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Abstract In this paper, we derive an extension of the Marc̆enko–Pastur theorem to a
large class of weak dependent sequences of real-valued random variables having only
moment of order 2. Under amild dependence condition that is easily verifiable inmany
situations, we derive that the limiting spectral distribution of the associated sample
covariance matrix is characterized by an explicit equation for its Stieltjes transform,
depending on the spectral density of the underlying process. Applications to linear
processes, functions of linear processes, and ARCH models are given.
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1 Introduction

A typical object of interest in many fields is the sample covariance matrix Bn =
n−1 ∑n

j=1 XT
j X j where (X j ), j = 1, . . . , n, is a sequence of N = N (n)-dimensional

real-valued row randomvectors. The interest in studying the spectral properties of such
matrices has emerged from multivariate statistical inference since many test statistics
can be expressed in terms of functionals of their eigenvalues. The study of the empirical
distribution function (e.d.f.) FBn of the eigenvalues of Bn goes back toWishart 1920s,
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and the spectral analysis of large-dimensional sample covariance matrices has been
actively developed since the remarkable work ofMarc̆enko and Pastur [10] stating that
if limn→∞ N/n = c ∈ (0,∞), and all the coordinates of all the vectors X j ’s are i.i.d.
(independent identically distributed), centered and in L

2, then, with probability one,
FBn converges in distribution to a non-random distribution (the original Marc̆enko–
Pastur’s theorem is stated for random variables having moment of order four, for the
proof under moment of order two only, we refer to Yin [24]).

Since the Marc̆enko–Pastur’s pioneering paper, there has been a large amount of
work aiming at relaxing the independence structure between the coordinates of the
X j ’s. Yin [24] and Silverstein [17] considered a linear transformation of independent
random variables, which leads to the study of the empirical spectral distribution of
random matrices of the form Bn = n−1 ∑n

j=1 �
1/2
N YT

j Y j�
1/2
N where �N is an N × N

nonnegative definite Hermitian random matrix, independent of the Y j ’s which are
i.i.d and such that all their coordinates are i.i.d. In the latter paper, it is shown that
if limn→∞ N/n = c ∈ (0,∞) and F�N converges almost surely in distribution to
a non-random probability distribution function (p.d.f.) H on [0,∞), then, almost
surely, FBn converges in distribution to a (non-random) p.d.f. F that is characterized
in terms of its Stieltjes transform which satisfies a certain equation. Some further
investigations on the model mentioned above can be found Silverstein and Bai [18]
and Pan [13].

A natural question is then to wonder whether other possible correlation patterns of
coordinates can be considered, in such a way that, almost surely (or in probability),
FBn still converges in distribution to a non-random p.d.f. The recent work by Bai
and Zhou [2] is in this direction. Assuming that the X j ’s are i.i.d. and a very general
dependence structure of their coordinates, they derive the limiting spectral distribution
(LSD) of Bn . Their result has various applications. In particular, in case when the X j ’s
are independent copies of X = (X1, . . . , XN ) where (Xk)k∈Z is a stationary linear
process with centered i.i.d. innovations, applying their Theorem 1.1, they prove that,
almost surely, FBn converges in distribution to a non-random p.d.f. F , provided that
limn→∞ N/n = c ∈ (0,∞), the coefficients of the linear process are absolutely
summable and the innovations have a moment of order four (see their Theorem 2.5).
For this linear model, let us mention that in a recent paper, Yao [23] shows that the
Stieltjes transform of the limiting p.d.f. F satisfies an explicit equation that depends
on c and on the spectral density of the underlying linear process. Still in the context of
the linear model described above but relaxing the equidistribution assumption on the
innovations, and using a different approach than the one considered in the papers by
Bai and Zhou [2] and by Yao [23], Pfaffel and Schlemm [15] also derive the LSD of
Bn still assuming moments of order four for the innovations plus a polynomial decay
of the coefficients of the underlying linear process.

In this work, we extend such Marc̆enko–Pastur-type theorems along another direc-
tion. We shall assume that the X j ’s are independent copies of X = (X1, . . . , XN )

where (Xk)k∈Z is a stationary process of the form Xk = g(. . . , εk−1, εk), the εk’s are
i.i.d. real-valued randomvariables, and g : RZ → R is ameasurable function such that
Xk is a proper centered random variable. Assuming that X0 has a moment of order
two only, and imposing a dependence condition expressed in terms of conditional
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expectation, we prove that if limn→∞ N/n = c ∈ (0,∞), then almost surely, FBn

converges in distribution to a non-random p.d.f. F whose Stieltjes transform satisfies
an explicit equation that depends on c and on the spectral density of the underlying
stationary process (Xk)k∈Z (see our Theorem 2.1). The imposed dependence condi-
tion is directly related to the physical mechanisms of the underlying process and is
easy verifiable in many situations. For instance, when (Xk)k∈Z is a linear process with
i.i.d. innovations, our dependence condition is satisfied, and then our Theorem 2.1
applies, as soon as the coefficients of the linear process are absolutely summable and
the innovations have a moment of order two only, which improves Theorem 2.5 in
Bai and Zhou [2] and Theorem 1.1 in Yao [23]. Other models, such as functions of
linear processes, and ARCH models, for which our Theorem 2.1 applies, are given in
Sect. 3.

Let us now give an outline of the method used to prove our Theorem 2.1. Since
the X j ’s are independent, the result will follow if we can prove that the expectation
of the Stieltjes transform of FBn , say SFBn (z), converges to the Stieltjes transform of
F , say S(z), for any complex number z with positive imaginary part. With this aim,
we shall consider a sample covariance matrix Gn = n−1 ∑n

j=1 ZT
j Z j where the Z j ’s

are independent copies of Z = (Z1, . . . ZN )where (Zk)k∈Z is a sequence of Gaussian
random variables having the same covariance structure as the underlying process
(Xk)k∈Z. The Z j ’s will be assumed to be independent of the X j ’s. Using the Gaussian
structure of Gn , the convergence of E

(
SFGn (z)

)
to S(z)will follow by Theorem 1.1 in

Silverstein [17]. The main step of the proof is then to show that the difference between
the expectations of the Stieltjes transform of FBn and that of FGn converges to zero.
This will be achieved by approximating first (Xk)k∈Z by an m-dependent sequence of
random variables that are bounded. This leads to a new sample covariance matrix B̄n .
We then handle the difference between E

(
SF B̄n (z)

)
and E

(
SFGn (z)

)
with the help of

the so-called Lindeberg method used in the multidimensional case. Lindeberg method
is known to be an efficient tool to derive limit theorems, and from our knowledge, it
has been used for the first time in the context of random matrices by Chatterjee [4].
With the help of this method, he proved the LSD of Wigner matrices associated with
exchangeable random variables.

The paper is organized as follows: in Sect. 2, we specify the model and state the
LSD result for the sample covariance matrix associated with the underlying process.
Applications to linear processes, functions of linear processes, and ARCHmodels are
given in Sect. 3. Section 4 is devoted to the proof of the main result, whereas some
technical tools are stated and proved in “Appendix”.

Here are some notations used all along the paper. For any nonnegative integer q, the
notation 0q means a row vector of size q. For amatrix A, we denote by AT its transpose
matrix, by Tr(A) its trace, by ‖A‖ its spectral norm, and by ‖A‖2 its Hilbert-Schmidt
norm (also called the Frobenius norm). We shall also use the notation ‖X‖r for the
L
r -norm (r ≥ 1) of a real-valued random variable X . For any square matrix A of order

N with only real eigenvalues, the empirical spectral distribution of A is defined as

F A(x) = 1

N

N∑

k=1

1{λk≤x},
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where λ1, . . . , λN are the eigenvalues of A. The Stieltjes transform of F A is given by

SF A(z) =
∫

1

x − z
dF A(x) = 1

N
Tr(A − zI)−1,

where z = u + iv ∈ C
+ (the set of complex numbers with positive imaginary part),

and I is the identity matrix.
Finally, the notation [x] is used to denote the integer part of any real x and, for two

reals a and b, the notation a ∧ b means min(a, b), whereas the notation a ∨ b means
max(a, b).

2 Main Result

We consider a stationary causal process (Xk)k∈Z defined as follows: let (εk)k∈Z be a
sequence of i.i.d. real-valued random variables and let g : RZ → R be a measurable
function such that, for any k ∈ Z,

Xk = g(ξk) with ξk := (. . . , εk−1, εk) (2.1)

is a proper random variable, E(g(ξk)) = 0 and ‖g(ξk)‖2 < ∞.
The framework (2.1) is very general and it includes many widely used linear and

nonlinear processes. We refer to the papers by Wu [21,22] for many examples of
stationary processes that are of form (2.1). Following Priestley [16] and Wu [21],
(Xk)k∈Z can be viewed as a physical system with ξk (respectively Xk) being the input
(respectively the output) and g being the transform or data-generating mechanism.

For n a positive integer, we consider n independent copies of the sequence (εk)k∈Z
that we denote by (ε

(i)
k )k∈Z for i = 1, . . . , n. Setting ξ

(i)
k = (

. . . , ε
(i)
k−1, ε

(i)
k

)
and

X (i)
k = g(ξ (i)

k ), it follows that (X (1)
k )k∈Z, . . . , (X (n)

k )k∈Z are n independent copies of
(Xk)k∈Z. Let now N = N (n) be a sequence of positive integers, and define for any
i ∈ {1, . . . , n}, Xi = (

X (i)
1 , . . . , X (i)

N

)
. Let

Xn = (XT
1 | · · · |XT

n ) and Bn = 1

n
XnX T

n . (2.2)

In what follows, Bn will be referred to as the sample covariance matrix associated
with (Xk)k∈Z. To derive the limiting spectral distribution of Bn , we need to impose
some dependence structure on (Xk)k∈Z. With this aim, we introduce the projection
operator: for any k and j belonging to Z, let

Pj (Xk) = E(Xk |ξ j ) − E(Xk |ξ j−1).

We state now our main result.
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Theorem 2.1 Let (Xk)k∈Z be defined in (2.1) and Bn by (2.2). Assume that

∑

k≥0

‖P0(Xk)‖2 < ∞, (2.3)

and that c(n) = N/n → c ∈ (0,∞). Then, with probability one, FBn tends to a
non-random probability distribution F, whose Stieltjes transform S = S(z) (z ∈ C

+)
satisfies the equation

z = − 1

S
+ c

2π

2π∫

0

1

S + (
2π f (λ)

)−1 dλ, (2.4)

where S(z) := −(1 − c)/z + cS(z) and f (·) is the spectral density of (Xk)k∈Z.
Let usmention that, in the literature, the condition (2.3) is referred to as theHannan–

Heyde condition and is known to be essentially optimal for the validity of the central
limit theorem for the partial sums (normalized by

√
n) associated with an adapted

regular stationary process in L
2. As we shall see in the next section, the quantity

‖P0(Xk)‖2 can be computed inmany situations including nonlinearmodels.Wewould
like to mention that the condition (2.3) is weaker than the 2-strong stability condition
introduced by [21, Definition 3] that involves a coupling coefficient.

Remark 2.2 Under the condition (2.3), the series
∑

k≥0 |Cov(X0, Xk)| is finite (see for
instance the inequality (4.61)). Therefore (2.3) implies that the spectral density f (·)
of (Xk)k∈Z exists, is continuous, and bounded on [0, 2π). It follows that Proposition 1
in Yao [23] concerning the support of the limiting spectral distribution F still applies
if (2.3) holds. In particular, F is compactly supported. Notice also that condition (2.3)
is essentially optimal for the covariances to be absolutely summable. Indeed, for a
causal linear process with nonnegative coefficients and generated by a sequence of
i.i.d. real-valued random variables centered and in L2, both conditions are equivalent
to the summability of the coefficients.

Remark 2.3 Let us mention that each of the following conditions is sufficient for the
validity of (2.3):

∑

n≥1

1√
n
‖E(Xn|ξ0)‖2 < ∞ or

∑

n≥1

1√
n
‖Xn − E(Xn|Fn

1 )‖2 < ∞, (2.5)

where Fn
1 = σ(εk, 1 ≤ k ≤ n). A condition as the second part of (2.5) is usually

referred to as a near epoch dependence-type condition. The fact that the first part of
(2.5) implies (2.3) follows from Corollary 2 in Peligrad and Utev [14]. Corollary 5 of
the same paper asserts that the second part of (2.5) implies its first part.

