
J Theor Probab (2012) 25:950–980
DOI 10.1007/s10959-012-0436-1

Hitting Time Distributions for Denumerable
Birth and Death Processes

Yu Gong · Yong-Hua Mao · Chi Zhang

Received: 2 July 2010 / Revised: 20 June 2012 / Published online: 8 August 2012
© Springer Science+Business Media, LLC 2012

Abstract For an ergodic continuous-time birth and death process on the nonnegative
integers, a well-known theorem states that the hitting time T0,n starting from state 0
to state n has the same distribution as the sum of n independent exponential random
variables. Firstly, we generalize this theorem to an absorbing birth and death process
(say, with state −1 absorbing) to derive the distribution of T0,n. We then give explicit
formulas for Laplace transforms of hitting times between any two states for an er-
godic or absorbing birth and death process. Secondly, these results are all extended
to birth and death processes on the nonnegative integers with ∞ an exit, entrance, or
regular boundary. Finally, we apply these formulas to fastest strong stationary times
for strongly ergodic birth and death processes.

Keywords Birth and death process · Eigenvalue · Hitting time · Strong ergodicity ·
Strong stationary time · Exit/entrance/regular boundary
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1 Introduction

In this paper, we will study the distribution of passage time between any two states
of an irreducible continuous-time birth and death process on the nonnegative inte-
gers {0,1,2, . . .}. This is an extension of a well-known theorem, which states that
the passage time from state 0 to state d (< ∞) has the same law as a sum of d in-
dependent exponential random variables with distinct rates. These rates are just the
nonzero eigenvalues of the associated generator for the process absorbed at state d ;
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cf. [3, 14, 16]. For historical comments, see Fill [10], Diaconis and Miclo [6], and
references therein.

Very recently, Fill [10] gave a first stochastic proof for this theorem via duality. An
excellent application of this theorem is to the distribution of fastest strong stationary
time for an ergodic birth and death process on {0,1, . . . , d}. It is also the starting
point of studying separation cut-off for birth and death processes in [7]. By a similar
method, Fill [11] proved an analogous result for upward skip-free processes. Diaconis
and Miclo [6] presented another probabilistic proof for birth and death processes, by
using the “differential operators” for birth and death processes [8].

Consider a continuous-time birth and death process (Xt )t≥0 with generator
Q = (qij ) on E = {0,1,2, . . .}. The (qij ) are specified as follows:

qij =

⎧
⎪⎪⎨

⎪⎪⎩

bi for j = i + 1, i ≥ 0;
ai for j = i − 1, i ≥ 1;
−(ai + bi) for j = i ≥ 0;
0 for other j �= i.

(1.1)

Here {ai : i ≥ 1} and {bi : i ≥ 0} are two sequences of positive numbers, and a0 ≥ 0.
When a0 = 0, state 0 is reflecting; when a0 > 0, state 0 is not conservative, so by
convention we can and do regard an extra state −1 as the absorbing state.

Let Ti,n be the hitting time of state n starting from state i. A well-known theorem
is the following (see [10, Theorem 1.1]).

Theorem 1.1 Let λ
(n)
1 < · · · < λ

(n)
n be all (positive) n eigenvalues of −Q(n), where

Q(n) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−b0 b0 0 0 · · · 0 0
a1 −(a1 + b1) b1 0 · · · 0 0
0 a2 −(a2 + b2) b2 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · an−1 −(an−1 + bn−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

(1.2)
Then T0,n is distributed as a sum of n independent exponential random variables with

rate parameters {λ(n)
1 , . . . , λ

(n)
n }. That is,

Ee−sT0,n =
n∏

ν=1

λ
(n)
ν

s + λ
(n)
ν

, s ≥ 0. (1.3)

We will investigate the distribution of hitting time Ti,n for birth and death process
(Xt ) on the nonnegative integers. This includes four cases:

Case I: 0 ≤ i < n < ∞;
Case II: 0 ≤ n < i ≤ N < ∞, where N is a reflecting state;
Case III: 0 ≤ i < n = ∞;
Case IV: 0 ≤ n < i ≤ ∞.

Cases I and II can be easily deduced from Theorem 1.1. See Corollaries 2.1 and 2.2
in the next section.
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When we deal with a birth and death process on E, we will first face the classi-
fication of infinity state ∞ concerning uniqueness of the corresponding Q-process.
The classification of Q-process in (1.1) was due to Feller [8]. See also [2, Chap. 8]
for more details. According to [8], there are four types of ∞ boundary: regular, exit,
entrance, and natural boundaries.

Define

μ0 = 1 and μi = b0b1 · · ·bi−1

a1a2 · · ·ai

for i ≥ 1, (1.4)

and μ =∑∞
i=0 μi . Then (μi, i ≥ 0) is the unique (up to scaling) invariant measure.

Let us also define

R =
∞∑

i=0

1

μibi

i∑

j=0

μj , S =
∞∑

i=0

1

μibi

∞∑

j=i+1

μj . (1.5)

The ∞ boundary is called exit if R < ∞, S = ∞; entrance if R = ∞, S < ∞; reg-
ular if R < ∞, S < ∞; natural if R = ∞ = S. From [2, Sect. 8.1] we know that a
necessary and sufficient condition for the boundary at ∞ to be an exit boundary is

R < ∞, μ = ∞;
a necessary and sufficient condition for the boundary at ∞ to be an entrance boundary
is

S < ∞,

∞∑

i=0

1

μibi

= ∞.

Another difficulty for an infinite birth and death process is obviously determining
all the eigenvalues or the spectrum of the generator. By the spectral theory established
in [18] and [19], we can overcome this difficulty. Briefly speaking, we give distribu-
tions of T0,∞ (the lifetime) for the minimal birth and death process corresponding
to Q when ∞ is an exit boundary. We will use approximation by letting n → ∞ to
derive the distribution of T0,∞ from that of T0,n in Theorem 1.1. To deal with the
eigenvalues for birth and death processes in infinite state spaces, we should utilize
the powerful theory of Dirichlet forms. Dirichlet forms help one to obtain the vari-
ational formulas for eigenvalues and, more importantly, provides the approximation
procedure. A similar situation appears when ∞ is an entrance boundary, from a view
point of the duality method in [14]. The duality method was used successfully in [5]
to study the estimation of the principal eigenvalue for birth and death processes.

To end this section, we mention the Dirichlet form associated to a birth and death
process. Let

D(f ) =
∞∑

i=0

μibi(fi − fi+1)
2,

and D(D) = {f ∈ L2(μ) : D(f ) < ∞}. Let

K = {f : f has finite support}.
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Then (D,D(D)) is called regular if K is dense in D(D) with respect to the Dirich-
let norm ‖ · ‖D : ‖f ‖2

D = μ(f 2) + D(f ); see [4, Sects. 6.7–6.8]. From [4, Corol-
lary 6.62] we know that the symmetric Q-process is unique if and only if (D,D(D))

is regular. Here the symmetric process Q-process means the transition function pij (t)

corresponding to Q satisfies μipij (t) = μjpji(t) for all i, j, t . This means that for
Q-matrix defined by (1.1), whenever (D,D(D)) is regular, the minimal process is
the only symmetric Q-process.

It is proven in [5, Proposition 1.3] that (D,D(D)) is regular if and only if

∞∑

i=0

[
1

μibi

+ μi

]

= ∞. (1.6)

We remark that when ∞ is an exit or entrance boundary, the Dirichlet form is reg-
ular. For natural boundary (R = ∞, S = ∞), the situation is different. Although the
Dirichlet form is unique, we will face the essential spectrum problem. In this case,
the essential spectrum of the generator in L2 may be nonempty. Thus, the formula for
natural boundary may be totally different from Theorems 4.6 and 5.5 in this paper.

For regular boundary (R < ∞, S < ∞), the problem is that the Dirichlet form
is not regular. Since now the corresponding Q-processes are not unique, we can do
this in two ways. Firstly, we deal with the minimal process. In this case, we face the
similar situation as in case of exit boundary. Secondly, we can deal with the “max-
imal” process. According to [4, Proposition 6.56] or [24, Theorem 1 in Sect. 13.2],
this “maximal” process is the unique honest symmetric Q-process, which looks like
a process with entrance boundary.

The rest of paper is organized as follows. In Sect. 2, we derive (Cases I and II) the
distributions of hitting times Ti,n for an ergodic finite birth and death process from
Theorem 1.1. In Sect. 3, we give the distributions of hitting times for an absorbing
finite birth and death process. In Sect. 4, we give (Case III) the distribution of the
life time for a birth and death process with ∞ an exit boundary, starting from any
i ≥ 0. In Sect. 5, we give (Case IV) the distributions of Ti,n(i > n) for a birth and
death process with ∞ an entrance boundary. In Sect. 6, the distribution of (fastest)
strong stationary time is derived. Finally in Sect. 7, we deal with the minimal and
“maximal” processes, respectively, for a Q-matrix with regular boundary.

We remark that for one-dimensional diffusion process on a finite interval,
Kent [17] investigated a similar problem and proved that the canonical measure cor-
responding to the distribution of a hitting time between two states can be identified
with a spectral measure corresponding to the generator of the absorbing diffusion
process.

