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Abstract We find conditions which guarantee moment (in)determinacy of powers
and products of nonnegative random variables. We establish new and general results
which are based either on the rate of growth of the moments of a random variable
or on conditions about the distribution itself. For the class of generalized gamma
random variables, we show that the power and the product of such variables share
the same moment determinacy property. A similar statement holds for half-logistic
randomvariables. Besides answering new questions in this area, we either extend some
previously known results or provide new and transparent proofs of existing results.

Keywords Stieltjes moment problem · Powers · Products · Hardy’s condition ·
Generalized gamma distribution · Half-logistic distribution

Mathematics Subject Classification (2010) 60E05 · 44A60

1 Introduction

Throughout the paper, we assume that ξ is a nonnegative random variable defined on
a given probability space (�,F ,P) with finite moments E[ξ k], k = 1, 2, . . . . Let
further ξ1, ξ2, . . . , ξn be independent copies of ξ.Here n ≥ 1 is a fixed integer number.
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Of interest to us are the following two random variables, the power and the product:

Xn = ξn and Yn = ξ1ξ2 · · · ξn .

Each of the variables Xn and Yn also has all moments finite. Thus, the natural
problemarising here is to study, characterize and compare themoment (in)determinacy
of these two variables. Since Xn and Yn take values in R

+ = [0,∞), this means that
we deal with the Stieltjes moment problem.

We find conditions on ξ and n guaranteeing that Xn and Yn are M-determinate
(uniquely determined by the moments), and other conditions when they are M-
indeterminate (nonunique in terms of the moments). In these two cases, we use the
abbreviations M-det and M-indet for both random variables and their distributions.

In our reasonings, we use classical or new conditions such as Cramér’s condition,
Carleman’s condition, Hardy’s condition and Krein’s condition. The reader may find
it useful to consult available sources, among them are [10,12,17,19,22,23] and [24].
For reader’s convenience, we have included these conditions when formulating our
results.

To study powers, products, etc., or other nonlinear transformations of random data
(called sometimes Box–Cox transformations), is a challenging probabilistic problem
which is of independent interest. Note, however, that products and powers of random
variables considered in this paper and the results established are definitely related to
contemporary stochastic models of real and complex phenomena; see, e.g., [3,5,7]
and [20].

In this paper, we deal with new problems and present new results with their proofs.
We establish new and general criteria which are then applied to describe the moment
(in)determinacy of the above transformations. We also provide new proofs of some
known results with reference to the original papers. Our results complement previous
studies or represent different aspects of existing studies on this topic; see, e.g., [2,4,
11,16,20] and [22].

The approach and the results in this paper can be further extended to distributions on
the whole real line (Hamburger moment problem, see [25]). Also, they can be used to
characterize the moment determinacy properties of nonlinear transformations of some
important sub-classes of distributions such as, e.g., the subexponential distributions;
see [6].

The material is divided into relatively short sections each dealing with a specific
question related to a general or specific distribution. General results are included in
Sects. 2, 4, 6, 7 and 9. Sections 3, 5, 8 and 10 dealwith powers and products based on the
generalized gamma distribution, while Sect. 11 is based on half-logistic distribution.
All statements are followed by detailed proofs.

2 Comparing the Moment Determinacy of Powers and Products

The power Xn = ξn and the product Yn = ξ1ξ2 · · · ξn have some ‘similarity’. They
both are defined in terms of n and ξ or of n independent copies of ξ , and both have
all moments finite. Thus, we arrive naturally to the question:
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Is it true that the random variables Xn and Yn share the same moment determinacy
property?

If the generic random variable ξ has a bounded support, then so does each of Xn

and Yn , and hence, both Xn and Yn have all moments finite and both are M-det. This
simple observation shows that interesting is to study powers and products based on a
random variable ξ with unbounded support contained in R

+ and such that ξ has all
moments finite.

Let us mention first a special case. Suppose ξ ∼Exp(1), the standard exponential
distribution. Then the power Xn = ξn is M-det iff the product Yn = ξ1ξ2 · · · ξn is
M-det, and this is true iff n ≤ 2 (see, e.g., [2] and [16]). This means that for any
n = 1, 2, . . . , the power Xn and the product Yn share the same moment determinacy
property. Since Weibull random variable is just a power of the exponential one, it
follows that if ξ obeys a Weibull distribution, then for any n = 1, 2, . . . , the power
Xn and the product Yn also have the same moment determinacy property. Therefore,
the answer to the above question is positive for at least some special distributions
including Weibull distributions. In this paper we will explore more distributions (see
Theorem 6 and Sect. 11 below).

