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Abstract This work deals with backward stochastic differential equations (BSDEs
for short) with random marked jumps, and their applications to default risk. We show
that these BSDEs are linked with Brownian BSDEs through the decomposition of
processes with respect to the progressive enlargement of filtrations. We prove that
the equations have solutions if the associated Brownian BSDEs have solutions. We
also provide a uniqueness theorem for BSDEs with jumps by giving a comparison
theorem based on the comparison for Brownian BSDEs. We give in particular some
results for quadratic BSDEs. As applications, we study the pricing and the hedging
of a European option in a market with a single jump, and the utility maximization
problem in an incomplete market with a finite number of jumps.
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1 Introduction

In recent years, credit risk has come out to be one of most fundamental financial risk.
The most extensively studied form of credit risk is the default risk. Many people,
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such as Bielecki, Jarrow, Jeanblanc, Pham, Rutkowski [2, 3, 16, 17, 20, 28] and many
others, have worked on this subject. In several papers (see for example Ankirchner
et al. [1], Bielecki and Jeanblanc [4] and Lim and Quenez [23]), related to this topic,
backward stochastic differential equations (BSDEs) with jumps have appeared. Un-
fortunately, the results relative to these latter BSDEs are far from being as numerous
as for Brownian BSDEs. In particular, there is not any general result on the exis-
tence and the uniqueness of solution to quadratic BSDEs, except Ankirchner et al.
[1], in which the assumptions on the driver are strong. In this paper, we study BSDEs
with random marked jumps and apply the obtained results to mathematical finance
where these jumps can be interpreted as default times. We give a general existence
and uniqueness result for the solutions to these BSDEs, in particular we enlarge the
result given by [1] for quadratic BSDEs.

A standard approach of credit risk modeling is based on the powerful technique of
filtration enlargement, by making the distinction between the filtration F generated
by the Brownian motion, and its smallest extension G that turns default times into
G-stopping times. This kind of filtration enlargement has been referred to as progres-
sive enlargement of filtrations. This field is a traditional subject in probability theory
initiated by fundamental works of the French school in the 1980s, see e.g. Jeulin [18],
Jeulin and Yor [19], and Jacod [15]. For an overview of applications of progressive
enlargement of filtrations on credit risk, we refer to the books of Duffie and Singleton
[11], of Bielecki and Rutkowski [2], or the lectures notes of Bielecki et al. [3].

The purpose of this paper is to combine results on Brownian BSDEs and results on
progressive enlargement of filtrations in view of providing existence and uniqueness
of solutions to BSDEs with random marked jumps. We consider a progressive en-
largement with multiple random times and associated marks. These marks can repre-
sent for example the name of the firm which defaults or the jump sizes of asset values.

Our approach consists of using the recent results of Pham [28] on the decomposi-
tion of predictable processes with respect to the progressive enlargement of filtrations
to decompose a BSDE with random marked jumps into a sequence of Brownian BS-
DEs. By combining the solutions of Brownian BSDEs, we obtain a solution to the
BSDE with random marked times. This method allows to get a general existence the-
orem. In particular, we get an existence result for quadratic BSDEs which is more
general than the result of Ankirchner et al. [1]. This decomposition approach also
allows to obtain a uniqueness theorem under Assumption (H) i.e. any F-martingale
remains a G-martingale. We first set a general comparison theorem for BSDEs with
jumps based on comparison theorems for Brownian BSDEs. Using this theorem, we
prove, in particular, the uniqueness for quadratic BSDEs with a concave generator
w.r.t. z.

We illustrate our methodology with two financial applications in default risk man-
agement: the pricing and the hedging of a European option, and the problem of util-
ity maximization in an incomplete market. A similar problem (without marks) has
recently been considered in Ankirchner et al. [1] and Lim and Quenez [23].

The paper is organized as follows. The next section presents the general framework
of progressive enlargement of filtrations with successive random times and marks,
and states the decomposition result for G-predictable and specific G-progressively
measurable processes. In Sect. 3, we use this decomposition to make a link between
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Brownian BSDEs and BSDEs with random marked jumps. This allows to give a
general existence result under a density assumption. We then give two examples:
quadratic BSDEs with marked jumps for the first one, and linear BSDEs arising in
the pricing and hedging problem of a European option in a market with a single jump
for the second one. In Sect. 4, we give a general comparison theorem for BSDEs
and we use this result to give a uniqueness theorem for quadratic BSDEs. Finally,
in Sect. 5, we apply our existence and uniqueness results to solve the exponential
utility maximization problem in an incomplete market with a finite number of marked
jumps.

2 Progressive Enlargement of Filtrations with Successive Random Times and
Marks

We fix a probability space (Ω, G,P), and we start with a reference filtration F =
(Ft )t≥0 satisfying the usual conditions1 and generated by a d-dimensional Brown-
ian motion W . Throughout the article, we consider a finite sequence (τk, ζk)1≤k≤n,
where

– (τk)1≤k≤n is a nondecreasing sequence of random times (i.e. nonnegative G -
random variables),

– (ζk)1≤k≤n is a sequence of random marks valued in some Borel subset E of R
m.

We denote by μ the random measure associated with the sequence (τk, ζk)1≤k≤n:

μ
([0, t] × B

) :=
n∑

k=1

1{τk≤t, ζk∈B}, t ≥ 0, B ∈ B(E).

For each k = 1, . . . , n, we consider D
k = (Dk

t )t≥0 the smallest filtration for
which τk is a stopping time and ζk is Dk

τk
-measurable. D

k is then given by Dk
t :=

σ(1τk≤s , s ≤ t) ∨ σ(ζk1τk≤s , s ≤ t). The global information is then defined by the
progressive enlargement G = (Gt )t≥0 of the initial filtration F where G is the small-
est right-continuous filtration containing F, and such that for each k = 1, . . . , n, τk

is a G-stopping time, and ζk is Gτk
-measurable. G is given by Gt := G̃t+ , where

G̃t := Ft ∨ D1
t ∨ · · · ∨ Dn

t for all t ≥ 0.
We denote by Δk the set where the random k-tuple (τ1, . . . , τk) takes its values in

{τn < ∞}:
Δk := {

(θ1, . . . , θk) ∈ (R+)k : θ1 ≤ · · · ≤ θk

}
, 1 ≤ k ≤ n.

We introduce some notations used throughout the paper:

– P (F) (resp. P (G)) is the σ -algebra of F (resp. G)-predictable measurable subsets
of Ω ×R+, i.e. the σ -algebra generated by the left-continuous F (resp. G)-adapted
processes.

– P M(F) (resp. P M(G)) is the σ -algebra of F (resp. G)-progressively measurable
subsets of Ω × R+.

1 F0 contains the P-null sets and F is right continuous: Ft = Ft+ := ⋂
s>t Fs .
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– For k = 1, . . . , n, P M(F,Δk,E
k) is the σ -algebra generated by processes X from

R+×Ω ×Δk ×Ek to R such that (Xt (.))t∈[0,s] is Fs ⊗ B([0, s])⊗ B(Δk)⊗ B(Ek)-
measurable, for all s ≥ 0.

– For θ = (θ1, . . . , θn) ∈ Δn and e = (e1, . . . , en) ∈ En, we denote by

θ(k) := (θ1, . . . , θk) and e(k) := (e1, . . . , ek), 1 ≤ k ≤ n.

We also denote by τ(k) for (τ1, . . . , τk) and ζ(k) for (ζ1, . . . , ζk), for all k = 1, . . . , n.

The following result provides the basic decomposition of predictable and progres-
sive processes with respect to this progressive enlargement of filtrations.

Lemma 2.1

(i) Any P (G)-measurable process X = (Xt )t≥0 is represented as

Xt = X0
t 1t≤τ1 +

n−1∑

k=1

Xk
t (τ(k), ζ(k))1τk<t≤τk+1 + Xn

t (τ(n), ζ(n))1τn<t , (2.1)

for all t ≥ 0, where X0 is P (F)-measurable and Xk is P (F) ⊗ B(Δk) ⊗ B(Ek)-
measurable for k = 1, . . . , n.

(ii) Any càd-làg P M(G)-measurable process X = (Xt )t≥0 of the form

Xt = Jt +
∫ t

0

∫

E

Us(e)μ(de, ds), t ≥ 0,

where J is P (G)-measurable and U is P (G)⊗ B(E)-measurable, is represented
as

Xt = X0
t 1t<τ1 +

n−1∑

k=1

Xk
t (τ(k), ζ(k))1τk≤t<τk+1 + Xn

t (τ(n), ζ(n))1τn≤t , (2.2)

for all t ≥ 0, where X0 is P M(F)-measurable and Xk is P M(F,Δk,E
k)-

measurable for k = 1, . . . , n.

The proof of (i) is given in Pham [28] and is therefore omitted. The proof of (ii) is
based on similar arguments. Hence, we postpone it to the Appendix.

Throughout the sequel, we will use the convention τ0 = 0, τn+1 = +∞, θ0 = 0
and θn+1 = +∞ for any θ ∈ Δn, and X0(θ(0), e(0)) = X0 to simplify the notation.

Remark 2.1 In the case where the studied process X depends on another parameter x

evolving in a Borelian subset X of R
p , and if X is P (G)⊗ B(X ), then, decomposition

(2.1) is still true but where Xk is P (F)⊗ B(Δk)⊗ B(Ek)⊗ B(X )-measurable. Indeed,
it is obvious for the processes generating P (G) ⊗ B(X ) of the form Xt(ω,x) =
Lt(ω)R(x), (t,ω, x) ∈ R+ × Ω × X , where L is P (G)-measurable and R is B(X )-
measurable. Then, the result is extended to any P (G)⊗ B(X )-measurable process by
the monotone class theorem.

We now introduce a density assumption on the random times and their associ-
ated marks by assuming that the distribution of (τ1, . . . , τn, ζ1, . . . , ζn) is absolutely
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continuous with respect to the Lebesgue measure dθ de on B(Δn) ⊗ B(En). More
precisely, we make the following assumption.

(HD) There exists a positive P (F)⊗ B(Δn)⊗ B(En)-measurable map γ such that
for any t ≥ 0,

P
[
(τ1, . . . , τn, ζ1, . . . , ζn) ∈ dθ de | Ft

]

= γt (θ1, . . . , θn, e1, . . . , en) dθ1 . . . dθn de1 . . . den.

We then introduce some notation. Define the process γ 0 by

γ 0
t := P[τ1 > t | Ft ] =

∫

Δn×En

1θ1>tγt (θ, e) dθ de,

and the map γ k a P (F) ⊗ B(Δk) ⊗ B(Ek)-measurable process, k = 1, . . . , n − 1, by

γ k
t (θ1, . . . , θk, e1, . . . , ek)

:=
∫

Δn−k×En−k

1θk+1>tγt (θ1, . . . , θn, e1 . . . , en) dθk+1 . . . dθn dek+1 . . . den.