2 Finite State Space with a0 = 0

2.1 Case I

Let us first solve Case I from Theorem 1.1.
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Corollary 2.1 For 0 ≤ i < n < ∞,

Ee−sTi,n =
∏n

ν=1
λ

(n)
ν

s+λ
(n)
ν

∏i
ν=1

λ
(i)
ν

s+λ
(i)
ν

, s ≥ 0. (2.1)

In particular,

ET0,n =
∑

1≤ν≤n

1

λ
(n)
ν

, ETi,n =
∑

1≤ν≤n

1

λ
(n)
ν

−
∑

1≤ν≤i

1

λ
(i)
ν

. (2.2)

Proof Since T0,n = T0,i +Ti,n by the skip-free property of birth and death process and
T0,i , Ti,n are independent by the strong Markov property, (2.1) follows immediately
from Theorem 1.1.

Equation (2.2) follows by Theorem 1.1 and T0,n = T0,i + Ti,n, or from (2.1) by a
standard method to derive the moments from the Laplace transform. �

We remark that (2.2) is called the eigentime identity for absorbed birth and death
processes; see [19]. It is different from that in [1, Chap. 3], where the eigentime
identity for an ergodic finite Markov chain concerns the average hitting time. In [18],
this kind of eigentime identity for continuous-time Markov chains on a countable
state space was studied.

2.2 Case II

For 0 ≤ n < N < ∞, let λ̂
(N)
n,1 < λ̂

(N)
n,2 < · · · < λ̂

(N)
n,N−n be positive eigenvalues of

−Q̂
(N)
n , where

Q̂(N)
n :=

⎛

⎜
⎜
⎜
⎝

−(an+1 + bn+1) bn+1 0 0 · · · 0 0
an+2 −(an+2 + bn+2) bn+2 0 · · · 0 0

...
...

...
...

...
...

...

0 0 0 0 · · · aN −aN

⎞

⎟
⎟
⎟
⎠

.

(2.3)
This is the generator of the birth and death process on {n + 1, . . . ,N} with reflecting
state N before the process reaches state n, which can be considered an absorbing
state.

By using the mapping j 	→ j ′ = N − j on the state space, we can easily obtain
the following results from Theorem 1.1 and Corollary 2.1.

Corollary 2.2 For 0 ≤ n < i ≤ N < ∞,

Ee−sTi,n =
∏N−n

ν=1
λ̂

(N)
n,ν

s+λ̂
(N)
n,ν

∏N−i
ν=1

λ̂
(N)
i,ν

s+λ̂
(N)
i,ν

, s ≥ 0.
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In particular,

Ee−sTN,n =
N−n∏

ν=1

λ̂
(N)
n,ν

s + λ̂
(N)
n,ν

, s ≥ 0,

and

N−n∑

ν=1

1

λ̂
(N)
n,ν

= ETN,n =
N∑

j=n

1

μjbj

N∑

i=j+1

μi. (2.4)

Proof The second equality in (2.4) can be found on [2, p. 264]. �

We remark that Miclo [21] gave via duality the distribution of hitting times for
finite Markov chains by using a probabilistic method, which is close to that used in
Fill [10]. As suggested kindly by a referee, it is interesting to study these problems
for general Markov chains in infinite state spaces, as we have done in Theorems 4.6
and 5.5.

3 Finite State Space with a0 > 0

In this section, we will study the hitting time distribution for absorbing finite space
and give the answers for Case I and Case II.

In [10], Fill used a clever trick, duality method, to give a probabilistic proof for
Theorem 1.1. This duality method was further used in [11] to establish a correspond-
ing theorem for the skip-free process. See also Miclo [21]. In this subsection, we will
give the distribution of T0,n for the birth and death process when a0 > 0, that is, for
the process which is no longer conservative at state 0. Luckily, by modifying Fill’s
duality method, we can finally carry out the result in Theorem 3.1 below.

Now fix n ≥ 1 and assume that a0 > 0. Set

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−(a0 + b0) b0 0 · · · 0 0 0
a1 −(a1 + b1) b1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · an−1 −(an−1 + bn−1) bn−1
0 0 0 · · · 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

(3.1)
Let 0 = λ0 < λ1 < · · · < λn−1 < λn be n + 1 eigenvalues of −G, and denote by P(t)

the probability transition function corresponding to G. Note that states n and −1 are
absorbing states for P(t).

Let μi be defined by (1.4), and further define

hi =
i∑

j=0

1

μiaj

, (0 ≤ i ≤ n − 1), hn = hn−1 + 1

μn−1bn−1
. (3.2)
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Theorem 3.1 With the notations given above, the hitting time T0,n has the Laplace
transform

Ee−sT0,n = h0

hn

·
n∏

ν=1

λν

s + λν

, s > 0.

To prove Theorem 3.1, we modify the argument in [10]. Define

Ĝ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−λn λn 0 · · · 0
0 −λn−1 λn−1 · · · 0
...

...
...

...
...

0 0 · · · −λ1 λ1
0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (3.3)

Then we have the following lemma, see [10, Theorem 5.3].

Lemma 3.2 Define M0 = I and, for 1 ≤ i ≤ n,

Mi = λ−1
n · · ·λ−1

n−i+1 · (G + λnI) · · · (G + λn−i+1I ).

Let Λ = (Λ(i, j)) be Λ(i, j) = Mi(0, j),0 ≤ i, j ≤ n. Then

ΛG = ĜΛ.

We remark that
∏i−1

k=0(G + λn−kI ) above are called spectral polynomials.
See [10, 20]. Λ given in Lemma 3.2 is a little different from that given in [10]. In [10],
Λ is a lower triangle stochastic matrix, but Λ in Lemma 3.2 is really substochastic.
These polynomials, together with matrix Λ, satisfy the following properties.

Proposition 3.3

(i) The matrices Mi,1 ≤ i ≤ n, are nonnegative and substochastic.
(ii) The matrix Λ is also nonnegative and substochastic. Actually, the sum of its ith

row strictly decreases with i, and it is lower triangular with

Λ(0,0) = 1, Λ(k, k) = b0 · · ·bk−1

λn · · ·λn−k+1
> 0, 1 ≤ i ≤ n,

which implies that Λ is nonsingular. So G and Ĝ are similar.

Proof (i) Let q = max0≤i<n{ai + bi} and A = G + q . Then A is nonnegative with
eigenvalues λA

i = −λi + q and spectral polynomials satisfying

i∏

k=0

(
A − λA

n−kI
)=

i∏

k=0

(G + λn−kI ), 0 ≤ i ≤ n.

By [20, Theorem 3.2], the left side of the above equation is nonnegative, from which
we get the nonnegativity of Mi . In addition, from the definition in Lemma 3.2 it is
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easy to check by induction that the sum of every row for Mi is not greater than 1, and
thus each Mi is substochastic.

(ii) From the definition in Lemma 3.2 we can derive the assertion by direct calcu-
lation. �

Lemma 3.4

P(T0,n ≤ t) = P(T̂0,n ≤ t) · h0

hn

∀t ≥ 0,

where T̂0,n is the hitting time of n starting from 0 for the pure birth process P̂ (t) with
generator Ĝ.

Proof By Lemma 3.2 we have

ΛP(t) = P̂ (t)Λ ∀t ≥ 0.

Consider the (0, n)-entry of each side of above equality. Because Λ is a lower trian-
gular matrix with Λ(0,0) = 1, we have that

(
ΛP(t)

)
(0, n) =

n∑

k=0

Λ(0, k)P (t)(k, n) = P(t)(0, n) = P(T0,n ≤ t)

and

(
P̂ (t)Λ

)
(0, n) =

n∑

k=0

P̂ (t)(0, k)Λ(k,n) = P̂ (t)(0, n)Λ(n,n) = P(T̂0,n ≤ t)Λ(n,n).

So,

P(T0,n ≤ t) = P(T̂0,n ≤ t)Λ(n,n).

To get Λ(n,n), let t → ∞ in the above equation. Since P(T̂0,n ≤ t) → 1, we have

P(T0,n < ∞) = Λ(n,n).

Note that T0,n < ∞ if and only if T0,−1 = ∞. So,

P(T0,n < ∞) = P(T0,−1 = ∞) = P(T0,n < T0,−1).

It follows from [23, Theorem 3 in Sect. 5.1] that

P(T0,n < T0,−1) = h0

hn

.

This completes the proof. �

Lemma 3.4 is ready for the proof of Theorem 3.1. Let T̂i,i+1 be the passage time
from i to i + 1 for P̂ (t). Since T̂0,n =∑n−1

i=0 T̂i,i+1 and {T̂i,i+1} are independent and
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distributed exponentially, we have

Ee−sT̂0,n =
n−1∏

i=0

Ee−sT̂i,i+1 =
n−1∏

i=0

λn−i

s + λn−i

=
n∏

ν=1

λν

s + λν

.

Next, we will give the distribution of Ti,n for i �= 0. For 1 ≤ i < n, let {λ(i)
ν ,1 ≤

ν ≤ i} be the eigenvalues of −Q(i), where

Q(i) :=

⎛

⎜
⎜
⎜
⎝

−(a0 + b0) b0 0 0 · · · 0 0
a1 −(a1 + b1) b1 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · ai−1 −(ai−1 + bi−1)

⎞

⎟
⎟
⎟
⎠

.

(3.4)
This is the probability matrix of the process on {0,1, . . . , i − 1} before the birth and
death process P(t) reaches i.

The following conclusion is for the distribution of Ti,n, the proof of which is sim-
ilar to that of Corollary 2.2.

