n)

(2.18)

Replacing log P(A N {&4, ¢ (n) = Xa,.6(m}) DY log (n)+1 in Eq. (2.18) and noting that

P(A
> PAN{E 40 = Xapm) =PA = > b¢((n)4)rl’

Xap s+ Xap+¢ (n) Xap s Xan+¢(n)

by the entropy inequality

N N
= > pelogpi < = piloga.
k=1 k=1

where pr,qx >0, k=1,2,...,sand Zizl Dk = 22:1 qk, we have

1 P(A)
/A fangm@dP < — > 500 log syt - FAN e o) = Xar.0m})

Xap s Xap+¢(n)

1 P(A)
=g |18 prm > PAN L 6m =asm)

Xay s+ Xap+(n)

_ (¢(n) +1 logh — logIP’(A)) P(4)
é(n) é(n)

< (2logh — log P(A)P(A). (2.19)

Since lim, _, o+ x(2log b—log x) = 0, the left hand side of Eq. (2.19) is small provided
P(A) is small and a) holds. Letting A = Q in Eq. (2.19), we have

Efa,,,d)(n)(w) = / fa,,,qb(n)(w)dp < 2logb.
Thus b) holds and the proof of the Lemma 5 is complete. O
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3 The Main Results

In this section, we will establish the strong law of large numbers for frequencies of
occurrence of states and the pairs of states for delayed sums of nonhomogeneous
Markov chains and the generalized entropy ergodic theorem for the Markov chains.

Theorem 1 Suppose (§,)5°2, is a nonhomogeneous Markov chain taking values from
a finite state-space of X = {1, 2, ..., b} with the initial distribution (1.4) and the tran-
sition matrices (1.5). Let (an)Oo 20 and () (n)) 2o be asin Lemma 1. Let Sg, ¢ (n) (i, @)
and Sq, ¢(n) (i, j; w) be defined as before, and Jan, 6 () (@) be defined by Eq. (1.6). Let
P = (p(i, j))pxp be another transition matrix, and assume that P is irreducible. If
Eq. (2.1) holds and

an+¢(n)
im o > Akt j) = pG. I =0, Vi, jeX, 3.1
k=a,+1
then
. 1 .
(i) hm San,om(;w) =m; ae. VieX, (3.2)
n ¢ (n)
1
(ii) lim S )Sa,, o, jyw) =mip(, j) ae. Vi, jeX, 3.3)
n
b b
@iD) m fo, g (@) = =D > wipli, )log pli. j) ae., (3.4)
i=1 j=1
where (71, ..., p) is the unique stationary distribution determined by the transition
matrix P.

Remark 3 1t is easy to see that if lim, p, (i, j) = p(i, j) Vi, j € X, then Eq. (3.1)
holds. Observe that

an+¢(n) an+¢(n)

— — 1 )= pGi. D).
) k—azn;&-l |pi(i, j) — p(, DI=( +¢( ))an+¢(n) ]; Ipk(, j) — pG, j)I

If, in addition, {%} is bounded, then Eq. (3.1) follows from the following equation

lim — E Ipk(, j) — p@, )| =0 Vi, jeX 3.5
" nk:l

But in general Eq. (3.5) may not imply (3.1). For example, let

11

12 22
n=[11] -

33 11

22
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Let (£,),,2, be a nonhomogeneous Markov chain with transition matrices

Py, if2¥<n<24+k k>0,
P, =
P>, otherwise.

Let P = P5. Itis easy to see that when 2k <y < 2k+L for any i, j € X

1 12"“71
=2 Il ) = p DI < o i, ) = pG, )

=1 =1
I+24+3+---+k+1)1 1 k+2)k+1)1

So Eq. (3.5) holds. However, if we let a, = 2" and ¢ (n) = n, then

an+¢(n) 1 2"+n 1
T 2 I D= pG D=~ >0 pli )= pli Dl =
n k=a,+1 n k=2"+1

so Eq. (3.1) does not hold.
Remark 4 From Lemma 3, we know that (l,(l_n)sa,,,(ﬁ(n) (i; w), qﬁSamdj(n) (i, j; w) and
Jan,¢(n) () are all uniformly integrable, so Egs. (3.2), (3.3) and (3.4) also hold with

L1 convergence.

Remark 5 The right hand side of Eq. (3.4) is actually the entropy rate of a Markov
chain with the transition matrix P.