Note that in general, we have, by Lyapunov’s inequality,

E[Xs
n] = E[ξns] ≥ (E[ξ s])n = E[Y s

n ] for all real s > 0. (1)

We use this moment inequality to establish a result which involves three of the most
famous conditions for moment determinacy (Carleman’s, Cramér’s and Hardy’s). For
more details about Hardy’s condition, see [24].

Proposition 1 (i) If Xn satisfies Carleman’s condition (and hence is M-det), i.e.,∑∞
k=1(E[Xk

n])−1/(2k) = ∞, then so does Yn.
(ii) If Xn satisfies Cramér’s condition (and hence is M-det),i.e., E[exp(cXn)] < ∞

for some constant c > 0, then so does Yn.
(iii) If Xn satisfies Hardy’s condition (and hence is M-det), i.e., E[exp(c√Xn)] < ∞

for some constant c > 0, then so does Yn.

Proof Part (i) follows immediately from (1). Parts (ii) and (iii) follow from the fact
that for each real s > 0,

E[exp(cXs
n)] =

∞∑

k=0

ck

k!E[(Xs
n)

k] ≥
∞∑

k=0

ck

k!E[(Y s
n )k] = E[exp(cY s

n )].

��
Corollary 1 If ξ satisfies Cramér’s condition and if n = 2, then both X2 = ξ2 and
Y2 = ξ1ξ2 are M-det, and hence, X2 and Y2 share the same moment determinacy
property.

Proof Note that ξ satisfies Cramér’s condition iff X2 satisfies Hardy’s condition. Then
by Proposition 1(iii), both X2 and Y2 are M-det as claimed above. ��
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3 Generalized Gamma Distributions. Part (a)

Some of our results can be well illustrated if we assume that the generic random
variable ξ has a generalized gamma distribution. We write ξ ∼ GG(α, β, γ ) if ξ has
the following density function f :

f (x) = cxγ−1e−αxβ

, x ≥ 0,

where α, β, γ > 0, f (0) = 0 if γ 	= 1, and c = βαγ/β/�(γ /β) is the norming
constant. Note that GG(α, β, γ ) is a rich class containing several commonly used
distributions such as exponential, Weibull, half-normal and Chi-square.

It is known that the power Xn = ξn is M-det iff n ≤ 2β (see, e.g., [18] and [23]).
We claim now that for n ≤ 2β, the product Yn = ξ1ξ2 · · · ξn is also M-det. To see this,
we note first that the density function hn of the random variable

√
Xn is

hn(z) = 2c

n
z2γ /n−1e−αz2β/n

, z ≥ 0.

This in turn implies that Xn satisfies Hardy’s condition if 2β/n ≥ 1; hence, so does
Yn for n ≤ 2β by Proposition 1(iii).

To obtain further results, it is quite useful to write the explicit form of the density of
the product Y2 = ξ1ξ2 when ξ has the generalized gamma distribution. This involves
the function K0(x), x > 0, the modified Bessel function of the second kind. Its
definition and approximation are given as follows:

K0(x) = 1

2

∞∫

0

t−1e−t−x2/(4t)dt, x > 0,

=
( π

2x

)1/2
e−x

[

1 − 1

8x

(

1 − 9

16x

(

1 − 25

24x

))

+ o(x−3)

]

as x → ∞

(see, e.g., [8] and [13], pp. 37–38).

Lemma 1 (See also [14]) Let Y2 = ξ1ξ2, where ξ1 and ξ2 are independent random
variables having the same distribution GG(α, β, γ ). Then the density function g2 of
Y2 is

g2(x) = 2c2

β
xγ−1K0

(
2αxβ/2

)
, x > 0,

≈ Cxγ−β/4−1e−2αxβ/2
, as x → ∞.

Proof (Method I) Let G2 be the distribution function of Y2. Then

G2(x) := 1 − G2(x) = P[Y2 > x] =
∞∫

0

P[ξ1 > x/y]cyγ−1e−αyβ

dy, x > 0,
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and hence, the density of Y2 is

g2(x) = c2xγ−1

∞∫

0

y−1e−αxβ/yβ−αyβ

dy = c2

β
xγ−1

∞∫

0

t−1e−t−(α2xβ)/tdt

= 2c2

β
xγ−1K0

(
2αxβ/2

)
, x > 0.