We shall use the natural convention γ n = γ . We find that under (HD), the random
measure μ admits a compensator absolutely continuous w.r.t. the Lebesgue measure.
The intensity λ is given by the following proposition.

Proposition 2.1 Under (HD), the random measure μ admits a compensator for the
filtration G given by λt (e) de dt , where the intensity λ is defined by

λt (e) =
n∑

k=1

λk
t (e, τ(k−1), ζ(k−1))1τk−1<t≤τk

, (2.3)

with

λk
t (e, θ(k−1), e(k−1)) := γ k

t (θ(k−1), t, e(k−1), e)

γ k−1
t (θ(k−1), e(k−1))

,

for (θ(k−1), t, e(k−1), e) ∈ Δk−1 × R+ × Ek .

The proof of Proposition 2.1 is based on similar arguments to those of [12]. We
therefore postpone it to the Appendix.

We add an assumption on the intensity λ which will be used in existence and
uniqueness results for quadratic BSDEs as well as for the utility maximization prob-
lem:

(HBI) The process

(∫

E

λt (e) de

)

t≥0
is bounded on [0,∞).

We now consider one dimensional BSDEs driven by W and the random mea-
sure μ. To define solutions, we need to introduce the following spaces, where
a, b ∈ R+ with a ≤ b, and T < ∞ is the terminal time:

– S ∞
G

[a, b] (resp. S ∞
F

[a, b]) is the set of R-valued P M(G) (resp. P M(F))-
measurable processes (Yt )t∈[a,b] essentially bounded:

‖Y‖S ∞[a,b] := ess sup
t∈[a,b]

|Yt | < ∞.
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– L2
G
[a, b] (resp. L2

F
[a, b]) is the set of R

d -valued P (G) (resp. P (F))-measurable
processes (Zt )t∈[a,b] such that

‖Z‖L2[a,b] :=
(

E

[∫ b

a

|Zt |2 dt

]) 1
2

< ∞.

– L2(μ) is the set of R-valued P (G) ⊗ B(E)-measurable processes U such that

‖U‖L2(μ) :=
(

E

[∫ T

0

∫

E

∣∣Us(e)
∣∣2

μ(de, ds)

]) 1
2

< ∞.

We then consider BSDEs of the form: find a triple (Y,Z,U) ∈ S ∞
G

[0, T ] ×
L2

G
[0, T ] × L2(μ) such that2

Yt = ξ +
∫ T

t

f (s, Ys,Zs,Us) ds −
∫ T

t

Zs dWs

−
∫ T

t

∫

E

Us(e)μ(de, ds), 0 ≤ t ≤ T , (2.4)

where

– ξ is a GT -measurable random variable of the form:

ξ =
n∑

k=0

ξk(τ(k), ζ(k))1τk≤T <τk+1 , (2.5)

with ξ0 is FT -measurable and ξk is FT ⊗ B(Δk) ⊗ B(Ek)-measurable for each
k = 1, . . . , n,

– f is map from [0, T ]×Ω ×R×R
d × Bor(E,R) to R which is a P (G)⊗ B(R)⊗

B(Rd) ⊗ B(Bor(E,R))-B(R)-measurable map. Here, Bor(E,R) is the set of
Borelian functions from E to R, and B(Bor(E,R)) is the Borelian σ -algebra on
Bor(E,R) for the pointwise convergence topology.

To ensure that BSDE (2.4) is well posed, we have to check that the stochastic integral
w.r.t. W is well defined on L2

G
[0, T ] in our context.

Proposition 2.2 Under (HD), for any process Z ∈ L2
G
[0, T ], the stochastic integral

∫ T

0 Zs dWs is well defined.

Proof Consider the initial progressive enlargement H of the filtration G. We recall
that H = (Ht )t≥0 is given by

Ht = Ft ∨ σ(τ1, . . . , τn, ζ1, . . . , ζn), t ≥ 0.

We prove that the stochastic integral
∫ T

0 Zs dWs is well defined for all P (H)-

measurable process Z such that E
∫ T

0 |Zs |2 ds < ∞. Fix such a process Z.

2The symbol
∫ t
s stands for the integral on the interval (s, t] for all s, t ∈ R+ .
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From Theorem 2.1 in [15], we see that W is an H-semimartingale of the form

Wt = Mt +
∫ t

0
as(τ(n), ζ(n)) ds, t ≥ 0,

where a is P (F) ⊗ B(Δn) ⊗ B(En)-measurable. Since M is a H-local continuous
martingale with quadratic variation 〈M,M〉t = 〈W,W 〉t = t for t ≥ 0, we get from
Lévy’s characterization of Brownian motion (see e.g. Theorem 39 in [29]) that M is
a H-Brownian motion. Therefore the stochastic integral

∫ T

0 Zs dMs is well defined

and we now concentrate on the term
∫ T

0 Zsas(τ(n), ζ(n)) ds.
From Lemma 1.8 in [15] the process γ (θ, e) is an F-martingale. Since F is the

filtration generated by W we get from the representation theorem of Brownian mar-
tingales that

γt (θ, e) = γ0(θ, e) +
∫ t

0
Γs(θ, e) dWs, t ≥ 0.

Still using Theorem 2.1 in [15] and since γ (θ, e) is continuous, we have

〈
γ (θ, e),W

〉
t
=

∫ t

0
γs(θ, e)as(θ, e) ds, t ≥ 0

for all (θ, e) ∈ Δn × En. Therefore we get

Γs(θ, e) = γs(θ, e)as(θ, e), s ≥ 1

for all (θ, e) ∈ Δn × En. Since γ (θ, e) is an F-martingale, we obtain (see e.g. Theo-
rem 62 Chapt. 8 in [10]) that

∫ T

0

∣∣γs(θ, e)as(θ, e)
∣∣2

ds < +∞, P-a.s. (2.6)

for all (θ, e) ∈ Δn × En. Consider the set A ∈ FT ⊗ B(Δn) ⊗ B(En) defined by

A :=
{
(ω, θ, e) ∈ Ω × Δn × En :

∫ T

0

∣∣γs(θ, e)as(θ, e)
∣∣2

ds = +∞
}
.

Then, we have P(Ω̃) = 0, where

Ω̃ := {
ω ∈ Ω : (ω,τ(ω), ζ(ω)

) ∈ A
}
.

Indeed, we have from the density assumption (HD)

P(Ω̃) = E
[
1A

(
ω,τ(ω), ζ(ω)

)] = E
[
E

[
1A

(
ω,τ(ω), ζ(ω)

) | FT

]]

=
∫

Δn×En

E
[
1A(ω, θ, e)γT (θ, e)

]
dθ de. (2.7)

From the definition of A and (2.6), we have

1A(., θ, e)γT (θ, e) = 0, P-a.s.

for all (θ, e) ∈ Δn × En. Therefore, we get from (2.7), P(Ω̃) = 0 or equivalently

P

(∫ T

0

∣∣γs(τ1, . . . , τn, ζ1, . . . , ζn)as(τ1, . . . , τn, ζ1, . . . , ζn)
∣∣2

ds < +∞ = 1

)
.

(2.8)
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From Corollary 1.11 we have γt (τ1, . . . , τn, ζ1, . . . , ζn) > 0 for all t ≥ 0 P-a.s. Since
γ.(τ1, . . . , τn, ζ1, . . . , ζn) is continuous we obtain

inf
s∈[0,T ]γs(τ1, . . . , τn, ζ1, . . . , ζn) > 0, P-a.s. (2.9)

Combining (2.8) and (2.9), we get
∫ T

0

∣∣as(τ1, . . . , τn, ζ1, . . . , ζn)
∣∣2

ds < +∞, P-a.s.

Since Z satisfies E
∫ T

0 |Zs |2ds < ∞, we find that
∫ T

0

∣∣Zsas(τ1, . . . , τn, ζ1, . . . , ζn)
∣∣ds < +∞, P-a.s.

Therefore
∫ T

0 Zsas(τ1, . . . , τn, ζ1, . . . , ζn) ds is well defined. �

3 Existence of a Solution

In this section, we use the decompositions given by Lemma 2.1 to solve BSDEs with
a finite number of jumps. We use a similar approach to Ankirchner et al. [1]: one
can explicitly construct a solution by combining solutions of an associated recursive
system of Brownian BSDEs. But contrary to them, we suppose that there exist n

random times and n random marks. Our assumptions on the driver are also weaker.
Through a simple example we first show how our method to construct solutions to
BSDEs with jumps works. We then give a general existence theorem which links the
studied BSDEs with jumps with a system of recursive Brownian BSDEs. We finally
illustrate our general result with concrete examples.

3.1 An Introductory Example

We begin by giving a simple example to illustrate the used method. We consider the
following equation involving only a single jump time τ and a single mark ζ valued
in E = {0,1}:

{
YT = c1T <τ + h(τ, ζ )1T ≥τ

−dYt = f (Ut ) dt − Ut dHt , 0 ≤ t ≤ T ,
(3.1)

where Ht = (Ht (0),Ht (1)) with Ht(i) = 1τ≤t,ζ=i for t ≥ 0 and i ∈ E. Here c is a
real constant, and f and h are deterministic functions. To solve BSDE (3.1), we first
solve a recursive system of BSDEs:

Y 1
t (θ, e) = h(θ, e) + f (0,0)(T − t), θ ∧ T ≤ t ≤ T ,

Y 0
t = c +

∫ T

t

f
(
Y 1

s (s,0) − Y 0
s , Y 1

s (s,1) − Y 0
s

)
ds, 0 ≤ t ≤ T .

Suppose that the recursive system of BSDEs admits for any (θ, e) ∈ [0, T ] × {0,1} a
couple of solution Y 1(θ, e) and Y 0. Define the process (Y,U) by

Yt = Y 0
t 1t<τ + Y 1

t (τ, ζ )1t≥τ , 0 ≤ t ≤ T ,
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and

Ut(i) = (
Y 1

t (t, i) − Y 0
t

)
1t≤τ , 0 ≤ t ≤ T , i = 0,1.

We then prove that the process (Y,U) is solution of BSDE (3.1). By Itô’s formula,
we have

dYt = d
(
Y 0

t 1t<τ + Y 1
t (τ, ζ )1t≥τ

)

= d

(
Y 0

t

(
1 − Ht(0) − Ht(1)

) +
∫ t

0
h(s,0) dHs(0)

+
∫ t

0
h(s,1) dHs(1) + (

Ht(0) + Ht(1)
)
f (0,0)(T − t)

)
.

This can be written

dYt = −[(
1 − Ht(0) − Ht(1)

)
f

(
Y 1

t (t,0) − Y 0
t , Y 1

t (t,1) − Y 0
t

)

+ (
Ht(0) + Ht(1)

)
f (0,0)

]
dt + [

h(t,0) + (T − t)f (0,0) − Y 0
t

]
dHt(0)

+ [
h(t,1) + (T − t)f (0,0) − Y 0

t

]
dHt(1).

