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Abstract This paper studies a Stieltjes-type moment problem defined by the general-
ized lognormal distribution, a heavy-tailed distribution with applications in economics,
finance, and related fields. It arises as the distribution of the exponential of a random
variable following a generalized error distribution, and hence figures prominently in
the exponential general autoregressive conditional heteroskedastic (EGARCH) model
of asset price volatility. Compared to the classical lognormal distribution it has an addi-
tional shape parameter. It emerges that moment (in)determinacy depends on the value
of this parameter: for some values, the distribution does not have finite moments of all
orders, hence the moment problem is not of interest in these cases. For other values, the
distribution has moments of all orders, yet it is moment-indeterminate. Finally, a lim-
iting case is supported on a bounded interval, and hence determined by its moments.
For those generalized lognormal distributions that are moment-indeterminate, Stieltjes
classes of moment-equivalent distributions are presented.

Keywords Generalized error distribution · Generalized lognormal distribution ·
Lognormal distribution · Moment problem · Size distribution · Stieltjes class ·
Volatility model
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1 Introduction

The moment problem asks for a given distribution with distribution function (CDF)
F with finite moments mk(F) = ∫ ∞

−∞ xk dF(x) of all orders k = 1, 2, . . . , whether
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or not F is uniquely determined by the sequence of these moments. If F is uniquely
determined by this sequence, F or a random variable X following this distribution are
called moment-determinate (for brevity, M-det); otherwise F or X are called moment-
indeterminate (M-indet). Cases where the support of the distribution F is the positive
half-axis R

+ = [0,∞) are called Stieltjes moment problems, cases where the support
is the real line are called Hamburger moment problems, and cases where the support
is a bounded interval are called Hausdorff moment problems.

The probably most widely known example of an M-indeterminate distribution
is the lognormal distribution, first described by Stieltjes [20] in a non-probabilistic
setting and further developed by Heyde [8]. The lognormal distribution is a basic
model for describing size phenomena in economics and related fields (see, e.g.,
[12]), including distributions of personal income, actuarial losses, or city sizes. It
also arises in mathematical finance in the fundamental geometric Brownian motion
model of asset price dynamics. Given the central role of the lognormal distribution in
Stieltjes-type moment problems it is, therefore, of special interest to explore closely
related distributions with respect to M-indeterminacy. Recently, Lin and Stoyanov
[15] studied a generalization of the lognormal distribution derived from a skewed
generalization of the normal distribution, finding that it is M-indeterminate for every
value of the skewness parameter. The present paper explores a family of general-
ized lognormal distributions derived from a more classical symmetric generaliza-
tion of the normal distribution, which compared to the normal distribution has an
additional shape parameter. Like the classical lognormal distribution, this general-
ized version has been employed in financial economics as well as in modeling size
distributions.

It turns out that this family of distributions sheds new light on the classical lognormal
moment problem, in that M-determinacy now depends on the value of the shape
parameter. Specifically, the family incorporates heavy-tailed distributions for which
not all integer moments exist, moderately heavy-tailed distributions for which all
moments exist yet the distributions are M-indeterminate, and, as a limiting case, a
distribution with bounded support that is, therefore, determined by its moments. It
also emerges that the classical lognormal distribution does not constitute an extreme
case within the family: in the setting considered here, there exist more as well as less
heavy-tailed M-indet distributions than the lognormal.

The paper is organized as follows: Sect. 2 provides some background on the
generalized lognormal distribution. Section 3 contains a characterization of moment
(in)determinacy for the family of generalized lognormal distributions in terms of their
shape parameter, while Sect. 4 describes Stieltjes classes pertaining to the indetermi-
nate cases. Section 5 concludes.