(Method II) We can use the moment function (or Mellin transform) usually denoted
by M, because it uniquely determines the corresponding distribution. To do this, we
note that

M(s) =: E[Y s
2 ] = (E[ξ s1 ])2, E[ξ s1 ] = c�((γ + s)/β)

(
βα(γ+s)/β

)−1
, and

∞∫

0

xs K0(x)dx = 2s−1(�((s + 1)/2))2 for all s > 0

(see, e.g., [9], p. 676, Formula 6.561(16)). We omit the detailed calculation. ��

It may look surprising, but it is well-known, that several commonly used distri-
butions are related to the Bessel function in such a natural way as in Lemma 1.
For example, if ξ is a half-normal random variable, i.e., ξ ∼ GG( 12 , 2, 1) with the

density f (x) = √
2/πe−x2/2, x ≥ 0, then Y2 has the density function g2(x) =

(2/π)K0(x) ≈ C2x−1/2e−x as x → ∞, with the moment function M(s) =
E[Y s

2 ] = (2s/π)�2((s + 1)/2), s > −1. The distribution of Y2 = ξ1ξ2 may
be called the half-Bessel distribution and its symmetric counterpart with density
h2(x) = (1/π)K0(x), x ∈ R = (−∞,∞), is called the standard Bessel distrib-
ution. Note that K0 is an even function and h2 happens to be the density of the product
of two independent standard normal random variables; see also [4]. It can be checked
that for real s > 0 we have (E[(Y s

2 )n])−1/(2n) ≈ Csn−s/2 as n → ∞, and hence, Y s
2

satisfies Carleman’s condition if s ≤ 2. Actually, it follows from the density g2 and
its asymptotic behavior that Y2 satisfies Cramér’s condition. Therefore, by Hardy’s
criterion, the square of Y2, i.e., Y 2

2 = ξ21 ξ22 , is M-det.
Let us express the latter by words: The square of the product of two independent

half-normal random variables is M-det. Since ξ2 = χ2
1 , we conclude also that the

product of two independent χ2-distributed random variables is M-det. In addition,
these properties can be compared with the known fact that the power 4 of a normal
random variable is M-det (see, e.g., [1] or [22]).

4 Slow Growth Rate of the Moments Implies Moment Determinacy

It is known andwell understood that themoment determinacy of a distribution depends
on the rate of growth of the moments. Let us establish first results which are of a
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general and independent interest. Later, we will apply them and make conclusions
about powers and products of random variables.

Suppose X is a nonnegative random variable with finite moments mk = E[Xk],
k = 1, 2, . . . . To avoid trivial cases, we assume that m1 > 0, meaning that X is not a
degenerate random variable at 0.

Lemma 2 For each k ≥ 1, we have the following properties:

(i) mk ≤ mk+1 if m1 ≥ 1, and
(ii) m1mk ≤ mk+1.

Proof By Lyapunov’s inequality, we have (mk)
1/k ≤ (mk+1)

1/(k+1). Therefore,

1

k
logmk ≤ 1

k + 1
logmk+1 ≤ 1

k
logmk+1, if m1 ≥ 1,

and hence, mk ≤ mk+1 if m1 ≥ 1. This proves claim (i). To prove claim (ii), we use
the relations m1 ≤ (mk)

1/k ≤ (mk+1)
1/(k+1), implying that

m1mk ≤ (mk)
1/kmk = m(k+1)/k

k ≤ mk+1.

��
In Lemma 2, claim (i) tells us that the moment sequence {mk, k = 1, 2, . . .} is

nondecreasing if m1 ≥ 1, while claim (ii) shows that the ratio mk+1/mk has a lower
boundm1 whatever the nonnegative random variable X is. The next theorem provides
the upper bound of the ratio mk+1/mk , or, equivalently, of the growth rate of the
moments mk for which X is M-det.

Theorem 1 Let mk+1/mk = O((k + 1)2) as k → ∞. Then X satisfies Carleman’s
condition and isM-det. (We refer to the constant 2, the exponent in the termO((k+1)2),
as the rate of growth of the moments of X.)

Proof By the assumption, there exists a constant C > 0 such that

m(k+1)/k
k ≤ mk+1 ≤ C(k + 1)2mk for all large k,

which implies

m1/k
k ≤ C(k + 1)2 for all large k,

and hence,

m−1/(2k)
k ≥ C−1/2(k + 1)−1 for large k.

Therefore, X satisfies Carleman’s condition
∑∞

k=1 m
−1/(2k)
k = ∞, and is M-det. ��
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We can slightly extend Theorem 1 as follows. For a real number a we denote by

a� the largest integer which is less than or equal to a.