From the definition of U , we get

dYt = −f (Ut ) dt + Ut dHt .

We also have YT = c1T <τ + h(τ, ζ )1T ≥τ , which shows that (Y,U) is solution of
BSDE (3.1).

3.2 The Existence Theorem

To prove the existence of a solution to BSDE (2.4), we introduce the decomposition
of the coefficients ξ and f as given by (2.5) and Lemma 2.1. From Lemma 2.1(i) and
Remark 2.1, we get the following decomposition for f :

f (t, y, z, u) =
n∑

k=0

f k(t, y, z, u, τ(k), ζ(k))1τk≤t<τk+1 , (3.2)

where f 0 is P (F) ⊗ B(R) ⊗ B(Rd) ⊗ B(Bor(E,R))-measurable and f k is P (F) ⊗
B(R)⊗ B(Rd)⊗ B(Bor(E,R))⊗ B(Δk)⊗ B(Ek)-measurable for each k = 1, . . . , n.

In the following theorem, we show how BSDEs driven by W and μ are related
to a recursive system of Brownian BSDEs involving the coefficients ξk and f k , k =
0, . . . , n.

Theorem 3.1 Assume that for all (θ, e) ∈ Δn × En, the Brownian BSDE

Yn
t (θ, e) = ξn(θ, e) +

∫ T

t

f n
(
s, Y n

s (θ, e),Zn
s (θ, e),0, θ, e

)
ds

−
∫ T

t

Zn
s (θ, e) dWs, θn ∧ T ≤ t ≤ T , (3.3)

admits a solution (Y n(θ, e),Zn(θ, e)) ∈ S ∞
F

[θn ∧T ,T ]×L2
F
[θn ∧T ,T ], and that for

each k = 0, . . . , n − 1, the Brownian BSDE



692 J Theor Probab (2014) 27:683–724

Y k
t (θ(k), e(k)) = ξk(θ(k), e(k)) +

∫ T

t

f k
(
s, Y k

s (θ(k), e(k)),Z
k
s (θ(k), e(k)),

Y k+1
s (θ(k), s, e(k), .) − Y k

s (θ(k), e(k)), θ(k), e(k)

)
ds

−
∫ T

t

Zk
s (θ(k), e(k)) dWs, θk ∧ T ≤ t ≤ T , (3.4)

admits a solution (Y k(θ(k), e(k)),Z
k(θ(k), e(k))) ∈ S ∞

F
[θk ∧ T ,T ] × L2

F
[θk ∧ T ,T ].

Assume moreover that each Y k (resp. Zk) is P M(F) ⊗ B(Δk) ⊗ B(Ek)-measurable
(resp. P (F) ⊗ B(Δk) ⊗ B(Ek)-measurable).

If all these solutions satisfy

sup
(k,θ,e)

∥
∥Y k(θ(k), e(k))

∥
∥

S ∞[θk∧T ,T ] < ∞, (3.5)

and

E

[∫

Δn×En

(∫ θ1∧T

0

∣∣Z0
s

∣∣2
ds +

n∑

k=1

∫ θk+1∧T

θk∧T

∣∣Zk
s (θ(k), e(k))

∣∣2
ds

)

γT (θ, e) dθde

]

< ∞,

then, under (HD), BSDE (2.4) admits a solution (Y,Z,U) ∈ S ∞
G

[0, T ]×L2
G
[0, T ]×

L2(μ) given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yt = Y 0
t 1t<τ1 +

n∑

k=1

Y k
t (τ(k), ζ(k))1τk≤t<τk+1 ,

Zt = Z0
t 1t≤τ1 +

n∑

k=1

Zk
t (τ(k), ζ(k))1τk<t≤τk+1 ,

Ut (.) = U0
t (.)1t≤τ1 +

n−1∑

k=1

Uk
t (τ(k), ζ(k), .)1τk<t≤τk+1 ,

(3.6)

where Uk
t (τ(k), ζ(k), .) = Y k+1

t (τ(k), t, ζ(k), .) − Y k
t (τ(k), ζ(k)) for each k = 0, . . . ,

n − 1.

Proof To alleviate notation, we shall often write ξk and f k(t, y, z, u) instead
of ξk(θ(k), e(k)) and f k(t, y, z, u, θ(k), e(k)), and Y k

t (t, e) instead of Y k
t (θ(k−1), t,

e(k−1), e).
Step 1: We prove that for t ∈ [0, T ], (Y,Z,U) defined by (3.6) satisfies the equa-

tion

Yt = ξ +
∫ T

t

f (s, Ys,Zs,Us) ds −
∫ T

t

Zs dWs −
∫ T

t

∫

E

Us(e)μ(de, ds).

(3.7)

We make an induction on the number k of jumps in (t, T ].
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• Suppose that k = 0. We distinguish two cases.
Case 1: there are n jumps before t . We then have τn ≤ t and from (3.6) we get

Yt = Yn
t . Using BSDE (3.3), we can see that

Yt = ξn +
∫ T

t

f n
(
s, Y n

s ,Zn
s ,0

)
ds −

∫ T

t

Zn
s dWs.

Since τn ≤ T , we have ξn = ξ from (2.5). In the same way, we have Ys = Yn
s ,

Zs = Zn
s and Us = 0 for all s ∈ (t, T ] from (3.6). Using (3.2), we also get

f n(s,Y n
s ,Zn

s ,0) = f (s,Ys,Zs,Us) for all s ∈ (t, T ]. Moreover, since the predictable
processes Z1τn<. and Zn1τn<. are indistinguishable on {τn ≤ t}, we have from The-
orem 12.23 of [13],

∫ T

t
Zs dWs = ∫ T

t
Zn

s dWs on {τn ≤ t}. Hence, we get

Yt = ξ +
∫ T

t

f (s, Ys,Zs,Us) ds −
∫ T

t

Zs dWs −
∫ T

t

∫

E

Us(e)μ(de, ds),

on {τn ≤ t}.
Case 2: there are i jumps before t with i < n hence Yt = Y i

t . Since there
is no jump after t , we have Ys = Y i

s , Zs = Zi
s , Ui

s (.) = Y i+1
s (s, .) − Y i

s , ξ =
ξ i and f i(s, Y i

s ,Z
i
s,U

i
s ) = f (s,Ys,Zs,Us) for all s ∈ (t, T ], and

∫ T

t

∫
E

Us(e)

× μ(de, ds) = 0. Since the predictable processes Z1τi<.≤τi+1 and Zi1τi<.≤τi+1 are
indistinguishable on {τi ≤ t} ∩ {T < τi+1}, we have from Theorem 12.23 of [13],∫ T

t
Zs dWs = ∫ T

t
Zi

s dWs on {τi ≤ t} ∩ {T < τi+1}. Combining these equalities with
(3.4), we get

Yt = ξ +
∫ T

t

f (s, Ys,Zs,Us) ds −
∫ T

t

Zs dWs −
∫ T

t

∫

E

Us(e)μ(de, ds),

on {τi ≤ t} ∩ {T < τi+1}.
• Suppose equation (3.7) holds true when there are k jumps in (t, T ], and consider

the case where there are k + 1 jumps in (t, T ].
Denote by i the number of jumps in [0, t] hence Yt = Y i

t . Then, we have Zs =
Zi

s , Ui
s (.) = Y i+1

s (s, .) − Y i
s for all s ∈ (t, τi+1], and Ys = Y i

s and f (s,Ys,Zs,Us) =
f i(s, Y i

s ,Z
i
s,U

i
s ) for all s ∈ (t, τi+1). Using (3.4), we have

Yt = Y i
τi+1

+
∫ τi+1

t

f (s, Ys,Zs,Us) ds −
∫ τi+1

t

Zi
s dWs

= Y i+1
τi+1

+
∫ τi+1

t

f (s, Ys,Zs,Us) ds −
∫ T

t

Zi
s1τi<s≤τi+1 dWs

−
∫ τi+1

t

∫

E

Us(e)μ(de, ds).

Since the predictable processes Z1τi<.≤τi+1 and Zi1τi<.≤τi+1 are indistinguishable
on {τi ≤ t < τi+1} ∩ {τi+k+1 ≤ T < τi+k+2}, we get from Theorem 12.23 of [13] that∫ T

t
Zi

s1τi<s≤τi+1 dWs = ∫ T

t
Zi

s1τi<s≤τi+1 dWs . Therefore, we get

Yt = Y i+1
τi+1

+
∫ τi+1

t

f (s, Ys,Zs,Us) ds −
∫ τi+1

t

Zs dWs

−
∫ τi+1

t

∫

E

Us(e)μ(de, ds), (3.8)
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on {τi ≤ t < τi+1} ∩ {τi+k+1 ≤ T < τi+k+2}. Using the induction assumption on
(τi+1, T ], we have

Yr1A(r) =
(

ξ +
∫ T

r

f (s, Ys,Zs,Us) ds −
∫ T

r

Zs dWs

−
∫ T

r

∫

E

Us(e)μ(de, ds)

)
1A(r),

for all r ∈ [0, T ], where

A := {
(ω, s) ∈ Ω × [0, T ] : τi+1(ω) ≤ s < τi+2(ω)

and τi+k+1(ω) ≤ T < τi+k+2(ω)
}
.

Thus, the processes Y1A(.) and (ξ + ∫ T

.
f (s, Ys,Zs,Us) ds − ∫ T

.
Zs dWs

− ∫ T

.

∫
E

Us(e)μ(de, ds))1A(.) are indistinguishable since they are càd-làg modi-
fications of the other. In particular they coincide at the stopping time τi+1 and we get
from the definition of Y

Yτi+1 = Y i+1
τi+1

= ξ +
∫ T

τi+1

f (s,Ys,Zs,Us) ds −
∫ T

τi+1

Zs dWs

−
∫ T

τi+1

∫

E

Us(e)μ(de, ds). (3.9)

Combining (3.8) and (3.9), we get (3.7).
Step 2: Notice that the process Y (resp. Z, U ) is P M(G) (resp. P (G), P (G) ⊗

B(E))-measurable since each Y k (resp. Zk) is P M(F) ⊗ B(Δk) ⊗ B(Ek) (resp.
P (F) ⊗ B(Δk) ⊗ B(Ek))-measurable.

Step 3: We now prove that the solution satisfies the integrability conditions. Sup-
pose that the processes Y k , k = 0, . . . , n, satisfy (3.5). Define the constant M by

M := sup
(k,θ,e)

∥∥Y k(θ(k), e(k))
∥∥

S ∞[θk∧T ,T ],

and consider the set A ∈ FT ⊗ B(Δn ∩ [0, T ]n) ⊗ B(En) defined by

A := {
(ω, θ, e) ∈ Ω × (

Δn ∩ [0, T ]n) × En :
max

0≤k≤n
sup

t∈[θk,T ]
∣∣Y k

t (θ(k), e(k))
∣∣ ≤ M

}
.