Remark 2.4 Since many processes encountered in practice are causal, Theorem 2.1 is
stated for the one-sided process (Xk)k∈Z having the representation (2.1). With non-
essential modifications in the proof, the same result holds when (Xk)k∈Z is a two-sided
process having the representation
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Xk = g(. . . , εk−1, εk, εk+1, . . .), (2.6)

where (εk)k∈Z is a sequence of i.i.d. real-valued random variables. Assuming that
X0 is centered and in L

2, condition (2.3) has then to be replaced by the following
condition:

∑
k∈Z ‖P0(Xk)‖2 < ∞.

Remark 2.5 One canwonderwhetherTheorem2.1 extends to the case of functionals of
another strictly stationary sequence which can be strong mixing or absolutely regular,
even if this framework and ours have different range of applicability. Actually, many
models encountered in econometric theory have the representation (2.1), whereas, for
instance, functionals of absolutely regular (β-mixing) sequences occur naturally as
orbits of chaotic dynamical systems. In this situation, we do not think that Theorem 2.1
extends in its full generality without requiring an additional near epoch dependence-
type condition. It is outside the scope of this paper to study such models, which will
be the object of further investigations.

3 Applications

In this section, we give two different classes of models for which the condition (2.3)
is satisfied and then for which our Theorem 2.1 applies. Other classes of models,
includingnonlinear time series such as iterativeLipschitzmodels or chainswith infinite
memory, which are of the form (2.1) and for which the quantities ‖P0(Xk)‖2 or
‖E(Xk |ξ0)‖2 can be computed, may be found in [22].

3.1 Functions of Linear Processes

In this section, we shall focus on functions of real-valued linear processes. Define

Xk = h
(∑

i≥0

aiεk−i

)
− E

(
h
(∑

i≥0

aiεk−i

))
, (3.1)

where (ai )i∈Z is a sequence of real numbers in 	1 and (εi )i∈Z is a sequence of i.i.d.
real-valued random variables in L1. We shall give sufficient conditions in terms of the
regularity of the function h, for the condition (2.3) to be satisfied.

Denote by wh(·) the modulus of continuity of the function h on R, that is:

wh(t) = sup
|x−y|≤t

|h(x) − h(y)| .

Corollary 3.1 Assume that

∑

k≥0

‖wh(|akε0|)‖2 < ∞, (3.2)
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or

∑

k≥1

∥
∥wh

(∑
	≥0 |ak+	||ε−	|

)∥
∥
2

k1/2
< ∞. (3.3)

Then, provided that c(n) = N/n → c ∈ (0,∞), the conclusion of Theorem 2.1 holds
for FBn where Bn is the sample covariance matrix of dimension N defined by (2.2)
and associated with (Xk)k∈Z defined by (3.1).

Example 1 Assume that h is γ -Hölder with γ ∈]0, 1], that is: there is a positive
constant C such that wh(t) ≤ C |t |γ . Assume that

∑

k≥0

|ak |γ < ∞ and E(|ε0|(2γ )∨1) < ∞,

then the condition (3.2) is satisfied and the conclusion of Corollary 3.1 holds. In
particular, when h is the identity, which corresponds to the fact that Xk is a causal
linear process, the conclusion of Corollary 3.1 holds as soon as

∑
k≥0 |ak | < ∞ and

ε0 belongs to L
2. This improves Theorem 2.5 in Bai and Zhou [2] and Theorem 1 in

Yao [23] that require ε0 to be in L4.

Example 2 Assume ‖ε0‖∞ ≤ M where M is a finite positive constant, and that
|ak | ≤ Cρk where ρ ∈ (0, 1) and C is a finite positive constant, then the
condition (3.3) is satisfied and the conclusion of Corollary 3.1 holds as soon as∑

k≥1 k
−1/2wh

(
ρkMC(1 − ρ)−1

)
< ∞. Using the usual comparison between series

and integrals, it follows that the latter condition is equivalent to

1∫

0

wh(t)

t
√| log t |dt < ∞. (3.4)

For instance if wh(t) ≤ C | log t |−α with α > 1/2 near zero, then the above condition
is satisfied.

Let us now consider the special case of functionals of Bernoulli shifts (also called
Raikov or Riesz–Raikov sums). Let (εk)k∈Z be a sequence of i.i.d. random variables
such that P(ε0 = 1) = P(ε0 = 0) = 1/2 and let, for any k ∈ Z,

Yk =
∑

i≥0

2−i−1εk−i and Xk = h(Yk) −
1∫

0

h(x)dx, (3.5)

where h ∈ L
2([0, 1]), [0, 1]being equippedwith theLebesguemeasure.Recall thatYn ,

n ≥ 0, is an ergodic stationary Markov chain taking values in [0, 1], whose stationary
initial distribution is the restriction of Lebesgue measure to [0, 1]. As we have seen
previously, if h has a modulus of continuity satisfying (3.4), then the conclusion of
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Theorem 2.1 holds for the sample covariance matrix associated with such a functional
of Bernoulli shifts. Since for Bernoulli shifts, the computations can be done explicitly,
we can even derive an alternative condition to (3.4), still in terms of regularity of h,
in such a way that (2.3) holds.

Corollary 3.2 . Assume that

1∫

0

1∫

0

(h(x) − h(y))2
1

|x − y|
(
log

(
log

1

|x − y|
))t

dxdy < ∞, (3.6)

for some t > 1. Then, provided that c(n) = N/n → c ∈ (0,∞), the conclusion of
Theorem 2.1 holds for FBn where Bn is the sample covariance matrix of dimension
N defined by (2.2) and associated with (Xk)k∈Z defined by (3.5).

As a concrete example of a map satisfying (3.6), we can consider the function

g(x) = 1√
x

1

(1 + log(2/x))4
sin

(1

x

)
, 0 < x < 1

(see the computations pages 23–24 in Merlevède et al. [11] showing that the above
function satisfies (3.6)).

Proof of Corollary 3.1 To prove the corollary, it suffices to show that the condition
(2.3) is satisfied as soon as (3.2) or (3.3) holds. Let (ε∗

k )k∈Z be an independent copy of
(εk)k∈Z. Denoting by Eε(·) the conditional expectation with respect to ε = (εk)k∈Z,
we have that, for any k ≥ 0,

‖P0(Xk)‖2 =
∥
∥
∥Eε

(
h
( k−1∑

i=0

aiε
∗
k−i +

∑

i≥k

aiεk−i

)
− h

( k∑

i=0

aiε
∗
k−i +

∑

i≥k+1

aiεk−i

))∥
∥
∥
2

≤ ‖wh
(∣
∣ak(ε0 − ε∗

0)
∣
∣
)‖2.

Next, by the subadditivity of wh(·), wh(|ak(ε0 − ε∗
0)|) ≤ wh(|akε0|) + wh(|akε∗

0 |).
Whence,‖P0(Xk)‖2 ≤ 2‖wh(|akε0|)‖2. This proves that the condition (2.3) is satisfied
under (3.2).

We prove now that if (3.3) holds then so does the condition (2.3). According to
Remark 2.3, it suffices to prove that the first part of (2.5) is satisfied. With the same
notations as before, we have that, for any 	 ≥ 0,

E(X	|ξ0) = Eε

(
h
( 	−1∑

i=0

aiε
∗
	−i +

∑

i≥	

aiε	−i

)
− h

(∑

i≥0

aiε
∗
	−i

))
.

Hence, for any nonnegative integer 	,

‖E(X	|ξ0)‖2 ≤
∥
∥
∥wh

( ∑

i≥	

|ai (ε	−i − ε∗
	−i )|

)∥
∥
∥
2

≤ 2
∥
∥
∥wh

( ∑

i≥	

|ai ||ε	−i |
)∥
∥
∥
2
,
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where we have used the subadditivity of wh(·) for the last inequality. This latter
inequality entails that the first part of (2.5) holds as soon as (3.3) does. �
Proof of Corollary 3.2 ByRemark 2.3, it suffices to prove that the second part of (2.5)
is satisfied as soon as (3.6) is. Actually we shall prove that (3.6) implies that

∑

n≥1

(log n)t‖Xn − E(Xn|Fn
1 )‖22 < ∞, (3.7)

which clearly entails the second part of (2.5) since t > 1. An upper bound for the
quantity ‖Xn − E(Xn|Fn

1 )‖22 has been obtained in [8, Chapter 19.3]. Setting A jn =
[ j2−n, ( j + 1)2−n) for j = 0, 1, . . . , 2n − 1, they obtained (see the pages 372–373
of their monograph) that

‖Xn − E(Xn|Fn
1 )‖22 ≤ 2n

2n−1∑

j=0

∫

A j,n

∫

A j,n

(h(x) − h(y))2dxdy.

Since

2n−1∑

j=0

∫

A j,n

∫

A j,n

(h(x) − h(y))2dxdy ≤
1∫

0

1∫

0

(h(x) − h(y))21|x−y|≤2−ndxdy,

it follows that

∑

n≥1

(log n)t‖Xn − E(Xn|Fn
1 )‖22

≤
1∫

0

1∫

0

∑

n:2−n≥|x−y|
2n(log n)t (h(x) − h(y))21|x−y|≤2−ndxdy.

This latter inequality together with the fact that for any u ∈ (0, 1),
∑

n:2−n≥u(log n)t ≤
Cu−1(log(log u−1))t for some positive constant C prove that (3.7) holds under (3.6).

�

3.2 ARCH Models

Let (εk)k∈Z be an i.i.d. sequence of zero mean real-valued random variables such that
‖ε0‖2 = 1. We consider the following ARCH(∞) model described by Giraitis et al.
[5]:

Yk = σkεk where σ 2
k = a +

∑

j≥1

a jY
2
k− j , (3.8)
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where a ≥ 0, a j ≥ 0, and
∑

j≥1 a j < 1. Such models are encountered when the

volatility (σ 2
k )k∈Z is unobserved. In that case, the process of interest is (Y 2

k )k∈Z and,
in what follows, we consider the process (Xk)k∈Z defined, for any k ∈ Z, by:

Xk = Y 2
k − E(Y 2

k ) where Yk is defined in (3.8). (3.9)

Notice that, under the above conditions, there exists a unique stationary solution of
Eq. (3.8) satisfying (see [5]):

σ 2
k = a + a

∞∑

	=1

∞∑

j1,..., j	=1

a j1 . . . a j	ε
2
k− j1 . . . ε2k−( j1+···+ j	) . (3.10)

Corollary 3.3 Assume that ε0 belongs to L4 and that

‖ε0‖24
∑

j≥1

a j < 1 and
∑

j≥n

a j = O(n−b) for some b > 1/2. (3.11)

Then, provided that c(n) = N/n → c ∈ (0,∞), the conclusion of Theorem 2.1 holds
for FBn where Bn is the sample covariance matrix of dimension N defined by (2.2)
and associated with (Xk)k∈Z defined by (3.9).