Remark 6 If we define a statistic as follows:

b . . .
Ho_ ZZ San,0m) (@ ©) Sa, o), 3 @) o San,om) (A, Ji @)
o) San.pm) (@5 ) San.pm (3 @)

it is easy to see from Theorem 1 that Hisa strongly consistent estimate of entropy
rate H, where

b b
H==> > mpl, j)logpl, j).

i=1 j=1

Putting a, = 2" and ¢ (n) = n, under the condition of Eq. (3.1), we can use information
from a segment of (§,);2, to estimate the entropy rate of a nonhomogeneous Markov

chain.
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Proof Proof of (i). It is easy to see that

an+¢(n) an+¢(n) b
oG p= D D lgE-pl. ). YieX. (36
k=a,+1 k=ay,+1 i=1
and
an+¢(n) b
> D lwE-DpG, ) = an¢<n>(z o)p, ), VjeX. (37
k=a,+1 i=1 i=1

From (3.1), we have that

antd@n) b
lim Z Zl{i}(ék—l)[pk(iaj)_p(ivj)]
no|on) k=a,+1 i=1
b l an+¢(n)
i) — p(i. ) =0, VjeX. 38
; 5 k%:“ lpk (i, j) — pG, ) j € (3.8)

Combining Egs. (2.14), (3.6), (3.7) and (3.8), we have

1
lim o S0 (i @) = 3, Sa 600G @) (. D)
i=1

an+¢(n) b

1
= lim Z Zl{i}(ék—l)[Pk(i,j)—P(ivj)]

nopn) k=a,+1 i=1

=0, ae. VjeX 3.9

Multiplying the two sides of Eq. (3.9) by p(j, k), and adding them together for j =
1,2, ..., b, we have

0—llm¢( )[Z i) (3 @) p(j, k) — ZzSan o (i3 @) p(i, Hp(, k)]
j=1li=1

1
—hm[Z ¢() a0 (3 @)U K) = 2o Sa g (K )]

+1 ) (K o N
il S 6309 — 121;(]5() oG 0 PG b))

b

=1irrln[¢(l—n)5an,¢(n)(k§ ) — Z ¢(1) g 0)pP 0] ae,  (3.10)
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where p)(i, k) (I is a positive integer) is the [-step transition probability determined
by the transition matrix P. By induction, for all/ > 1, we have

——[Su,. ¢y (k; @) — Zsan s o)pP, 01=0, ae, (3.11)
i=1

”</>()

and

1 Sun.é(n ——— S s — D, k)]1=0, 3.12
lm[¢() () (ks ©) ¢()Z IOIGED) IZI)p (i,]=0, ae. (3.12)

It is easy to see that Z?:l San,6m) (i, ®) = ¢(n), by (3.12), we have for all m > 1

1
lim sup | = Sa, o0 (K @) — i <Z| Zp% k) — mi| ae. (3.13)
i=1 l 1

Because P is irreducible, so
1 m
lim — Zp(l)(i, k)=m, VieX, (3.14)
mom =1

Equation (3.2) follows from Egs. (3.13) and (3.14).
Proof of (ii). Observe that

ap+¢(n)
> 1 E-)pG, ) = Sap.pm i @) pG, ). (3.15)
k=a,+1
From Eq. (3.1), we have that
an+¢(n)

1
lim —— > L& Dlpe(. j) — pli. )] =0. (3.16)

n ¢ (n) Pt

Combining Egs. (2.16), (3.15) and (3.16), we have

o1 . . .
hf,n ——[Su,,0m) U, Jj: ®) — Sa,.0m (@; @) p(, j)]

¢(n)
an~+¢(n)
=lim —— Z iy Er—DIpe G, j) — p, NI =0 ae. (3.17)
! ¢(n) k=a,+1

Equation (3.3) follows from Egs. (3.2) and (3.17).
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Proof of (iii). Since Ee!!08Han Ean)l = 1-’= e 19g1a ) (i) = b, by Markov
i=1 n
inequality, for every ¢ > 0, form Eq. (2.1), we have

> P60 og ta, )| Z 2] 5D exp(—pme) <00 (318)
n=1 n=1

By Borel-Cantelli lemma, we obtain

hm m log 14, (64,) =0 a.e. (3.19)