Theorem 1′ Suppose there is a real number a ≥ 1 such that the moments of the
random variable X satisfy the condition mk+1/mk = O((k+1)2/a) as k → ∞. Then
the power X 
a� satisfies Carleman’s condition and is M-det.

Proof Note that

E[(X 
a�)k+1]
E[(X 
a�)k] = E[X 
a�k+
a�]

E[X 
a�k+
a�−1]
E[X 
a�k+
a�−1]
E[X 
a�k+
a�−2] · · · E[X 
a�k+1]

E[X 
a�k]
= O((k + 1)(2/a)
a�) = O((k + 1)2) as k → ∞.

Hence, by Theorem 1, X 
a� satisfies Carleman’s condition and is M-det. ��
Theorem 2 Let ξ, ξi , i = 1, 2, . . . , n, be defined as before and Yn = ξ1 · · · ξn . If ξ

and the index n are such that

E[ξ k+1]/E[ξ k] = O((k + 1)2/n) as k → ∞,

then Yn satisfies Carleman’s condition and is M-det.

Proof By the assumption, we have

E[Y k+1
n ]/E[Y k

n ] = (E[ξ k+1]/E[ξ k])n = O((k + 1)2) as k → ∞.

This, according to Theorem 1, implies the validity of Carleman’s condition for Yn ;
hence, Yn is M-det as stated above. ��
Theorem 2′ Let a ≥ 1. If

E[ξ k+1]/E[ξ k] = O((k + 1)2/a) as k → ∞,

then Y
a� satisfies Carleman’s condition and is M-det.

Proof Note that

E[Y k+1

a� ]/E[Y k
a�] = (E[ξ k+1]/E[ξ k])
a�

= O((k + 1)(2/a)
a�) = O((k + 1)2) as k → ∞.

The conclusions follow from Theorem 1. ��

5 Generalized Gamma Distributions. Part (b)

We now apply the general results, Theorems 1 and 2 in Sect. 4, to give an alternative
proof of the moment determinacy established in Sect. 3.
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Let, as before, ξ ∼ GG(α, β, γ ). We claim that for n ≤ 2β, both Xn = ξn and
Yn = ξ1ξ2 · · · ξn are M-det. To see this, we first calculate that

E[Xk+1
n ]

E[Xk
n]

= E[ξn(k+1)]
E[ξnk] = �((γ + n(k + 1))/β)

αn/β�((γ + nk)/β)
≈ (n/αβ)n/β(k+1)n/β as k → ∞.

For this relation, we have used the approximation of the gamma function:

�(x) ≈ √
2πxx−1/2e−x as x → ∞

(see, e.g., [26], p. 253). Then by Theorem 1, Xn is M-det if n ≤ 2β, and by Theorem 2,
Yn is M-det if 1/β ≤ 2/n, i.e., if n ≤ 2β, because E[ξ k+1]/E[ξ k] = O((k + 1)1/β)

as k → ∞.
For example, if ξ ∼ Exp(1) = GG(1, 1, 1), then the product Y2 = ξ1ξ2 is M-det.

In fact, by Lemma 1, the density g2 of Y2 is g2(x) = 2K0(2
√
x) ≈ Cx−1/4e−2

√
x

as x → ∞, where K0 is the modified Bessel function of the second kind (see also
[15], p. 417, and [9], p. 917, Formula 8.432(8)). If ξ ∼ GG(1/2, 2, 1), the half-
normal distribution, then Yn = ξ1ξ2 · · · ξn is M-det for n ≤ 4. As mentioned before,
the density function of the product of two half-normals is g2(x) = (2/π)K0(x) ≈
C2x−1/2e−x as x → ∞.

6 More Results Related to Theorems 1 and 2

Under the same assumption as that in Theorem 1, we even have a stronger statement;
see Theorem 3 below. Note that its proof does not use Lyapunov’s inequality, and
that Hardy’s condition implies Carleman’s condition. For convenience, we recall in
the next lemma a characterization of Hardy’s condition in terms of the moments (see
[24],Theorem 3).

Lemma 3 Let a ∈ (0, 1] and let X be a nonnegative random variable. Then
E[exp(cXa)] < ∞ for some constant c > 0 iffE[Xk] ≤ ck0 �(k/a+1), k = 1, 2, . . . ,
for some constant c0 > 0 (independent of k). In particular, X satisfies Hardy’s con-
dition, i.e., E[exp(c√X)] < ∞ for some constant c > 0, iff E[Xk] ≤ ck0 (2k)!, k =
1, 2, . . . , for some constant c0 > 0 (independent of k).

