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1 Introduction

A. Ya. Khintchine introduced the class L of limit distributions of certain independent
triangular arrays. It plays an important role in statistics and mathematical finance,
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mainly as a consequence of the following characterization established by P. Lévy in
1937: A (Borel-) probability measure μ belongs to L, if and only if there exists, for
any constant c in (0, 1), a probability measure μc on R, such that

μ = Dcμ ∗ μc. (1)

Here Dcμ is the push-forward of μ by the map x �→ cx and ∗ denotes (classical) con-
volution of probability measures. To distinguish from the corresponding classL(�) in
free probability (described below), we shall henceforthwriteL(∗) instead of justL. As
a result of Lévy’s characterization, the measures in L(∗) are called selfdecomposable.
The class L(∗) contains in particular the class S(∗) of stable probability measures on
R as a proper subclass (e.g., [14]).

A probability measure μ on R is called unimodal, if, for some a in R, it has the
form

μ(dt) = μ({a})δa(dt) + f (t) dt, (2)

where f : R → R is increasing (meaning that x ≤ y implies f (x) ≤ f (y)) on
(−∞, a) and decreasing (meaning that x ≤ y implies f (x) ≥ f (y)) on (a,∞),
and where δa denotes the Dirac measure at a. The problem of unimodality of the
measures in L(∗) emerged in the 1940s. Already in the original 1949 Russian edition
of the fundamental book [8] by Gnedenko and Kolmogorov, it was claimed that all
selfdecomposable distributions are unimodal. However, as explained in the English
translation [8] (by Chung) there was an error in the proof, and it took almost 30years
before a correct proof was obtained by Yamazato in 1978 (see [18]). In the appendix to
the paper [3] from 1999, it was proved by Biane that all measures in the class S(�) of
stable measures with respect to free additive convolution� (see Sect. 2) are unimodal.
In the present paper, we extend this result to the class L(�) of all selfdecomposable
distributions with respect to �, thus establishing a full free probability analog of
Yamazato’s result.

In the paper [9], it was proved by Haagerup and the second named author that
the free analogs of the Gamma distributions (which are contained in L(�) \ S(�))
are unimodal, and the present paper is based in part on techniques from that paper.
Let us also point out that several results from Sect. 3 in the present paper (most
notably Lemma 4) may be extracted from the more general and somewhat differently
oriented theory developed in the papers [10,11] by Huang. We prefer in the present
paper to give a completely selfcontained and elementary exposition in the specialized
setup considered here. In particular, our approach does not depend upon the rather
deep complex analysis considered in Huang’s papers and originating in the work of
Belinschi and Bercovici (e.g., [2]).

The remainder of the paper is organized as follows: In Sect. 2, we provide back-
groundmaterial on�-infinite divisibility, the Bercovici–Pata bijection, selfdecompos-
ability and unimodality. In Sect. 3, we establish unimodality for probability measures
in L(�) satisfying in particular that the corresponding Lévy measure has a strictly
positive C2-density on R \ {0}. In Sect. 4, we extend the unimodality result from such
measures to general measures inL(�), using that unimodality is preserved underweak
limits.
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2 Background

2.1 Free and Classical Infinite Divisibility

A (Borel-) probability measure μ on R is called infinitely divisible, if there exists, for
each positive integer n, a probability measure μ1/n on R, such that

μ = μ1/n ∗ μ1/n ∗ · · · ∗ μ1/n
︸ ︷︷ ︸

n terms

, (3)

where ∗ denotes the usual convolution of probability measures (based on classical
independence). We denote by ID(∗) the class of all such measures on R. We recall
that a probability measure μ onR is infinitely divisible, if and only if its characteristic
function (or Fourier transform) μ̂ has the Lévy–Khintchine representation:

μ̂(u) = exp
[

iηu − 1
2au2 +

∫

R

(

eiut − 1 − iut1[−1,1](t)
)

ρ(dt)
]

, (u ∈ R), (4)

where η is a real constant, a is a nonnegative constant, and ρ is a Lévy measure on R,
meaning that

ρ({0}) = 0, and
∫

R

min{1, t2} ρ(dt) < ∞.

The parameters a, ρ and η are uniquely determined by μ, and the triplet (a, ρ, η) is
called the characteristic triplet for μ. Alternatively the Lévy–Khintchine representa-
tion may be written in the form:

μ̂(u) = exp
[

iγ u +
∫

R

(

eiut − 1 − iut

1 + t2

)1 + t2

t2
σ(dt)

]

, (u ∈ R), (5)

where γ is a real constant, σ is a finitemeasure onR, and (γ, σ ) is called the generating
pair for μ. The relationship between the representations (5) and (4) is as follows:

a = σ({0}),
ρ(dt) = 1 + t2

t2
· 1R\{0}(t) σ (dt),

η = γ +
∫

R

t
(

1[−1,1](t) − 1

1 + t2

)

ρ(dt). (6)