Corollary 3.5 For 0 ≤ i < n, we have

Ee−sTi,n = hi

hn

·
∏n

ν=1
λν

s+λν

∏i
ν=1

λ
(i)
ν

s+λ
(i)
ν

, s > 0, (3.5)

and the eigentime identity holds:

E(Ti,n1{Ti,n<∞}) = hi

hn

[
n∑

ν=1

1

λν

−
i∑

ν=1

1

λ
(i)
ν

]

.

Let us consider the hitting time Ti,−1(0 ≤ i < n). We use the same argument as in
Case II by mapping j 	→ j ′ = n− j . For 0 ≤ i < n− 1, let {λ(i,n)

ν ,1 ≤ ν ≤ n− 1 − i}
be the eigenvalues of −Q(i,n), where

Q(i,n)

:=

⎛

⎜
⎜
⎝

−(ai+1 + bi+1) bi+1 0 0 · · · 0 0
ai+2 −(ai+1 + bi+1) bi+2 0 · · · 0 0

...
...

...
...

...
...

...

0 0 0 0 · · · an−1 −(an−1 + bn−1)

⎞

⎟
⎟
⎠ .

Then we can easily obtain the following results from Theorem 3.1 and Corollary 3.5.

Corollary 3.6

Ee−sTi,−1 =
(

1 − hi

hn

) ∏n
ν=1

λν

s+λν

∏n−1−i
ν=1

λ
(i,n)
ν

s+λ
(i,n)
ν

, s > 0,
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and

E(Ti,−11{Ti,−1<∞}) =
(

1 − hi

hn

)[ n∑

ν=1

1

λν

−
n−1−i∑

ν=1

1

λ
(i,n)
ν

]

.

Now we will consider the absorbing time, that is, the hitting time starting from
i (0 ≤ i < n) to the set {−1, n}. Let Ti := Ti,−1 ∧ Ti,n. Since either Ti,−1 < ∞ or
Ti,n < ∞, we have Ti = Ti,−11{Ti,−1<∞} + Ti,n1{Ti,n<∞}. Then we can derive the
distribution of Ti .

Theorem 3.7 For the birth and death process with generator (3.1), the absorbing
time Ti := Ti,−1 ∧ Ti,n has the Laplace transform

Ee−sTi = Ee−sTi,−1 + Ee−sTi,n

=
(

1 − hi

hn

)

·
∏n

ν=1
λν

s+λ ν
∏n−1−i

ν=1
λ

(i,n)
ν

s+λ
(i,n)
ν

+ hi

hn

·
∏n

ν=1
λν

s+λν

∏i
ν=1

λ
(i)
ν

s+λ
(i)
ν

∀s > 0,
(3.6)

and the eigentime identity holds:

ETi =
n∑

ν=1

1

λν

− hi

hn

n∑

ν=1

1

λ
(i)
ν

−
(

1 − hi

hn

) n−1−i∑

ν=1

1

λ
(i,n)
ν

.

4 Case III: ∞ Is an Exit Boundary

In this section, we will derive the lifetime distribution for the minimal birth and death
process when a0 = 0 and Q-processes are not unique. We recall some facts about
the uniqueness of a birth and death process, see, for example, [2, 4]. Then we study
spectral theory for the minimal birth and death process. Spectral theory helps us to
pass from finite states to infinite states; in particular, we will establish what are the
limits of eigenvalues for finite birth and death processes as the state space goes to
infinity.

Assume that a0 = 0. When R < ∞, the corresponding Q-processes are not
unique; for details, see [2, Chap. 8] or [4, Chap. 4]. Let (Xt , t ≥ 0) be the corre-
sponding continuous-time Markov chain with minimal Q-function P(t) = (pij (t))

on E, that is,

pij (t) = Pi[Xt = j, t < ζ ]
with ζ = limn→∞ ξn the lifetime, where ξn are the epochs of successive jumps:

ξ0 = 0, ξn = inf{t : t > ξn−1,Xt �= Xξn−1}, n ≥ 1.
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Proposition 4.1

(i) When starting from state i, the lifetime ζ equals limn→∞ Ti,n a.s.
(ii) Assume that R < ∞. We have Pi[ζ = ∞] = 0 for any i ∈ E and E0ζ = R.

Proof

(i) Let X0 = i. Note that ζ is the (first) time that the process has jumped infinitely
many times. For any state n, before Ti,n the process jumps only finite times, so
that ζ ≥ Ti,n for any n. Thus, ζ ≥ limn→∞ Ti,n a.s. Conversely, since the birth
and death process jumps once to two nearest neighbors, we have ξn ≤ Ti,n for
any n. Thus, ζ = limn→∞ ξn ≤ limn→∞ Ti,n a.s.

(ii) See [2, Chap. 8] or [4, Chap. 4].
�

Denote by L2(μ) the usual (real) Hilbert space on E. Then it is well known that
Q(n),Q,P (t) are self-adjoint operators on L2(μ). For a self-adjoint operator A on
L2(μ), denote by σ(A) and σess(A), respectively, the spectrum and the essential spec-
trum of A. Here, the essential spectrum consists of continuous spectrum and eigen-
values with infinite multiplicity. When σess(Q) = ∅, denote by λ1 < λ2 < · · · all the
eigenvalues of −Q. Actually, all the eigenvalues under consideration in this paper are
simple; for this, see Theorem 4.4 below.

The following result in [19] is our starting point of spectral theory for the minimal
birth and death process.

Theorem 4.2 Assume that R < ∞, S = ∞, i.e., assume that ∞ is an exit boundary.
Then P(t) is a Hilbert–Schmidt operator for any t > 0, σess(Q) = ∅, and

∑

ν≥1

λ−1
ν = R.

From the above equality we see that the spectrum has no accumulation point and
can be ordered.

To get the distribution of lifetime, we need the following minimax principle for
eigenvalues for birth and death processes. This extends the classical Courant–Fischer
theorem for finite symmetric matrices. For the Courant–Fischer theorem, see, for
example, [12, p. 149].

Proposition 4.3 Assume that σess(Q) = ∅. Let λν(ν ≥ 1) and λ
(n)
ν (1 ≤ ν ≤ n) be

eigenvalues for −Q in (1.1) and −Q(n) in (1.2), respectively. Then

(a) for ν ≥ 1,

λν = sup
f (1),...,f (ν−1)∈L2(μ)

inf
{
D(f ) : μ(f 2)= 1 and μ

(
ff (i)

)= 0 for 1 ≤ i < ν
}
,

(4.1)
where μ(g) :=∑

i∈E μigi ;
(b) for 1 ≤ ν ≤ n,
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λ(n)
ν = sup

f (1),...,f (ν−1)∈L2(μ)

inf
{
D(f ) : f |[n,∞) = 0,μ

(
f 2)= 1 and μ

(
ff (i)

)= 0

for 1 ≤ i < ν
}
. (4.2)

Proof

(a) We first prove the assertion for λν . Let e(ν) be the corresponding eigenfunction
for λν . Then

λν = inf
{
D(f ) : μ(f 2)= 1 and μ

(
f e(j)

)= 0 for 1 ≤ j < ν
}
.

For arbitrary f ∈ L2(μ), since f = ∑∞
j=1 μ(f e(j))e(j) and −Qe(j) = λje

(j),
we have

D(f ) = μ
(
(−Qf )f

)=
∞∑

j=1

λjμ
(
f e(j)

)2
,

so that for f (i) ∈ L2(μ)(1 ≤ i < ν),

inf
{
D(f ) : μ(f 2)= 1 and μ

(
ff (i)

)= 0 for 1 ≤ i < ν
}

= inf

{ ∞∑

j=1

λjμ
(
f e(j)

)2 : μ(f 2)= 1 and μ
(
ff (i)

)= 0 for 1 ≤ i < ν

}

≤ inf

{
ν∑

j=1

λjμ
(
f e(j)

)2 : μ(f 2)= 1,μ
(
ff (i)

)= 0 (1 ≤ i < ν),μ
(
f e(j)

)= 0

(j > ν)

}

≤ sup

{
ν∑

j=1

λjμ
(
f e(j)

)2 : μ(f 2)= 1 and μ
(
f e(j)

)= 0 for j > ν

}

= λν.

Therefore,

λν ≥ sup
f (1),...,f (ν−1)∈L2(μ)

inf
{
D(f ) : μ(f 2)= 1 and μ

(
ff (i)

)= 0 for 1 ≤ i < ν
}
.

(4.3)
If we choose fi = e(i),1 ≤ i < ν, then

RHS (4.3) ≥ inf
{
D(f ) : μ(f 2)= 1 and μ

(
f e(i)

)= 0 for 1 ≤ i < ν
}= D

(
e(ν)

)

= λν = LHS (4.3);
thus, equality holds in (4.3).
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(b) For f |[n,∞) = 0,

D(f ) =
n−2∑

i=0

μibi(fi − fi+1)
2 + μn−1bn−1f

2
n−1 =: D(n)(f ); (4.4)

then it is easy to check that D(n)(f ) is the Dirichlet form for Q(n) in (1.2). The
rest of proof is the same as above. �

As pointed out in Sect. 1, when ∞ is an exit boundary, (D,D(D)) is a regular
Dirichlet form. That is, D(D) = {f ∈ L2(μ) : D(f ) < ∞} is the closure of K with
respect to Dirichlet norm ‖ · ‖D : ‖f ‖2

D = μ(f 2)+D(f ). Therefore, as is done in [4,
Theorem 9.11], when ∞ is an exit boundary, it follows from Proposition 4.3 that

λν = sup
f (1),...,f (ν−1)∈L2(μ)

inf
{
D(f ) : f ∈ K,μ

(
f 2)= 1 and μ

(
ff (i)

)= 0

for 1 ≤ i < ν
}
.