Theorem 3 Suppose X is a nonnegative random variable with finite moments mk =
E[Xk], k = 1, 2, . . ., such that the condition in Theorem 1 holds: mk+1/mk =
O((k + 1)2) as k → ∞. Then X satisfies Hardy’s condition, and is M-det.

Proof By the assumption, there exists a constant c∗ ≥ m1 > 0 such that

mk+1 ≤ c∗(k + 1)2mk for k = 0, 1, 2, . . . ,

where m0 ≡ 1. This implies that

mk+1 ≤ (c∗/2)(2k + 2)(2k + 1)mk for k = 0, 1, 2, . . . ,
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and hence, mk+1 ≤ (c∗/2)k+1�(2k + 3)m0 for k = 0, 1, 2, . . . . Taking c0 = c∗/2,

mk+1 ≤ ck+1
0 �(2k + 3) for k = 0, 1, 2, . . . ,

or, equivalently,

mk ≤ ck0�(2k + 1) for k = 1, 2, . . . .

Hence, X satisfies Hardy’s condition by Lemma 3. ��
Remark 1 The constant 2 (the growth rate of the moments) in the condition of The-
orem 1 is the best possible in the following sense. For each ε > 0, there exists a
random variable X such that mk+1/mk = O((k + 1)2+ε) as k → ∞, and X is
M-indet. To see this, let us consider X = ξ ∼ GG(1, β, 1), which has density
f (x) = c exp(−xβ), x > 0. We have

E[ξ k+1]
E[ξ k] = �((k + 2)/β)

�((k + 1)/β)
≈ β−1/β(k + 1)1/β as k → ∞.

If for ε > 0 we take β = 1
2+ε

< 1
2 , then E[ξ k+1]/E[ξ k] =O((k+1)2+ε) as k → ∞.

However, as mentioned before, X is M-indet.

Remark 2 The constant 2/n in the condition of Theorem 2 is the best possible.
Indeed, we can show that for each ε > 0, there exists a random variable ξ such
that E[ξ k+1]/E[ξ k] = O((k + 1)2/n+ε) as k → ∞, but Yn is M-indet. To see this, let
us consider X = ξ ∼ GG(1, β, 1). For each ε > 0, take β = 1/(2/n + ε), then

E[ξ k+1]
E[ξ k] = �((k + 2)/β)

�((k + 1)/β)
= O

(
(k + 1)2/n+ε

)
as k → ∞.

However, since n > 2β, Yn is M-indet (compare this with the statement in Sect. 10).

7 Faster Growth Rate of the Moments Implies Moment Indeterminacy

We now establish a result which is converse to Theorem 1.

Theorem 4 Suppose X is a nonnegative random variables whose moments mk, k =
1, 2, . . ., are such that mk+1/mk ≥ C(k + 1)2+ε for all large k, where C and ε are
positive constants. Assume further that X has a density f satisfying the condition: for
some x0 > 0, f is positive and differentiable on [x0,∞) and

L f (x) := − x f ′(x)
f (x)

↗ ∞ as x0 < x → ∞. (2)

Then X is M-indet.
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Proof Without loss of generality we can assume that mk+1/mk ≥ C(k + 1)2+ε for
each k ≥ 1. Therefore,

mk+1 ≥ Ck((k + 1)!)2+εm1 for k = 1, 2, . . . .

Taking C0 = min{C,m1}, we have

mk+1 ≥ Ck+1
0 ((k + 1)!)2+ε for k = 1, 2, . . . ,

or, equivalently,

mk ≥ Ck
0 (k!)2+ε = Ck

0 (�(k + 1))2+ε for k = 2, 3, . . . .

Since �(x + 1) = x�(x) ≈ √
2π xx+1/2 e−x as x → ∞, we have that for some

constant c > 0,

m−1/(2k)
k ≤ C−1/2

0 (�(k + 1))−(2+ε)/(2k) ≈ ck−1−ε/2 for all large k.

This implies that the Carleman quantity for the moments of f is finite:

C[ f ] :=
∞∑

k=1

m−1/(2k)
k < ∞.

We sketch the rest of the proof. Following the proof of Theorem 3 in [10], we first
construct a symmetric distribution G on R, obeyed by a random variable Y , such that
E[Y 2k] = E[Xk], E[Y 2k−1] = 0 for k = 1, 2, . . .. Let g be the density of G. Then
for the Carleman quantity of the moments of g we have:

C[g] :=
∞∑

k=1

(
E[Y 2k]

)−1/(2k) =
∞∑

k=1

(
E[Xk]

)−1/(2k) = C[ f ] < ∞.