Proof of Corollary 3.3 By Remark 2.3, it suffices to prove that the first part of (2.5)
is satisfied as soon as (3.11) is. With this aim, let us notice that, for any integer n ≥ 1,

‖E(Xn|ξ0)‖2 = ‖ε0‖24‖E(σ 2
n |ξ0) − E(σ 2

n )‖2
≤ 2a‖ε0‖24

∥
∥
∥

∞∑

	=1

∞∑

j1,..., j	=1

a j1 . . . a j	ε
2
n− j1 . . . ε2n−( j1+···+ j	)1 j1+···+ j	≥n

∥
∥
∥
2

≤ 2a‖ε0‖24
∞∑

	=1

∞∑

j1,..., j	=1

	∑

k=1

a j1 . . . a j	1 jk≥[n/	]‖ε0‖2	4

≤ 2a‖ε0‖24
∞∑

	=1

	κ	−1
∞∑

k=[n/	]
ak,

where κ = ‖ε0‖24
∑

j≥1 a j . So, under (3.11), there exists a positive constant C not

depending on n such that ‖E(Xn|ξ0)‖2 ≤ Cn−b. This upper bound implies that the
first part of (2.5) is satisfied as soon as b > 1/2. �

Remark 3.4 Notice that if we consider the sample covariance matrix associated with
(Yk)k∈Z defined in (3.8), then its LSD follows directly by Theorem 2.1 since P0(Yk) =
0, for any positive integer k.
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4 Proof of Theorem 2.1

To prove the theorem, it suffices to show that for any z ∈ C
+,

SFBn (z) → S(z) almost surely. (4.1)

Since the columns of Xn are independent, by Step 1 of the proof of Theorem 1.1 in
Bai and Zhou [2], to prove (4.1), it suffices to show that, for any z ∈ C

+,

lim
n→∞E

(
SFBn (z)

) = S(z), (4.2)

where S(z) satisfies the Eq. (2.4).
The proof of (4.2) being very technical, for reader convenience, let us describe

the different steps leading to it. We shall consider a sample covariance matrix Gn :=
1
nZnZT

n (see (4.32)) such that the columns of Zn are independent and the random
variables in each column of Zn form a sequence of Gaussian random variables whose
covariance structure is the same as that of the sequence (Xk)k∈Z (see Sect. 4.2). The
aim will be then to prove that, for any z ∈ C

+,

lim
n→∞

∣
∣E

(
SFBn (z)

) − E
(
SFGn (z)

)∣
∣ = 0, (4.3)

and

lim
n→∞E

(
SFGn (z)

) = S(z). (4.4)

The proof of (4.4) will be achieved in Sect. 4.4 with the help of Theorem 1.1 in
Silverstein [17] combined with arguments developed in the proof of Theorem 1 in Yao
[23]. The proof of (4.3)will be divided in several steps. First, to “break” the dependence
structure, we introduce a parameter m, and approximate Bn by a sample covariance
matrix B̄n := 1

n X̄nX̄ T
n (see (4.16)) such that the columns of X̄n are independent and the

random variables in each column of X̄n form of an m-dependent sequence of random
variables bounded by 2M , with M a positive real (see Sect. 4.1). This approximation
will be done in such a way that, for any z ∈ C

+,

lim
m→∞ lim sup

M→∞
lim sup
n→∞

∣
∣
∣E

(
SFBn (z)

) − E
(
SF B̄n (z)

)∣∣
∣ = 0 . (4.5)

Next, the sample Gaussian covariance matrix Gn is approximated by another sample
Gaussian covariance matrix G̃n (see (4.34)), depending on the parameter m and con-
structed from Gn by replacing some of the variables in each column of Zn by zeros
(see Sect. 4.2). This approximation will be done in such a way that, for any z ∈ C

+,

lim
m→∞ lim sup

n→∞

∣
∣
∣E

(
SFGn (z)

) − E
(
SFG̃n (z)

)∣∣
∣ = 0. (4.6)
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In view of (4.5) and (4.6), the convergence (4.3) will then follow if we can prove that,
for any z ∈ C

+,

lim
m→∞ lim sup

M→∞
lim sup
n→∞

∣
∣
∣E

(
SF B̄n (z)

) − E
(
SFG̃n (z)

)∣∣
∣ = 0. (4.7)

This will be achieved in Sect. 4.3 with the help of the Lindeberg method. The rest of
this section is devoted to the proofs of the convergences (4.3)–(4.7).

4.1 Approximation by a Sample Covariance Matrix Associated with an
m-Dependent Sequence

Let N ≥ 2 and m be a positive integer fixed for the moment and assumed to be less
than

√
N/2. Set

kN ,m =
[

N

m2 + m

]

, (4.8)

where we recall that [ · ] denotes the integer part. Let M be a fixed positive number
that depends neither on N nor on n, nor on m. Let ϕM be the function defined by
ϕM (x) = (x ∧ M) ∨ (−M). Now for any k ∈ Z and i ∈ {1, . . . , n} let

X̃ (i)
k,M,m =E

(
ϕM (X (i)

k )|ε(i)
k , . . . , ε

(i)
k−m

)
and X̄ (i)

k,M,m = X̃ (i)
k,M,m−E

(
X̃ (i)
k,M,m

)
. (4.9)

In what follows, to soothe the notations, we shall write X̃ (i)
k,m and X̄ (i)

k,m instead

of, respectively, X̃ (i)
k,M,m and X̄ (i)

k,M,m , when no confusion is allowed. Notice that
(
X̄ (1)
k,m

)
k∈Z, . . . ,

(
X̄ (n)
k,m

)
k∈Z are n independent copies of the centered and stationary

sequence
(
X̄k,m

)
k∈Z defined by

X̄k,m = X̃k,m−E
(
X̃k,m

)
where X̃k,m =E

(
ϕM (Xk)|εk, . . . , εk−m

)
, k ∈ Z. (4.10)

This implies in particular that: for any i ∈ {1, . . . , n} and any k ∈ Z,

‖X̄ (i)
k,m‖∞ = ‖X̄k,m‖∞ ≤ 2M. (4.11)

For any i ∈ {1, . . . , n}, note that
(
X̄ (i)
k,m

)
k∈Z forms an m-dependent sequence, in

the sense that X̄ (i)
k,m and X̄ (i)

k′,m are independent if |k − k′| > m.
We write now the interval [1, N ] ∩ N as a union of disjoint sets as follows:

[1, N ] ∩ N =
kN ,m+1⋃

	=1

I	 ∪ J	,
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where, for 	 ∈ {1, . . . , kN ,m},

I	 := [
(	 − 1)(m2 + m) + 1, (	 − 1)(m2 + m) + m2] ∩ N,

J	 :=
[
(	 − 1)(m2 + m) + m2 + 1, 	(m2 + m)

]
∩ N, (4.12)

and, for 	 = kN ,m + 1,

IkN ,m+1 = [
kN ,m(m2 + m) + 1, N

] ∩ N,

and JkN ,m+1 = ∅. Note that IkN ,m+1 = ∅ if kN ,m(m2 + m) = N .

Let now
(
u(i)

	

)
	∈{1,...,kN ,m } be the random vectors defined as follows. For any 	

belonging to {1, . . . , kN ,m − 1},

u(i)
	 =

((
X̄ (i)
k,m

)
k∈I	 , 0m

)
. (4.13)

Hence, the dimension of the random vectors defined above is equal to m2 + m. Now,
for 	 = kN ,m , we set

u(i)
kN ,m

=
((

X̄ (i)
k,m

)
k∈IkN ,m

, 0r
)
, (4.14)

where r = m+N−kN ,m(m2+m). This last vector is then of dimension N−(kN ,m−1)
(m2 + m).

Notice that the random vectors
(
u(i)

	

)
1≤i≤n,1≤	≤kN ,m

are mutually independent.

For any i ∈ {1, . . . , n}, we define now row random vectors X̄(i) of dimension N
by setting

X̄(i) = (
u(i)

	 , 	 = 1, . . . , kN ,m
)
, (4.15)

where the u(i)
	 ’s are defined in (4.13) and (4.14). Let

X̄n = (
X̄(1)T | · · · |X̄(n)T )

and B̄n = 1

n
X̄nX̄ T

n . (4.16)

In what follows, we shall prove the following proposition.

Proposition 4.1 For any z ∈ C
+, the convergence (4.5) holds true with Bn and B̄n as

defined in (2.2) and (4.16), respectively.

To prove the proposition above, we start by noticing that, by integration by parts, for
any z = u + iv ∈ C

+,
∣
∣
∣E

(
SFBn (z)

) − E
(
SF B̄n (z)

)∣∣
∣ ≤ E

∣
∣
∣

∫
1

x − z
dFBn (x) −

∫
1

x − z
dF B̄n (x)

∣
∣
∣

= E

∣
∣
∣

∫
FBn (x) − F B̄n (x)

(x − z)2
dx

∣
∣
∣ ≤ 1

v2
E

∫
∣
∣FBn (x) − F B̄n (x)

∣
∣dx . (4.17)
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Now,
∫ ∣

∣FBn (x) − F B̄n (x)
∣
∣dx is nothing else but the Wasserstein distance of order 1

between the empirical measure of Bn and that of B̄n . To be more precise, if λ1, . . . , λN

denote the eigenvalues of Bn in the non-increasing order, and λ̄1, . . . , λ̄N the ones
of B̄n , also in the non-increasing order, then, setting ηn = 1

N

∑N
k=1 δλk and η̄n =

1
N

∑N
k=1 δλ̄k

, we have that

∫
∣
∣FBn (x) − F B̄n (x)

∣
∣dx = W1(ηn, η̄n) = inf E|X − Y |,

where the infimum runs over the set of couples of random variables (X,Y ) on R×R

such that X ∼ ηn and Y ∼ η̄n . Arguing as in Remark 4.2.6 in [3], we have

W1(ηn, η̄n) = 1

N
min

π∈SN

N∧n∑

k=1

|λk − λ̄π(k)|,

where π is a permutation belonging to the symmetric group SN of {1, . . . , N }. By
standard arguments, involving the fact that if x, y, u, v are real numbers such that x ≤ y
and u > v, then |x−u|+|y−v| ≥ |x−v|+|y−u|, we get that minπ∈SN

∑N∧n
k=1 |λk −

λ̄π(k)| = ∑N∧n
k=1 |λk − λ̄k |. Therefore,

W1(ηn, η̄n) =
∫

∣
∣FBn (x) − F B̄n (x)

∣
∣dx = 1

N

N∧n∑

k=1

|λk − λ̄k |. (4.18)

Notice that λk = s2k and λ̄k = s̄2k where the sk’s (respectively the s̄k’s) are the singular
values of thematrix n−1/2Xn (respectively of n−1/2X̄n). Hence, by Cauchy–Schwarz’s
inequality,

N∧n∑

k=1

|λk − λ̄k | ≤
( N∧n∑

k=1

∣
∣sk + s̄k

∣
∣2

)1/2( N∧n∑

k=1

∣
∣sk − s̄k

∣
∣2

)1/2

≤ 21/2
( N∧n∑

k=1

(
s2k + s̄2k

))1/2( N∧n∑

k=1

∣
∣sk − s̄k

∣
∣2

)1/2

≤ 21/2
(
Tr(Bn) + Tr(B̄n)

)1/2( N∧n∑

k=1

∣
∣sk − s̄k

∣
∣2

)1/2
.

Next, by Hoffman–Wielandt’s inequality (see, e.g., Corollary 7.3.8 in Horn and John-
son [7]),

N∧n∑

k=1

∣
∣sk − s̄k

∣
∣2 ≤ n−1Tr

((Xn − X̄n
)(Xn − X̄n

)T )
.
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Therefore,

N∧n∑

k=1

|λk − λ̄k | ≤ 21/2n−1/2
(
Tr(Bn) + Tr(B̄n)

)1/2

×
(
Tr

((Xn − X̄n
)(Xn − X̄n

)T ))1/2
. (4.19)

Starting from (4.17), considering (4.18) and (4.19), and using Cauchy–Schwarz’s
inequality, it follows that

∣
∣
∣E

(
SFBn (z)

) − E
(
SF B̄n (z)

)∣∣
∣

≤ 21/2

v2

1

Nn1/2
‖Tr(Bn) + Tr(B̄n)‖1/21 ‖Tr((Xn − X̄n

)(Xn − X̄n
)T )‖1/21 . (4.20)

By the definition of Bn ,

1

N
E

(|Tr(Bn)|
) = 1

nN

n∑

i=1

N∑

k=1

∥
∥X (i)

k

∥
∥2
2 = ‖X0‖22, (4.21)

where we have used that for each i ,
(
X (i)
k

)
k∈Z is a copy of the stationary sequence

(Xk)k∈Z. Now, setting

IN ,m =
kN ,m⋃

	=1

I	 and RN ,m = {1, . . . , N }\IN ,m, (4.22)

recalling the definition (4.16) of B̄n , using the stationarity of the sequence (X̄ (i)
k,m)k∈Z,

and the fact that card(IN ,m) = m2kN ,m ≤ N , we get

1

N
E

(|Tr(B̄n)|
) = 1

nN

n∑

i=1

∑

k∈IN ,m

∥
∥X̄ (i)

k,m

∥
∥2
2 ≤ ‖X̄0,m‖22.