Letting gx (x, y) = log px(x, y) and y = % in Lemma 1, and noticing that
El(log pr(§e—1. &))%2 08180l )

b _1
= 2 E1, ) og prE1. HprEr. j)

b 1
= > ptE1, ) log” pi(E1, j) < 16be”?, (3.20)
j=1

it follows from the Lemma 1 that

an+¢(n) b
lim D {log pu-1. &0 = D prlEi-t. j) log pi(Ei-t, )
o) k=an+1 j=1
=0 a.e. (3.21)
Now
1 an+¢(n) b
> D e, ) log peei, j) — ZmZp(z Nlog p, )
¢()ka,,+ljl i=1 j=1
ap+¢(n) b b
DD L&) el j)log prlis j)
¢(n)k =ap+1 i=1 j=1
ap+¢p(mn) b b
¢<n> >0 DD Gapd, log pl, )

k=ap,+1 i=1 j=1
an+¢(n) b b

+|m > L& )pG. j)log pl. j)— ZmZp(t Nlog p(, )l

ka,,+ltljl i=1 j=1

b an+¢ (n)
§§¢<n>

> G, plog pil, j) = pG, j)log pG, j)
k=a,+1
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b b an+¢(n)
1
+§ Elp(i,j)logp(i,j)ll— z 1iy (§x—1) —il. (3.22)
i=1 j=1 ¢(n) k=a,+1

By Lemma 2, Eq. (3.1) and the continuity of 4(x) = x log x, we have

an+¢(n)
lim—— " |G, j)log pi(i, j)
ngn) k=a,+1
—pli, )log pi, HI =0 Vi, j e X (3.23)

Combining Egs. (3.21), (3.22), (3.23) and (3.2), we have

an+¢(n) b b
lim D logpe-1.&) = D mi > pli. Nlogpli. j) ae.  (3.24)
A k=a,+1 i=1  j=1
=dp = /_
From Egs. (1.6), (3.19) and (3.24), Eq. (3.4) follows. O

Corollary 3 (see [12]). Under the conditions of Theorem 1, if Eq. (3.5) holds, then

1
@) lHm-—S8p,(;w)=m ae.,and L1 Vi €X, (3.25)
non
1
@) lm—Sp,(@, j;w) =mipQ, j) ae., and L1 Vi, jeX, (3.26)
non
b b
(i) lim fon(@) == > > mipli, )logpl, j) a.e., and Ly, (3.27)
i=1 j=1
where (71, ..., p) is the unique stationary distribution determined by the transition
matrix P.

Acknowledgments The authors are very thankful to Professor Keyue Ding who helped us to improve the
English of this paper greatly, and very thankful to the reviewers for their valuable comments.

References

1. Algoet, PH., Cover, TM.: A sandwich proof of the Shannon-McMillan-Breiman theorem. Ann.
Probab. 16, 899-909 (1988)

2. Barron, A.R.: The strong ergodic theorem for densities: generalized Shannon—-McMillian—Breiman
theorem. Ann. Probab. 13, 1292-1303 (1985)

3. Breiman, L.: The individual ergodic theorem of information theory. Ann. Math. Stat. 28, 809-811
(1957)

4. Chow, Y.S.: Delayed sums and Borel summability for independent, identically distributed random

variables. Bull. Inst. Math. Academia Sinica 1, 207-220 (1972)

. Chung, K.L.: A Course of Probability Theory. Academic Press, New York (1974)

. Chung, K.L.: The ergodic the theorem of information theory. Ann. Math. Stat. 32, 612-614 (1961)

7. Gut, A., Stradtmiiller, U.: On the strong law of large numbers for delayed sums and random fields.
Acta Math. Hung. 129(1-2), 182-203 (2010)

AN W

@ Springer



J Theor Probab (2016) 29:761-775 775

12.

13.

14.

15.

. Kiefer, J.C.: A simple proof of the Moy—Perez generalization of the Shannon-McMillan theorem. Pac.

J. Math. 51, 203-204 (1974)

. Lai, T.L.: Limit theorems for delayed sums. Ann. Probab. 2(3), 432-440 (1974)
10.
11.

McMillan, B.: The basic theorem of information theory. Ann. Math. Stat. 24, 196-215 (1953)
Shannon, C.A.: A mathematical theorem of communication. Bell Syst. Teach. J. 27, 379-423, 623-656
(1948)

Yang, W.G.: The asymptotic equipartition property for nonhomogeneous Markov information sources.
Probab. Eng. Inform. Sci. 12, 509-518 (1998)

Yang, W.G., Liu, W.: The asymptotic equipartition property for Mth-order nonhomogeneous Markov
information sources. IEEE Trans. Inform. Theory 50(12), 3326-3330 (2004)

Zhong, P.P., Yang, W.G., Liang, P.P.: The asymptotic equipartition property for asymptotic circular
Markov chains. Probab. Eng. Inform. Sci. 24, 279-288 (2010)

Zygmund, A.: Trigonometric Series 1. Cambridge University Press, New York (1959)

@ Springer



	The Generalized Entropy Ergodic Theorem  for Nonhomogeneous Markov Chains
	Abstract
	1 Introduction
	2 Some Lemmas
	3 The Main Results
	Acknowledgments
	References