This implies that for some x∗
0 > x0, the logarithmic normalized integral (called also

Krein quantity of g) over the domain {x : |x | ≥ x∗
0 } is finite:

K[g] :=
∫

|x |≥x∗
0

− log g(x)

1 + x2
dx < ∞,

as shown in the proof of Theorem 2 in [10]. Finally, according to Theorem 2.2 in [19],
this is a sufficient condition for Y to be M-indet on R and we conclude that X is M-
indet on R+ by mimicking the proof of Corollary 1 in [21] (see also [17], Proposition
1 and Theorem 3). ��
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8 Generalized Gamma Distributions. Part (c)

Let us see how Theorem 4 in Sect. 7 works for a random variable ξ ∼ GG(α, β, γ ).

We claim that for n > 2β, the power Xn = ξn is M-indet. To see this, recall that

E[Xk+1
n ]

E[Xk
n]

≈ (n/αβ)n/β(k + 1)n/β as k → ∞,

where n/β > 2. Thus, the moments of Xn grow at a rate more than 2. Let us check
that the density h of Xn satisfies the condition (2). Indeed, we have

Lh(x) := − xh′(x)
h(x)

= 1 − γ

n
+ αβ

n
xβ/n ↗ ∞ ultimately as x → ∞.

Therefore, for n > 2β, Xn is M-indet by Theorem 4.

Remark 3 To use Theorem 4 is another way to prove some known facts, for example,
that the log-normal distribution and the cube of the exponential distribution are M-
indet. Indeed, for X ∼ LogN (0, 1), we have the moment recurrence

mk+1 = ek+1/2mk, k = 1, 2, . . . ,

and for X = ξ3, where ξ ∼ Exp(1), we have

mk+1 = (3k + 1)(3k + 2)(3k + 3)mk, k = 1, 2, . . . .

It is easily seen that in both cases the growth rates of the moments are quite fast. For
the cube of Exp(1), we havemk+1/mk ≥ C(k+1)3, k = 1, 2, . . ., for some constant
C > 0, so the rate is more than 2. For LogN the rate is exponential, hence much larger
than 2. It remains to check that condition (2) is satisfied for the density of ξ3 and the
density of logN . Details are omitted.

We can make one step more by considering the logarithmic skew-normal distribu-
tions with density fλ(x) = (2/x)ϕ(ln x)
(λ ln x), x > 0, where λ is a real number.
(When λ = 0, fλ reduces to the standard log-normal density.) Then we have the
moment relationship

mk+1 ≈ e(k+1/2)ρmk, as k → ∞,

where ρ ∈ (0, 1] is a constant (see, e.g., [12], Proposition 3). Thus, the moments grow
very fast, exponentially, and it remains to check that the density function fλ satisfies
the condition (2):

L fλ(x) := − x f ′
λ(x)

fλ(x)
↗ ∞ ultimately as x → ∞.
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Therefore, by the above Theorem 4, we conclude that all logarithmic skew-normal
distributions are M-indet. This is one of the results in [12] where a different proof is
given.

9 General Result on the M-indet Property of the Product Yn = ξ1ξ2 · · · ξn
In the next theorem, we describe conditions on the distribution of ξ under which the
product Yn = ξ1ξ2 · · · ξn is M-indet.

Theorem 5 Let ξ ∼ F, where F is absolutely continuous with density f > 0 on R+.
Assume further that:

(i) f (x) is decreasing in x ≥ 0, and
(ii) there exist two constants x0 ≥ 1 and A > 0 such that

f (x)/F(x) ≥ A/x for x ≥ x0, (3)

and some constants B > 0, α > 0, β > 0 and a real γ such that

F(x) ≥ Bxγ e−αxβ

for x ≥ x0. (4)

Then, for n > 2β, the product Yn has a finite Krein quantity and is M-indet.

Corollary 2 Let ξ ∼ F satisfy the conditions in Theorem 5 with β < 1
2 . Then F itself

is M-indet.

Lemma 4 Under the condition (3), we have

∞∫

x

f (u)

u
du ≥ A

1 + A

F(x)

x
and F(x) ≤ C

x A
, x > x0, for some constant C > 0.

Proof Note that for x > x0,

∞∫

x

f (u)

u
du = −

∞∫

x

1

u
dF(u) = F(x)

x
−

∞∫

x

F(u)

u2
du ≥ F(x)

x
− 1

A

∞∫

x

f (u)

u
du.