For two probability measures μ and ν on R, the free convolution μ � ν is defined
as the spectral distribution of x + y, where x and y are freely independent (possi-
bly unbounded) selfadjoint operators on a Hilbert space with spectral distributions μ

and ν, respectively (see [4] for further details). The class ID(�) of infinitely divis-
ible probability measures with respect to free convolution � is defined by replacing
classical convolution ∗ by free convolution � in (3).
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For a (Borel-) probability measure μ on R with support supp(μ), the Cauchy (or
Stieltjes) transform is the mapping Gμ : C \ supp(μ) → C defined by:

Gμ(z) =
∫

R

1

z − t
μ(dt), (z ∈ C \ supp(μ)). (7)

The free cumulant transform Cμ of μ is then given by

Cμ(z) = zG〈−1〉
μ (z) − 1 (8)

for all z in a certain region R of C− (the lower half complex plane), where the (right)
inverse G〈−1〉

μ of Gμ is well defined. Specifically R may be chosen in the form:

R ={z ∈ C
− | 1

z ∈ Δη,M }, where Δη,M ={z ∈ C
+ | |Re(z)|<ηIm(z), Im(z)> M}

for suitable positive numbers η and M , where C
+ denotes the upper half complex

plane. It was proved in [4] (see also [13] and [17]) that Cμ constitutes the free analog
of log μ̂ in the sense that it linearizes free convolution:

Cμ�ν(z) = Cμ(z) + Cν(z)

for all probabilitymeasuresμ and ν onR and all z in a regionwhere all three transforms
are defined. The results in [4] are presented in terms of a variant, ϕμ, of Cμ, which
is often referred to as the Voiculescu transform, and which is again a variant of the
R-transform Rμ introduced in [17]. The relationship is the following:

ϕμ(z) = Rμ

(

1
z

)

= zCμ

(

1
z

)

(9)

for all z in a region Δη,M as above. In [4], it was proved additionally that μ ∈ ID(�),
if and only if ϕμ extends analytically to a map from C

+ into C
− ∪ R, in which case

there exists a real constant γ and a finite measure σ on R, such that ϕμ has the free
Lévy–Khintchine representation:

ϕμ(z) = γ +
∫

R

1 + t z

z − t
σ(dt), (z ∈ C

+). (10)

The pair (γ, σ ) is uniquely determined and is called the free generating pair for μ.
In terms of the free cumulant transform Cμ, the free Lévy–Khintchine representation
may be written as

Cμ(z) = ηz + az2 +
∫

R

( 1

1 − t z
− 1 − t z1[−1,1](t)

)

ρ(dt), (z ∈ C
−), (11)

where the relationship between the free characteristic triplet (a, ρ, η) and the free
generating pair (γ, σ ) is again given by (6).
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In [3], Bercovici and Pata introduced a bijection Λ between the two classes ID(∗)

and ID(�), which may formally be defined as the mapping sending a measure μ

from ID(∗) with generating pair (γ, σ ) onto the measure Λ(μ) in ID(�) with free
generating pair (γ, σ ). It is then obvious that Λ is a bijection, and it turns out that Λ
further enjoys the following properties (see [1] and [3]):

(a) If μ1, μ2 ∈ ID(∗), then Λ(μ1 ∗ μ2) = Λ(μ1) � Λ(μ2).
(b) If μ ∈ ID(∗) and c ∈ R, then Λ(Dcμ) = DcΛ(μ).
(c) For any constant c in R, we have that Λ(δc) = δc, where δc denotes the Dirac

measure at c.
(d) Λ is a homeomorphism with respect to weak convergence.

The property (d) is equivalent to the free version of Gnedenko’s Theorem: Suppose
μ,μ1, μ2, μ3, . . . is a sequence of measures from ID(�) with free generating pairs:
(γ, σ ), (γ1, σ1), (γ2, σ2), (γ3, σ3), . . ., respectively. Then

μn
w−→ μ ⇐⇒ γn −→ γ and σn

w−→ σ. (12)

(cf. Theorem 3.8 in [1])

2.2 Selfdecomposability and Unimodality

The selfdecomposability defined in (1) has an equivalent characterization: A proba-
bility measure μ is in L(∗) if and only if μ is in ID(∗) and the Lévy measure (cf. (4))
has the form

ρ(dt) = k(t)

|t | dt, (13)

where k : R \ {0} → [0,∞) is increasing on (−∞, 0) and decreasing on (0,∞) (see
[14]).

In analogy with the class L(∗), a probability measure μ on R is called �-
selfdecomposable, if there exists, for any c in (0, 1), a probability measure μc on
R, such that

μ = Dcμ � μc. (14)

Denoting by L(�) the class of such measures, it follows from the properties of Λ that

Λ(L(∗)) = L(�) (15)

(see [1]). By the definition of Λ and (15), if we let the term “Lévy measure” refer to
the free Lévy–Khintchine representation (11) rather than the classical one (4), then we
have exactly the same characterization of the measures inL(�): a probability measure
μ is in L(�) if and only if its Lévy measure in (11) is of the form (13).

The definition of a unimodal probability measure μ given in Sect. 1 is equivalent to
the existence of a real number a, such that the distribution function t �→ μ((−∞, t])
is convex (i.e., μ((−∞, ps + qt]) ≤ pμ((−∞, s])+ qμ((−∞, t]) for all s, t and all
p, q ≥ 0, p +q = 1) on (−∞, a) and concave on (a,∞). From this characterization,
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it follows that for any sequence μ,μ1, μ2, μ3, . . . of probability measures on R we
have the implication:

μn is unimodal for all n and μn
w−→ μ �⇒ μ is unimodal (16)

(e.g., [8, §32,Theorem 4]).