Next,

‖X̄0,m‖2 ≤ 2‖X̃0,m‖2 ≤ 2‖ϕM (X0)‖2 ≤ 2‖X0‖2. (4.23)

Therefore,

1

N
E

(|Tr(B̄n)|
) ≤ 4‖X0‖22. (4.24)
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Now, by definition of Xn and X̄n ,

1

Nn
E

(|Tr(Xn − X̄n
)(Xn − X̄n

)T |)

= 1

nN

n∑

i=1

∑

k∈IN ,m

∥
∥X (i)

k − X̄ (i)
k,m

∥
∥2
2 + 1

nN

n∑

i=1

∑

k∈RN ,m

∥
∥X (i)

k

∥
∥2
2.

Using stationarity, the fact that card(IN ,m) ≤ N and

card(RN ,m) = N − m2kN ,m ≤ N

m + 1
+ m2, (4.25)

we get that

1

Nn
E

(|Tr(Xn − X̄n
)(Xn − X̄n

)T |)

≤ ‖X0 − X̄0,m‖22 + (m−1 + m2N−1)‖X0‖22. (4.26)

Starting from (4.20), considering the upper bounds (4.21), (4.24), and (4.26), we derive
that there exists a positive constant C not depending on (m, M) and such that

lim sup
n→∞

∣
∣
∣E

(
SFBn (z)

) − E
(
SF B̄n (z)

)∣∣
∣ ≤ C

v2

(‖X0 − X̄0,m‖2 + m−1/2).

Therefore, Proposition 4.1 will follow if we can prove that

lim
m→∞ lim sup

M→∞
‖X0 − X̄0,m‖2 = 0. (4.27)

Let us introduce now the sequence (Xk,m)k∈Z defined as follows: for any k ∈ Z,

Xk,m = E
(
Xk |εk, . . . , εk−m

)
. (4.28)

With the above notation, we write that

‖X0 − X̄0,m‖2 ≤ ‖X0 − X0,m‖2 + ‖X0,m − X̄0,m‖2.

Since X0 is centered, so is X0,m . Then ‖X0,m− X̄0,m‖2 = ‖X0,m−E(X0,m)− X̄0,m‖2.
Therefore, recalling the definition (4.10) of X̄0,m , it follows that

‖X0,m − X̄0,m‖2 ≤ 2‖X0,m − X̃0,m‖2
≤ 2‖X0 − ϕM (X0)‖2 ≤ 2‖(|X0| − M)+‖2. (4.29)
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Since X0 belongs to L
2, limM→∞ ‖(|X0| − M)+‖2 = 0. Therefore, to prove (4.27)

(and then Proposition 4.1), it suffices to prove that

lim
m→∞ ‖X0 − X0,m‖2 = 0. (4.30)

Since (X0,m)m≥0 is a martingale with respect to the increasing filtration (Gm)m≥0
defined by Gm = σ(ε−m, . . . , ε0) and is such that supm≥0 ‖X0,m‖2 ≤ ‖X0‖2 < ∞,
(4.30) follows by themartingale convergence theorem inL2 (see for instanceCorollary
2.2 in Hall and Heyde [6]). This ends the proof of Proposition 4.1. �

4.2 Construction of Approximating Sample Covariance Matrices Associated
with Gaussian Random Variables

Let (Zk)k∈Z be a centered Gaussian process with real values, whose covariance func-
tion is given, for any k, 	 ∈ Z, by

Cov(Zk, Z	) = Cov(Xk, X	). (4.31)

For n a positive integer, we consider n independent copies of the Gaussian process
(Zk)k∈Z that are in addition independent of (X (i)

k )k∈Z,i∈{1,...,n}. We shall denote

these copies by (Z (i)
k )k∈Z for i = 1, . . . , n. For any i ∈ {1, . . . , n}, define Zi =

(
Z (i)
1 , . . . , Z (i)

N

)
. Let Zn = (ZT

1 | · · · |ZT
n ) be the matrix whose columns are the ZT

i ’s
and consider its associated sample covariance matrix

Gn = 1

n
ZnZT

n . (4.32)

For kN ,m given in (4.8), we define now the randomvectors
(
v(i)
	

)
	∈{1,...,kN ,m } as follows.

They are defined as the random vectors
(
u(i)

	

)
	∈{1,...,kN ,m } defined in (4.13) and (4.14),

but by replacing each X̄ (i)
k,m by Z (i)

k . For any i ∈ {1, . . . , n}, we then define the random
vectors Z̃(i) of dimension N , as follows:

Z̃(i) = (
v(i)
	 , 	 = 1, . . . , kN ,m

)
. (4.33)

Let now

Z̃n = (
Z̃(1)T | · · · |Z̃(n)T )

and G̃n = 1

n
Z̃nZ̃T

n . (4.34)

In what follows, we shall prove the following proposition.

Proposition 4.2 For any z ∈ C
+, the convergence (4.6) holds true with Gn and G̃n

as defined in (4.32) and (4.34) respectively.
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To prove the proposition above, we start by noticing that, for any z = u + iv ∈ C
+,

∣
∣
∣E

(
SFGn (z)

) − E
(
SFG̃n (z)

)∣∣
∣ ≤ E

∣
∣
∣

∫
1

x − z
dFGn (x) −

∫
1

x − z
dF G̃n (x)

∣
∣
∣

≤ E

∣
∣
∣

∫
FGn (x) − F G̃n

(x − z)2
dx

∣
∣
∣ ≤ π

∥
∥FGn − F G̃n

∥
∥∞

v
.

Hence, by Theorem A.44 in Bai and Silverstein [1],

∣
∣
∣E

(
SFGn (z)

) − E
(
SFG̃n (z)

)∣∣
∣ ≤ π

vN
rank

(Zn − Z̃n
)
.

By definition of Zn and Z̃n , rank
(Zn − Z̃n

) ≤ card(RN ,m), where RN ,m is defined
in (4.22). Therefore, using (4.25), we get that, for any z = u + iv ∈ C

+,

∣
∣
∣E

(
SFGn (z)

) − E
(
SFG̃n (z)

)∣∣
∣ ≤ π

vN

( N

m + 1
+ m2

)
,

which converges to zero by letting n first tend to infinity and after m. This ends the
proof of Proposition 4.2. �

4.3 Approximation of E
(
SF B̄n (z)

)
by E

(
SFG̃n (z)

)

In this section, we shall prove the following proposition.

Proposition 4.3 Under the assumptions of Theorem 2.1, for any z ∈ C
+, the conver-

gence (4.7) holds true with B̄n and G̃n as defined in (4.16) and (4.34), respectively.

With this aim, we shall use the Lindeberg method that is based on telescoping sums.
In order to develop it, we first give the following definition:

Definition 4.1 Let x be a vector of RnN with coordinates

x = (
x (1), . . . , x (n)

)
where for any i ∈ {1, . . . , n}, x (i) = (

x (i)
k , k ∈ {1, . . . , N }).

Let z ∈ C
+ and f := fz be the function defined from R

nN to C by

f (x) = 1

N
Tr

(
A(x) − zI

)−1 where A(x) = 1

n

n∑

k=1

(x (k))T x (k), (4.35)

and I is the identity matrix.

The function f , as defined above, admits partial derivatives of all orders. Indeed, let
u be one of the coordinates of the vector x and Au = A(x) the matrix-valued function
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of the scalar u. Then, setting Gu = (
Au − zI

)−1 and differentiating both sides of the
equality Gu(Au − zI) = I, it follows that

dG

du
= −G

dA

du
G, (4.36)

(see the equality (17) in Chatterjee [4]). Higher-order derivatives may be computed
by applying repeatedly the above formula. Upper bounds for some partial derivatives
up to the fourth order are given in “Appendix”.

Now, using Definition 4.1 and the notations (4.15) and (4.33), we get that, for any
z ∈ C

+,

E
(
SF B̄n (z)

) − E
(
SFG̃n (z)

) = E f
(
X̄(1), . . . , X̄(n)

) − E f
(
Z̃(1), . . . , Z̃(n)

)
. (4.37)

To continue the development of the Lindeberg method, we introduce additional nota-
tions. For any i ∈ {1, . . . , n} and kN ,m given in (4.8), we define the random vectors
(
U(i)

	

)
	∈{1,...,kN ,m } of dimension nN as follows. For any 	 ∈ {1, . . . , kN ,m},

U(i)
	 =

(
0(i−1)N , 0(	−1)(m2+m) , u(i)

	 , 0r	 , 0(n−i)N

)
, (4.38)

where the u(i)
	 ’s are defined in (4.13) and (4.14), and

r	 = N − 	(m2 + m) for 	 ∈ {1, . . . , kN ,m − 1}, and rkN ,m = 0. (4.39)

Note that the vectors
(
U(i)

	

)
1≤i≤n,1≤	≤kN ,m

are mutually independent. Moreover, with
the notations (4.38) and (4.15), the following relations hold. For any i ∈ {1, . . . , n},

kN ,m∑

	=1

U(i)
	 =

(
0N (i−1) , X̄(i) , 0(n−i)N

)
and

n∑

i=1

kN ,m∑

	=1

U(i)
	 =

(
X̄(1), . . . , X̄(n)

)
, (4.40)

where the X̄(i)’s are defined in (4.15).
Now, for any i ∈ {1, . . . , n}, we define the random vectors

(
V(i)

	

)
	∈{1,...,kN ,m } of

dimension nN , as follows: for any 	 ∈ {1, . . . , kN ,m},

V(i)
	 =

(
0(i−1)N , 0(	−1)(m2+m) , v(i)

	 , 0r	 , 0(n−i)N

)
, (4.41)
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where r	 is defined in (4.39) and the v(i)
	 ’s are defined in Sect. 4.2. With the notations

(4.41) and (4.33), the following relations hold: for any i ∈ {1, . . . , n},
kN ,m∑

	=1

V(i)
	 =

(
0N (i−1) , Z̃(i) , 0N (n−i)

)
and

n∑

i=1

kN ,m∑

	=1

V(i)
	 =

(
Z̃(1), . . . , Z̃(n)

)
, (4.42)

where the Z̃(i)’s are defined in (4.33). We define now, for any i ∈ {1, . . . , n},

Si =
i∑

s=1

kN ,m∑

	=1

U(s)
	 and Ti =

n∑

s=i

kN ,m∑

	=1

V(s)
	 , (4.43)

and any s ∈ {1, . . . , kN ,m},

S(i)
s =

s∑

	=1

U(i)
	 and T(i)

s =
kN ,m∑

	=s

V(i)
	 . (4.44)

In all the notations above, we use the convention that
∑s

k=r = 0 if r > s. Therefore,
starting from (4.37), considering the relations (4.40) and (4.42), and using the notations
(4.43) and (4.44), we successively get

E
(
SF B̄n (z)

) − E
(
SFG̃n (z)

) =
n∑

i=1

(
E f

(
Si + Ti+1

) − E f
(
Si−1 + Ti

))

=
n∑

i=1

kN ,m∑

s=1

(
E f

(
Si−1+S(i)

s + T(i)
s+1+Ti+1

) − E f
(
Si−1+S(i)

s−1 + T(i)
s + Ti+1

))
.

Therefore, setting for any i ∈ {1, . . . , n} and any s ∈ {1, . . . , kN ,m},

W(i)
s = Si−1 + S(i)

s + T(i)
s+1 + Ti+1, (4.45)

and

W̃(i)
s = Si−1 + S(i)

s−1 + T(i)
s+1 + Ti+1, (4.46)

we are lead to

E
(
SF B̄n (z)

) − E
(
SFG̃n (z)

) =
n∑

i=1

kN ,m∑

s=1

(
E

(
�(i)

s ( f )
) − E

(
�̃(i)

s ( f )
))

, (4.47)
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where

�(i)
s ( f ) = f

(
W(i)

s

) − f
(
W̃(i)

s

)
and �̃(i)

s ( f ) = f
(
W(i)

s−1

) − f
(
W̃(i)

s

)
.

In order to continue the multidimensional Lindeberg method, it is useful to introduce
the following notations.

Definition 4.2 Let d1 and d2 be two positive integers. Let A = (a1, . . . , ad1) and
B = (b1, . . . , bd2) be two real-valued row vectors of respective dimensions d1 and
d2. We define A ⊗ B as being the transpose of the Kronecker product of A by B.
Therefore

A ⊗ B =
⎛

⎜
⎝

a1BT

...

ad1B
T

⎞

⎟
⎠ ∈ R

d1d2 .