Then, we have P(Ω̃) = 1, where

Ω̃ := {
ω ∈ Ω : (ω,τ(ω), ζ(ω)

) ∈ A
}
.

Indeed, we have from the density assumption (HD)

P
(
Ω̃c

) = E
[
1Ac

(
ω,τ(ω), ζ(ω)

)] = E
[
E

[
1Ac

(
ω,τ(ω), ζ(ω)

) | FT

]]

=
∫

(Δn∩[0,T ]n)×En

E
[
1Ac(ω, θ, e)γT (θ, e)

]
dθ de. (3.10)

From the definition of M and A, we have

1Ac(., θ, e)γT (θ, e) = 0, P-a.s.,
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for all (θ, e) ∈ (Δn ∩[0, T ]n)×En. Therefore, we get from (3.10), P(Ω̃c) = 0. Then,
by definition of Y , we have

|Yt | ≤
∣∣Y 0

t

∣∣1t<τ1 +
n∑

k=1

∣∣Y k
t (τ(k), ζ(k))

∣∣1τk≤t .

Since P(Ω̃) = 1, we have
∣∣Y k

t (τ(k), ζ(k))
∣∣1τk≤t ≤ M, 0 ≤ k ≤ n, P-a.s. (3.11)

Therefore, we get from (3.11)

|Yt | ≤ (n + 1)M, P-a.s.,

for all t ∈ [0, T ]. Since Y is càd-làg, we get

‖Y‖S ∞[0,T ] ≤ (n + 1)M.

In the same way, using (HD) and the tower property of conditional expectation, we
get

E

[∫ T

0
|Zs |2 ds

]
= E

[∫

Δn×En

(∫ θ1∧T

0

∣
∣Z0

s

∣
∣2

ds +
n∑

k=1

∫ θk+1∧T

θk∧T

∣
∣Zk

s (θ(k), e(k))
∣
∣2

ds

)

× γT (θ, e) dθ de

]

.

Thus, Z ∈ L2
G
[0, T ] since the processes Zk , k = 0, . . . , n, satisfy

E

[∫

Δn×En

(∫ θ1∧T

0

∣∣Z0
s

∣∣2
ds +

n∑

k=1

∫ θk+1∧T

θk∧T

∣∣Zk
s (θ(k), e(k))

∣∣2
ds

)

× γT (θ, e) dθ de

]

< ∞.

Finally, we check that U ∈ L2(μ). Using (HD), we have

‖U‖2
L2(μ)

=
n∑

k=1

∫

Δn×En

E
[∣∣Y k

θk
(θ(k), e(k)) − Y k−1

θk
(θ(k−1), e(k−1))

∣∣2
γT (θ, e)

]
dθ de

≤ 2
n∑

k=1

(∥∥Y k(θ(k), e(k))
∥∥2

S ∞[θk∧T ,T ]

+ ∥∥Y k−1(θ(k−1), e(k−1))
∥∥2

S ∞[θk−1∧T ,T ]
)

< ∞.

Hence, U ∈ L2(μ). �

Remark 3.1 From the construction of the solution of BSDE (2.4), the jump compo-
nent U is bounded in the following sense:

sup
e∈E

∥∥U(e)
∥∥

S ∞[0,T ] < ∞.

In particular, the random variable ess sup(t,e)∈[0,T ]×E |Ut(e)| is bounded.
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3.3 Application to Quadratic BSDEs with Jumps

We suppose that the random variable ξ and the generator f satisfy the following
conditions:

(HEQ1) The random variable ξ is bounded: there exists a positive constant C such
that

|ξ | ≤ C, P-a.s.

(HEQ2) The generator f is quadratic in z: there exists a constant C such that
∣∣f (t, y, z, u)

∣∣ ≤ C

(
1 + |y| + |z|2 +

∫

E

∣∣u(e)
∣∣λt (e) de

)
,

for all (t, y, z, u) ∈ [0, T ] × R × R
d × Bor(E,R).

(HEQ3) For any R > 0, there exists a function mc
f
R such that limε→0 mc

f
R(ε) = 0

and ∣∣ft

(
y, z,

(
u(e) − y

)
e∈E

) − ft

(
y′, z′,

(
u(e) − y

)
e∈E

)∣∣ ≤ mc
f
R(ε),

for all (t, y, y′, z, z′, u) ∈ [0, T ] × [R]2 × [Rd ]2 × Bor(E,R) s.t. |y|, |z|,
|y′|, |z′| ≤ R and |y − y′| + |z − z′| ≤ ε.

Proposition 3.1 Under (HD), (HBI), (HEQ1), (HEQ2), and (HEQ3), BSDE (2.4)
admits a solution in S ∞

G
[0, T ] × L2

G
[0, T ] × L2(μ).

Proof Step 1. Since ξ is a bounded random variable, we can choose ξk bounded for
each k = 0, . . . , n. Indeed, let C be a positive constant such that |ξ | ≤ C, P-a.s., then,
we have

ξ =
n∑

k=0

ξ̃ k(τ1, . . . , τk, ζ1, . . . , ζk)1τk≤T <τk+1 ,

with ξ̃ k(τ1, . . . , τk, ζ1, . . . , ζk) = (ξk(τ1, . . . , τk, ζ1, . . . , ζk) ∧ C) ∨ (−C), for each
k = 0, . . . , n.

Step 2. Since f is quadratic in z, it is possible to choose the functions f k , k =
0, . . . , n, quadratic in z. Indeed, if C is a positive constant such that |f (t, y, z, u)| ≤
C(1 + |y| + |z|2 + ∫

E
|u(e)|λt (e) de), for all (t, y, z, u) ∈ [0, T ] × R × R

d ×
Bor(E,R), P-a.s. and f has the following decomposition:

f (t, y, z, u) =
n∑

k=0

f k(t, y, z, u, τ(k), ζ(k))1τk≤t<τk+1 ,

then, f satisfies the same decomposition with f̃ k instead of f k where

f̃ k(t, y, z, u, θ(k), e(k)) = f k(t, y, z, u, θ(k), e(k))

∧ C

(
1 + |y| + |z|2 +

∫

E

∣∣u(e)
∣∣λt (e) de

)

∨
(

−C

(
1 + |y| + |z|2 +

∫

E

∣∣u(e)
∣∣λt (e) de

))
,

for all (t, y, z, u) ∈ [0, T ] × R × R
d × Bor(E,R) and (θ, e) ∈ Δn × En.



J Theor Probab (2014) 27:683–724 697

Step 3. We now prove by a backward induction that there exists for each k =
0, . . . , n − 1 (resp. k = n), a solution (Y k,Zk) to BSDE (3.4) (resp. (3.3)) s.t. Y k is a
P M(F)⊗ B(Δk)⊗ B(Ek)-measurable process and Zk is a P (F)⊗ B(Δk)⊗ B(Ek)-
measurable process, and

sup
(θ(k),e(k))∈Δk×Ek

∥∥Y k(θ(k), e(k))
∥∥

S ∞[θk∧T ,T ] + ∥∥Zk(θ(k), e(k))
∥∥

L2[θk∧T ,T ] < ∞.

• Choosing ξn(θ(n), e(n)) bounded as in Step 1, we get from (HEQ3) and Proposi-
tion D.1 and Theorem 2.3 of [22] the existence of a solution (Y n(θ(n), e(n)),Z

n(θ(n), e(n)))

to BSDE (3.3).
We now check that we can choose Yn (resp. Zn) as a P M(F) ⊗ B(Δn) ⊗ B(En)

(resp. P (F)⊗ B(Δn)⊗ B(En))-measurable process. Indeed, we know (see [22]) that
we can construct the solution (Y n,Zn) as limit of solutions to Lipschitz BSDEs.
From Proposition C.1, we then get a P (F) ⊗ B(Δn) ⊗ B(En)-measurable solution
as limit of P (F) ⊗ B(Δn) ⊗ B(En)-measurable processes. Hence, Yn (resp. Zn) is
a P M(F) ⊗ B(Δn) ⊗ B(En) (resp. P (F) ⊗ B(Δn) ⊗ B(En))-measurable process.
Applying Proposition 2.1 of [22] to (Y n,Zn), we get from (HEQ1) and (HEQ2)

sup
(θ,e)∈Δn×En

∥∥Yn(θ(n), e(n))
∥∥

S ∞[θn∧T ,T ] + ∥∥Zn(θ(n), e(n))
∥∥

L2[θn∧T ,T ] < ∞.

• Fix k ≤ n − 1 and suppose that the result holds true for k + 1: there exists
(Y k+1,Zk+1) such that

sup
(θ(k+1),e(k+1))∈Δk+1×Ek+1

{∥∥Y k+1(θ(k+1), e(k+1))
∥∥

S ∞[θk+1∧T ,T ]

+ ∥
∥Zk+1(θ(k+1), e(k+1))

∥
∥

L2[θk+1∧T ,T ]
}

< ∞.

Then, using (HBI), there exists a constant C > 0 such that
∣
∣f k

(
s, y, z,Y k+1

s (θ(k), s, e(k), .) − y, θ(k), e(k)

)∣∣ ≤ C
(
1 + |y| + |z|2).

Choosing ξk(θ(k), e(k)) bounded as in Step 1, we get from (HEQ3) and Propo-
sition D.1 and Theorem 2.3 of [22] the existence of a solution (Y k(θ(k), e(k)),

Zk(θ(k), e(k))).
As for k = n, we can choose Y k (resp. Zk) as a P M(F) ⊗ B(Δk) ⊗ B(Ek) (resp.

P (F) ⊗ B(Δk) ⊗ B(Ek))-measurable process.
Applying Proposition 2.1 of [22] to (Y k(θ(k), e(k)),Z

k(θ(k), e(k))), we get from
(HEQ1) and (HEQ2)

sup
(θ(k),e(k))∈Δk×Ek

∥
∥Y k(θ(k), e(k))

∥
∥

S ∞[θk∧T ,T ] + ∥
∥Zk(θ(k), e(k))

∥
∥

L2[θk∧T ,T ] < ∞.

Step 4. From Step 3, we can apply Theorem 3.1. We then get the existence of a
solution to BSDE (2.4). �

Remark 3.2 Our existence result is given for bounded terminal condition. It is based
on the result of Kobylanski for quadratic Brownian BSDEs in [22]. We notice that
existence results for quadratic BSDEs with unbounded terminal conditions have re-
cently been proved in Briand and Hu [5] and Delbaen et al. [8]. These works provide
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existence results for solutions of Brownian quadratic BSDEs with exponentially inte-
grable terminal conditions and generators and concludes that the solution Y satisfies
an exponential integrability condition.