2 The Generalized Lognormal Distribution

Being one of the basic distributions in probability and statistics, the normal distribution
has triggered a number of generalizations. One such generalization is defined by the
density
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f (y) = 1

2 r1/r σ �(1 + 1/r)
exp

{

− 1

r σ r
|y − μ|r

}

, −∞ < y < ∞, (1)

which includes the normal as the special case where r = 2. Here μ ∈ R is a location
parameter and σ ∈ R

+ is a scale parameter. The new parameter r ∈ R
+ is a shape

parameter measuring tail thickness, with lower values of r indicating heavier tails.
The parameter r plays a crucial role below.

This distribution is fairly widely known; however, it is known under different names
in different fields and it was (re)discovered several times in different contexts. Specif-
ically, since r = 2 yields the normal distribution and r = 1 the Laplace distribution,
the distribution (1) is known both as a generalized normal distribution, in particular
in the Italian language literature [16,27], and as a generalized Laplace distribution.
It is also known as the normal distribution of order r , again especially in the Italian
literature (e.g., [29]), and as the generalized error distribution, notably in econometrics
and finance (e.g., [17]). A further name is exponential power distribution [3], the name
under which this distribution is presumably best known in the statistical literature. To
the best of the author’s knowledge, the generalized form (1) was first proposed in a
Russian journal by Subbotin [25], who sought an axiomatic basis for a generalized
form of Gauss’s “law of error.” Hence the name Subbotin distribution is also in use,
notably in econophysics (e.g., [1]). A multivariate generalization of (1) is the Kotz-type
distribution [13].

In what follows we sometimes set μ = 0, since in the context of moment problems
no extra generality is gained by including this location parameter. There exist different
parameterizations of (1), notably regarding the scale parameter, but for the purposes
of this paper the relevant parameter is r , so this complication shall be ignored below.

The generalized lognormal distribution [28,29], or perhaps logarithmic generalized
normal distribution, is less widely known than the generalized normal distribution. In
fact, most of the currently available works are written in Italian and published in Italian
journals and collected volumes that are often not easily available outside of Italy. A
more accessible source may be Kleiber and Kotz [12], Ch. 4.10, who summarize many
basic properties. The distribution is defined as the distribution of X = exp(Y ), where
Y follows Eq. (1), leading to the density

f (x) = 1

2 x r1/r σ �(1 + 1/r)
exp

{

− 1

r σ r
| ln x − μ|r

}

, 0 < x < ∞. (2)

If a random variable X follows Eq. (2) this is denoted as X ∼ GLN(μ, σ, r ). The
distribution will sometimes be referred to as the generalized lognormal distribution
of order r if further emphasis is needed. The case where r = 2 gives the classical
lognormal distribution. In Eq. (2), eμ is a scale parameter, while σ and r are both
shape parameters. The effect of the new parameter r is illustrated in Fig. 1. This
Figure suggests that the density becomes more and more concentrated on a bounded
interval with increasing r . Specifically, for r = 1.5 the density is much like the
classical lognormal density, but with slightly heavier tails, while for r = 15 several
points of inflection and a more rapid decrease in the tails emerge. The limiting case
where r → ∞ will also be explored below, see Theorem 3.
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Fig. 1 Some generalized lognormal distributions (solid gray μ = 0, σ = 1, r = 1.5, dashed-dotted gray
μ = 0, σ = 1, r = 15). The dashed black curve corresponds to the classical lognormal distribution (r = 2,
with μ = 0, σ = 1)

Like the classical lognormal distribution, the generalized lognormal distribution
has been employed in economics and finance. As mentioned above, it has been used
as a model for the size distribution of personal incomes. In an application to Italian
income data, Brunazzo and Pollastri [4] estimate r in the vicinity of 1.45, suggesting
a model with even heavier tails than the classical lognormal distribution for their data.
It will emerge below that their estimated model is not determined by its moments.