The last inequality is due to (3). Hence,

(

1 + 1

A

) ∞∫

x

f (u)

u
du ≥ F(x)

x
.
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On the other hand, for x > x0,

log F(x) = −
x∫

0

f (t)/F(t)dt = −
x0∫

0

f (t)/F(t)dt −
x∫

x0

f (t)/F(t)dt

≡ C0 −
x∫

x0

f (t)/F(t)dt ≤ C0 −
x∫

x0

A/tdt = C0 + A log x0 − A log x .

Therefore, F(x) ≤ C/x A, x > x0, where C = x A
0 e

C0 . ��

Remark 4 After deriving in Lemma 4 a lower bound for
∫ ∞
x ( f (u)/u)du we have the

following upper bound for arbitrary density f on R+:

∞∫

x

f (u)

u
du ≤ 1

x

∞∫

x

f (u)du = F(x)

x
, x > 0.

Proof of Theorem 5 The density gn of Yn is expressed as follows:

gn(x) =
∞∫

0

∞∫

0

· · ·
∞∫

0

f (u1)

u1

f (u2)

u2
· · · f (un−1)

un−1
f

(
x

u1u2 · · · un−1

)

du1du2 · · · dun−1

for x > 0. Hence, gn(x) > 0 and decreases in x ∈ (0,∞). For any a > 0, we have

gn(x)≥
∞∫

a

∞∫

a

· · ·
∞∫

a

f (u1)

u1

f (u2)

u2
· · · f (un−1)

un−1
f

(
x

u1u2 · · · un−1

)

du1du2 · · · dun−1

≥
∞∫

a

∞∫

a

· · ·
∞∫

a

f (u1)

u1

f (u2)

u2
· · · f (un−1)

un−1
f
( x

an−1

)
du1du2 · · · dun−1

= f
( x

an−1

)
⎛

⎝

∞∫

a

f (u)

u
du

⎞

⎠

n−1

, x > 0. (5)
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The above second inequality follows from the monotone property of f . Taking a =
x1/n > x0, we have, by (3)–(5) and Lemma 4, that

gn(x) ≥ f
(
x1/n

)
⎛

⎜
⎝

∞∫

x1/n

f (u)

u
du

⎞

⎟
⎠

n−1

≥ f
(
x1/n

)
(

A

1 + A

F(x1/n)

x1/n

)n−1

≥
(

A

1 + A

)n−1

x−(1−1/n)
f
(
x1/n

)

F(x1/n)

(
F(x1/n)

)n

≥ Cnx
γ−1e−nαxβ/n

,

where Cn =
(

A
1+A

)n−1
ABn . Therefore, the Krein quantity for gn is as follows:

K[gn] =
∞∫

0

− log gn(x2)

1 + x2
dx =

xn0∫

0

− log gn(x2)

1 + x2
dx +

∞∫

xn0

− log gn(x2)

1 + x2
dx

≤
(
− log gn(x

2n
0 )

)
xn0∫

0

1

1 + x2
dx +

∞∫

xn0

− log gn(x2)

1 + x2
dx < ∞ if n > 2β.

This in turn implies that Yn is M-indet for n > 2β (see, e.g., [10], Theorem 3). ��

10 Generalized Gamma Distributions. Part (d)

Let us see how the general result fromSect. 9 can be used to establish themoment inde-
terminacy of products of independent copies of a random variable ξ ∼ GG(α, β, 1).
Here γ = 1 and the density is f (x) = ce−αxβ

, x ≥ 0.
We claim that for n > 2β, the product Yn = ξ1ξ2 · · · ξn is M-indet. To see this, note

that f (x)/F(x) ≈ αβxβ−1 and F(x) ≈ [c/(αβ)]x1−βe−αxβ
as x → ∞. Then the

density f satisfies the conditions (i) and (ii) in Theorem 5, and hence, Yn is M-indet
if n > 2β.

For example, if ξ ∼ Exp(1), then, as mentioned before, the product Yn =
ξ1ξ2 · · · ξn is M-indet for n ≥ 3.

If ξ has the half-normal distribution, its density is f (x) = √
2/πe−x2/2, x ≥ 0,

then Yn = ξ1ξ2 · · · ξn is M-indet for n ≥ 5 (recall from Sect. 5 that Yn is M-det for
n ≤ 4). By words: The product of two, three or four half-normal random variables is
M-det, while the product of five or more such variables is M-indet.

In summary, we have the following result about GG(α, β, γ ) with γ = 1.

Lemma 5 Let n ≥ 2, Xn = ξn and Yn = ξ1 · · · ξn, where ξ1, . . . , ξn are independent
copies of ξ ∼ GG(α, β, 1). Then the power Xn is M-det iff the product Yn is M-det
and this is true iff n ≤ 2β.
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We now consider the general case γ > 0.