Here, we cannot use these results in our approach. Indeed, consider the case of a
single jump with the generator f (t, y, z, u) = |z|2 + |u|. The associated decomposed
BSDE at rank 0 is given by

Y 0
t = ξ0 +

∫ T

t

[∣∣Z0
s

∣∣2 + ∣∣Y 1
s (s) − Y 0

s

∣∣]ds −
∫ T

t

Z0
s dWs, 0 ≤ t ≤ T .

Then to apply the results from [5] or [8], we require that the process (Y 1
s (s))s satisfies

some exponential integrability condition. However, at rank 1, the decomposed BSDE
is given by

Y 1
t (θ) = ξ1(θ) +

∫ T

t

∣∣Z1
s (θ)

∣∣2
ds −

∫ T

t

Z1
s (θ) dWs, θ ≤ t ≤ T , 0 ≤ θ ≤ T ,

and since ξ1 satisfies an exponential integrability condition by assumption we know
that Y 1(θ) satisfies an exponential integrability condition for any θ ∈ [0, T ], but we
have no information about the process (Y 1

s (s))s∈[0,T ]. The difficulty here lies in un-
derstanding the behavior of the “sectioned” process {Y 1

s (θ) : s = θ} and its study is
left for further research.

3.4 Application to the Pricing of a European option in a Market with a Jump

In this example, we assume that W is one dimensional (d = 1) and there is a single
random time τ representing the time of occurrence of a shock in the prices on the
market. We denote by H the associated pure jump process:

Ht := 1τ≤t , 0 ≤ t ≤ T .

We consider a financial market which consists of

– a non-risky asset S0, whose strictly positive price process is defined by

dS0
t = rtS

0
t dt, 0 ≤ t ≤ T , S0

0 = 1,

with rt ≥ 0, for all t ∈ [0, T ],
– two risky assets with respective price processes S1 and S2 defined by

dS1
t = S1

t−(bt dt + σt dWt + β dHt), 0 ≤ t ≤ T , S1
0 = s1

0 ,

and

dS2
t = S2

t (b̄t dt + σ̄t dWt), 0 ≤ t ≤ T , S2
0 = s2

0 ,

with σt > 0 and σ̄t > 0, and β > −1 (to ensure that the price process S1 always
remains strictly positive).

We make the following assumption which ensures the existence of the processes S0,
S1, and S2:
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(HB) The coefficients r , b, b̄, σ , σ̄ , 1
σ

and 1
σ̄

are bounded: there exists a constant
C s.t.

|rt | + |bt | + |b̄t | + |σt | + |σ̄t | +
∣∣∣∣

1

σt

∣∣∣∣ +
∣∣∣∣

1

σ̄t

∣∣∣∣ ≤ C, 0 ≤ t ≤ T , P-a.s.

We assume that the coefficients r , b, b̄, σ , and σ̄ have the following forms:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

rt = r01t<τ + r1(τ )1t≥τ ,

bt = b01t<τ + b1(τ )1t≥τ ,

b̄t = b̄01t<τ + b̄1(τ )1t≥τ ,

σt = σ 01t<τ + σ 1(τ )1t≥τ ,

σ̄t = σ̄ 01t<τ + σ̄ 1(τ )1t≥τ ,

for all t ≥ 0.
The aim of this subsection is to provide an explicit price for any bounded GT -

measurable European option ξ of the form

ξ = ξ01T <τ + ξ1(τ )1τ≤T ,

where ξ0 is FT -measurable and ξ1 is FT ⊗ B(R)-measurable, together with a repli-
cating strategy π = (π0,π1,π2) (πi

t corresponds to the number of share of Si held
at time t). We assume that this market model is free of arbitrage opportunity (a nec-
essary and sufficient condition to ensure it is e.g. given in Lemma 3.1.1 of [7]).

The value of a contingent claim is then given by the initial amount of a replicating
portfolio. Let π = (π0,π1,π2) be a P (G)-measurable self-financing strategy. The
wealth process Y associated with this strategy satisfies

Yt = π0
t S0

t + π1
t S1

t + π2
t S2

t , 0 ≤ t ≤ T . (3.12)

Since π is a self-financing strategy, we have

dYt = π0
t dS0

t + π1
t dS1

t + π2
t dS2

t , 0 ≤ t ≤ T .

Combining this last equation with (3.12), we get

dYt = (
rtYt + (bt − rt )π

1
t S1

t + (b̄t − rt )π
2
t S2

t

)
dt

+ (
π1

t σtS
1
t + π2

t σ̄t S
2
t

)
dWt + π1

t βS1
t− dHt , 0 ≤ t ≤ T . (3.13)

Define the predictable processes Z and U by

Zt = π1
t σtS

1
t + π2

t σ̄t S
2
t and Ut = π1

t βS1
t−, 0 ≤ t ≤ T . (3.14)

Then, (3.13) can be written in the form

dYt =
[
rtYt − rt − b̄t

σ̄t

Zt −
(

rt − bt

β
− σt (rt − b̄t )

βσ̄t

)
Ut

]
dt

+ Zt dWt + Ut dHt , 0 ≤ t ≤ T .

Therefore, the problem of valuing and hedging of the contingent claim ξ consists in
solving the following BSDE:

⎧
⎪⎪⎨

⎪⎪⎩

−dYt =
[
rt − b̄t

σ̄t

Zt +
(

rt − bt

β
− σt (rt − b̄t )

βσ̄t

)
Ut − rtYt

]
dt

− Zt dWt − Ut dHt , 0 ≤ t ≤ T ,

YT = ξ.

(3.15)
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The recursive system of Brownian BSDEs associated with (3.15) is then given by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−dY 1
t (θ) =

[
r1(θ) − b̄1(θ)

σ̄ 1(θ)
Z1

t (θ) − r1(θ)Y 1
t (θ)

]
dt − Z1

t (θ) dWt ,

θ ≤ t ≤ T ,

Y 1
T (θ) = ξ1(θ),

(3.16)

and
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−dY 0
t =

[
r0 − b̄0

σ̄ 0
Zt +

(
r0 − b0

β
− σ 0(r0 − b̄0)

βσ̄ 0

)

× (
Y 1

t (t) − Y 0
t

) − r0Y 0
t

]
dt − Zt dWt , 0 ≤ t ≤ T ,

Y 0
T = ξ0.

(3.17)

Proposition 3.2 Under (HD) and (HB), BSDE (3.15) admits a solution in S ∞
G

[0, T ]×
L2

G
[0, T ] × L2(μ).

Proof Using the same argument as in Step 1 of the proof of Proposition 3.1, we can
assume w.l.o.g. that the coefficients of BSDEs (3.16) and (3.17) are bounded. Then,
BSDE (3.16) is a linear BSDE with bounded coefficients and a bounded terminal con-
dition. From Theorem 2.3 in [22], we get the existence of a solution (Y 1(θ),Z1(θ))

in S ∞
F

[θ,T ] × L2
F
[θ,T ] to (3.16) for all θ ∈ [0, T ]. Moreover, from Proposition 2.1

in [22], we have

sup
θ∈[0,T ]

∥∥Y 1(θ)
∥∥

S ∞[θ,T ] < ∞. (3.18)

Applying Proposition C.1 with X = [0, T ] and dρ(θ) = γ0(θ) dθ we can choose the
solution (Y 1,Z1) as a P (F) ⊗ B([0, T ])-measurable process.

Estimate (3.18) gives the result that BSDE (3.17) is also a linear BSDE with
bounded coefficients. Applying Theorem 2.3 and Proposition 2.1 in [22] as previ-
ously, we get the existence of a solution (Y 0,Z0) in S ∞

F
[0, T ] × L2

F
[0, T ] to (3.17).

Applying Theorem 3.1, we get the result. �

Since BSDEs (3.16) and (3.17) are linear, we have explicit formulae for the solu-
tions. For Y 1(θ), we get

Y 1
t (θ) = 1

Γ 1
t (θ)

E
[
ξ1(θ)Γ 1

T (θ)
∣∣Ft

]
, θ ≤ t ≤ T ,

with Γ 1(θ) defined by

Γ 1
t (θ) := exp

(
r1(θ) − b̄1(θ)

σ̄ 1(θ)
Wt − 1

2

∣∣∣∣
r1(θ) − b̄1(θ)

σ̄ 1(θ)

∣∣∣∣

2

t − r1(θ)t

)
, θ ≤ t ≤ T .

For Y 0, we get

Y 0
t = 1

Γ 0
t

E

[
ξ0Γ 0

T +
∫ T

t

csΓ
0
s ds

∣∣∣∣Ft

]
, 0 ≤ t ≤ T ,
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with Γ 0 defined by

Γ 0
t := exp

(∫ t

0
ds dWs − 1

2

∫ t

0
|ds |2 ds +

∫ t

0
as ds

)
, 0 ≤ t ≤ T ,

where the parameters a, d and c are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

at = −r0 −
(

r0 − b0

β
− σ 0(r0 − b̄0)

βσ̄ 0

)
,

dt = r0 − b̄0

σ̄ 0
,

ct =
(

r0 − b0

β
− σ 0(r0 − b̄0)

¯βσ
0

)
Y 1

t (t).

The price at time t of the European option ξ is equal to Y 0
t if t < τ and Y 1

t (τ ) if
t ≥ τ . Once we know the processes Y and Z, a hedging strategy π = (π0,π1,π2) is
given by (3.12) and (3.14).

Under no free lunch assumption, all the hedging portfolios have the same value,
which gives the uniqueness of the process Y . This leads to the uniqueness issue for
the whole solution (Y,Z,U).

4 Uniqueness

In this section, we provide a uniqueness result based on a comparison theorem. We
first provide a general comparison theorem which allows to compare solutions to
the studied BSDEs as soon as we can compare solutions to the associated system
of recursive Brownian BSDEs. We then illustrate our general result with a concrete
example in a convex framework.

4.1 The General Comparison Theorem

We consider two BSDEs with coefficients (f , ξ) and (f̄ , ξ̄ ) such that

– ξ (resp. ξ̄ ) is a bounded GT -measurable random variable of the form

ξ =
n∑

k=0

ξk(τ(k), ζ(k))1τk≤T <τk+1

(

resp. ξ̄ =
n∑

k=0

ξ̄ k(τ(k), ζ(k))1τk≤T <τk+1

)

,

where ξ0 (resp. ξ̄0) is FT -measurable and ξk (resp. ξ̄ k) is FT ⊗ B(Δk) ⊗ B(Ek)-
measurable for each k = 1, . . . , n,

– f (resp. f̄ ) is map from [0, T ] × Ω × R × R
d × Bor(E,R) to R which is a

P (G) ⊗ B(R) ⊗ B(Rd) ⊗ B(Bor(E,R))-B(R)-measurable map.
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We denote by (Y ,Z,U) and (Ȳ , Z̄, Ū ) their respective solutions in S ∞
G

[0, T ] ×
L2

G
[0, T ] × L2(μ). We consider the decomposition (Y k)0≤k≤n (resp. (Ȳ k)0≤k≤n,

(Zk)0≤k≤n, (Z̄k)0≤k≤n, (Uk)0≤k≤n, (Ū k)0≤k≤n) of Y (resp. Ȳ , Z, Z̄, U , Ū ) given
by Lemma 2.1. For ease of notation, we shall write Fk(t, y, z) and F̄ k(t, y, z) in-
stead of f (t, y, z,Y k+1

t (τ(k), t, ζ(k), .)−y) and f̄ (t, y, z, Ȳ k+1
t (τ(k), t, ζ(k), .)−y) for

each k = 0, . . . , n − 1, and Fn(t, y, z) and F̄ n(t, y, z) instead of f (t, y, z,0) and

f̄ (t, y, z,0).
We shall make, throughout the text, the standing assumption known as

(H)-hypothesis:
(HC) Any F-martingale remains a G-martingale.