Theorem 4.4 Assume that R < ∞, S = ∞, i.e., assume that ∞ is an exit boundary.
Then, for each ν ≥ 1, we have

λ(n)
ν ↓ λν as n ↑ ∞.

Moreover, all eigenvalues {λν, ν ≥ 1} of −Q are distinct (each of multiplicity one).

Proof The proof will be split into three steps:

(a) λ
(n)
ν ↓ αν(say)asn ↑ ∞;

(b) αν = λν ;
(c) the eigenvalues {λν, ν ≥ 1} are distinct.

(a) We use Proposition 4.3 to prove the monotonicity for λ
(n)
ν . For any fixed 1 ≤

ν < n and f (1), . . . , f (ν−1) ∈ L2(μ), if f is such that f |[n,∞) = 0 and μ(f 2) = 1 and
μ(ff (i)) = 0 for 1 ≤ i < ν, then f |[n+1,∞) = 0 and μ(f 2) = 1 and μ(ff (i)) = 0 for
1 ≤ i < ν, so that

inf
{
D(f ) : f |[n,∞) = 0,μ

(
f 2)= 1 and μ

(
ff (i)

)= 0 for 1 ≤ i < ν
}

≥ inf
{
D(f ) : f |[n+1,∞) = 0,μ

(
f 2)= 1 and μ

(
ff (i)

)= 0 for 1 ≤ i < ν
}

and λ
(n)
ν ≥ λ

(n+1)
ν for 1 ≤ ν < n. This proves the monotonicity. Thus, the limit

limn→∞ λ
(n)
ν =: αν exists for any ν ≥ 1.

(b) On the one hand, it follows from Proposition 4.3 that λν ≤ λ
(n)
ν for n ≥ 1, so

λν ≤ αν . On the other hand, from Corollary 2.1 we have

ET0,n =
∑

1≤ν≤n

1

λ
(n)
ν

=
∑

1≤ν<∞

1

λ
(n)
ν

I[ν≤n].
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Thus, it follows from Proposition 4.1 and the monotone convergence theorem that

R = E0ζ = E lim
n→∞T0,n = lim

n→∞ ET0,n

= lim
n→∞

∑

1≤ν<∞

1

λ
(n)
ν

I[ν≤n] =
∑

1≤ν<∞
lim

n→∞
1

λ
(n)
ν

I[ν≤n]

=
∑

1≤ν<∞

1

αν

.

(4.5)

But we already know from Theorem 4.2 that

R =
∑

1≤ν<∞

1

λν

< ∞. (4.6)

Since λν ≤ αν for all ν ≥ 1, it must hold that λν = αν for every ν ≥ 1.
(c) Next, we will prove that all eigenvalues {λν, ν ≥ 1} of −Q are distinct. For this,

we only need to prove that the eigenspace for λν is of dimension one. Indeed, let −λ

be an eigenvalue, and g a corresponding eigenfunction. From (Qg)(i) = −λgi, i ≥ 0,
we have

b0(g1 − g0) = −λg0, ai(gi−1 − gi) + bi(gi+1 − gi) = −λgi, i ≥ 1. (4.7)

Since μibi = μi+1ai+1 for i ≥ 0, it follows from (4.7) that

gk+1 = − λ

μkbk

k∑

i=0

μigi + gk, k ≥ 0.

This means that the eigenfunction g is determined uniquely once g0 is given. �

Remark 4.5 For the first eigenvalue (ν = 1) corresponding to the minimal process,
Chen [5] proved that λ1 is defined by the classical Poincaré variational formula:

λ1 = inf

{ ∞∑

i=0

μibi(fi − fi+1)
2 : f ∈ K,

∞∑

i=0

μif
2
i = 1

}

without the assumption σess(Q) = ∅.

The following is the main theorem of this section.

Theorem 4.6 Assume that ∞ is an exit boundary. Let ζ be the lifetime for the mini-
mal process. Then

E0e
−sζ =

∞∏

ν=1

λν

s + λν

, s ≥ 0.
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That is,

ζ
L=

∞∑

ν=1

Yν,

where Yν ∼ Exp(λν) (for 1 ≤ ν < ∞) are independent. Moreover, for any i ≥ 0, let
Ti,∞ = limn→∞ Ti,n. Then

Eie
−sζ = Ee−sTi,∞ =

∏∞
ν=1

λν

s+λν

∏i
ν=1

λ
(i)
ν

s+λ
(i)
ν

, s ≥ 0.

Proof We will prove the first assertion, while the second assertion then follows by
independence as in Corollary 2.1.

Recall ζ = limn→∞ T0,n when X0 = 0. So,

E0e
−sζ = lim

n→∞ Ee−sT0,n by the monotone convergence theorem

= lim
n→∞

n∏

ν=1

λ
(n)
ν

s + λ
(n)
ν

by (1.3) in Theorem 1.1.

Take the logarithm of each side of above equation, and then by the monotone conver-
gence theorem we can get that

− log E0e
−sζ =

∞∑

ν=1

− log
λν

s + λν

,

that is,

E0e
−sζ =

∞∏

ν=1

λν

s + λν

.

�

By a similar argument, we can deal with the case a0 > 0. Since the boundary ∞
now can be considered as an absorbing state, we can extend the results in Sect. 3 to
infinite state space case. The details are then omitted here.

5 Case IV: ∞ Is an Entrance Boundary

In this section we will deal with Case IV for a birth and death process with ∞ an
entrance boundary, i.e., R = ∞, S < ∞, and the corresponding Q-process is unique.

Since S < ∞ and S ≥ 1
μ0b0

∑
j≥1 μj , we have μ = ∑

j≥0 μj < ∞. Let πi =
μi/μ. Then π := (πi, i ≥ 0) is a probability measure on E, and the process is re-
versible with respect to π . Now we will consider the spectral theory for operators on
the Hilbert space L2(π).
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For n ≥ 0, let

Q̂n =
⎛

⎜
⎝

−(an+1 + bn+1) bn+1 0 · · · · · · · · ·
an+2 −(an+2 + bn+2) bn+2 · · · · · · · · ·

...
...

...
...

...
...

⎞

⎟
⎠ (5.1)

be the generator of the birth and death process on {n+1, n+2, . . .} before the process
reaches state n.

Let π̂ (n) := (πi : i > n) and Ên := {n + 1, n + 2, . . .}. It is easy to check that
Q̂n is symmetric with respect to π̂ (n) and then that Q̂n is a self-adjoint operator in
L2(Ên, π̂

(n)). When σess(Q̂n) = ∅, denote by λ̂n,1 < λ̂n,2 < · · · all the positive eigen-
values of −Q̂n. By a similar proof as in Theorem 4.4, we see that each eigenvalue is
of multiplicity one. When n = 0, the subscript 0 is dropped.

Theorem 5.1 Assume that R = ∞, S < ∞, i.e., assume that ∞ is an entrance
boundary. Then σess(Q̂n) = ∅, and for any n ≥ 0,

Sn :=
∞∑

j=n

1

πjbj

∞∑

i=j+1

πi =
∑

ν≥1

λ̂−1
n,ν < ∞. (5.2)

Proof It follows from [18, Theorem 1.4] that σess(Q) = ∅, where Q is defined
by (1.1). We can view Q̂n as an operator on L2(E,π) by adding zero columns or
rows; then Q− Q̂n is of finite rank. So their essential spectra are the same and empty
(see, for example, [15, Theorem 5.35]).

Now we prove the identity in (5.2). For i, j > n, let

p̂
(n)
ij (t) := Pi[Xt = j, t < Ti,n], ĝ

(n)
ij :=

∫ ∞

0
p̂

(n)
ij (t) dt.

Let X̂
(n)
t be the jump process with transition matrix (p̂

(n)
ij (t)). By a similar method as

in the proof of [19, Theorem 1.4], we can get that

∑

ν≥1

λ̂−1
n,ν =

∑

i>n

ĝ
(n)
ii =

∑

i>n

1

(ai + bi)Pi[τ̂+
i = ∞] ,

where τ̂+
i := inf{t ≥ the first jump time : X̂(n)

t = i} is the return time to state i.

Now fix i > n, and we will calculate Pi[τ̂+
i = ∞]. Assume that X̂

(n)
0 = i. Note

that once [τ̂+
i = ∞] happens, X̂

(n)
t must first jump to state i − 1. If X̂

(n)
t jumps first

to state i + 1, starting from state i + 1, it will be back to state i eventually since the
original Q-process Xt is ergodic (see [4, Theorem 4.55]). Next when it comes to state
i − 1, X̂

(n)
t must arrive at state n before it arrives at state i. Thus, we have

Pi

[
τ̂+
i = ∞]= ai

ai + bi

Pi−1[Ti−1,n < Ti−1,i],
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and by [23, Theorem 3 in Sect. 5.1]

Pi−1[Ti−1,n < Ti−1,i] = (πi−1bi−1)
−1

∑
n≤j<i(πjbj )−1

= (πiai)
−1

∑
n≤j<i(πjbj )−1

.