For any positive integer k, the kth transpose Kronecker power A⊗k is then defined
inductively by: A⊗1 = AT and A⊗k = A

⊗(
A⊗(k−1)

)T .

Notice that, here, A⊗B is not exactly the usual Kronecker product (or Tensor product)
of A by B that rather produces a row vector. However, for later notation convenience,
the above notation is useful.

Definition 4.3 Let d be a positive integer. If ∇ denotes the differentiation operator
given by ∇ = (

∂
∂x1

, . . . , ∂
∂xd

)
acting on the differentiable functions h : R

d → R,

we define, for any positive integer k, ∇⊗k in the same way as in Definition 4.2. If
h : Rd → R is k-times differentiable, for any x ∈ R

d , let Dkh(x) = ∇⊗kh(x), and
for any row vector Y of Rd , we define Dkh(x).Y⊗k as the usual scalar product in Rdk

between Dkh(x) and Y⊗k . We write Dh for D1h.

Let z = u+iv ∈ C
+.We start by analyzing the termE

(
�

(i)
s ( f )

)
in (4.47). By Taylor’s

integral formula,

∣
∣
∣E

(
�(i)

s ( f )
) − E

(
Df

(
W̃(i)

s

)
.U(i) ⊗1

s

) − 1

2
E

(
D2 f

(
W̃(i)

s

)
.U(i) ⊗2

s

)∣∣
∣

≤
∣
∣
∣E

1∫

0

(1 − t)2

2
D3 f

(
W̃(i)

s + tU(i)
s

)
.U(i) ⊗3

s dt
∣
∣
∣. (4.48)

Let us analyze the right-hand term of (4.48). Recalling the definition (4.38) of the
U(i)
s ’s, for any t ∈ [0, 1],

E
∣
∣D3 f

(
W̃(i)

s + tU(i)
s

)
.U(i) ⊗3

s

∣
∣

≤
∑

k∈Is

∑

	∈Is

∑

j∈Is
E

(∣
∣
∣

∂3 f

∂x (i)
k ∂x (i)

	 ∂x (i)
j

(
W̃(i)

s + tU(i)
s

)
X̄ (i)
k,m X̄ (i)

	,m X̄ (i)
j,m

∣
∣
∣
)

≤
∑

k∈Is

∑

	∈Is

∑

j∈Is

∥
∥
∥

∂3 f

∂x (i)
k ∂x (i)

	 ∂x (i)
j

(
W̃(i)

s + tU(i)
s

)∥∥
∥
2

∥
∥X̄ (i)

k,m X̄ (i)
	,m X̄ (i)

j,m

∥
∥
2,
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where Is is defined in (4.12). Therefore, using (4.11), stationarity and (4.23), it follows
that, for any t ∈ [0, 1],

E
∣
∣D3 f

(
W̃(i)

s + tU(i)
s

)
.U(i) ⊗3

s

∣
∣

≤ 8M2
∑

k∈Is

∑

	∈Is

∑

j∈Is

∥
∥
∥

∂3 f

∂x (i)
k ∂x (i)

	 ∂x (i)
j

(
W̃(i)

s + tU(i)
s

)∥∥
∥
2

∥
∥X0

∥
∥
2.

Notice that by (4.43) and (4.44),

W̃(i)
s + tU(i)

s = (
X̄(1), . . . , X̄(i−1), w(i)(t), Z̃(i+1), . . . , Z̃(n)

)
, (4.49)

where w(i)(t) is the row vector of dimension N defined by

w(i)(t) = S(i)
s−1 + tU(i)

s + T(i)
s+1 = (

u(i)
1 , . . . , u(i)

s−1, tu
(i)
s , v(i)

s+1, . . . , v(i)
kN ,m

)
, (4.50)

where the u(i)
	 ’s are defined in (4.13) and (4.14), whereas the v(i)

	 ’s are defined in

Sect. 4.2. Therefore, by Lemma 5.1 of the “Appendix”, (4.11), and since (Z (i)
k )k∈Z

is distributed as the stationary sequence (Zk)k∈Z, we infer that there exists a positive
constant C1 not depending on (n, M,m) and such that, for any t ∈ [0, 1],

∥
∥
∥

∂3 f

∂x (i)
k ∂x (i)

	 ∂x (i)
j

(
W̃(i)

s + tU(i)
s

)∥∥
∥
2

≤ C1

(M + ‖Z0‖2
v3N 1/2n2

+ N 1/2(M3 + ‖Z0‖36)
v4n3

)
.

Now, since Z0 is a Gaussian random variable, ‖Z0‖66 = 15‖Z0‖62. Moreover, by
(4.31), ‖Z0‖2 = ‖X0‖2. Therefore, there exists a positive constant C2 not depending
on (n, M,m) and such that, for any t ∈ [0, 1],

E
∣
∣D3 f

(
W̃(i)

s + tU(i)
s

)
.U(i) ⊗3

s

∣
∣ ≤ C2m6(1 + M3)

v3(1 ∧ v)N 1/2n2
. (4.51)

On another hand, since for any i ∈ {1, . . . , n} and any s ∈ {1, . . . , kN ,m}, U(i)
s is a

centered random vector independent of W̃(i)
s , it follows that

E
(
Df

(
W̃(i)

s

)
.U(i) ⊗1

s

) = 0 and

E
(
D2 f

(
W̃(i)

s

)
.U(i) ⊗2

s

) = E
(
D2 f

(
W̃(i)

s

))
.E

(
U(i) ⊗2
s

)
. (4.52)

Hence starting from (4.48), using (4.51), (4.52) and the fact that m2kN ,m ≤ N , we
derive that there exists a positive constant C3 not depending on (n, M,m) and such
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that

n∑

i=1

kN ,m∑

s=1

∣
∣
∣E

(
�(i)

s ( f )
) − 1

2
E

(
D2 f

(
W̃(i)

s

))
.E

(
U(i) ⊗2
s

)∣∣
∣

≤ C3
(1 + M5)N 1/2m4

v3(1 ∧ v)n
. (4.53)

Weanalyze now the “Gaussian part” in (4.47), namelyE
(
�̃

(i)
s ( f )

)
. ByTaylor’s integral

formula,

∣
∣
∣E

(
�̃(i)

s ( f )
) − E

(
Df

(
W̃(i)

s

)
.V(i) ⊗1

s

) − 1

2
E

(
D2 f

(
W̃(i)

s

)
.V(i) ⊗2

s

)∣∣
∣

≤
∣
∣
∣E

1∫

0

(1 − t)2

2
D3 f

(
W̃(i)

s + tV(i)
s

)
.V(i) ⊗3

s dt
∣
∣
∣.

Proceeding as to get (4.53), we then infer that there exists a positive constant C4 not
depending on (n, M,m) and such that

n∑

i=1

kN ,m∑

s=1

∣
∣
∣E

(
�̃(i)

s ( f )
) − E

(
Df

(
W̃(i)

s

)
.V(i) ⊗1

s

) − 1

2
E

(
D2 f

(
W̃(i)

s

)
.V(i) ⊗2

s

)∣∣
∣

≤ C4
(1 + M3)N 1/2m4

v3(1 ∧ v)n
. (4.54)

We analyze now the terms E
(
Df

(
W̃(i)

s
)
.V(i) ⊗1

s
)
in (4.54). Recalling the definition

(4.41) of the V(i)
s ’s, we write

E
(
Df

(
W̃(i)

s

)
.V(i) ⊗1

s

) =
∑

j∈Is
E

(
∂ f

∂x (i)
j

(
W̃(i)

s

)
Z (i)
j

)

,

where Is is defined in (4.12). To handle the terms in the right-hand side, we shall use
the so-called Stein’s identity for Gaussian vectors (see, for instance, Lemma 1 in Liu
[9]), as done by Neumann [12] in the context of dependent real random variables: for
G = (G1, . . . ,Gd) a centered Gaussian vector of Rd and any function h : Rd → R

such that its partial derivatives exist almost everywhere and E
∣
∣ ∂h
∂xi

(G)
∣
∣ < ∞ for any

i = 1, . . . , d, the following identity holds true:

E
(
Gi h(G)

) =
d∑

	=1

E
(
GiG	

)
E

( ∂h

∂x	

(G)
)

for any i ∈ {1, . . . , d}. (4.55)
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Using (4.55) with G = (
T(i)
s+1, Z

(i)
j

) ∈ R
nN × R, h : R

nN × R → R satisfying

h(x, y) = ∂ f

∂x (i)
j

(x) for any (x, y) ∈ R
nN × R, and noticing that G is independent of

W̃(i)
s − T(i)

s+1, we infer that, for any j ∈ Is ,

E

(
∂ f

∂x (i)
j

(
W̃(i)

s

)
Z (i)
j

)

=
kN ,m∑

	=s+1

∑

k∈I	
E

(
∂2 f

∂x (i)
k ∂x (i)

j

(
W̃(i)

s

)
)

Cov(Z (i)
k , Z (i)

j ).

Therefore,

E
(
Df

(
W̃(i)

s

)
.V(i) ⊗1

s

) =
kN ,m∑

	=s+1

∑

k∈I	

∑

j∈Is
E

(
∂2 f

∂x (i)
k ∂x (i)

j

(
W̃(i)

s

)
)

Cov(Z (i)
k , Z (i)

j ).

From (4.49) and (4.50) (with t = 0) and Lemma 5.1 of the “Appendix”, we infer that
there exists a positive constant C5 not depending on (n, M,m) and such that, for any
k ∈ I	 and any j ∈ Is ,

E

(
∂2 f

∂x (i)
k ∂x (i)

j

(
W̃(i)

s

)
)

≤ C5

( 1

Nnv2
+ 1

n2v3
(‖X0‖22 + ‖Z0‖22)

)

≤ C5
1 + 2‖X0‖22

nv2(1 ∧ v)(N ∧ n)
. (4.56)

Hence, using the fact that Cov(Z (i)
k , Z (i)

j ) = Cov(Zk, Z j ) together with (4.31), we
then derive that

E
(
Df

(
W̃(i)

s

)
.V(i) ⊗1

s

) ≤ C5
1 + 2‖X0‖22

nv2(1 ∧ v)(N ∧ n)

×
kN ,m∑

	=s+1

∑

k∈I	

∑

j∈Is

∣
∣Cov(Xk, X j )

∣
∣. (4.57)

By stationarity,

∑

k∈I	

∑

j∈Is

∣
∣Cov(Xk, X j )

∣
∣ =

m2
∑

j=1

m2
∑

k=1

∣
∣Cov(X0, Xk− j+(	−s)(m2+m))

∣
∣

≤ m2
∑

k∈Em,	

∣
∣Cov(X0, Xk)

∣
∣,

where Em,	 := {1−m2 + (	 − s)(m2 +m), . . . ,m2 − 1+ (	 − s)(m2 +m)}. Notice
that since m ≥ 1, Em,	 ∩ Em,	+2 = ∅. Then, summing on 	, and using the fact that
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kN ,m(m2 + m) ≤ N , we get that, for any s ≥ 1,

kN ,m∑

	=s+1

∑

k∈Em,	

∣
∣Cov(X0, Xk)

∣
∣ ≤ 2

m2+N−1∑

k=m+1

∣
∣Cov(X0, Xk)

∣
∣.

So, overall, for any positive integer s,

kN ,m∑

	=s+1

∑

k∈I	

∑

j∈Is

∣
∣Cov(Xk, X j )

∣
∣ ≤ 2m2

m2+N−1∑

k=m+1

∣
∣Cov(X0, Xk)

∣
∣. (4.58)

Therefore, starting from (4.57) and using that m2kN ,m ≤ N , it follows that

n∑

i=1

kN ,m∑

s=1

∣
∣E

(
Df

(
W̃(i)

s

)
.V(i) ⊗1

s

)∣
∣

≤ 2C5
(1 + 2‖X0‖22)(1 + c(n))

v2(1 ∧ v)

∑

k≥m+1

∣
∣Cov(X0, Xk)

∣
∣. (4.59)

Since F−∞ = ⋂
k∈Z σ(ξk) is trivial, for any k ∈ Z, E(Xk |F−∞) = E(Xk) = 0 a.s.