Perhaps more prominently, the distribution also arises in the widely used expo-
nential GARCH (EGARCH) model of asset return dynamics [17], where it provides
a more realistic specification of the innovation distribution in the volatility equation
than the normal distribution. Recall that, in view of the exponential transformation
employed in the EGARCH model, a widely used alternative to the normal distribu-
tion in GARCH modeling, the t distribution, leads to tails that are too heavy, in the
sense that the distribution corresponding to the exponentiated random variable has no
moments of any order. In contrast, it will emerge below that the less extreme mem-
bers of the generalized lognormal distribution possess moments of all orders, yet they
are M-indeterminate. Specifically, all models estimated by Nelson [17], with shape
parameters r in the vicinity of 1.56–1.57, are not determined by their moments. More
recent work (e.g., [26]) confirms that 1 < r < 2 is the empirically relevant range of
the tail thickness parameter in this model. All of these objects are M-indeterminate.

3 Generalized Lognormal Distributions and the Moment Problem

How can one determine whether or not a given distribution with CDF F is deter-
mined by the sequence of its moments? Although necessary and sufficient condi-
tions are known (see, e.g., [19]), they are not very practical. For M-determinacy,
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a sufficient condition is the existence of the moment generating function (MGF)
m X (t) = E[et X ] = ∫ ∞

0 etx dFX (x), |t | < t0, for some t0 > 0.
From the expression for the density (2) of the generalized lognormal distribution it

is immediate that, for any r ∈ R
+, E[et X ] = ∞ for all t > 0; hence the MGF does

not exist. It remains to explore the existence of the moments themselves. (Note that in
view of X > 0 (a.s.) it is possible to consider moments of fractional order.) Without
loss of generality, set μ = 0 since exp(μ) is a scale parameter. Substituting z = ln x
yields, for some C > 0,

E[Xk] =
∞∫

0

xk f (x) dx = C

∞∫

−∞
exp{kz − |z|r/(rσ r )} dz. (3)

This shows that convergence of the integral depends on the value of r : for r > 1 the
integral is finite for all k, for r = 1 the condition |k| < 1/σ is needed, while for
r < 1 it does not converge for any k �= 0. The following proposition collects these
observations:

Proposition 1 Suppose X ∼ GL N (μ, σ, r).

(a) The moment-generating function of X does not exist for any r ∈ (0,∞).
(b) The kth moment E[Xk] exists if and only if

• k = 0, if r < 1.
• |k| < 1/σ , if r = 1.
• k ∈ (−∞,∞), if r > 1.

Apart from the integral representation (3), it is also possible to obtain series expan-
sions of the moments (when they exist). For r > 1, they are of the form

E[Xk] = ekμ

�
( 1

r

)
∞∑

i=0

(kσ)2i

(2i)! r2i/r �

(
2i + 1

r

)

, k = 0, 1, 2, . . . ,

see Brunazzo and Pollastri [4] or Nelson [17].1

In view of Proposition 1 not all generalized lognormal distributions are of interest
in the context of the moment problem. For r = 1, only some moments exist, for r < 1
no moments exist. The cases where r < 1, therefore, provide examples of distributions
without any moments, integer or fractional. An earlier example was given by Kleiber
[10]. For the remaining cases where 1 < r < ∞ all the moments are finite yet the MGF
does not exist. These are circumstances under which M-indeterminacy may arise.

It remains to show that the distributions where 1 < r < ∞ are indeed M-indet. For
M-indeterminacy, a useful sufficient condition is the Krein condition (e.g., [22]). In a

1 It should be noted that these works employ different parameterizations of the distribution. Also, Nelson
[17] obtains expectations of somewhat more general objects. Setting γ = 0, p = 0, and θ = 1 in his
Theorem A1.2 yields the required moments. The resulting expressions can be shown to coincide with those
presented by Brunazzo and Pollastri [4].
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Stieltjes-type moment problem, it requires, for a density f that is strictly positive for
all x ≥ a > 0, for some a > 0, that the normalized logarithmic integral of the density

KS[ f ] =
∞∫

a

− ln f (x2)

1 + x2 dx (4)

is finite. KS[ f ] is called the Krein integral of f .
The following Theorem shows that generalized lognormal distributions of orders

1 < r < ∞ are M-indeterminate:

Theorem 2 All generalized lognormal distributions GL N (μ, σ, r) of order 1 < r <

∞ are M-indeterminate.