So,

∑

ν≥1

λ̂−1
n,ν =

∑

i>n

πi

∑

n≤j<i

1

πjbj

=
∞∑

j=n

1

πjbj

∞∑

i=j+1

πi = Sn.

Finally, since Sn ≤ S < ∞, we have
∑

ν≥1 λ̂−1
n,ν < ∞. �

As in the last section, we also need the minimax principle for eigenvalues of −Q̂n.

Proposition 5.2 For 0 ≤ n < N < ∞, let f have domain {n + 1, . . . ,N}, and

D(N)
n (f ) = μ

(−f Q̂(N)
n f

)=
N−1∑

i=n+1

μibi(fi − fi+1)
2 + μnbnf

2
n+1,

where Q̂
(N)
n is defined in (2.3). Then for 1 ≤ ν ≤ N − n,

λ̂(N)
n,ν = max

f (1),...,f (ν−1)∈L2(μ)
min

{
D(N)

n (f ) : f |[n+1,N ]c = 0,μ
(
f 2)= 1,μ

(
ff (i)

)= 0,

1 ≤ i < ν
}
. (5.3)

Proof The proof is direct and is omitted. �

Proposition 5.3 Assume that σess(Q) = ∅. Let λ̂n,ν be eigenvalues for −Q̂n in (5.1).
Then, for ν ≥ 1,

λ̂n,ν = max
f (1),...,f (ν−1)∈L2(μ)

min
{
D(f ) : f[0,n] = 0,μ

(
f 2)= 1 and μ

(
ff (i)

)= 0 for

1 ≤ i < ν
}
. (5.4)

Proof Note that for f such that f[0,n] = 0, we have D(f ) = ∑∞
i=n+1 μibi(fi −

fi+1)
2 + μnbnf

2
n+1 = μ(−f Q̂nf ), which is the Dirichlet form for Q̂n. The rest of

proof is similar to that of Proposition 4.3. �

We will make use of an approximation procedure as N → ∞. For this purpose,
we need to do more.

Fix n ≥ 0 and define

K̂ := {
f ∈ L∞ : {f �= 0} ⊂ {n + 1, . . . ,N} for some N

}
(5.5)
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and K̂L := {g := f + dI[n+1,∞) : f ∈ K̂, d ∈ R}. Define

D(f ) =
∞∑

i=0

μibi(fi − fi+1)
2

with the domain D̂(D) consisting of the functions in the closure of K̂L with respect
to the norm ‖ · ‖D : ‖f ‖2

D = μ(f 2) + D(f ).
Since ∞ is an entrance boundary, the Dirichlet form is regular as explained in

Sect. 1, and we can rewrite (5.4) as

λ̂n,ν = max
f (1),...,f (ν−1)∈L2(μ)

min
{
D(f ) : f ∈ K̂L,μ

(
f 2)= 1, and μ

(
ff (i)

)= 0 for

1 ≤ i < ν
}
. (5.6)

This leads to the following:

Theorem 5.4 Assume that R = ∞, S < ∞, i.e., that ∞ is an entrance boundary.
Then, for each ν ≥ 1, we have

λ̂(N)
n,ν ↓ λ̂n,ν as N → ∞.

Proof (a) Let f ∈ K̂L, and assume that f[N+1,∞) = d . Then

D(f ) =
∞∑

i=0

μibi(fi − fi+1)
2 =

∞∑

i=n+1

μibi(fi − fi+1)
2 + μnbnf

2
n+1

=
N−1∑

i=n+1

μibi(fi − fi+1)
2 + μnbnf

2
n+1 = D(N)

n (f ).

Here, in D
(N)
n (f ), f is viewed as a function on {n + 1, . . . ,N}. From this we can

easily deduce the monotonicity of λ̂
(N)
n,ν in N .

(b) On the one hand, it follows from (5.3) and (5.6) that λ̂n,ν ≤ λ̂
(N)
n,ν for N ≥ 1,

from which we can get that λ̂n,ν ≤ limN→∞ λ̂
(N)
n,ν =: αn,ν .

On the other hand, Eq. (2.4) in Corollary 2.2 states that

N∑

j=n

1

πjbj

N∑

i=j+1

πi =
∑

ν≥1

I[ν≤N−n]
λ̂

(N)
n,ν

,

from which by letting N → ∞ we have

∞∑

j=n

1

πjbj

∞∑

i=j+1

πi =
∑

ν≥1

1

αn,ν

.
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But, for any ν ≥ 1, we know that λ̂n,ν ≤ αn,ν , and Theorem 5.1 asserts that

∞∑

j=n

1

πjbj

∞∑

i=j+1

πi =
∑

ν≥1

1

λ̂n,ν

< ∞.

Thus, it must hold that λ̂n,ν = αn,ν = limN→∞ λ̂
(N)
n,ν for every ν ≥ 1. �

The following theorem is the main result of this section.

Theorem 5.5 Assume that the birth and death process is such that ∞ is an entrance
boundary.

(a) For n ≥ 1, we have

Ee−sTn,0 =
∏∞

ν=1
λ̂ν

s+λ̂ν

∏∞
ν=1

λ̂n,ν

s+λ̂n,ν

, s ≥ 0. (5.7)

(b) Let T∞,0 = limn→∞ Tn,0. Then

Ee−sT∞,0 =
∞∏

ν=1

λ̂ν

s + λ̂ν

, s ≥ 0. (5.8)

Proof Recall that the numerator and denominator are well defined because the corre-
sponding sums of inverse of eigenvalues are finite.

(a) By using the monotone convergence theorem, we can get (5.7) from Theorem 5.4
and Corollary 2.2 immediately.

(b) To pass from (5.7) to (5.8), we only need to show that

∞∏

ν=1

λ̂n,ν

s + λ̂n,ν

→ 1 as n → ∞.

Using the inequality log(1 + x) ≤ x (x ≥ −1), we have

− log
∞∏

ν=1

λ̂n,ν

s + λ̂n,ν

=
∞∑

ν=1

− log
λ̂n,ν

s + λ̂n,ν

=
∞∑

ν=1

log

[

1 + s

λ̂n,ν

]

≤
∞∑

ν=1

s

λ̂n,ν

.

Then Eq. (5.2) in Theorem 5.1 implies that

− log
∞∏

ν=1

λ̂n,ν

s + λ̂n,ν

≤ sSn.

Since

Sn =
∞∑

j=n

1

πjbj

∞∑

i=j+1

πi ≤
∞∑

j=0

1

πjbj

∞∑

i=j+1

πi = S < ∞,
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we have that Sn converges monotonically to 0 as n → ∞. That is,

∞∏

ν=1

λ̂n,ν

s + λ̂n,ν

→ 1 as n → ∞.
�

For the entrance boundary case, the distributions of Ti,n for 0 ≤ i, n ≤ ∞ are all
known. When 0 ≤ i < n < ∞, the distribution of Ti,n is given by Corollary 2.1,
while when 0 ≤ i < n = ∞, we have Ti,∞ = ∞ a.s. since the lifetime ζ equals ∞
a.s. (see [2, Chap. 8]). When 0 ≤ n < i ≤ ∞, the distribution of Ti,n is given by
Theorem 5.5.

6 Application to the Fastest Strong Stationary Time

In this section, we apply the theorems to strong stationary times. We give the distri-
bution of fastest strong stationary times.

First of all, we recall some facts about strong ergodicity for birth and death pro-
cesses. A Markov transition function P(t) = (pij (t)) is called strongly ergodic if

lim
t→∞ sup

i∈E

∑

j∈E

∣
∣pij (t) − πj

∣
∣= 0.

Let η be the average hitting time, η =∑
ij πiπjETi,j ; see [1, Chap. 3]. From [2,

Chap. 8] we can eventually calculate that (cf. [18])

η = 1

μ

∞∑

k=0

1

μkbk

(
k∑

i=0

μi

)( ∞∑

i=k+1

μi

)

.

In the following theorem, we summarize facts about strong ergodicity.

Theorem 6.1 Assume that the process is unique (i.e., R = ∞). The following state-
ments are equivalent.

(i) The boundary ∞ is an entrance boundary.
(ii) S < ∞.

(iii) The process is strongly ergodic.
(iv) η < ∞.
(v) σess(Q) = ∅ and

∑
ν≥1 λ−1

ν < ∞.

Furthermore, when R = ∞ and σess(Q) = ∅, then

∑

ν≥1

λ−1
ν = η. (6.1)

Proof The equivalence of (i) and (ii) is from the definition, and that of (ii) and
(iii) was proved in [25]. The other equivalences and assertions in (6.1) were proved
in [18]. �
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We remark that (6.1) is an eigentime identity, which generalizes the eigentime
identity for finite Markov chains in [1, Chap. 3]. For an ergodic birth and death pro-
cess on {0,1, . . . ,N}, (6.1) becomes

N∑

ν=1

1

λ
(N)
ν

= 1

μ(N)

N−1∑

k=0

1

μkbk

(
k∑

i=0

μi

)(
N∑

i=k+1

μi

)

, (6.2)

where {λ(N)
ν : 1 ≤ ν ≤ N} are the corresponding positive eigenvalues, and μ(N) =

∑N
i=0 μi .
Now we study the distribution of a fastest strong stationary time for a strongly

ergodic birth and death process. A strong stationary time (SST) is a randomized stop-
ping time τ for (Xt ) such that Xτ has the distribution π and is independent of τ .