2.3 Lindelöf’s Theorem

In this subsection, we present a variant (Lemma 1 below) of Lindelöf’s Theorem (see
[12] or [6, Theorem 2.2]), which plays a crucial role in Sect. 3 in combination with
Stieltjes inversion. Before stating the lemma, we introduce some notation: For any
number δ in (0, π), we put

�δ = {

reiθ
∣

∣ δ < θ < π − δ, r > 0
}

.

Lemma 1 Let G : C+ → C
− be an analytic function and assume that there exists a

curve (zt )t∈[0,1) in C
+, such that limt→1 zt = 0, and such that α := limt→1 G(zt )

exists in C. Then for any number δ in (0, π), we also have that limz→0,z∈�δ G(z) = α,

i.e., G has non-tangential limit α at 0.

Lemma 1 may, e.g., be derived from Theorem 2.2 in [6], which provides a similar
result for (in particular) bounded analytic functions f : {x + iy | x > 0, y ∈ R} → C.
Recalling that the mapping ζ �→ ζ−1

ζ+1 is a conformal bijection of {x + iy | x > 0, y ∈
R} onto the open unit disk inC, Lemma 2.1 then follows by applying [6, Theorem 2.2]
to the bounded function

f (z) = iG(ei
π
2 z) − 1

iG(ei
π
2 z) + 1

, (z ∈ {x + iy | x > 0, y ∈ R}).

3 The Case of Lévy Measures with Positive Density on R

In this section, we prove unimodality for measures inL(�)with Lévy measures in the
form k(t)

|t | , where k satisfies the conditions (a)–(c) listed below. In a previous version
of the manuscript, we considered the case where k is compactly supported, but in that
setting some proofs become more delicate and complicated than the ones to follow.

Throughout the remaining part of this section, we consider a function k : R\{0} →
[0,∞) such that

(a) k is C2 and (1 + t2)mk(n)(t) are bounded for m, n ∈ {0, 1, 2},
(b) k is increasing on (−∞, 0), decreasing on (0,∞),
(c) k is strictly positive on R \ {0}.
Next we define

k̃(t) = sign(t)k(t), (t ∈ R),
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G̃k(z) =
∫

R

k̃(t)

z − t
dt, (z ∈ C

+),

Hk(z) = z + zG̃k(z), (z ∈ C
+).

We note for later use that

Hk(z) = z + z
∫

R

k̃(t)

z − t
dt = z +

∫

R

(

1 + t

z − t

)

k̃(t) dt = z + γk +
∫

R

|t |k(t)

z − t
dt,

(17)
where we have introduced γk = ∫

R
k̃(t) dt .

In the following, we shall consider additionally the auxiliary function Fk : C+ →
(0,∞) given by

Fk(x + iy) =
∫

R

|t |k(t)

(x − t)2 + y2
dt, (x + iy ∈ C

+), (18)

which satisfies Fk(z)Im(z) = Im(z − Hk(z)).

Lemma 2 (i) For all x in R, there exists a unique number y = vk(x) in (0,∞)

such that

Fk(x + ivk(x)) =
∫

R

|t |k(t)

(x − t)2 + vk(x)2
dt = 1. (19)

(ii) We have that

G := {z ∈ C
+ | Hk(z) ∈ R} = {x + ivk(x) | x ∈ R}.

(iii) We have that

G+ := {z ∈ C
+ | Hk(z) ∈ C

+} = {x + iy | x ∈ R, y > vk(x)}.

(iv) The function vk : R → (0,∞) is analytic on R.
(v) We have that

lim|x |→∞ vk(x) = 0.

Proof (i) For any x in R, the function

y �→
∫

R

|t |k(t)

(x − t)2 + y2
dt, (y ∈ (0,∞))

takes values in (0,∞) and is continuous (by dominated convergence) and strictly
decreasing in y. Since k is strictly positive and continuous, we find additionally that

lim
y↘0

∫

R

|t |k(t)

(x − t)2 + y2
dt = ∞, and lim

y↗∞

∫

R

|t |k(t)

(x − t)2 + y2
dt = 0
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bymonotone and dominated convergence.Hence there is a unique y = vk(x) in (0,∞)

such that
∫

R

|t |k(t)
(x−t)2+y2

dt = 1.
(ii) For any x, y in R, such that y > 0, we note that

Im
(

Hk(x + iy)
) = y + Im

(
∫

R

x + iy

x + iy − t
k̃(t) dt

)

= y +
∫

R

y(x − t) − yx

(x − t)2 + y2
k̃(t) dt

= y
(

1 −
∫

R

t k̃(t)

(x − t)2 + y2
dt

)

= y
(

1 −
∫

R

|t |k(t)

(x − t)2 + y2
dt

)

.