Remark 4.1 Since W is an F-Brownian motion, we get under (HC) that it remains
a G-Brownian motion. Indeed, using (HC), we see that W is a G-local martingale
with quadratic variation 〈W,W 〉t = t . Applying Lévy’s characterization of Brownian
motion (see e.g. Theorem 39 in [29]), we see that W remains a G-Brownian motion.

Definition 4.1 We say that a generator g : Ω × [0, T ] × R × R
d → R satisfies a

comparison theorem for Brownian BSDEs if for any bounded G-stopping times ν2 ≥
ν1, any generator g′ : Ω ×[0, T ]×R×R

d → R and any Gν2 -measurable r.v. ζ and ζ ′
such that g ≤ g′ and ζ ≤ ζ ′ (resp. g ≥ g′ and ζ ≥ ζ ′), we have Y ≤ Y ′ (resp. Y ≥ Y ′)
on [ν1, ν2]. Here, (Y,Z) and (Y ′,Z′) are solutions in S ∞

G
[0, T ]×L2

G
[0, T ] to BSDEs

with data (ζ, g) and (ζ ′, g′):

Yt = ζ +
∫ ν2

t

g(s, Ys,Zs) ds −
∫ ν2

t

Zs dWs, ν1 ≤ t ≤ ν2,

and

Y ′
t = ζ ′ +

∫ ν2

t

g′(s, Y ′
s ,Z

′
s

)
ds −

∫ ν2

t

Z′
s dWs, ν1 ≤ t ≤ ν2.

We can state the general comparison theorem.

Theorem 4.1 Suppose that ξ ≤ ξ̄ , P-a.s. Suppose moreover that for each k =
0, . . . , n

F k(t, y, z) ≤ F̄ k(t, y, z), ∀(t, y, z) ∈ [0, T ] × R × R
d, P-a.s.,

and the generators F̄ k or Fk satisfy a comparison theorem for Brownian BSDEs.
Then, if Ūt = Ut = 0 for t > τn, we have under (HD) and (HC)

Y t ≤ Ȳt , 0 ≤ t ≤ T , P-a.s.

Proof The proof is performed in four steps. We first identify the BSDEs of which
the terms appearing in the decomposition of Ȳ and Y are solutions in the filtration G.
We then modify Ȳ k and Y k outside of [τk, τk+1) to get càd-làg processes for each
k = 0, . . . , n. We then compare the modified processes by killing their jumps. Finally,
we retrieve a comparison for the initial processes since the modification has happened
outside of [τk, τk+1) (where they coincide with Ȳ and Y ).
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Step 1. Since (Ȳ , Z̄, Ū ) (resp. (Y ,Z,U)) is solution to the BSDE with parame-
ters (ξ̄ , f̄ ) (resp. (ξ , f )), we obtain from the decomposition in the filtration F and

Theorem 12.23 in [13] that (Ȳ n, Z̄n) (resp. (Y n,Zn)) is solution to

Ȳ n
t (τ(n), ζ(n)) = ξ̄ +

∫ T

t

F̄ n
(
s, Ȳ n

s (τ(n), ζ(n)), Z̄
n
s (τ(n), ζ(n))

)
ds

−
∫ T

t

Z̄n
s (τ(n), ζ(n)) dWs, τn ∧ T ≤ t ≤ T , (4.1)

(
resp. Yn

t (τ(n), ζ(n)) = ξ +
∫ T

t

F n
(
s, Y n

s (τ(n), ζ(n)),Z
n
s (τ(n), ζ(n))

)
ds

−
∫ T

t

Zn
s (τ(n), ζ(n)) dWs, τn ∧ T ≤ t ≤ T

)
(4.2)

and (Ȳ k, Z̄k) (resp. (Y k,Zk)) is solution to

Ȳ k
t (τ(k), ζ(k)) = [

Ȳ k+1
τk+1

(τ(k+1), ζ(k+1)) − Ūτk+1(ζk+1)
]
1τk+1≤T + ξ̄1τk+1>T

+
∫ τk+1∧T

t

F̄ k
(
s, Ȳ k

s (τ(k), ζ(k)), Z̄
k
s (τ(k), ζ(k))

)
ds

−
∫ τk+1∧T

t

Z̄k
s (τ(k), ζ(k)) dWs, τk ∧ T ≤ t < τk+1 ∧ T ,

(4.3)
(

resp. Y k
t (τ(k), ζ(k)) = [

Y k+1
τk+1

(τ(k+1), ζ(k+1)) − Uτk+1
(ζk+1)

]
1τk+1≤T + ξ1τk+1>T

+
∫ τk+1∧T

t

F k
(
s, Y k

s (τ(k), ζ(k)),Z
k
s (τ(k), ζ(k))

)
ds

−
∫ τk+1∧T

t

Zk
s (τ(k), ζ(k)) dWs, τk ∧ T ≤ t < τk+1 ∧ T

)

(4.4)

for each k = 0, . . . , n − 1.

Step 2. We introduce a family of processes ( ˜̄Y k
)0≤k≤n (resp. (Ỹ

k
)0≤k≤n). We de-

fine it recursively by

˜̄Yn

t = Ȳ n
t (τ(n), ζ(n))1t≥τn (resp. Ỹ

n

t = Yn
t (τ(n), ζ(n))1t≥τn), 0 ≤ t ≤ T ,

and for k = 0, . . . , n − 1

˜̄Y k

t = Ȳ k
t (τ(k), ζ(k))1τk≤t<τk+1 + ˜̄Y k+1

t 1t≥τk+1
(
resp. Ỹ

k

t = Y k
t (τ(k), ζ(k))1τk≤t<τk+1 + Ỹ

k+1
t 1t≥τk+1

)
, 0 ≤ t ≤ T .

These processes are càd-làg with jumps only at times τl , l = 1, . . . , n. Notice also

that ˜̄Yn
(resp. Ỹ

n
, ˜̄Y k

, Ỹ
k
) satisfies equation (4.1) (resp. (4.2), (4.3), and (4.4)).

Step 3. We prove by a backward induction that Ỹ
n ≤ ˜̄Yn

on [τn ∧ T ,T ] and Ỹ
k ≤

˜̄Y k
on [τk ∧ T , τk+1 ∧ T ), for each k = 0, . . . , n − 1.
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• Since ξ ≤ ξ̄ , Fn ≤ F̄ n and F̄ n or Fn satisfy a comparison theorem for Brownian
BSDEs, we immediately get from (4.1) and (4.2)

Ỹ
n

t ≤ ˜̄Yn

t , τn ∧ T ≤ t ≤ T .

• Fix k ≤ n−1 and suppose that Ỹ
k+1
t ≤ ˜̄Y k+1

t for t ∈ [τk+1 ∧T , τk+2 ∧T ). Denote

by p ˜̄Y l
(resp. pỸ

l
) the predictable projection of ˜̄Y l

(resp. Ỹ
l
) for l = 0, . . . , n. Since

the random measure μ admits an intensity absolutely continuous w.r.t. the Lebesgue

measure on [0, T ], ˜̄Y l
(resp. Ỹ

l
) has inaccessible jumps (see Chap. IV of [9]). We

then have

p ˜̄Y l

t = ˜̄Y l

t−
(
resp. pỸ

l

t = Ỹ
l

t−
)
, 0 ≤ t ≤ T .

From (4.3) and (4.4), and the definition of ˜̄Y l
(resp. Ỹ

l
), we have for l = k

p ˜̄Y k

t = p ˜̄Y k+1

τk+1
1τk+1≤T + ξ̄1τk+1>T +

∫ τk+1∧T

t

F̄ k
(
s,p ˜̄Y k

s , Z̄
k
s

(
τ(k), ζ(k)

))
ds

−
∫ τk+1∧T

t

Z̄k
s (τ(k), ζ(k)) dWs, τk ∧ T ≤ t < τk+1 ∧ T . (4.5)

(
resp.

pỸ
k

t = pỸ
k+1
τk+1

1τk+1≤T + ξ1τk+1>T +
∫ τk+1∧T

t

F k
(
s,p Ỹ

k

s ,Z
k
s

(
τ(k), ζ(k)

))
ds

−
∫ τk+1∧T

t

Zk
s (τ(k), ζ(k)) dWs, τk ∧ T ≤ t < τk+1 ∧ T

)
. (4.6)

Since ˜̄Y k+1

τk+1
≥ Ỹ

k+1
τk+1

, we get p ˜̄Y k+1

τk+1
≥ pỸ

k+1
τk+1

. This together with conditions on ξ̄ , ξ ,

F̄ k and Fk give the result.

Step 4. Since ˜̄Y k
(resp. Ỹ

k
) coincides with Ȳ (resp. Y ) on [τk ∧ T , τk+1 ∧ T ), we

get the result. �

Remark 4.2 It is possible to obtain Theorem 4.1 under weaker assumptions than
(HC). For instance, it is sufficient to assume that W is a G-semimartingale for the
form

W = M +
∫ .

0
as ds,

with M a G-local martingale and a a G-adapted process satisfying

E

[
exp

(
−

∫ T

0
as dMs − 1

2

∫ T

0
|as |2 ds

)]
= 1. (4.7)

Indeed, we first notice that (Mt)t∈[0,T ] is a G-Brownian motion since it is a con-
tinuous G-martingale with 〈M,M〉t = t for t ≥ 0. Then, from (4.7) we can apply
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Girsanov Theorem and find that (Wt )t∈[0,T ] is a (Q,G)-Brownian motion where Q

is the probability measure equivalent to P defined by

dQ

dP

∣∣
∣∣

GT

= exp

(
−

∫ T

0
as dMs − 1

2

∫ T

0
|as |2 ds

)
.

Therefore we can prove Theorem 4.1 under Q. Since Q is equivalent to P the conclu-
sion remains true under P.

4.2 Uniqueness via Comparison

In this form, the previous theorem is not usable since the condition on the generators
of the Brownian BSDEs is implicit: it involves the solution of the previous Brownian
BSDEs at each step. We give, throughout the sequel, an explicit example for which
Theorem 4.1 provides uniqueness. This example is based on a comparison theorem
for quadratic BSDEs given by Briand and Hu [6]. We first introduce the following
assumptions.