Proof Setting without loss of generality μ = 0 and σ = 1, the Krein integral (4) is,
for a > 0 and Cr > 0 the normalizing constant,

KS[ f ] =
∞∫

a

− ln Cr + 2 ln x + 1
r |2 ln x |r

1 + x2 dx .

Since for large x the integrand is eventually dominated by x−1−δ , for any δ ∈ (0, 1),
this integral is finite for all 1 < r < ∞, which gives the result. �	

Alternative proofs could employ results presented by Gut [7], Remark 6.2 or by
Pakes, Hung and Wu [18], p. 110.

For Xi ∼ GLN(μi , σi , ri ), i = 1, 2, with ri > 1 and densities fi it is easily seen that
limx→∞ f1(x)/ f2(x) = ∞ iff r1 < r2, hence the generalized lognormal distributions
are, in a sense, “more M-indeterminate” for smaller r . (Indeed, in view of Proposition
1 for r = 1 some moments no longer exist.) Specifically, the generalized lognormal
distributions with 1 < r < 2 are even more extreme than the classical lognormal
distribution (r = 2). Also, the cases where 2 < r < ∞ are less extreme. It is also
noteworthy that although the tails of the generalized lognormal distribution become
lighter and lighter with increasing r , the distribution is M-indet no matter how large r .
It is, therefore, natural to ask what happens in the limit, i.e., for r → ∞. The following
Theorem addresses this case:

Theorem 3 For r → ∞, the generalized lognormal distribution GLN(μ, σ, r) tends
to a distribution supported on a bounded interval. Hence this limiting distribution is
M-det.

Proof It is convenient to analyze the limiting case for the distribution of Y = ln X ,
i.e., the generalized normal distribution. Without loss of generality, set μ = 0 and
σ = 1. A random variable Y following a generalized normal distribution admits the
mixture representation [5], p. 175

Y
d= U Z (5)
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where U is uniform on [−1, 1] and Z ∼ (r1/r )W 1/r with W ∼ Ga(1 + 1/r, 1), i.e,
a gamma distribution with scale 1 and shape parameter 1 + 1/r . Hence Z follows
a generalized gamma (GG) distribution, specifically Z ∼ GG(r, r1/r , 1 + 1/r ). The
moments of Z are (see, e.g., [12], p. 151)

E[Zk] = (r1/r )1+1/r �(1 + (k + 1)/r)

�(1 + 1/r)
, k = 1, 2, . . . .

Now limr→∞ E[Zk] = 1 for all k, and it follows that Z = r1/r W 1/r tends to a point

mass at 1 by Fréchet-Shohat (e.g., [6], p. 81). Thus limr→∞ Y
d=U , and the density of

exp(U ) is given by

f (x) = 1

2 x
, e−1 ≤ x ≤ e. (6)

This distribution has compact support, hence it is determined by its moments. �	
Lunetta [16] provides an alternative derivation of the limiting distribution of the

generalized normal distribution that analyzes the limit of its characteristic function.
However, we prefer the approach involving a mixture representation presented here
because it motivates further questions, on which more below.

Interestingly, Bomsdorf [2] observed that a distribution of the type described by
Eq. (6) occurs as the distribution of prizes in lotteries, hence he calls it the prize
competition distribution. Among other characteristics he also provides the MGF of
this object.

4 Stieltjes Classes for M-Indeterminate Generalized Lognormal Distributions

The preceding section showed that generalized lognormal distributions of orders 1 <

r < ∞ are M-indeterminate, by way of an existence proof. To round off the discussion,
this section provides explicit examples of distributions that are equivalent, in the sense
of having identical moments of all orders, to these indeterminate distributions.