(20)

Hence it follows that

Im
(

Hk(x + iy)
) = 0 ⇐⇒

∫

R

|t |k(t)

(x − t)2 + y2
dt = 1. (21)

The right hand side of (21) holds, if and only if y = vk(x).
(iii) It is apparent that

∫

R

|t |k(t)
(x−t)2+y2

dt < 1 for any x in R and all y in (vk(x),∞).

In combination with (20), this shows that G+ = {x + iy | x ∈ R, y > vk(x)} as
desired.

(iv) Consider the function F̃k : R × (0,∞) → R given by

F̃k(x, y) = Fk(x + iy) =
∫

R

|t |k(t)

(x − t)2 + y2

= 1 − y−1Im
(

Hk(x + iy)), ((x, y) ∈ R × (0,∞)).

Since Hk is analytic on C+, it follows that F̃k is analytic on R× (0,∞). By differen-
tiation under the integral sign, we note in particular that

∂

∂y
F̃k(x, y) = −2y

∫

R

|t |k(t)

((x − t)2 + y2)2
dt < 0

for all (x, y) in R × (0,∞). Since vk(x) > 0 and F̃k(x + ivk(x)) = 1 for all x in
R, it follows then from the implicit function theorem (for analytic functions; see [7,
Theorem 7.6]) that vk is analytic on R.

(v) By dominated convergence, lim|x |→∞ Fk(x +iy) = 0 for any fixed y in (0,∞).
Hence (v) follows from (19) and the fact that y �→ Fk(x + iy) is decreasing (for fixed
x). ��
Lemma 3 Let νk be the measure in ID(�) with free characteristic triplet (0, k(t)

|t | dt,
∫ 1
−1 k̃(t) dt). Then the Cauchy transform Gνk of νk satisfies the identity:

Gνk (Hk(z)) = 1

z

for all z in C
+ such that Hk(z) ∈ C

+.
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Proof Let Cνk denote the free cumulant transform of νk (extended to all of C−). For
any w in C−, we then find (cf. formula (11)) that

Cνk (w) = w

∫ 1

−1
k̃(t) dt +

∫

R

( 1

1 − wt
− 1 − wt1[−1,1](t)

)k(t)

|t | dt

=
∫

R

( 1

1 − wt
− 1

)k(t)

|t | dt

= w

∫

R

t

1 − wt

k(t)

|t | dt = w

∫

R

k̃(t)

1 − wt
dt.

Setting w = 1
z , it follows for any z in C+ that

Cνk

(

1
z

)

= 1

z

∫

R

k̃(t)

1 − t
z

dt =
∫

R

k̃(t)

z − t
dt = G̃k(z).

By definition of the free cumulant transform, it therefore follows that

1

z
G〈−1〉

νk

(

1
z

)

− 1 = Cνk

(

1
z

)

= G̃k(z),

and hence that

G〈−1〉
νk

(

1
z

)

= zG̃k(z) + z = Hk(z)

for all z in a suitable region Δη,M , where η, M > 0. We may thus conclude that

1

z
= Gνk (Hk(z)) (22)

for all z in Δη,M , but since {z ∈ C
+ | Hk(z) ∈ C

+} is a connected region of C+ (cf.
Lemma 2(iii)), the identity (22) extends to all z in this region by analytic continuation.
��

In the following, we consider the function Pk : R → R defined by

Pk(x) = Hk(x + ivk(x)), (x ∈ R). (23)

Proposition 1 For any x in R we have that

Gνk (z) −→ 1

x + ivk(x)
as z → Pk(x) non-tangentially from C

+.

Proof For any s in [0, 1] we put ws = x + i(vk(x) + s), so that ws ∈ G+ for all s in
(0, 1] according to Lemma 2(iii). Moreover, since Hk is analytic on C+ and ws ∈ C

+
for all s in [0, 1], it follows that
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Hk(ws) −→ Hk(w0) = Hk(x + ivk(x)) = Pk(x) ∈ R as s ↘ 0.

In addition, it follows from Lemma 3 that

Gνk (Hk(ws)) = 1

ws
= 1

x + i(vk(x) + s)
−→ 1

x + ivk(x)
as s ↘ 0.

Thus Gνk (z) has the limit 1
x+ivk (x)

as z → Pk(x) along the curve s �→ Hk(ws).

It follows then from Lemma 1 that in fact Gνk (z) → 1
x+ivk (x)

as z → Pk(x) non-
tangentially from C

+, as desired. ��

Lemma 4 The function Pk is a strictly increasing homeomorphism of R onto R.