(HUQ1) The function f (t, y, ., u) is concave for all (t, y,u) ∈ [0, T ] × R ×
Bor(E,R).

(HUQ2) There exists a constant L s.t.
∣∣f

(
t, y, z,

(
u(e) − y

)
e∈E

) − f
(
t, y′, z,

(
u(e) − y′)

e∈E

)∣∣ ≤ L
∣∣y − y′∣∣

for all (t, y, y′, z, u) ∈ [0, T ] × [R]2 × R
d × Bor(E,R).

(HUQ3) There exists a constant C > 0 such that

∣∣f (t, y, z, u)
∣∣ ≤ C

(
1 + |y| + |z|2 +

∫

E

|u(e)|λt (e) de

)

for all (t, y, z, u) ∈ [0, T ] × R × R
d × Bor(E,R).

(HUQ4) f (t, ., u) = f (t, .,0) for all u ∈ Bor(E,R) and all t ∈ (τn ∧ T ,T ].

Theorem 4.2 Under (HD), (HBI), (HC), (HUQ1), (HUQ2), (HUQ3), and (HUQ4),
BSDE (2.4) admits at most one solution.

Proof Let (Y,Z,U) and (Y ′,Z′,U ′) be two solutions of (2.4) in S ∞
G

[0, T ] ×
L2

G
[0, T ] × L2(μ). Define the process Ũ (resp. Ũ ′) by

Ũt (e)
(
resp. Ũ ′

t (e)
) = Ut(e)1t≤τn

(
resp. U ′

t (e)1t≤τn

)
, (t, e) ∈ [0, T ] × E.

Then, U = Ũ and U ′ = Ũ ′ in L2(μ). Therefore, from (HUQ4), (Y,Z, Ũ) and
(Y ′,Z′, Ũ ′) are also solutions to (2.4) in S ∞

G
[0, T ] × L2

G
[0, T ] × L2(μ).

We now prove by a backward induction on k = n,n − 1, . . . ,1,0 that

Yt1τk≤t = Y ′
t 1τk≤t , t ∈ [0, T ].

• Suppose that k = n. Then, (Yt1τn≤t ,Zt1τn<t , (Ũt + Yt−)1τn−1<t≤τn) and
(Y ′

t 1τn≤t ,Z
′
t1τn<t , (Ũ

′
t + Yt−)1τn−1<t≤τn) are solution to
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Yt = ξ1τn≤T +
∫ T

t

1τn<sf (s, Ys,Zs,0) ds

−
∫ T

t

Zs dWs −
∫ T

t

∫

E

Us(e)μ(de, ds), t ∈ [0, T ].
Using Remark 4.1 and Theorem 5 in [6], we find that the generator 1τn<.f satisfies
a comparison theorem in the sense of Definition 4.1. We can then apply Theorem 4.1
with

F(t, y, z,u) = F̄ (t, y, z, u) = 1τn<tf (t, y, z,0),

for (t, y, z, u) ∈ [0, T ] × R × R
d × Bor(E,R), and we get Y.1τn≤. = Y ′

. 1τn≤..
• Suppose that Y.1τk+1≤. = Y ′

. 1τk+1≤.. We can then choose Y j and Y ′j appearing
in the decomposition of the processes Y and Y ′ given by Lemma 2.1(ii) such that

Y
j
s (θ(j), e(j)) = Y

′j
s (θ(j), e(j)),

for all (θ, e) ∈ Δn × En and j = k + 1, . . . , n. Therefore, we find that (Yt1τk≤t ,

Zt1τk<t , (Ũt +Yt−1t≤τk
)1τk−1<t ) and (Y ′

t 1τk≤t ,Z
′
t1τk<t , (Ũ

′
t +Yt−1t≤τk

)1τk−1<t ) are
solution to

Yt = ξ1τk≤T +
∫ T

t

F (s, Ys,Zs) ds −
∫ T

t

Zs dWs −
∫ T

t

∫

E

Us(e)μ(de, ds),

for t ∈ [0, T ], where the generator F is defined by

F(t, y, z) =
n−1∑

j=k

1τk<t≤τk+1F
k(t, y, z) + 1τn<tF

n(t, y, z),

where

Fk(t, y, z) = f
(
t, y, z,Y k+1

s (τ(k), s, ζ(k), .) − y, τ(k), ζ(k)

)
,

F n(t, y, z) = f (t, y, z,0),

for all (t, y, z) ∈ [0, T ] × R × R
d . Using Remark 4.1 and Theorem 5 in [6], we see

that the generator F satisfies a comparison theorem in the sense of Definition 4.1. We
can then apply Theorem 4.1 and we get Y.1τk≤. = Y ′1τk≤..

• Finally the result holds true for all k = 0, . . . , n which gives Y = Y ′.
• We now prove that Z = Z′ and U = U ′. Identifying the finite variation part and

the unbounded variation part of Y we get Z = Z′. Then, identifying the pure jump
part of Y we get Ũ = Ũ ′. Since Ũ = U (resp. Ũ ′ = U ′) in L2(μ), we finally get
(Y,Z,U) = (Y ′,Z′,U ′). �

5 Exponential Utility Maximization in a Jump Market Model

We consider a financial market model with a riskless bond assumed for simplicity
equal to one, and a risky asset subjects to some counterparty risks. We suppose that
the Brownian motion W is one dimensional (d = 1). The dynamic of the risky asset is
affected by other firms, the counterparties, which may default at some random times,
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inducing consequently some jumps in the asset price. However, this asset still exists
and can be traded after the default of the counterparties. We keep the notation of
previous sections.

Throughout the sequel, we suppose that (HD), (HBI), and (HC) are satisfied. We
consider that the price process S evolves according to the equation

St = S0 +
∫ t

0
Su−

(
bu du + σu dWu +

∫

E

βu(e)μ(de, du)

)
, 0 ≤ t ≤ T .

All processes b, σ and β are assumed to be G-predictable. We introduce the following
assumptions on the coefficients appearing in the dynamic of S:

(HS1) The processes b, σ and β are uniformly bounded: there exists a constant C

s.t.

|bt | + |σt | +
∣∣βt (e)

∣∣ ≤ C, 0 ≤ t ≤ T , e ∈ E, P-a.s.

(HS2) There exists a positive constant cσ such that

σt ≥ cσ , 0 ≤ t ≤ T , P-a.s.

(HS3) The process β satisfies

βt (e) > −1, 0 ≤ t ≤ T , e ∈ E, P-a.s.

(HS4) The process ϑ defined by ϑt = bt

σt
, t ∈ [0, T ], is uniformly bounded: there

exists a constant C such that

|ϑt | ≤ C, 0 ≤ t ≤ T , P-a.s.

We notice that (HS1) allows the process S to be well defined and (HS3) ensures it to
be positive.

A self-financing trading strategy is determined by its initial capital x ∈ R and the
amount of money πt invested in the stock, at time t ∈ [0, T ]. The wealth at time t

associated with a strategy (x,π) is

X
x,π
t = x +

∫ t

0
πsbs ds +

∫ t

0
πsσs dWs +

∫ t

0

∫

E

πsβs(e)μ(de, ds), 0 ≤ t ≤ T .

We consider a contingent claim that is a random payoff at time T described by a
GT -measurable random variable B . We suppose that B is bounded and satisfies

B =
n∑

k=0

Bk(τ(k), ζ(k))1τk≤T <τk+1 ,

where B0 is FT -measurable and Bk is FT ⊗ B(Δk) ⊗ B(Ek)-measurable for each
k = 1, . . . , n. Then, we define

V (x) := sup
π∈A

E
[− exp

(−α
(
X

x,π
T − B

))]
, (5.1)

the maximal expected utility that we can achieve by starting at time 0 with the initial
capital x, using some admissible strategy π ∈ A (which is defined throughout the
sequel) on [0, T ] and paying B at time T . α is a given positive constant which can be
seen as a coefficient of absolute risk aversion.
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Finally, we introduce a compact subset C of R with 0 ∈ C , which represents an
eventual constraint imposed to the trading strategies, that is, πt (ω) ∈ C . We then
define the space A of admissible strategies.

Definition 5.1 The set A of admissible strategies consists of all R-valued P (G)-
measurable processes π = (πt )0≤t≤T which satisfy

E

∫ T

0
|πtσt |2 dt + E

∫ T

0

∫

E

∣∣πtβt (e)
∣∣λt (e) de dt < ∞,

and πt ∈ C , dt ⊗ dP-a.e., as well as the uniform integrability of the family
{
exp

(−αXx,π
τ

) : τ stopping time valued in [0, T ]}.

We first notice that the compactness of C implies the integrability conditions im-
posed to the admissible strategies.

Lemma 5.1 Any P (G)-measurable process π valued in C satisfies π ∈ A.

The proof is exactly the same as in [24]. We therefore omit it.
In order to characterize the value function V (x) and an optimal strategy, we con-

struct, as in [14] and [24], a family of stochastic processes (R(π))π∈A with the fol-
lowing properties:

(i) R
(π)
T = − exp(−α(X

x,π
T − B)) for all π ∈ A,

(ii) R
(π)
0 = R0 is constant for all π ∈ A,

(iii) R(π) is a supermartingale for all π ∈ A and there exists π̂ ∈ A such that R(π̂) is
a martingale.

Given processes owning these properties we can compare the expected utilities of the
strategies π ∈ A and π̂ ∈ A by

E
[− exp

(−α
(
X

x,π
T − B

))] ≤ R0(x) = E
[− exp

(−α
(
X

x,π̂
T − B

))] = V (x),

whence π̂ is the desired optimal strategy. To construct this family, we set

R
(π)
t = − exp

(−α
(
X

x,π
t − Yt

))
, 0 ≤ t ≤ T , π ∈ A,

where (Y,Z,U) is a solution of the BSDE

Yt = B +
∫ T

t

f (s,Zs,Us) ds −
∫ T

t

Zs dWs

−
∫ T

t

∫

E

Us(e)μ(de, ds), 0 ≤ t ≤ T . (5.2)

We have to choose a function f for which R(π) is a supermartingale for all π ∈ A,
and there exists a π̂ ∈ A such that R(π̂) is a martingale. We assume that there exists a
triple (Y,Z,U) solving a BSDE with jumps of the form (5.2), with terminal condition
B and with a driver f to be determined. We first apply Itô’s formula to R(π) for any
strategy π
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dR
(π)
t = R

(π)

t−

[(
−α

(
f (t,Zt ,Ut ) + πtbt

) + α2

2
(πtσt − Zt)

2
)

dt

− α(πtσt − Zt) dWt +
∫

E

(
exp

(−α
(
πtβt (e) − Ut(e)

)) − 1
)
μ(de, dt)

]
.