Theorem 6 Let n ≥ 2, Xn = ξn and Yn = ξ1 · · · ξn, where ξ1, . . . , ξn are indepen-
dent copies of ξ ∼ GG(α, β, γ ). Then Xn is M-det iff Yn is M-det and this is true iff
n ≤ 2β. In other words, both Xn and Yn have the same moment determinacy property.

Proof Define η = ξγ , ηi = ξ
γ

i , i = 1, 2, . . . , n, X∗
n = ηn = (ξn)γ = Xγ

n and
Y ∗
n = η1η2 · · · ηn = (ξ1ξ2 · · · ξn)γ = Y γ

n . Since η ∼ GG(α, β/γ, 1), we have, by
Lemma 5, X∗

n is M-det iff Y ∗
n is M-det iff n ≤ 2β/γ . Next, note that for each x > 0,

we have P[X∗
n > x] = P[Xn > x1/γ ] and P[Y ∗

n > x] = P[Yn > x1/γ ]. This implies
that any distributional property shared by X∗

n and Y ∗
n can be transferred to a similar

property shared by Xn and Yn , and vice versa. Therefore, Xn is M-det iff Yn is M-det
iff n ≤ 2β, because Xn is M-det iff n ≤ 2β (see, e.g., [18]). ��

11 Half-Logistic Distribution

Some of the above results and illustrations involve the generalized gamma distribution
GG(α, β, γ ). It is useful to have a moment determinacy characterization for powers
and products based on non-GG distributions. Here is an example based on the half-
logistic distribution, which clearly is not in the class GG.

Statement We say that the random variable ξ has the half-logistic distribution if its
density is

f (x) = 2e−x

(1 + e−x )2
, x ≥ 0.

The power Xn = ξn and the product Yn = ξ1ξ2 · · · ξn are defined as above. Then Xn

is M-det iff Yn is M-det and this is true iff n ≤ 2. This means that for each n, the two
random variables Xn and Yn share the same moment determinacy property.

Proof (i) The claim that Xn is M-det iff n ≤ 2 follows from results in [11]. Actually,
in [11] it is proved that for any real s > 0, the power ξ s is M-det iff s ≤ 2. Let us
give here an alternative proof. The density hs of ξ s is

hs(z) = 2

s
z1/s−1 e−z1/s

(1 + e−z1/s )2
, z ≥ 0.

Using the inequality: 1
4 ≤ (1 + e−x )−2 ≤ 1 for x ≥ 0, we find two-sided bounds

for the moments of ξ s :

1

2
�(ks + 1) ≤ E[(ξ s)k] ≤

∞∫

0

2

s
zk+1/s−1e−z1/sdz = 2�(ks + 1).
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Therefore, the growth rate of the moments of ξ s is

E[(ξ s)k+1]
E[(ξ s)k] ≤ 4 · �((k + 1)s + 1)

�(ks + 1)
≈ 4ss(k + 1)s as k → ∞.

By Theorem 1, this implies that ξ s is M-det for s ≤ 2. On the other hand, we have

E[(ξ s)k+1]
E[(ξ s)k] ≥ 1

4
· �((k + 1)s + 1)

�(ks + 1)
≈ 1

4
ss(k + 1)s as k → ∞.

The moment condition in Theorem 4 is satisfied if s > 2. It remains now to check
the validity of condition (2) for the density hs . We have

Lhs (z) : = − zh′
s(z)

hs(z)

= 1 − 1

s
+ 1

s
z1/s − 2

s
z1/s

e−z1/s

1 + e−z1/s
↗ ∞ ultimately as z → ∞.

Hence, if s > 2, ξ s is M-indet.
(ii) It remains to prove that Yn is M-det iff n ≤ 2.

(Sufficiency) As in part (i), we have

1

2
�(k + 1) ≤ E[ξ k] = 2�(k + 1).

Therefore, E[ξ k+1]/E[ξ k] = O(k + 1) as k → ∞. By Theorem 2, we conclude that
Yn is M-det if n ≤ 2.

(Necessity) Note that F(x) = P[ξ > x] = 2e−x/(1 + e−x ) ≥ e−x , x ≥ 0, and
f (x)/F(x) = 1/(1+ e−x ) ≥ 1/2, x ≥ 0. Therefore, taking β = 1 in Theorem 5, we
conclude that Yn is M-indet if n > 2. Let us express this conclusion by words: The
product of three or more half-logistic random variables is M-indet. ��
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