A Stieltjes class—a term coined by Stoyanov [23]—corresponding to a moment-
indeterminate distribution F with density f is a set

S( f, p) = { fε(x) | fε(x): = f (x)[1 + ε p(x)], x ∈ supp( f ), ε ∈ [−1, 1]},

where p(x) is a perturbation function satisfying −1 ≤ p(x) ≤ 1 and E[Xk p(X)] = 0
for all k = 0, 1, 2, . . . .

It is possible to obtain Stieltjes classes for the generalized lognormal distributions
of orders 1 < r < ∞ that generalize a recently derived Stieltjes class pertaining to
the classical lognormal distribution. The construction of the required Stieltjes classes
in the following Theorem is adapted from a construction presented by Stoyanov and
Tolmatz [24], Theorem 3:

Theorem 4 Suppose X ∼ GL N (μ, σ, r) with density fr , (μ, σ, r) ∈ R × R
+ ×

(1,∞).

123



1174 J Theor Probab (2014) 27:1167–1177

(a) The function

hr (x)=
{

sin{(x − 1)1/4} exp
{ 1

rσ r | ln x−μ|r + ln x−(x−1)1/4
}
, x > 1,

0, x ≤ 1,
(7)

is bounded on R
+ for all (μ, σ, r) ∈ R × R

+ × (1,∞), with E[Xkhr (X)] = 0
for all k = 0, 1, 2, . . . .

(b) pr : = hr/Hr , with Hr : = supx |hr (x)|, defines a perturbation corresponding to
fr .

(c) The family of functions fr,ε(x) = fr (x)[1 + ε pr (x)], ε ∈ [−1, 1], defines a
Stieltjes class comprising distributions whose moments are identical to those of
fr for any ε ∈ [−1, 1].

Proof The function hr is continuous on (1,∞), with limx→1+ hr (x) < ∞ and
limx→∞ hr (x) = 0, hence hr is bounded on R

+.
By construction, with Cr > 0 the normalizing constant of fr ,

∞∫

0

xkhr (x) fr (x) dx = Cr

∞∫

1

xk sin{(x − 1)1/4} exp
{
−(x − 1)1/4

}
dx

= Cr

∞∫

0

(x + 1)k sin{x1/4} exp
{
−x1/4

}
dx

= Cr

k∑

j=0

(
k

j

) ∞∫

0

xk− j sin{x1/4} exp
{
−x1/4

}
dx = 0

for k = 0, 1, 2, . . . in view of Lemma 1 of Stoyanov and Tolmatz [24] and the fact
that

∞∫

0

xk sin{x1/4} exp
{
−x1/4

}
dx = 0, k = 0, 1, 2, . . . .

This proves (a).
Since Hr : = supx |hr (x)| < ∞ we may set pr (x) = hr (x)/Hr , assuring |pr (x)| ≤

1 for all x . This gives (b). Finally, fr,ε(x) = fr (x)[1 + ε pr (x)] defines a density for
any ε ∈ [−1, 1], which gives (c). �	

It should be noted that the construction of Stoyanov and Tolmatz [24] is somewhat
more general, in that the kernel k(x): = (x − 1)1/4 used here may be generalized to
a three-parameter family of kernels defined by k(x; ξ, δ, β): = (δx − ξ)β tan(πβ),
where (ξ, δ, β) ∈ R

+ × R
+ × (0, 1/2). Thus amending the kernel in this manner

defines a four-parameter family of perturbations pr (x; ξ, δ, β) leading to Stieltjes
classes that generalize the three-parameter family of Stieltjes classes for the classical
lognormal distribution derived by Stoyanov and Tolmatz [24]. However, the Stieltjes
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class presented above already provides infinitely many distributions whose moments
coincide with those of the generalized lognormal distribution.