Therefore, the following decomposition is valid: Xk = ∑k
r=−∞ Pr (Xk). Next, since

E
(
Pi (X0)Pj (Xk)

) = 0 if i �= j , we get, by stationarity, that for any integer k ≥ 0,

∣
∣Cov(X0, Xk)

∣
∣ =

∣
∣
∣

0∑

r=−∞
E

(
Pr (X0)Pr (Xk)

)∣
∣
∣

≤
∞∑

r=0

‖P0(Xr )‖2‖P0(Xk+r )‖2, (4.60)

implying that for any nonnegative integer u,

∑

k≥u

∣
∣Cov(X0, Xk)

∣
∣ ≤

∑

r≥0

‖P0(Xr )‖2
∑

k≥u

‖P0(Xk)‖2. (4.61)

Hence, starting from (4.59) and considering (4.61) together with the condition (2.3),
we derive that there exists a positive constant C6 not depending on (n, M,m) such
that

n∑

i=1

kN ,m∑

s=1

∣
∣E

(
Df

(
W̃(i)

s

)
.V(i) ⊗1

s

)∣
∣ ≤ C6(1 + c(n))

v2(1 ∧ v)

∑

k≥m+1

‖P0(Xk)‖2. (4.62)
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We analyze now the terms of second order in (4.54), namelyE
(
D2 f

(
W̃(i)

s
)
.V(i) ⊗2

s
)
.

Recalling the definition (4.41) of the V(i)
s ’s, we first write that

E
(
D2 f

(
W̃(i)

s

)
.V(i) ⊗2

s

) =
∑

j1∈Is

∑

j2∈Is
E

(
∂2 f

∂x (i)
j1

∂x (i)
j2

(
W̃(i)

s

)
Z (i)
j1
Z (i)
j2

)

, (4.63)

where Is is defined in (4.12). Using now (4.55) with G = (
T(i)
s+1, Z

(i)
j1

, Z (i)
j2

) ∈ R
nN ×

R×R, h : RnN ×R×R → R satisfying h(x, y, z) = y ∂2 f

∂x (i)
j1

∂x (i)
j2

(x) for any (x, y, z) ∈
R
nN × R × R, and noticing that G is independent of W̃(i)

s − T(i)
s+1, we infer that, for

any j1, j2 belonging to Is ,

E

(
∂2 f

∂x (i)
j1

∂x (i)
j2

(
W̃(i)

s

)
Z (i)
j1
Z (i)
j2

)

= E

(
∂2 f

∂x (i)
j1

∂x (i)
j2

(
W̃(i)

s

)
)

E
(
Z (i)
j1
Z (i)
j2

)

+
kN ,m∑

k=s+1

∑

j3∈Ik
E

(
∂3 f

∂x (i)
j3

∂x (i)
j1

∂x (i)
j2

(
W̃(i)

s

)
Z (i)
j1

)

E
(
Z (i)
j3
Z (i)
j2

)
. (4.64)

Therefore, starting from (4.63) and using (4.64) combined with the definitions 4.2 and
4.3, it follows that

E
(
D2 f

(
W̃(i)

s

)
.V(i) ⊗2

s

) = E
(
D2 f

(
W̃(i)

s

))
.E

(
V(i) ⊗2
s

)

+
kN ,m∑

k=s+1

E

(
D3 f

(
W̃(i)

s

)
.V(i)

s ⊗ E
(
V(i)
k ⊗ V(i)

s

))
. (4.65)

Next, with similar arguments, we infer that

kN ,m∑

k=s+1

E

(
D3 f

(
W̃(i)

s

)
.V(i)

s ⊗ E
(
V(i)
k ⊗ V(i)

s

))

=
kN ,m∑

k=s+1

kN ,m∑

	=s+1

E
(
D4 f

(
W̃(i)

s

))
.E

(
V(i)

	 ⊗ V(i)
s

) ⊗ E
(
V(i)
k ⊗ V(i)

s

)
. (4.66)

By the definition (4.41) of the V(i)
	 ’s, we first write that

E
(
D4 f

(
W̃(i)

s

))
.E

(
V(i)

	 ⊗ V(i)
s

) ⊗ E
(
V(i)
k ⊗ V(i)

s

)

=
∑

j1∈I	

∑

j2∈Is

∑

j3∈Ik

∑

j4∈Is
E

(
∂4 f

∂x (i)
j1

∂x (i)
j2

∂x (i)
j3

∂x (i)
j4

(
W̃(i)

s

)
)

×Cov
(
Z (i)
j1

, Z (i)
j2

)
Cov

(
Z (i)
j3

, Z (i)
j4

)
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=
∑

j1∈I	

∑

j2∈Is

∑

j3∈Ik

∑

j4∈Is
E

(
∂4 f

∂x (i)
j1

∂x (i)
j2

∂x (i)
j3

∂x (i)
j4

(
W̃(i)

s

)
)

×Cov
(
X j1 , X j2

)
Cov

(
X j3 , X j4

)
, (4.67)

where for the last line, we have used that (Z (i)
k )k∈Z is distributed as (Zk)k∈Z together

with (4.31). From (4.49) and (4.50) (with t = 0), Lemma 5.1 of the “Appendix”, and
the stationarity of the sequences (X̄ (i)

k,m)k∈Z and (Z (i)
k )k∈Z, we infer that there exists a

positive constant C7 not depending on (n, M,m) such that

E

(
∂4 f

∂x (i)
j1

∂x (i)
j2

∂x (i)
j3

∂x (i)
j4

(
W̃(i)

s

)
)

≤ C7

( 1

Nn2v3
+ 1

Nn3v4

( N∑

k=1

‖X̄ (i)
k,m‖22 +

N∑

k=1

‖Z (i)
k ‖22

)

+ 1

Nn4v5

(∥
∥
∥

N∑

k=1

(
X̄ (i)
k,m

)2
∥
∥
∥
2

2
+

∥
∥
∥

N∑

k=1

(
Z (i)
k

)2
∥
∥
∥
2

2

))

≤ C7

n2Nv3(1 ∧ v2)

(

1 + N
(‖X̄0,m‖22 + ‖Z0‖22

)

n
+ N 2

(‖X̄0,m‖44 + ‖Z0‖44
)

n2

)

.

By (4.11) and (4.23), ‖X̄0,m‖44 ≤ (2M)2‖X̄0,m‖22 ≤ 16M2‖X0‖22.Moreover, Z0 being
a Gaussian random variable, ‖Z0‖44 = 3‖Z0‖42. Hence, by (4.31), ‖Z0‖44 = 3‖X0‖42
and ‖Z0‖22 = ‖X0‖22. Therefore, there exists a positive constant C8 not depending on
(n, M,m) and such that

E

(
∂4 f

∂x (i)
j1

∂x (i)
j2

∂x (i)
j3

∂x (i)
j4

(
W̃(i)

s

)
)

≤ C8(1 + M2)(1 + c2(n))

n2Nv3(1 ∧ v2)
. (4.68)

On the other hand, by using (4.58) and (4.61), we get that, for any positive integer s,

kN ,m∑

k=s+1

kN ,m∑

	=s+1

∑

j1∈I	

∑

j2∈Is

∑

j3∈Ik

∑

j4∈Is

∣
∣Cov

(
X j1 , X j2

)
Cov

(
X j3 , X j4

)∣
∣

≤ 4m4
( ∑

r≥0

‖P0(Xr )‖2
)2( ∑

k≥m+1

‖P0(Xk)‖2
)2

. (4.69)

Whence, starting from (4.66), using (4.67), and considering the upper bounds (4.68)
and (4.69) together with the condition (2.3), we derive that there exists a positive
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constant C9 not depending on (n, M,m) such that

kN ,m∑

k=s+1

E

(
D3 f

(
W̃(i)

s

)
.V(i)

s ⊗ E
(
V(i)
k ⊗ V(i)

s

))

≤ C9(1 + M2)(1 + c2(n))m4

n2Nv3(1 ∧ v2)
. (4.70)

So, overall, starting from (4.65), considering (4.70) and using the fact that m2kN ,m ≤
N , we derive that

∣
∣
∣

n∑

i=1

kN ,m∑

s=1

E
(
D2 f

(
W̃(i)

s

)
.V(i) ⊗2

s

) −
n∑

i=1

kN ,m∑

s=1

E
(
D2 f

(
W̃(i)

s

))
.E

(
V(i) ⊗2
s

)∣∣
∣

≤ C9(1 + M2)(1 + c2(n))m2

nv3(1 ∧ v2)
. (4.71)

Then, starting from (4.47), and considering the upper bounds (4.53), (4.54), (4.62),
and (4.71), we get that

∣
∣
∣E

(
SF B̄n (z)

)−E
(
SFG̃n (z)

)∣∣
∣ ≤ 1

2

n∑

i=1

kN ,m∑

s=1

∣
∣
∣E

(
D2 f

(
W̃(i)

s

))
.
(
E

(
U(i) ⊗2
s

) − E
(
V(i) ⊗2
s

))∣
∣
∣

+4C10(1 + M5)N 1/2m4

v3(1 ∧ v)n
+ C10(1 + M2)(1 + c2(n))m2

nv3(1 ∧ v2)

+C10(1 + c2(n))

v2(1 ∧ v)

∑

k≥m+1

‖P0(Xk)‖2,

where C10 = max(C3,C4,C6,C7). Since c(n) → c ∈ (0,∞), it follows that the sec-
ond and third terms in the right-hand side of the above inequality tend to zero as n tends
to infinity. On the other hand, by the condition (2.3), limm→∞

∑
k≥m+1 ‖P0(Xk)‖2 =

0. Therefore, Proposition 4.3 will follow if we can prove that, for any z ∈ C
+,

lim
m→∞ lim sup

M→∞
lim sup
n→∞

n∑

i=1

kN ,m∑

s=1

∣
∣
∣E

(
D2 f

(
W̃

(i)
s

))
.
(
E

(
U(i) ⊗2
s

)−E
(
V(i) ⊗2
s

))∣
∣
∣=0. (4.72)

Using the fact that (Z (i)
k )k∈Z is distributed as (Zk)k∈Z together with (4.31) and that

(X̄ (i)
k,m)k∈Z is distributed as (X̄k,m)k∈Z, we first write that

E
(
D2 f

(
W̃(i)

s

))
.
(
E

(
U(i) ⊗2
s

) − E
(
V(i) ⊗2
s

))

=
∑

k∈Is

∑

	∈Is
E

(
∂2 f

∂x (i)
k ∂x (i)

	

(
W̃(i)

s

)
)

(
Cov

(
X̄k,m, X̄	,m

) − Cov
(
Xk, X	

))
.
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Hence, by using (4.56) and by stationarity, we get that there exists a positive constant
C11 not depending on (n, M,m) such that

∣
∣
∣E

(
D2 f

(
W̃(i)

s

))
.
(
E

(
U(i) ⊗2
s

) − E
(
V(i) ⊗2
s

))∣
∣
∣

≤ C11

nv2(1 ∧ v)(N ∧ n)

m2
∑

	=1

m2−	∑

k=0

∣
∣Cov

(
X̄0,m, X̄k,m

) − Cov
(
X0, Xk

)∣
∣. (4.73)

To handle the right-hand side term, we first write that

m2
∑

	=1

m2−	∑

k=0

∣
∣Cov

(
X̄0,m, X̄k,m

) − Cov
(
X0, Xk

)∣
∣

≤ m2
m2
∑

k=0

∣
∣Cov

(
X̄0,m, X̄k,m

) − Cov
(
X0,m, Xk,m

)∣
∣

+m2
m2
∑

k=0

∣
∣Cov

(
X0,m, Xk,m

) − Cov
(
X0, Xk

)∣
∣, (4.74)

where X0,m and Xk,m are defined in (4.28). Notice now that Cov
(
X̄0,m, X̄k,m

) =
Cov

(
X0,m, Xk,m

) = 0 if k > m. Therefore,

m2
∑

k=0

∣
∣Cov

(
X̄0,m, X̄k,m

) − Cov
(
X0,m, Xk,m

)∣
∣

=
m∑

k=0

∣
∣Cov

(
X̄0,m, X̄k,m

) − Cov
(
X0,m, Xk,m

)∣
∣.

Next, using stationarity, the fact that the random variables are centered, (4.11) and
(4.29), we get that

∣
∣Cov

(
X̄0,m, X̄k,m

) − Cov
(
X0,m, Xk,m

)∣
∣

= ∣
∣Cov

(
X̄0,m − X0,m, X̄k,m

) + Cov
(
X0,m − X̄0,m, X̄k,m − Xk,m

)

+Cov
(
X̄0,m, X̄k,m − Xk,m

)∣
∣

≤ 4M‖X0,m − X̄0,m‖1 + 4‖(|X0| − M)+‖22.