Proof Weshowfirst that Pk(x) → ±∞ as x → ±∞. FromLemma2(v), formula (23)
and formula (17), this will follow, if we show that

sup
y∈(0,1/2)

∣

∣

∣

∫

R

|t |k(t)

x + iy − t
dt

∣

∣

∣ −→ 0 as |x | → ∞. (24)

Consider in the following x inR\[−2, 2] and y, δ in (0, 1
2 ).We then divide the integral

as follows:

∫

R

|t |k(t)

x + iy − t
dt =

∫ x+δ

x−δ

|t |k(t)

x + iy − t
dt +

∫

R\[x−δ,x+δ]
|t |k(t)

x + iy − t
dt. (25)

To estimate the first term on the right hand side of (25), we perform integration by
parts:

∫ x+δ

x−δ

|t |k(t)

x + iy − t
dt =

[

− log(x − t + iy)|t |k(t)
]x+δ

x−δ

+
∫ x+δ

x−δ

log(x − t + iy)
d

dt

(|t |k(t)
)

dt,

where log is the principal branch, i.e.,

log(x − t + iy) = 1
2 log((x − t)2 + y2) + iArg(x − t + iy),

where Arg is the principal argument. Given any positive number ε, we choose next δ
in (0, 1/2) such that

∫ δ

−δ

√

π2 + (log |t |)2 dt ≤ ε
(

sup
|t |≥1

∣

∣

∣

d

dt

(|t |k(t)
)
∣

∣

∣

)−1
.
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Since t �→ | log(t)| is decreasing on (0, 1), it follows then that

∣

∣

∣

∫ x+δ

x−δ

log(x − t + iy)
d

dt

(|t |k(t)
)

dt
∣

∣

∣ ≤
∫ x+δ

x−δ

√

π2 + (log |x − t |)2
∣

∣

∣

d

dt

(|t |k(t)
)
∣

∣

∣ dt

≤ sup
|t |≥1

∣

∣

∣

d

dt

(|t |k(t)
)
∣

∣

∣

∫ δ

−δ

√

π2+(log |t |)2 dt ≤ε.

Since |t |k(t) → 0 as |t | → ∞ (cf. condition (a) above), we note further that

∣

∣

∣

[

− log(x − t + iy)|t |k(t)
]x+δ

x−δ

∣

∣

∣ ≤ 2 ·
√

π2 + (log δ)2

·max
{|x − δ|k(x − δ), |x + δ|k(x + δ)

} ≤ ε,

for any y in (0, 1/2) and all x with |x | sufficiently large. Thus the first term of (25) is
bounded by 2ε whenever |x | is large enough, uniformly in y ∈ (0, 1/2).

Regarding the second term on the right hand side of (25), we note first that
lim|x |→∞

∫

R\[x−δ,x+δ]
|t |k(t)
|x−t | dt = 0 by dominated convergence. Therefore

sup
y∈R

∣

∣

∣

∫

R\[x−δ,x+δ]
|t |k(t)

x + iy − t
dt

∣

∣

∣ ≤
∫

R\[x−δ,x+δ]
|t |k(t)

|x − t | dt ≤ ε,

whenever |x | is sufficiently large. Thus we have established (24).
It remains now to show that Pk is injective and continuous onR, since these proper-

ties are then automatically transferred to the inverse P〈−1〉
k . The continuity is obvious

from the continuity of vk (cf. formula 23). To see that Pk is injective on R, assume
that x, x ′ ∈ R such that Pk(x) = Pk(x ′). Then Proposition 1 shows that

1

x + ivk(x)
= lim

z
�→Pk (x)

Gνk (z) = lim
z

�→Pk (x ′)
Gνk (z) = 1

x ′ + ivk(x ′)
,

where “
�→” denotes non-tangential limits. Clearly the above identities imply that

x = x ′. ��
Corollary 1 The measure νk is absolutely continuous with respect to Lebesgue mea-
sure with a continuous density fνk given by

fνk (Pk(x)) = vk(x)

π(x2 + vk(x)2)
, (x ∈ R).

In particular, the support of νk is R.

Proof This follows by Stieltjes inversion and Proposition 1. Indeed, for any x in R,
we have that

lim
y↘0

Gνk (Pk(x) + iy) = 1

x + ivk(x)
.
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Recalling (e.g., Chapter XIII in [15]) that the singular part of νk is concentrated on
the set

{

ξ ∈ R
∣

∣ limy↘0 |Gνk (ξ + iy)| = ∞}

,

it follows in particular that νk has no singular part. For any x inR, we find furthermore
by the Stieltjes inversion formula that

fνk (Pk(x))=−1
π

lim
y↘0

Im(Gνk (Pk(x) + iy))= −1

π
Im

( 1

x + ivk(x)

)

= vk(x)

π(x2 + vk(x)2)
.

In particular, we see that fνk (ξ) > 0 for any ξ in R. Denoting by P〈−1〉
k the inverse of

Pk , we note finally that

fνk (ξ) = vk(P〈−1〉
k (ξ))

π(P〈−1〉
k (ξ)2 + vk(P〈−1〉

k (ξ))2)
(ξ ∈ R),

which via the continuity of P〈−1〉
k and vk shows that fνk is continuous too. ��

Remark 1 Corollary 1 is a special case of Huang’s density formula for freely infinitely
divisible distributions [11, Theorem 3.10], which does not impose any assumptions
on the Lévy measure. Our approach is similar to that of Biane in [5]. For example, his
function ψt resembles our function Pk .

The next lemma is key to the main result on unimodality.

Lemma 5 Consider the function Fk defined by (18). Then for any r in (0,∞) ,there
exists a number θr in (0, π) such that the function

θ �→ Fk(r sin(θ)eiθ )

is strictly decreasing on (0, θr ] and strictly increasing on [θr , π).