With the aid of Theorem 4.6 and a duality established in [9], we can obtain the
following result, which extends the result in [11, Theorem 1.4(a)] in the special case
of a birth and death chain to the denumerable case.

Theorem 6.2 For a strongly ergodic birth and death process (i.e., R = ∞, S < ∞)
started at state 0, any fastest SST τ has distribution

Ee−sτ =
∞∏

ν=1

λν

s + λν

, s ≥ 0,

where {λν : ν ≥ 1} are the positive eigenvalues of −Q, and Q is the generator in (1.1).

Proof We follow an argument in [9, Sect. 3.3] with minor modifications. Let

Hi :=
∑

j≤i

μj , i = 0,1,2, . . . .

Then 1 = H0 ≤ Hi ≤∑
k μk = μ < ∞ for i = 0,1,2, . . . .

Define a “dual” Q∗-birth and death process with parameters (a∗
i , b∗

i ) given by

a∗
i := Hi−1

Hi

bi, i = 1,2, . . . , b∗
i := Hi+1

Hi

ai+1, i = 0,1,2, . . . . (6.3)

Also,

μ∗
i = b∗

0 · · ·b∗
i−1

a∗
1 · · ·a∗

i

= b0

μibi

H 2
i , i = 0,1,2, . . . . (6.4)

Noting that Hi ≥ H0 = 1, we have

μ∗ =
∞∑

i=0

μ∗
i =

∞∑

i=0

b0

μibi

H 2
i ≥

∞∑

i=0

b0

μibi

Hi =
∞∑

i=0

b0

μibi

∑

j≤i

μj
by(1.5)= b0R = ∞;
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and as 1 = H0 ≤ Hj ≤ Hi(0 ≤ j ≤ i),μibi = μi+1ai+1, i ≥ 0, we have

R∗ =
∞∑

i=0

1

μ∗
i b

∗
i

∑

j≤i

μ∗
j =

∞∑

i=0

μi+1

b0HiHi+1

∑

j≤i

b0

μjbj

H 2
j

=
∞∑

j=0

H 2
j

μjbj

∑

i≥j

μi+1

HiHi+1
≤ S < ∞.

Next,
∞∑

i=0

1

μ∗
i b

∗
i

= 1

b0

∞∑

i=0

μi+1

HiHi+1
≤ 1

b0

∞∑

i=0

μi+1 < ∞.

Thus, the minimal Q∗-process has an exit boundary at ∞. It follows from
[9, Sect. 3.3] that this Q∗-process is a strong stationary dual for the Q-process
(cf. [9, Definition 1]). So τ has the same distribution as the lifetime ζ ∗ (the time
to reach ∞) for the Q∗-process started from 0. Applying Theorem 4.6, we have

Ee−sτ = Ee−sζ ∗ =
∞∏

ν=1

λ∗
ν

s + λ∗
ν

,

where {λ∗
ν, ν ≥ 1} is the spectrum of −Q∗. By Lemma 6.3 below, we have {λ∗

ν, ν ≥
1} = {λν, ν ≥ 1}. This completes the proof. �

Lemma 6.3 Let Q,Q∗ be as above, and {λν, ν ≥ 1}, {λ∗
ν, ν ≥ 1} be the positive

eigenvalues of −Q in L2(μ) and −Q∗ in L2(μ∗), respectively. Then {λ∗
ν, ν ≥ 1} =

{λν, ν ≥ 1}.

Proof We will prove the assertion on finite state space and then use the approximation
procedure to derive the final assertion.

(a) We will prove that −Q̂(n) and −Q∗(n) are similar, where

Q̂(n) :=

⎛

⎜
⎜
⎜
⎝

−b0 b0 0 0 · · · 0 0
a1 −(a1 + b1) b1 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · an −an

⎞

⎟
⎟
⎟
⎠

(6.5)

and

Q∗(n) :=

⎛

⎜
⎜
⎜
⎝

−b∗
0 b∗

0 0 · · · 0 0 0
...

...
...

...
...

... 0
0 0 0 · · · a∗

n−1 −(a∗
n−1 + b∗

n−1) 0
0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎠

.

Define the link matrix Λ = (Λij )0≤i,j≤n as Λij = 1[j≤i]μj/Hi . It is a routine
to check that ΛQ̂(n) = Q∗(n)Λ; cf. [10, Sect. 3] or [9, Sect. 3.A]. Λ is a lower
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triangle matrix, and its determinant is positive, and thus Λ is invertible. So −Q̂(n)

and −Q∗(n) are similar.
(b) Note that the eigenvalues of Q̂(n) or Q∗(n) are distinct, as we proved in Theo-

rem 4.4. Let 0 = λ
(n)
0 < λ

(n)
1 < · · · < λ

(n)
n and 0 = λ

∗(n)
0 < λ

∗(n)
1 < · · · < λ

∗(n)
n be

the eigenvalues of −Q̂(n) and −Q∗(n), respectively. We have proved in (a) that
λ

(n)
ν = λ

∗(n)
ν (1 ≤ ν ≤ n).

Since the Q∗-process has ∞ as an exit boundary, it follows from Theorem 4.4
that

∀ν ≥ 1, we have λ∗(n)
ν ↓ λ∗

ν as n ↑ ∞.

To complete the proof, we need only show that

∀ν ≥ 1, we have λ(n)
ν ↓ λν as n ↑ ∞. (6.6)

This can be proved by a similar argument as in Theorem 5.4 (in the case n = −1).
�

7 ∞ Is a Regular Boundary

Roughly speaking, the regular boundary is an interline between the exit boundary
and the entrance boundary. Since for Q with the regular boundary, the corresponding
transition functions are not unique, so we will next consider the minimal one and
the “maximal” one. The minimal transition function behaves like a process with exit
boundary, whilst the “maximal” one behaves like a process with entrance boundary.

7.1 The Minimal Process

As we explained just above, the minimal transition function behaves like a process
with exit boundary, so we will follow the notations in Sect. 4. For simplicity, we will
only present the distribution of lifetime for the minimal process when a0 = 0.

Assume that a0 = 0. Let ζ be the lifetime of the minimal process P min(t) with

pmin
ij (t) = Pi[Xt = j, t < ζ ], t ≥ 0, i, j ∈ E.

Since R < ∞, ζ < ∞ a.s. From [19, Theorem 1.3] we know that P min(t) is a Hilbert–
Schmidt operator for any t > 0 and σess(L

min) = ∅. Here, Lmin is the generator of
P min(t) in L2(π), and π = (πi : i ≥ 0) := (μi/μ : i ≥ 0).

Let Q(n) be as in (1.2). Q(n) is the generator of the process before hitting state n,
and the corresponding process P (n)(t) = (pij (t) : i, j ∈ E) is given by

p
(n)
ij (t) = Pi[Xt = j, t < Ti,n], t ≥ 0, i, j ≥ 0. (7.1)

Note that for i ≥ n or j ≥ n, p
(n)
ij (t) = 0.

Denote again by λ
(n)
ν (1 ≤ ν ≤ n) all eigenvalues of −Q(n). As proved in Theo-

rem 4.4, for any ν ≥ 1, λ
(n)
ν is decreasing in n, and the limit is denoted by αν . Then

we can derive as in Sect. 4 the distribution of lifetime for the minimal process.
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Theorem 7.1 Assume that ∞ is a regular boundary, i.e., R < ∞, S < ∞. Let ζ be
the lifetime for the minimal process. Then

E0e
−sζ =

∞∏

ν=1

αν

s + αν

, s ≥ 0.

Remark 7.2 We remark that {αν} is the spectrum of Lmin. This minimal generator has
domain smaller than D(D) = {f ∈ L2(π) : D(f,f ) < ∞}, which is the domain of
the generator Lmax for the “maximal” process in L2(π). For example, since S < ∞,
μ =∑∞

0 μi < ∞, so that 1 ∈ L2(π), and 0 is an eigenvalue of Lmax. However, 0 is
not an eigenvalue of Lmin because αν > 0 by Remark 4.5.

We have the following relation between P min(t) and P (n)(t). We prove that the
process P (n)(t) converges in total variance to the minimal process.

Proposition 7.3 Assume that R < ∞.

(1) For any i ≥ 0 and t ≥ 0,

lim
n→∞

∑

j∈E

∣
∣pmin

ij (t) − p
(n)
ij (t)

∣
∣= 0. (7.2)

(2) Let φmin
ij (λ) and φ

(n)
ij (λ) be the Laplace transforms of pmin

ij (t) and p
(n)
ij (t), re-

spectively.

lim
n→∞ sup

i

∑

j∈E

∣
∣φmin

ij (λ) − φ
(n)
ij (λ)

∣
∣= 0. (7.3)

Proof

(1) Note that Ti,n ≤ ζ . We have pmin
ij (t) ≥ p

(n)
ij (t) and

∑

j∈E

∣
∣pmin

ij (t) − p
(n)
ij (t)

∣
∣=

∑

j∈E

pmin
ij (t) −

∑

j∈E

p
(n)
ij (t)

= Pi[t < ζ ] − Pi[t < Ti,n] = Pi[Ti,n ≤ t < ζ ] → 0

as n → ∞, since with probability 1, limn→∞ Ti,n = ζ < ∞.
(2) Since pmin

ij (t) ≥ p
(n)
ij (t), we have φmin

ij (λ) ≥ φ
(n)
ij (λ), so

∑

j∈E

∣
∣φmin

ij (λ) − φ
(n)
ij (λ)

∣
∣ =

∑

j∈E

φmin
ij (λ) −

∑

j∈E

φ
(n)
ij (λ)

=
∫ ∞

0
e−λt

(
Pi[t < ζ ] − Pi[t < Ti,n]

)
dt

= 1

λ

[
Eie

−λTi,n − Eie
−λζ

]
. (7.4)
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By the skip-free property, T0,n = T0,i + Ti,n and T0,i , Ti,n are independent, so for
i ≤ n,

Eie
−λTi,n = E0e

−λT0,n/E0e
−λT0,i .