As to get (4.29), notice that ‖X0,m − X̄0,m‖1 ≤ 2‖(|X0| − M)+‖1. Moreover,
(|x | −

M)+ ≤ 2|x |1|x |≥M which in turn implies that M
(|x | − M)+ ≤ 2|x |21|x |≥M . So,

overall,

m2
∑

k=0

∣
∣Cov

(
X̄0,m, X̄k,m

) − Cov
(
X0,m, Xk,m

)∣
∣ ≤ 32mE

(
X2
01|X0|≥M

)
. (4.75)
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We handle now the second term in the right-hand side of (4.74). Let b(m) be an
increasing sequence of positive integers such that b(m) → ∞, b(m) ≤ [m/2], and

lim
m→∞ b(m)

∥
∥X0 − X0,[m/2]

∥
∥2
2 = 0. (4.76)

Notice that since (4.30) holds true, it is always possible to find such a sequence. Now,
using (4.60),

m2
∑

k=b(m)

∣
∣Cov

(
X0,m, Xk,m

) − Cov
(
X0, Xk

)∣
∣

≤
m2
∑

k=b(m)

∞∑

r=0

‖P0(Xr,m)‖2‖P0(Xk+r,m)‖2

+
m2
∑

k=b(m)

∞∑

r=0

‖P0(Xr )‖2‖P0(Xk+r )‖2. (4.77)

Recalling the definition (4.28) of the X j,m’s, we notice that P0(X j,m) = 0 if j ≥ m+1.
Now, for any j ∈ {0, . . . ,m},

E(X j,m |ξ0) = E(E(X j |ε j , . . . , ε j−m)|ξ0) = E(E(X j |ε j , . . . , ε j−m)|ε0, . . . , ε j−m)

= E(X j |ε0, . . . , ε j−m) = E(E(X j |ξ0)|ε0, . . . , ε j−m) a.s.

Actually, the last two equalities follow from the tower lemma, whereas, for the second
one, we have used the following well-known fact with G1 = σ(ε0, . . . , ε j−m), G2 =
σ(εk, k ≤ j − m − 1) and Y = X j,m : if Y is an integrable random variable, and G1
and G2 are two σ -algebras such that σ(Y ) ∨ G1 is independent of G2, then

E(Y |G1 ∨ G2) = E(Y |G1) a.s. (4.78)

Similarly, for any j ∈ {0, . . . ,m − 1},

E(X j,m |ξ−1) = E(X j |ε−1, . . . , ε j−m) = E(E(X j |ξ−1)|ε−1, . . . , ε j−m) a.s.

Then using the equality (4.78) with G1 = σ(ε−1, . . . , ε j−m) and G2 = σ(ε0), we get
that, for any j ∈ {1, . . . ,m − 1},

E(X j,m |ξ−1) = E(E(X j |ξ−1)|ε0, . . . , ε j−m) a.s.

whereas E(Xm,m |ξ−1) = 0 a.s. So, finally, ‖P0(Xm,m)‖2 = ‖E(Xm |ε0)‖2,
‖P0(X j,m)‖2 = 0 if j ≥ m + 1, and, for any j ∈ {1, . . . ,m − 1},
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‖P0(X j,m)‖2 = ‖E(X j,m |ξ0) − E(X j,m |ξ−1)‖2
= ‖E(

E(X j |ξ0) − E(X j |ξ−1)|ε0, . . . , ε j−m
)‖2 ≤ ‖P0(X j )‖2.

Therefore, starting from (4.77), we infer that

m2
∑

k=b(m)

∣
∣Cov

(
X0,m, Xk,m

) − Cov
(
X0, Xk

)∣
∣

≤ 2‖X0‖2‖E(Xm |ε0)‖2 + 2
∞∑

r=0

‖P0(Xr )‖2
∑

k≥b(m)

‖P0(Xk)‖2. (4.79)

On the other hand,

b(m)∑

k=0

∣
∣Cov

(
X0,m, Xk,m

) − Cov
(
X0, Xk

)∣
∣

≤
b(m)∑

k=0

∣
∣Cov

(
X0 − X0,m, Xk,m

)∣
∣ +

b(m)∑

k=0

∣
∣Cov

(
X0, Xk − Xk,m

)∣
∣. (4.80)

Since the random variables are centered, Cov
(
X0 − X0,m, Xk,m

) = E
(
Xk,m(X0 −

X0,m)
)
. Since Xk,m is σ(εk−m, . . . , εk)-measurable,

E
(
Xk,m(X0 − X0,m)

) = E
(
Xk,m

(
E(X0|εk, . . . , εk−m) − E(X0,m |εk, . . . , εk−m

))
.

But, for any k ∈ {0, . . . ,m}, by using the equality (4.78) with G1 = σ(ε0, . . . , εk−m)

and G2 = σ(εk, . . . , ε1), it follows that

E(X0,m |εk, . . . , εk−m
) = E(X0|ε0, . . . , εk−m) a.s. (4.81)

and

E(X0|εk, . . . , εk−m
) = E(X0|ε0, . . . , εk−m) a.s.

Whence,

b(m)∑

k=0

∣
∣Cov

(
X0 − X0,m, Xk,m

)∣
∣ = 0. (4.82)

To handle the second term in the right-hand side of (4.80), we start by writing that

Cov
(
X0, Xk − Xk,m

) = Cov
(
X0 − X0,m, Xk − Xk,m

)

+Cov
(
X0,m, Xk − Xk,m

)
. (4.83)
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Using the fact that the random variables are centered together with stationarity, we get
that

∣
∣Cov

(
X0 − X0,m, Xk − Xk,m

)∣
∣ ≤ ‖X0 − X0,m‖22. (4.84)

On the other hand, noticing that E(Xk − Xk,m |εk, . . . , εk−m) = 0, and using the fact
that the random variables are centered, and stationarity, it follows that

∣
∣Cov

(
X0,m, Xk − Xk,m

)∣
∣ = ∣

∣E
((
X0,m − E(X0,m |εk, . . . , εk−m)

)(
Xk − Xk,m

))∣
∣

≤ ‖X0,m − E(X0,m |εk, . . . , εk−m)‖2‖X0 − X0,m‖2. (4.85)

Next, using (4.81), we get that, for any k ∈ {0, . . . ,m},

‖X0,m − E(X0,m |εk, . . . , εk−m)‖2 = ‖X0,m − E(X0|ε0, . . . , εk−m)‖2
= ‖E(

X0 − E(X0|ε0, . . . , εk−m)|ε0, . . . , ε−m
)‖2

≤ ‖X0 − E(X0|ε0, . . . , εk−m)‖2.
(4.86)

Therefore, starting from (4.85), taking into account (4.86) and the fact that

max
0≤k≤[m/2] ‖X0 − E(X0|ε0, . . . , εk−m)‖2 ≤ ‖X0 − E(X0|ε0, . . . , ε−[m/2])‖2,

we get that

max
0≤k≤[m/2]

∣
∣Cov

(
X0,m, Xk − Xk,m

)∣
∣ ≤ ‖X0 − X0,[m/2]‖22. (4.87)

Starting from (4.83), gathering (4.84) and (4.87), and using the fact that b(m) ≤ [m/2],
we then derive that

b(m)∑

k=0

∣
∣Cov

(
X0, Xk − Xk,m

))∣
∣ ≤ 2 b(m)‖X0 − X0,[m/2]‖22,

which combined with (4.80) and (4.82) implies that

b(m)∑

k=0

∣
∣Cov

(
X0,m, Xk,m

) − Cov
(
X0, Xk

)∣
∣ ≤ 2 b(m)‖X0 − X0,[m/2]‖22. (4.88)

So, overall, starting from (4.74), gathering the upper bounds (4.75), (4.79), and (4.88),
and taking into account the condition (2.3), we get that that there exists a positive
constant C12 not depending on (n, M,m) and such that
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m2
∑

	=1

m2−	∑

k=0

∣
∣Cov

(
X̄0,m, X̄k,m

) − Cov
(
X0, Xk

)∣
∣

≤ C12

(
m3

E
(
X2
01|X0|≥M

) + m2‖E(Xm |ε0)‖2
+m2

∑

k≥b(m)

‖P0(Xk)‖2 + m2 b(m)‖X0 − X0,[m/2]‖22
)
. (4.89)

Therefore, starting from (4.73), considering the upper bound (4.89), using the fact
that m2kN ,m ≤ N and that limn→∞ c(n) = c, it follows that there exists a positive
constant C13 not depending on (M,m) and such that

lim sup
n→∞

n∑

i=1

kN ,m∑

s=1

∣
∣
∣E

(
D2 f

(
W̃(i)

s

))
.
(
E

(
U(i) ⊗2
s

) − E
(
V(i) ⊗2
s

))∣
∣
∣

≤ C13

v2(1 ∧ v)

(
mE

(
X2
01|X0|≥M

) + ‖E(Xm |ε0)‖2
+

∑

k≥b(m)

‖P0(Xk)‖2 + b(m)‖X0 − X0,[m/2]‖22
)
. (4.90)

Letting first M tend to infinity and using the fact that X0 belongs toL2, the first term in
the right-hand side is going to zero. Letting now m tend to infinity the third term van-
ishes by the condition (2.3), whereas the last one goes to zero by taking into account
(4.76). To show that the second term goes to zero asm tends to infinity, we notice that,
by stationarity, ‖E(Xm |ε0)‖2 ≤ ‖E(Xm |ξ0)‖2 = ‖E(X0|ξ−m)‖2. By the reverse mar-
tingale convergence theorem, setting F−∞ = ⋂

k∈Z σ(ξk), limm→∞ E(X0|ξ−m) =
E(X0|F−∞) = 0 a.s. (since F−∞ is trivial and E(X0) = 0). So, since X0 belongs to
L
2, limm→∞ ‖E(Xm |ε0)‖2 = 0. This ends the proof of (4.72) and then of Proposition

4.3. �

4.4 End of the Proof of Theorem 2.1

According to Propositions 4.1, 4.2, and 4.3, the convergence (4.3) follows. Therefore,
to end the proof of Theorem 2.1, it remains to show that (4.4) holds true with Gn

defined in Sect. 4.2. This can be achieved by using Theorem 1.1 in Silverstein [17]
combined with arguments developed in the proof of Theorem 1 in [23] (see also
[19]). With this aim, we consider (yk)k∈Z a sequence of i.i.d. real-valued random
variables with law N (0, 1), and n independent copies of (yk)k∈Z that we denote
by (y(1)

k )k∈Z, . . . , (y(n)
k )k∈Z. For any i ∈ {1, . . . , n}, define yi = (

y(i)
1 , . . . , y(i)

N

)
.

Let Yn = (yT1 | · · · |yTn ) be the matrix whose columns are the yTi ’s and consider its
associated sample covariance matrix Yn = 1

nYnYT
n . Let γ (k) = Cov(X0, Xk) and

note that, by (4.31), γ (k) is also equal to Cov(Z0, Zk) = Cov(Z (i)
0 , Z (i)

k ) for any
i ∈ {1, . . . , n}. Set
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�N := (
γ j,k

) =

⎛

⎜
⎜
⎜
⎝

γ (0) γ (1) · · · γ (N − 1)
γ (1) γ (0) γ (N − 2)

...
...

...
...

γ (N − 1) γ (N − 2) · · · γ (0)

⎞

⎟
⎟
⎟
⎠

.