Proof We introduce a new variable u by setting t = (r sin θ)u. Then

Fk

(

r sin(θ)eiθ
)

=
∫

R

|u|k(ru sin θ)

1 − 2u cos θ + u2 du, (θ ∈ (0, π)) .

Now consider any decreasing function h : (0,∞) → (0,∞) from C2((0,∞)) satis-
fying that the functions (1 + t2)mh(n)(t) are bounded for any m, n in {0, 1, 2}. These
assumptions ensure in particular that we may define ψh : (−1, 1) → R by

ψh(x) :=
∫ ∞

0

u

1 − 2xu + u2 h
(

u
√

1 − x2
)

du, (x ∈ (−1, 1)) .
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Note then that if we define k±
r (u) := k(±ru) for u in (0,∞), and

Ψr (x) = ψk+
r
(x) + ψk−

r
(−x), (x ∈ (−1, 1)) , (26)

then it holds that

Fk(r sin(θ)eiθ ) = Ψr (cos θ), (θ ∈ (0, π)). (27)

We show in the following that

(1) ψ ′
h(x) > 0 for x in (0, 1),

(2) ψ ′
h(x) < 0 for x in (−1,−

√
2
2 ],

(3) ψ ′′
h (x) > 0 for x in [−

√
3
2 ,

√
3
2 ].

Before establishing these conditions, we remark that the assumptions on h ensure that
we may perform differentiation under the integral sign and integration by parts as
needed in the following, and we shall do so without further notice.

For any x in (−1, 1), we note first by differentiation under the integral sign that

ψ ′
h(x) =

∫ ∞

0

2u2

(1 − 2ux + u2)2
h(u

√

1 − x2) du

−
∫ ∞

0

u2

1 − 2ux + u2 · x√
1 − x2

h′(u
√

1 − x2) du, (28)

which shows that (1) holds. Moreover, integration by parts yields that

ψ ′
h(x) =

∫ ∞

0

2u2

(1 − 2ux + u2)2
h(u

√

1 − x2) du

+
∫ ∞

0

∂

∂u

(

u2

1 − 2ux + u2

)

· x

1 − x2
h(u

√

1 − x2) du

=
∫ ∞

0

2u((1 − 2x2)u + x)

(1 − 2xu + u2)2(1 − x2)
h(u

√

1 − x2) du, (29)

which verifies (2).
Finally, we proceed to compute ψ ′′

h (x). Using Leibniz’ formula, we find that

ψ ′′
h (x) =

∫ ∞

0

8u3

(

1 − 2ux + u2
)3 h

(

u
√

1 − x2
)

du

−
∫ ∞

0

4u3

(1 − 2ux + u2)2
· x√

1 − x2
h′ (u

√

1 − x2
)

du

−
∫ ∞

0

u2

1 − 2ux + u2

(

1√
1 − x2

+ x2

(1 − x2)3/2

)

h′ (u
√

1 − x2
)

du

+
∫ ∞

0

u3

1 − 2ux + u2 · x2

1 − x2
h′′ (u

√

1 − x2
)

du
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=
∫ ∞

0

8u3

(1 − 2ux + u2)3
h

(

u
√

1 − x2
)

du

−
∫ ∞

0

u2(1 + 2ux + u2)

(1 − 2ux + u2)2
√
1 − x2

h′ (u
√

1 − x2
)

du

−
∫ ∞

0

u2

1 − 2ux + u2 · x2

(1 − x2)3/2
h′ (u

√

1 − x2
)

du

+
∫ ∞

0

u3

1 − 2ux + u2 · x2

1 − x2
h′′ (u

√

1 − x2
)

du. (30)

In the resulting expression above, the first three integrals are positive for any x in
(−1, 1), since −h′, h ≥ 0 and u2 + 2ux + 1 = (u + x)2 + 1− x2 ≥ 0. By integration
by parts, the last integral can be rewritten as follows:

∫ ∞

0

u3

1 − 2ux + u2 · x2

1 − x2
h′′ (u

√

1 − x2
)

du

= − x2
(

1 − x2
)3/2

∫ ∞

0

∂

∂u

(

u3

1 − 2xu + u2

)

· h′ (u
√

1 − x2
)

du

= − x2
(

1−x2
)3/2

∫ ∞

0

u2

(

1 − 2xu+u2
)2

(

(u − 2x)2 + 3 − 4x2
)

h′ (u
√

1−x2
)

du.

(31)

Hence this integral is positive as well for any x in
[

−
√
3
2 ,

√
3
2

]

, and altogether the

property (3) is established.
Recalling now formula (26), note that it follows from conditions (1)–(3) that

Ψ ′
r (x) = ψ ′

k+
r
(x) − ψ ′

k−
r
(−x) > 0, if x ≥

√
2
2 , Ψ ′

r (x) < 0, if x ≤ −
√
2
2 , and

Ψ ′′
r (x) = ψ ′′

k+
r
(x) + ψ ′′

k−
r
(−x) > 0, if |x | ≤

√
3
2 . Hence, Ψ ′

r is strictly increasing

on (−
√
3
2 ,

√
3
2 ), and there exists a unique zero of Ψ ′

r at some xr in (−
√
2
2 ,

√
2
2 ). There-

fore Ψr is strictly decreasing on (−1, xr ] and strictly increasing on [xr , 1), and the
lemma now follows readily from formula (27). ��
Proposition 2 Consider a function k : R \ {0} → [0,∞) which satisfies conditions
(a)–(c) listed in the beginning of this section.