As ζ = limn→∞ Ti,n, we have, for i ≤ n,

Eie
−λζ = E0e

−λζ /E0e
−λT0,i .

Since E0e
−λT0,i is decreasing in i, it follows from (7.4) that for i ≤ n,

sup
i≤n

∑

j∈E

∣
∣φmin

ij (λ) − φ
(n)
ij (λ)

∣
∣= sup

i≤n

E0e
−λT0,n − E0e

−λζ

λE0e
−λT0,i

= E0e
−λT0,n − E0e

−λζ

λE0e
−λT0,n

= 1

λ

[

1 − E0e
−λζ

E0e
−λT0,n

]

→ 0 as n → ∞.

As for i ≥ n, Ti,n = 0, from (7.2) and (7.4) we have

sup
i≥n

∑

j∈E

∣
∣φmin

ij (λ) − φ
(n)
ij (λ)

∣
∣= sup

i≥n

1

λ

[
1 − Eie

−λζ
]

= 1

λ

[
1 − Ene

−λζ
]=

∫ ∞

0
e−λt

Pn[t < ζ ],

which tends to zero as n → ∞ since limn→∞ Enζ = 0.
�

7.2 The “Maximal” Process

We now turn to the “maximal” process. In contrast to the minimal case, the “maxi-
mal” process is much more complicated. There are two ways to construct the “max-
imal” process: one is the probabilistic method in [24, Chap. 13], and another is via
Dirichlet form theory in [13], see also [4, Proposition 6.56]. Here we will use the
construction in [23]. We prove that the “maximal” process is just the limit process of
a series of reflecting birth and death processes on {0,1, . . . , n} as n goes to infinity.
Actually, we prove that the convergence is in operator norm in L2(π) for the Laplace
transform for these processes. Thus, we can use the standard perturbation theory for
linear operators to derive the distribution for hitting times of the “maximal” process.
For the argument, the reader is urged to refer [15, Chap. IV].

Assume that a0 = 0. Let ζ be the lifetime for the minimal process as in Sect. 7.1.
For λ > 0, let Xi(λ) = Eie

−λζ , and φmin
ij (λ) = ∫∞

0 e−λtpmin
ij (t) dt be the Laplace

transform for the minimal transition function pmin
ij (t).

Following [24, Chap. 13], when R < ∞, S < ∞, there exists a unique reversible
and honest Q-function P(t) = (pij (t) : i, j ∈ E), and its Laplace transform Ψ (λ) =
(ψij (λ) : i, j ∈ E)(λ > 0) has the following form:

ψij (λ) = φmin
ij (λ) + Xi(λ)Xj (λ)μj

λ
∑

k∈E μkXk(λ)
, (7.5)
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where μi is defined by (1.4). It also satisfies both Kolmogorov backward and forward
equations.

In the following, we will give a similar expression as in (7.5) connecting the pro-
cess absorbed at state n and the process reflected at state n on state space {0,1, . . . , n}.

Theorem 7.4 Let (p
(n)
ij (t)) be the absorbing process defined in (7.1), and φ

(n)
ij (λ) be

its Laplace transform. Then the Laplace transform of the process reflected at state n

can be expressed as follows: for 0 ≤ i, j ≤ n,

ψ
(n)
ij (λ) = φ

(n)
ij (λ) + X

(n)
i (λ)X

(n)
j (λ)μj

λ
∑n

k=0 μkX
(n)
k (λ)

, (7.6)

where X
(n)
i (λ) = 1 − λ

∑n−1
k=0 φ

(n)
ik (λ) = Eie

−λTi,n .

Proof It is easy to see that for all λ > 0,0 ≤ i, j ≤ n,

ψ
(n)
ij (λ) ≥ 0, λ

n∑

k=0

ψ
(n)
ik (λ) = 1,

and the resolvent equation holds: Ψ (n)(λ) − Ψ (n)(μ) + (λ − μ)Ψ (n)(λ)Ψ (n)(μ) =
0 for all λ,μ > 0, where Ψ (n)(λ) = (ψ

(n)
ij ). Then according to [2, Sect. 1.3], we

only need to show that ψ
(n)
ij (λ) satisfies the following Q-condition for the reflecting

process with generator Q̂(n) in (6.5):

lim
λ→∞λ

(
λψ

(n)
ij (λ) − δij

)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ai for 1 ≤ i ≤ n, j = i − 1;
−(ai + bi) for 0 ≤ i = j ≤ n − 1;
bi for 0 ≤ i ≤ n − 1, j = i + 1;
−an for i = j = n;
0 otherwise.

(7.7)

The proof of (7.7) is based on the following facts:

(1) Since φ
(n)
ij (λ) is the absorbing process with generator (3.1), we have

lim
λ→∞λ

(
λφ

(n)
ij (λ) − δij

)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ai for 1 ≤ i ≤ n − 1, j = i − 1;
−(ai + bi) for 0 ≤ i = j ≤ n − 2;
bi for 0 ≤ i ≤ n − 2, j = i + 1;
−bn−1 for i = j = n − 1;
0 otherwise.

(7.8)

(2) By definition (X(n)
i (λ) = 1 − λ

∑n−1
k=0 φ

(n)
ik (λ)), we get X

(n)
n (λ) = 1 and for 0 ≤

i ≤ n − 1,

lim
λ→∞X

(n)
i (λ) = 1 −

n−1∑

k=0

lim
λ→∞λφ

(n)
ik (λ) = 1 −

n−1∑

k=0

δik = 0, (7.9)
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and then

lim
λ→∞λX

(n)
i (λ) = −

n−1∑

k=0

lim
λ→∞λ

(
λφ

(n)
ik (λ) − δik

)= 1{i=n−1}bn−1. (7.10)

(a) Prove (7.7) for i, j ≤ n − 1. This follows from (7.8) and for i, j ≤ n − 1,

lim
λ→∞

λX
(n)
i (λ)X

(n)
j (λ)μj

∑n
k=0 μkX

(n)
k (λ)

= lim
λ→∞

λX
(n)
i (λ)X

(n)
j (λ)μj

μn +∑n−1
k=0 μkX

(n)
k (λ)

= 0.

(b) Prove (7.7) for i = n, j ≤ n − 1. Since λφ
(n)
nj (λ) = 0 and X

(n)
n (λ) = 1,

by (7.10) we have

lim
λ→∞λ

(
λψ

(n)
nj (λ) − δnj

) = lim
λ→∞

λX
(n)
j (λ)μj

μn +∑n−1
k=0 μkX

(n)
k (λ)

= 1{j=n−1}
bn−1μn−1

μn

= 1{j=n−1}an.

(c) Prove (7.7) for i ≤ n − 1, j = n. As in (b) above, we have

lim
λ→∞λ

(
λψ

(n)
nj (λ) − δnj

) = lim
λ→∞

λX
(n)
j (λ)μn

μn +∑n−1
k=0 μkX

(n)
k (λ)

= 1{i=n−1}
bn−1μn

μn

= 1{i=n−1}bn−1.

(d) Prove (7.7) for i = j = n:

lim
λ→∞λ

(
λψ(n)

nn (λ) − δnn

)= lim
λ→∞λ

[
μn

μn +∑n−1
k=0 μkX

(n)
k (λ)

− 1

]

= − lim
λ→∞

λ
∑n−1

k=0 μkX
(n)
k (λ)

μn +∑n−1
k=0 μkX

(n)
k (λ)

= −bn−1μn−1

μn

= −an. �

Using Theorem 7.3 and Theorem 7.4, we can prove that the “maximal” process
P(t) is the limit of the process P̃ (n) reflected at state n as n goes infinity.

Proposition 7.5 Let ψij (λ) be given by (7.5), and ψ
(n)
ij (λ) by (7.6). Then, for λ ≥ 0,

lim
n→∞ sup

i

∑

j∈E

∣
∣ψij (λ) − ψ

(n)
ij (λ)

∣
∣= 0. (7.11)
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Proof By Proposition 7.3, it suffices to prove that limn→∞ supi

∑
j∈E Bij = 0, where

Bij :=
∣
∣
∣
∣

X
(n)
i (λ)X

(n)
j (λ)μj

λ
∑n

k=0 μkX
(n)
k (λ)

− Xi(λ)Xj (λ)μj

λ
∑

k∈E μkXk(λ)

∣
∣
∣
∣.