Note that (�N ) is bounded in spectral norm. Indeed, by the Gerschgorin theorem, the
largest eigenvalue of �N is not larger than γ (0) + 2

∑
k≥1 |γ (k)| which, according to

Remark 2.2, is finite.Note also that the vector (Z1, . . . , Zn) has the samedistribution as(
y1�

1/2
N , . . . , yn�

1/2
N

)
where�

1/2
N is the symmetric nonnegative square root of�N and

theZi ’s are defined in Sect. 4.2. Therefore, for any z ∈ C
+,E

(
SFGn (z)

) = E
(
SFAn (z)

)

where An = �
1/2
N Yn�

1/2
N . The proof of (4.4) is then reduced to prove that, for any

z ∈ C
+,

lim
n→∞E

(
SFAn (z)

) = S(z), (4.91)

where S is defined in (2.4). According to Theorem 1.1 in Silverstein [17], if one can
show that

F�N converges to a probability distribution H, (4.92)

then (4.91) holds with S satisfying the equation (1.4) in Silverstein [17]. Due to the
Toeplitz form of �N and to the fact that

∑
k≥0 |γ (k)| < ∞ (see Remark 2.2), the con-

vergence (4.92) can be proved by taking into account the arguments developed in the
proof of Theorem 1 of [23]. Indeed, the fundamental eigenvalue distribution theorem
of Szegö for Toeplitz forms allows to assert that the empirical spectral distribution of
�N converges weakly to a nonrandom distribution H that is defined via the spectral
density of (Xk)k∈Z (see Relations (12) and (13) in [23]). To end the proof, it suffices
to notice that the relation (1.4) in Silverstein [17] combined with the relation (13) in
[23] leads to (2.4). �
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5 Appendix

In this section, we give some upper bounds for the partial derivatives of f defined in
(4.35).

Lemma 5.1 Let x be a vector of RnN with coordinates

x = (
x (1), . . . , x (n)

)
where for any i ∈ {1, . . . , n}, x (i) = (

x (i)
k , k ∈ {1, . . . , N }).
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Let z = u+√−1v ∈ C
+ and f := fz be the function defined in (4.35). Then, for any

i ∈ {1, . . . , n} and any j, k, 	,m ∈ {1, . . . , N }, the following inequalities hold true:

∣
∣
∣
∣
∣

∂2 f

∂x (i)
m ∂x (i)

j

(x)

∣
∣
∣
∣
∣
≤ 8

v3n2N

N∑

r=1

∣
∣x (i)

r

∣
∣2 + 2

v2nN
,

∣
∣
∣
∣
∣

∂3 f

∂x (i)
	 ∂x (i)

m ∂x (i)
j

(x)

∣
∣
∣
∣
∣
≤ 48

v4n3N

(
N∑

r=1

∣
∣x (i)

r

∣
∣2

)3/2

+ 24

v3n2N

(
N∑

r=1

∣
∣x (i)

r

∣
∣2

)1/2

,

and

∣
∣
∣
∣
∣

∂4 f

∂x (i)
k ∂x (i)

	 ∂x (i)
m ∂x (i)

j

(x)

∣
∣
∣
∣
∣
≤ 24 × 16

v5n4N

(
N∑

r=1

∣
∣x (i)

r

∣
∣2

)2

+ 36 × 8

v4n3N

N∑

r=1

∣
∣x (i)

r

∣
∣2 + 24

v3n2N
.

Proof Recall that f (x) = 1
N Tr

(
A(x) − zI

)−1 where A(x) = 1
n

∑n
k=1(x

(k))T x (k). To
prove the lemma, we shall proceed as in Chatterjee [4] (see the proof of its Theorem
1.3) but with some modifications since his computations are made in case where A(x)
is a Wigner matrix of order N .

Let i ∈ {1, . . . , n} and consider for any j, k ∈ {1, . . . , N }, the notations ∂ j instead

of ∂/∂x (i)
j , ∂2jk instead of ∂2/∂x (i)

j ∂x (i)
k and so on. We shall also write A instead of

A(x), f instead of f (x), and define G = (
A − zI

)−1.

Note that ∂ j A is the matrix with n−1
(
x (i)
1 , . . . , x (i)

j−1, 2x
(i)
j , x (i)

j+1, . . . , x
(i)
N

)
as the

j th row, its transpose as the j th column, and zero otherwise. Thus, theHilbert–Schmidt
norm of ∂ j A is bounded as follows:

‖∂ j A‖2 = 1

n

(
2

N∑

k=1 ,k �= j

|x (i)
k |2 + 4|x (i)

j |2
)1/2 ≤ 2

n

( N∑

k=1

|x (i)
k |2

)1/2
. (5.1)

Now, for any m, j ∈ {1, . . . , N } such that m �= j , ∂2mj A has only two non-zero
entries which are equal to 1/n, whereas ifm = j , it has only one non-zero entry which
is equal to 2/n. Hence,

‖∂2mj A‖2 ≤ 2

n
. (5.2)

Finally, note that ∂3lm j A ≡ 0 for any j,m, l ∈ {1, . . . , N }.
Now, by using (4.36), it follows that, for any j ∈ {1, . . . , N },

∂ j f = − 1

N
Tr(G(∂ j A)G). (5.3)

Inwhat follows, the notations
∑

{j ′,m′}={ j,m},
∑

{ j ′,m′,	′}={ j,m,	} and
∑

{ j ′,m′,	′,k′}={ j,m,	,k}
mean, respectively, the sum over all permutations of { j,m}, of { j,m, 	}, and of
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{ j,m, 	, k}. Therefore, the first sum consists of 2 terms, the second one of 6 terms,
and the last one of 24 terms. Starting from (5.3) and applying repeatedly (4.36), we
then derive the following cumbersome formulas for the partial derivatives up to the
order four: for any j,m, 	, k ∈ {1, . . . , N },

∂2mj f = 1

N

∑

{ j ′,m′}={ j,m}
Tr

(
G(∂ j ′ A)G(∂m′ A)G

) − 1

N
Tr

(
G(∂2mj A)G

)
, (5.4)

∂3	mj f = − 1

N

∑

{ j ′,m′,	′}={ j,m,	}
Tr

(
G(∂ j ′ A)G(∂m′ A)G(∂	′ A)G

)

+ 1

N

∑

{ j ′,m′}={ j,m}
Tr

(
G(∂2	j ′ A)G(∂m′ A)G + G(∂ j ′ A)G(∂2	m′ A)G

)

+ 1

N
Tr

(
G(∂	A)G(∂2mj A)G

) + 1

N
Tr

(
G(∂2mj A)G(∂	A)G

)
, (5.5)

and

∂4k	mj f := I1 + I2 + I3 + I4 + I5 + I6, (5.6)

where

I1 = 1

N

∑

{ j ′,m′,	′,k′}={ j,m,	,k}
Tr

(
G(∂ j ′ A)G(∂m′ A)G(∂	′ A)G(∂k′ A)G

)
,

I2 = − 1

N

∑

{ j ′,m′,	′}={ j,m,	}

(
Tr

(
G(∂2k j ′ A)G(∂m′ A)G(∂	′ A)G

)

+Tr
(
G(∂ j ′ A)G(∂2km′ A)G(∂	′ A)G

) + Tr
(
G(∂ j ′ A)G(∂m′ A)G(∂2k	′ A)G

))
,

I3 = − 1

N

∑

{ j ′,m′}={ j,m}

(
Tr

(
G(∂2	j ′ A)G(∂k A)G(∂m′ A)G

)

+Tr(G(∂2	j ′ A)G(∂m′ A)G(∂k A)G
))− 1

N

∑

{ j ′,m′}={ j,m}

(
Tr

(
G(∂k A)G(∂2	j ′ A)G(∂m′ A)G

)

+Tr(G(∂ j ′ A)G(∂2	m′ A)G(∂k A)G
))− 1

N

∑

{ j ′,m′}={ j,m}

(
Tr

(
G(∂k A)G(∂ j ′ A)G(∂2	m′ A)G

)

+Tr(G(∂ j ′ A)G(∂k A)G(∂2	m′ A)G
))

,
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I4 = − 1

N

∑

{k′,	′}={k,	}

(
Tr

(
G(∂2mj A)G(∂k′ A)G(∂	′ A)G

)

+Tr
(
G(∂k′ A)G(∂2mj A)G(∂	′ A)G

) + Tr
(
G(∂k′ A)G(∂	′ A)G(∂2mj A)G

))
,

I5 = 1

N

∑

{k′,	′}={k,	}

∑

{ j ′,m′}={ j,m}
Tr

(
G(∂2	′ j ′ A)G(∂2k′m′ A)G

)
,

and

I6 = 1

N
Tr

(
G(∂2mj A)G(∂2k	A)G

) + 1

N
Tr

(
G(∂2k	A)G(∂2mj A)G

)
.

We start by giving an upper bound for ∂2mj f . Since the eigenvalues of G2 are all

bounded by v−2, then so are its entries. Then, as Tr(G(∂2mj A)G) = Tr((∂2mj A)G2), it
follows that

|Tr(G(∂2mj A)G)| = |Tr((∂2mj A)G2)| ≤ 2v−2n−1. (5.7)

Next, to give an upper bound for |Tr(G(∂ j A)G(∂m A)G
)|, it is useful to recall some

properties of the Hilbert–Schmidt norm: Let B = (bi j )1≤i, j≤N and C = (ci j )1≤i, j≤N

be two N × N complex matrices in L2, the set of Hilbert–Schmidt operators. Then

(a) |Tr(BC)| ≤ ‖B‖2‖C‖2.
(b) If B admits a spectral decomposition with eigenvalues λ1, . . . , λN , then

max{‖BC‖2, ‖CB‖2} ≤ max1≤i≤N |λi |.‖C‖2.
(See, e.g., [20] pages 55–58, for a proof of these facts).
Using the properties of the Hilbert–Schmidt norm recalled above, the fact that the

eigenvalues of G are all bounded by v−1, and (5.1), we then derive that

|Tr(G(∂ j A)G(∂m A)G)| ≤ ‖G(∂ j A)G‖2.‖(∂m A)G‖2
≤ ‖G‖.‖(∂ j A)G‖2.‖∂m A‖2.‖G‖

≤ ‖G‖3.‖∂ j A‖2.‖∂m A‖2 ≤ 4

v3n2

N∑

k=1

∣
∣x (i)

k

∣
∣2. (5.8)

Starting from (5.4) and considering (5.7) and (5.8), the first inequality of Lemma 5.1
follows.
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Next, using again the above properties (a) and (b), the fact that the eigenvalues of
G are all bounded by v−1, (5.1) and (5.2), we get that

|Tr(G(∂ j A)G(∂m A)G(∂	A)G)| ≤ ‖G(∂ j A)G(∂m A)G‖2.‖(∂	A)G‖2
≤ ‖G(∂ j A)G(∂m A)‖2.‖G‖2.‖∂	A‖2 ≤ ‖G(∂ j A)‖2.‖G(∂m A)‖2.‖G‖2.‖∂	A‖2

≤ ‖G‖4.‖∂ j A‖2.‖∂m A‖2.‖∂	A‖2 ≤ 8

v4n3

( N∑

k=1

∣
∣x (i)

k

∣
∣2

)3/2
, (5.9)

and

|Tr(G(∂2	j A)G(∂m A)G)| ≤ ‖G(∂2	j A)G‖2.‖(∂m A)G‖2
≤ ‖G‖2‖G(∂2	j A)‖2.‖∂m A‖2

≤ ‖G‖3.‖∂2	j A‖2.‖∂m A‖2 ≤ 4

v3n2

( N∑

k=1

∣
∣x (i)

k

∣
∣2

)1/2
. (5.10)

The same last bound is obviously valid for |Tr(G(∂m A)G(∂2	j A)G)|. Hence, starting
from (5.5) and considering (5.9) and (5.10), the second inequality of Lemma 5.1
follows.

It remains to prove the third inequality of Lemma 5.1. Using again the above
properties (a) and (b), the fact that the eigenvalues of G are all bounded by v−1, (5.1)
and (5.2), we infer that

|Tr(G(∂ j A)G(∂m A)G(∂	A)G(∂k A)G)| ≤ 16

v5n4

( N∑

k=1

∣
∣x (i)

k

∣
∣2

)2
, (5.11)

|Tr(G(∂2	j A)G(∂m A)G(∂k A)G)| ≤ 8

v4n3

N∑

k=1

∣
∣x (i)

k

∣
∣2, (5.12)

and

|Tr(G(∂2	j A)G(∂2mk A)G)| ≤ 4

v3n2
. (5.13)

Clearly, the bound (5.12) is also valid for the quantities |Tr(G(∂m A)G(∂2	j A)G(∂k A)G)|
and |Tr(G(∂m A)G(∂k A)G(∂2	j A)G)|. So, overall, starting from (5.6) and considering
(5.11), (5.12), and (5.13), the third inequality of Lemma 5.1 follows. �
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