Then the associated measure νk (described in Lemma 3) is unimodal. In fact, there
exists a number ω in R, such that the density fνk (cf. Corollary 1) is strictly increasing
on (−∞, ω] and strictly decreasing on [ω,∞).

Proof We show first for any number ρ in (0,∞) that the equality fνk (ξ) = ρ has at
most two solutions in ξ . Since Pk is a bijection of R onto itself, this is equivalent to
showing that the equality

ρ = fνk (Pk(x)) = vk(x)

π
(

x2 + vk(x)2
)
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has at most two solutions in x . For this, we note first that

{

x + iy ∈ C
+ ∣

∣
y

π(x2+y2)
= ρ

} = Cρ \ {0},

where Cρ is the circle in C with center i
2πρ

and radius 1
2πρ

. Writing x + iy as reiθ

(r > 0, θ ∈ (−π, π ]), we find that Cρ is given by

Cρ =
{

1
πρ

sin(θ)eiθ
∣

∣ θ ∈ (0, π ]
}

in polar coordinates. We need to show that Cρ intersects the graph G of vk in at most
two points. By the defining property (19) of vk , this is equivalent to showing that the
equality

Fk

(

1
πρ

sin(θ)eiθ
)

= 1

has at most two solutions for θ in (0, π). But this follows immediately from Lemma 5.
It is nowelementary to check that νk is unimodal. Since fνk is continuous and strictly

positive onR, and since fνk (x) → 0 as x → ±∞ (cf. Corollary 1), fνk attains a strictly
positive global maximum at some point ω inR. If fνk was not increasing on (−∞, ω],
then we could choose ξ1, ξ2 in (−∞, ω) such that ξ1 < ξ2, and fνk (ξ1) > fνk (ξ2) > 0.
Choosing any number ρ in ( f (ξ2), f (ξ1)), it follows then from the continuity of fνk

that each of the intervals (−∞, ξ1), (ξ1, ξ2) and (ξ2, ω) must contain a solution to
the equation fνk (ξ) = ρ, which contradicts what we established above. Subsequently
the argumentation given above also implies that fνk is in fact strictly increasing on
(−∞, ω]. Similarly it follows that fνk must be strictly decreasing on [ω,∞), and this
completes the proof. ��

4 The General Case

In this section, we extend Proposition 2 to general measures ν from L(�). The key
step is the following approximation result.

Lemma 6 Let k : R \ {0} → [0,∞) be a function as in (13) such that k(t)
|t | 1R\{0}(t) dt

is a Lévy measure. Let further a be a nonnegative number.
Then there exists a sequence (kn) of functions kn : R \ {0} → [0,∞), satisfying the

conditions (a)–(c) in Sect.3, such that

|t |kn(t)

1 + t2
dt

w−→ aδ0 + |t |k(t)

1 + t2
dt

as n → ∞.

Proof For each n in N, we introduce first the function k0n : R → [0,∞) defined by
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k0n(t) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

0, if t ∈ (−∞, 0],
k

( 1
n

)

, if t ∈ (

0, 1
n

)

,

k(t), if t ∈ [ 1
n , n

]

,

0, if t ∈ (n,∞),

and we note that k0n ≤ k0n+1 for all n. Next we choose a nonnegative function ϕ

from C∞
c (R), such that supp(ϕ) ⊆ [−1, 0], and ∫ 0

−1 ϕ(t) dt = 1. We then define the

function R̃n : R → [0,∞) as the convolution

R̃n(t) = n
∫ 0

−1/n
k0n(t − s)ϕ(ns) ds =

∫ 1

0
k0n

(

t + u
n

)

ϕ(−u) du, (t ∈ R), (32)

and we let Rn be the restriction of R̃n to (0,∞). Note also that

R̃n(t) = n
∫

R

ϕ(n(t − s))k0n(s) ds, (t ∈ R).

Since k0n and the derivatives of ϕ and ϕ itself are all bounded functions, it follows
then by differentiation under the integral sign that R̃n is a bounded C∞-function onR
with bounded derivatives, and so its restriction Rn to (0,∞) has bounded derivatives
too. Since k0n is decreasing on (0,∞), it follows immediately from (32) that so is Rn .
Moreover, supp(Rn) ⊆ (0, n] by the definition of k0n .

For any t in (0,∞) and n in N, note next that

Rn(t) ≤
∫ 1

0
k0n+1

(

t + u
n

)

ϕ(−u) du ≤
∫ 1

0
k0n+1

(

t + u
n+1

)

ϕ(−u) du = Rn+1(t).

Moreover, the monotonicity assumptions imply that k is continuous at almost all t in
(0,∞) (with respect to Lebesgue measure). For such a t , we may further consider n
so large that t + u

n ∈ [ 1n , n] for all u in [0, 1]. For such n, it follows then that

Rn(t) =
∫ 1

0
k

(

t + u
n

)

ϕ(−u) du −→
n→∞

∫ 1

0
k(t)ϕ(−u) du = k(t)

by monotone convergence. We conclude that Rn(t) ↗ k(t) as n → ∞ for almost all
t in (0,∞).