Since 1 ≥ X
(n)
i (λ) ↓ Xi(λ), we have

Bij ≤
∣
∣
∣
∣

X
(n)
i (λ)X

(n)
j (λ)μj

λ
∑n

k=0 μkX
(n)
k (λ)

− Xi(λ)Xj (λ)μj

λ
∑n

k=0 μkX
(n)
k (λ)

∣
∣
∣
∣

+
∣
∣
∣
∣

Xi(λ)Xj (λ)μj

λ
∑n

k=0 μkX
(n)
k (λ)

− Xi(λ)Xj (λ)μj

λ
∑

k∈E μkXk(λ)

∣
∣
∣
∣

≤ μj [X(n)
j (λ) − Xj(λ)]

λ
∑n

k=0 μkX
(n)
k (λ)

+ μj [X(n)
i (λ) − Xi(λ)]

λ
∑n

k=0 μkX
(n)
k (λ)

+ μj

∣
∣
∣
∣

1

λ
∑n

k=0 μkX
(n)
k (λ)

− 1

λ
∑

k∈E μkXk(λ)

∣
∣
∣
∣,

which implies that

sup
i

∑

j∈E

Bij ≤
∑

j∈E μj [X(n)
j (λ) − Xj(λ)]

λ
∑n

k=0 μkX
(n)
k (λ)

+
∑

j∈E μjXj (λ)

λ
∑n

k=0 μkX
(n)
k (λ)

sup
i

[
X

(n)
i (λ) − Xi(λ)

]

+
∑

j∈E

μj

∣
∣
∣
∣

1

λ
∑n

k=0 μkX
(n)
k (λ)

− 1

λ
∑

k∈E μkXk(λ)

∣
∣
∣
∣.

Noting that
∑

j μj < ∞ and recalling (7.3), the assertion follows by the dominated
convergence theorem. �

From Proposition 7.5 we can get the approximation of eigenvalues of the “maxi-
mal” process by the processes that are reflected at state n.

Theorem 7.6 The essential spectrum of generator Lmax for the “maximal” process
in L2(π) is empty, and for each ν ≥ 1, we have

λ(n)
ν ↓ λν as n ↑ ∞,

where {λ(n)
ν ,0 ≤ ν ≤ n} and {λν, ν ≥ 0} are the eigenvalues of −Q̂(n) in (6.5) and

−Lmax, respectively, both in increasing order with ν.



978 J Theor Probab (2012) 25:950–980

Proof Let (L∞,‖ · ‖) be the space of bounded functions on E. Then it is easy to
check that when matrix A = (aij ) is seen as an operator on L∞,

‖A‖L∞→L∞ = sup
i

∑

j

|aij |.

Now fix λ > 0. First, we rewrite (7.11) in Proposition 7.5 as

lim
n→∞

∥
∥Ψ (λ) − Ψ (n)(λ)

∥
∥

L∞→L∞ = 0,

when Ψ (λ) = (ψij (λ)) and Ψ (n)(λ) = (ψ
(n)
ij (λ)) are seen as operators on L∞. Since

Ψ (λ) = (ψij (λ)),Ψ (n)(λ) = (ψ
(n)
ij (λ)) are bounded in L1(π), an application of the

Riesz–Thorin interpolation theorem (see [22, Theorem IX.17]) implies that

lim
n→∞

∥
∥Ψ (λ) − Ψ (n)(λ)

∥
∥

L2(π)→L2(π)
= 0. (7.12)

This means that Ψ (λ) is approximated in operator norm by a sequence of finite-rank
and hence compact operators Ψ (n)(λ), so Ψ (λ) is compact, which implies that its
spectrum is countable with 0 the unique accumulation point and other eigenvalues
with finite multiplicity. Note that Ψ (λ) is just the resolvent operator (λ − Lmax)−1.
By [15, Theorem III-6.29] we have σess(L

max) = ∅.
Now we prove the second assertion. As proved in Theorem 4.4, for any ν ≥ 0,

λ
(n)
ν is decreasing in n, and the limit is denoted by αν . We will prove that αν = λν

for ν ≥ 0. In fact, by the spectral mapping theorem, the spectra of Ψ (λ), Ψ (n)(λ) are
respectively {0} ∪ {βν, ν ≥ 0} and {0} ∪ {β(n)

ν ,0 ≤ ν ≤ n}, where βν = (λ + λν)
−1,

β
(n)
ν = (λ + λ

(n)
ν )−1; see [15, Problem III-6.16]. Since β

(n)
ν ↑ γν := (λ + αν)

−1 as
n ↑ ∞, we only need to show that γν = βν for ν ≥ 0.

Indeed, on the one hand, by (7.12) and the upper semicontinuity of the spectrum
for bounded operators (see [15, Remark IV-3.3]), we have γν ∈ {βν, ν ≥ 0}. On the
other hand, by the continuity of finite system of eigenvalues in [15, IV-Sect. 3.5],
for any fixed ν ≥ 0, there exists a sequence {β(n)

k(n), n ≥ 0}, where β
(n)
k(n) is the k(n)th

(in decreasing order) eigenvalue of Ψ (n)(λ), that β
(n)
k(n) → βν as n → ∞. Thus, if we

take ε = 1
2 min{βν−1 − βν,βν − βν+1}, then there exists N ∈ Z+ such that for any

n > N , |β(n)
k(n)

− βν | < ε but |β(n)
k(n)

− βν±1| > ε. Moreover, by the fact that β
(n)
ν ↑ γν

for any ν ≥ 0, we can find an integer n0 large enough such that |β(n0)
k(n0)

− γk(n0)| < ε.

Since βν is the unique eigenvalue of Ψ (λ) in the interval (β
(n0)
k(n0)

− ε,β
(n0)
k(n0)

+ ε), we
have γk(n0) = βν . This shows that βν ∈ {γν, ν ≥ 0} and hence γν = βν for ν ≥ 0. This
completes the proof. �

Next, we will give the distribution of the hitting time of state 0 starting from
state n. For this, we need to study the birth and death process P̂ (n)(t) on Ên =
{n + 1, n + 2, . . .} before the maximal process P(t) gets to n, which can been seen
as an absorbing state. By the probability construction of P(t), P̂ (n)(t) is the maxi-
mal process on Ên corresponding to Q̂n in (5.1), which also satisfies both the Kol-
mogorov backward and forward equations. Then by Theorem 1 in [23, Sect. 7.6] or
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[24, Sect. 6.6], its Laplace transform Ψ̂ (n)(λ) has the following form:

ψ̂
(n)
ij (λ) = φ̂

(n)
ij (λ) + X̂

(n)
i (λ)X̂

(n)
j (λ)μj

λ
∑

k≥n+1 μkX̂
(n)
k (λ) + μn+1an+1X̂

(n)
n+1(λ)

, i, j ≥ n + 1,

(7.13)
where X̂

(n)
i (λ) = 1 − λ

∑
k≥n φ̂

(n)
ik (λ), and Φ̂(n)(λ) = (φ̂

(n)
ij (λ) : i, j ≥ n) is the

Laplace transform of the minimal process with respect to Q̂n with two absorbing
states n and ∞.

Let π̂ (n) be as in Sect. 5. Then P̂ (n)(t) is symmetric with respect to π̂ (n). Denote
by L̂n the generator of P̂ (n)(t) in L2(Ên, π̂

(n)). We have the following theorem.

Theorem 7.7 For any n ≥ 0, the essential spectrum of L̂n is empty, and for each
ν ≥ 1, we have

λ̂(N)
n,ν ↓ λ̂n,ν as N ↑ ∞,

where {λ̂(N)
n,ν : 1 ≤ ν ≤ N −n} and {λ̂n,ν : ν ≥ 1} are the eigenvalues of −Q̂

(N)
n in (2.3)

and −L̂n respectively, both in increasing order with ν.

Proof The first assertion follows from the fact that σess(L
max) = ∅, while the second

one can be derived by a similar method as in Theorem 7.4, Proposition 7.5, and
Theorem 7.6. �

Theorem 7.8 Assume that the birth and death process is such that ∞ is a regular
boundary. Let Tn,0 be the hitting time of state 0 starting from state n for the “maxi-
mal” process, and {λ̂ν} (resp. {λ̂n,ν}) be eigenvalues of generators for the “maximal”
process before hitting to state 0 (resp. state n). Then, for n ≥ 1, we have

Ee−sTn,0 =
∏∞

ν=1
λ̂ν

s+λ̂ν

∏∞
ν=1

λ̂n,ν

s+λ̂n,ν

, s ≥ 0. (7.14)

Proof For s ≥ 0, let Ψ̂N (s) = {ψ̂N,ij (s) : 0 ≤ i, j ≤ N} be the Laplace transform of

the Q-function of Q̂
(N)
0 in (2.3). Then by a similar construction as in Theorem 7.4,

we can get that for all 0 ≤ i, j ≤ N ,

ψ̂N,ij (λ) → ψ̂
(0)
ij (λ), N → ∞.

So,

Ee−sTn,0 = sψ̂
(0)
n0 (s) = lim

N→∞ sψ̂N,n0(s) = lim
N→∞ Ee

−sT̂
(N)
n,0 ,

where T̂
(N)
n,0 is the hitting time of state 0 from state n for Ψ̂N (s). Then (7.14) follows

from Corollary 2.2 and Theorem 7.7. �

For the “maximal” process, the distributions of Ti,n for 0 ≤ i, n ≤ ∞, are all
known. When 0 ≤ i < n < ∞, the distribution of Ti,n is given by Corollary 2.1, and
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when 0 ≤ i < n = ∞, it is given by Theorem 7.1, since for the “maximal” process,
the particle moves as the minimal process at the beginning and thus Ti,∞ < ∞ a.s.
When 0 ≤ n < i ≤ ∞, the distribution of Ti,n is given by Theorem 7.8.
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