In (7), the choice of β = 1/4 was made because it is related to one of the classical
examples of an M-indeterminate distribution that dates back to the pioneering work
of Stieltjes [20]. Stieltjes considered the case where ξ = 0 and the perturbation
h(x) = sin(x1/4), x > 0, used in the proof of part (a) of Theorem 4; it pertains to a
certain generalized gamma distribution. Moreover, a shift ξ > 0 is needed in (7), as
otherwise the resulting object would exhibit a singularity at the origin, see also the
discussion in Stoyanov and Tolmatz [24], Section 4.

5 Further Discussion and Concluding Remarks

The paper exhibited a family of distributions, occurring in economics and finance,
that generalizes the lognormal distribution, the classical example of a moment-
indeterminate distribution. It emerged not only that a large subfamily consists of
moment-indeterminate distributions, but also that not all members share this prop-
erty of the lognormal, for different reasons: some tails are so heavy that not enough
moments exist, while a limiting case corresponds to a light-tailed distribution with
compact support.

It may, therefore, be asked to what extent it is possible to characterize the general-
ized lognormal distributions with r = 1, i.e., the log-Laplace distributions,2 for which
E[Xk] < ∞ iff |k| < 1/σ . If one leaves the classical setting of the moment problem
characterizations in terms of certain moments are possible. First, Theorem 1 of Lin
[14] implies that characterizations in terms of fractional moments are feasible: for a
sequence {kn | 0 < kn < 1/σ ; n ∈ N} of positive and distinct numbers converging to
some k0 ∈ (0, 1/σ), the sequence {E[Xkn ] | n ∈ N} of fractional moments character-
izes the distribution. Second, observe that for r = 1 the first moment exists iff σ < 1. It
is well known that existence of the first moment permits characterization of the under-
lying distribution in terms of the triangular array of first moments of the associated
order statistics, {E[Xk:n] | k = 1, 2, . . . , n; n ∈ N}, where X1:n ≤ X2:n ≤ . . . ≤ Xn:n
are the order statistics in a sample of size n. In fact, certain subsets of this array are
already sufficient, see Huang [9] for a review. Such characterizations are meaningful
in applications to income distribution [11], one of the fields where the generalized
lognormal distribution has been employed. Note also that both characterizations, via
fractional moments as well as via moments of order statistics, are available for all
generalized lognormal distributions with r > 1 since moments of arbitrary order exist
in that case.

It is natural to ask about M-determinacy of the more widely known distribution of
ln X , the generalized error or Subbotin distribution (1). This is a Hamburger moment
problem. The answer is already available in the literature, although not in a probabilistic
setting: the family of generalized error distributions also admits M-indet examples,
namely for r < 1, and a Stieltjes class is given in Shohat and Tamarkin [19], p. 22.

2 This question was raised by an anonymous reviewer.
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It is also known that for some M-determinate distributions power transformations
lead to M-indeterminacy and vice versa (e.g., [21]). The standard example is the gen-
eralized gamma distribution. For X ∼ GLN(μ, σ, r ), it is easily seen that X p ∼
GLN(pμ, pσ, r ) for all p > 0, showing that the distribution is closed under power
transformations. Hence this well-known property of the classical lognormal distrib-
ution extends to the generalized version (2). Consequently, consideration of power
transformations does not lead to new insights regarding the moment problem here.

However, it might be worthwhile to further explore aspects of the mixture repre-
sentation (5). This representation is a special case of a general mixture representation
for unimodal distributions known as Khinchine’s theorem. The exponentiated version
states that exp(Y ) = exp(U Z), i.e., a random variable following a generalized log-
normal distribution can be obtained as the exponential of the product of a uniform and
a transformed gamma random variable. It would be interesting to characterize the set
of mixing distributions FZ leading to indeterminate log-unimodal distributions.

Acknowledgments I am grateful to Thomas Zehrt for helpful discussions and to an anonymous reviewer
for a careful reading of an earlier draft.

References
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