Applying the considerations above to the function κ : (0,∞) → [0,∞) given by
κ(t) = k(−t), it follows that we may construct a sequence (Ln)n∈N of nonnegative
functions defined on (−∞, 0) and with the following properties:

– For all n in N, the function Ln has bounded support.
– For all n in N, we have that Ln ∈ C∞((−∞, 0)), and L(p)

n is bounded for all p in
N ∪ {0}.

– For all n in N, the function Ln is increasing on (−∞, 0).
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– Ln(t) ↗ k(t) as n → ∞ for almost all t in (−∞, 0) (with respect to Lebesgue
measure).

Next let ψ(t) = e−t2 , and note that
∫

R
|t |ψ(t) dt = 1. We are then ready to define

kn : R \ {0} → [0,∞) by

kn(t) =
{

an2ψ(nt) + Rn(t), if t > 0,

an2ψ(nt) + Ln(t), if t < 0.

It is apparent from the argumentation above that kn satisfies the conditions (a)–(c) in
Sect. 3, and it remains to show that |t |kn(t)

1+t2
dt

w→ aδ0 + |t |k(t)
1+t2

dt as n → ∞. For any
bounded continuous function g : R → R, we find that

∫

R

g(t)
|t |kn(t)

1 + t2
dt = an2

∫

R

g(t)
|t |ψ(nt)

1 + t2
dt +

∫ 0

−∞
g(t)

|t |Ln(t)

1 + t2
dt

+
∫ ∞

0
g(t)

t Rn(t)

1 + t2
dt

= a
∫

R

g
( u

n

) |u|ψ(u)

1 + ( u
n )2

du +
∫ 0

−∞
g(t)

|t |Ln(t)

1 + t2
dt

+
∫ ∞

0
g(t)

t Rn(t)

1 + t2
dt −→

n→∞ a
∫

R

g(0)|u|ψ(u) du

+
∫ 0

−∞
g(t)

|t |k(t)

1 + t2
dt +

∫ ∞

0
g(t)

tk(t)

1 + t2
dt

= ag(0) +
∫

R

g(t)
|t |k(t)

1 + t2
dt,

where, when letting n → ∞, we used dominated convergence on each of the three
integrals; note in particular that |t |Ln(t)

1+t2
and t Rn(t)

1+t2
are dominated almost everywhere

by |t |k(t)
1+t2

on the relevant intervals, and here
∫

R

|t |k(t)
1+t2

dt < ∞, since k(t)
|t | dt is a Lévy

measure. This completes the proof. ��
Theorem 1 Any measure ν in L(�) is unimodal.

Proof We note first that for any probability measure μ on R and any constant a in
R, the free convolution μ � δa is the translation of μ by the constant a, and hence
μ is unimodal, if and only if μ � δa is unimodal for some (and hence all) a in R.
For �-infinitely divisible measures, this means that the measure with free generating
pair (γ, σ ) (cf. (10)) is unimodal, if and only if the measure with free generating pair
(γ + a, σ ) is unimodal for some (and hence all) a in R. In other words, unimodality
depends only on the measure σ appearing in the free generating pair.

Now let ν be a measure from L(�) with free characteristic triplet (a,
k(t)
|t | dt, η),

where a ≥ 0, η ∈ R and k : R \ {0} → [0,∞) is a function as in (13). According to
the discussion above, it suffices then to show that the measure ν0 with free generating
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pair (0, aδ0 + |t |k(t)
1+t2

dt) is unimodal (cf. (6)). By application of Lemma 6, we may
choose a sequence (kn) of positive functions, satisfying (a)–(c) in Sect. 3, such that

|t |kn(t)

1 + t2
dt

w−→ aδ0 + |t |k(t)

1 + t2
dt as n → ∞. (33)

For such n, it follows then from Proposition 2 and (6) that the measure ν0n with
free generating pair (0, |t |kn(t)

1+t2
dt) is unimodal. From (33) and the free version of

Gnedenko’s Theorem (cf. (12)), it follows that ν0n
w→ ν0 as n → ∞, and hence (16)

implies that ν0 is unimodal, as desired. ��
Remark 2 A non-degenerate classically selfdecomposable probability measure is
absolutely continuous with respect to Lebesgue measure (see [14, Theorem 27.13]).
In the free case, it was proved by Sakuma (see [16]) that non-degenerate freely self-
decomposable measures have no atoms. By definition (see formula 2), a unimodal
measure does not have a continuous singular part, and via Theorem 1, we may thus
conclude that also freely selfdecomposable measures are absolutely continuous with
respect to the Lebesgue measure, unless they are degenerate. Moreover, from Huang’s
density formula [11, Theorem 3.10(6)], which is a strengthened version of our Corol-
lary 1, one can show that the density function of a freely selfdecomposable measure
is continuous on R. By contrast, the density of a classical selfdecomposable measure
may have a single point of discontinuity (see [14, Theorem 28.4]).
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