Thus, the process R(π) satisfies the following SDE:

dR
(π)
t = R

(π)

t− dM
(π)
t + R

(π)
t dA

(π)
t , 0 < t ≤ T ,

with M(π) a local martingale and A(π) a finite variation continuous process given by
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dM
(π)
t := −α(πtσt − Zt) dWt +

∫

E

(
exp

(−α
(
πtβt (e) − Ut(e)

)) − 1
)
μ̃(de, dt),

dA
(π)
t :=

(
−α

(
f (t,Zt ,Ut ) + πtbt

) + α2

2
(πtσt − Zt)

2

+
∫

E

(
exp

(−α
(
πtβt (e) − Ut(e)

)) − 1
)
λt (e) de

)
dt.

It follows that R(π) has the multiplicative form

R
(π)
t = R

(π)
0 E

(
M(π)

)
t
exp

(
A

(π)
t

)
,

where E(M(π)) denotes the Doleans-Dade exponential of the local martingale M(π).
Since exp(−α(πtβt (e) − Ut(e))) − 1 > −1, P-a.s., the Doleans-Dade exponential
of the discontinuous part of M(π) is a positive local martingale and hence, a super-
martingale. The supermartingale condition in (iii) holds true, provided, for all π ∈ A,
the process exp(A(π)) is nondecreasing, this entails

−α
(
f (t,Zt ,Ut ) + πtbt

) + α2

2
(πtσt − Zt)

2

+
∫

E

(
exp

(−α
(
πtβt (e) − Ut(e)

)) − 1
)
λt (e) de ≥ 0.

This condition holds true, if we define f as follows:

f (t, z, u) := inf
π∈C

{
α

2

∣∣∣∣πσt −
(

z + ϑt

α

)∣∣∣∣

2

+
∫

E

exp(α(u(e) − πβt (e))) − 1

α
λt (e) de

}

− ϑtz − |ϑt |2
2α

,

recall that ϑt = bt/σt for t ∈ [0, T ].

Theorem 5.1 Under (HD), (HBI), (HC), (HS1), (HS2), (HS3), and (HS4), the value
function of the optimization problem (5.1) is given by

V (x) = − exp
(−α(x − Y0)

)
, (5.3)

where Y0 is defined as the initial value of the unique solution (Y,Z,U) ∈ S ∞
G

[0, T ]×
L2

G
[0, T ] × L2(μ) of the BSDE
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Yt = B +
∫ T

t

f (s,Zs,Us) ds −
∫ T

t

Zs dWs

−
∫ T

t

∫

E

Us(e)μ(de, ds), 0 ≤ t ≤ T , (5.4)

with

f (t, z, u) := inf
π∈C

{
α

2

∣
∣∣∣πσt −

(
z + ϑt

α

)∣
∣∣∣

2

+
∫

E

exp(α(u(e) − πβt (e))) − 1

α
λt (e) de

}

− ϑtz − |ϑt |2
2α

,

for all (t, z, u) ∈ [0, T ] × R × Bor(E,R). There exists an optimal trading strategy
π̂ ∈ A which satisfies

π̂t ∈ arg min
π∈C

{
α

2

∣∣∣∣πσt −
(

z + ϑt

α

)∣∣∣∣

2

+
∫

E

exp(α(u(e) − πβt (e))) − 1

α
λt (e) de

}
, (5.5)

for all t ∈ [0, T ].

Proof Step 1. We first prove the existence of a solution to BSDE) (5.4). We first
check the measurability of the generator f . Notice that we have f (., ., ., .) =
infπ∈C F(π, ., ., ., .) where F is defined by

F(π, t, y, z, u) := α

2

∣∣∣∣πσt −
(

z + ϑt

α

)∣∣∣∣

2

+
∫

E

exp(α(u(e) − πβt (e))) − 1

α
λt (e) de

for all (ω, t,π, y, z,u) ∈ Ω ×[0, T ]× C ×R×R×Bor(E,R). From Fatou’s Lemma
we find that u �→ ∫

E
u(e) de is l.s.c. and hence measurable on Bor(E,R+) := {u ∈

Bor(E,R) : u(e) ≥ 0,∀e ∈ E}. Therefore F(π, ., ., ., .) is P (G) ⊗ B(R) ⊗ B(R) ⊗
B(Bor(E,R))-measurable for all π ∈ C . Since F(., t, y, z, u) is continuous for all
(t, y, z, u) we have f (., ., ., .) = infπ∈C∩Q F(π, ., ., ., .), and f is P (G) ⊗ B(R) ⊗
B(R) ⊗ B(Bor(E,R))-measurable.

We now apply Theorem 3.1. Let σk , ϑk and βk , k = 0, . . . , n, be the respective
terms appearing in the decomposition of σ , ϑ and β given by Lemma 2.1. Using
(HS1) and (HS4), we can assume w.l.o.g. that these terms are uniformly bounded.
Then, in the decomposition of the generator f , we can choose the functions f k ,
k = 0, . . . , n, as

f n(t, z, u, θ, e) = inf
π∈C

{
α

2

∣∣∣∣πσn
t (θ, e) −

(
z + ϑn

t (θ, e)

α

)∣∣∣∣

2}
− ϑn

t (θ, e)z

− |ϑn
t (θ, e)|2

2α

and
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f k(t, z, u, θ(k), e(k))

= inf
π∈C

{
α

2

∣∣∣∣πσk
t (θ(k), e(k)) −

(
z + ϑk

t (θ(k), e(k))

α

)∣∣∣∣

2

+
∫

E

exp(α(u(e′) − πβk
t (θ(k), e(k), e

′))) − 1

α
λk+1

t

(
e′, θ(k), e(k)

)
de′

}

− ϑk
t (θ(k), e(k))z − |ϑk

t (θ(k), e(k))|2
2α

,

for k = 0, . . . , n − 1 and (θ, e) ∈ Δn × En.
Notice also that since B is bounded, we can choose Bk , k = 0, . . . , n, uniformly

bounded. We now prove by backward induction on k that the BSDEs (we shall omit
the dependence on (θ, e))

Yn
t = Bn +

∫ T

t

f n
(
s,Zn

s ,0
)
ds −

∫ T

t

Zn
s dWs, θn ∧ T ≤ t ≤ T , (5.6)

and

Y k
t = Bk +

∫ T

t

f k
(
s,Zk

s , Y
k+1
s (s, .) − Y k

s

)
ds

−
∫ T

t

Zk
s dWs, θk ∧ T ≤ t ≤ T , k = 0, . . . , n − 1 (5.7)

admit a solution (Y k,Zk) in S ∞
F

[θk ∧ T ,T ] × L2
F
[θk ∧ T ,T ] such that Y k (resp. Zk)

is P M(F) ⊗ B(Δk) ⊗ B(Ek) (resp. P (F) ⊗ B(Δk) ⊗ B(Ek))-measurable with

sup
(θ,e)∈Δn×En

∥
∥Y k(θ(k), e(k))

∥
∥

S ∞[θk∧T ,T ] + ∥
∥Zk(θ(k), e(k))

∥
∥

L2[θk∧T ,T ] < ∞,

for all k = 0, . . . , n.
• Since 0 ∈ C , we have

−ϑn
t z − |ϑn

t |2
2α

≤ f n(t, z,0) ≤ α

2
|z|2.

Therefore, we can apply Theorem 2.3 of [22], and we see that for any (θ, e) ∈ Δn ×
En, there exists a solution (Y n(θ, e),Zn(θ, e)) to BSDE (5.6) in S ∞

F
[θn ∧ T ,T ] ×

L2
F
[θn ∧ T ,T ]. Moreover, this solution is constructed as a limit of Lipschitz BSDEs

(see [22]). Using Proposition C.1, we find that Yn (resp. Zn) is P M(F) ⊗ B(Δn) ⊗
B(En) (resp. P (F) ⊗ B(Δn) ⊗ B(En))-measurable.

Then, using Proposition 2.1 of [22], we get the existence of a constant K such that

sup
(θ,e)∈Δn×En

∥∥Yn(θ, e)
∥∥

S ∞[θn∧T ,T ] + ∥∥Zn(θ, e)
∥∥

L2[θn∧T ,T ] ≤ K.

• Suppose that BSDE (5.7) admits a solution at rank k + 1 (k ≤ n − 1) with

sup
(θ,e)∈Δn×En

{∥∥Y k+1(θ(k+1), e(k+1))
∥∥

S ∞[θk+1∧T ,T ]

+ ∥∥Zk+1(θ(k+1), e(k+1))
∥∥

L2[θk+1∧T ,T ]
}

< ∞. (5.8)
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We denote gk the function defined by

gk(t, y, z, θ(k), e(k)) = f k
(
t, z, Y k+1

t (θ(k), t, e(k), .) − y, θ(k), e(k)

)
,

for all (t, y, z) ∈ [0, T ] × R × R and (θ, e) ∈ Δn × En. Since gk has an exponential
growth in the variable y in the neighborhood of −∞, we cannot directly apply our
previous results. We then prove via a comparison theorem that there exists a solution
by introducing another BSDE which admits a solution and whose generator coincides
with g in the domain where the solution lives.

Let (Y k(θ(k), e(k)),Z
k(θ(k), e(k))) be the solution in S ∞

F
[θk ∧ T ,T ] × L2

F
[θk ∧

T ,T ] to the linear BSDE

Y k
t (θ(k), e(k)) = Bk(θ(k), e(k)) +

∫ T

t

gk
(
s, Y k

s ,Z
k
s

)
(θ(k), e(k)) ds

−
∫ T

t

Zk
s (θ(k), e(k)) dWs, θk ∧ T ≤ t ≤ T ,

where

gk(t, y, z, θ(k), e(k)) = −ϑk
t (θ(k), e(k))z − ϑk

t (θ(k), e(k))

2α
,

for all (t, y, z) ∈ [0, T ] × R × R. Since Bk and ϑk are uniformly bounded, we have

sup
(θ(k),e(k))∈Δk×Ek

∥∥Y k(θ(k), e(k))
∥∥

S ∞[θk∧T ,T ] < ∞. (5.9)

Then, define the generator g̃k by

g̃k(t, y, z, θ(k), e(k)) = gk
(
t, y ∨ Y k

t (θ(k), e(k)), z, θ(k), e(k)

)
,

for all (t, y, z) ∈ [0, T ] × R × R and (θ, e) ∈ Δn × En.
Moreover, since 0 ∈ C , we get from (5.8) and (5.9) the existence of a positive

constant C such that
∣∣g̃k(t, y, z, θ(k), e(k))

∣∣ ≤ C
(
1 + |z|2),

for all (t, y, z) ∈ [0, T ] × R × R and (θ, e) ∈ Δn × En. We can then apply Theo-
rem 2.3 of [22], and we find that the BSDE

Ỹ k
t (θ(k), e(k)) = Bk(θ(k), e(k)) +

∫ T

t

g̃k
(
s, Ỹ k

s , Z̃k
s

)
(θ(k), e(k)) ds

−
∫ T

t

Z̃k
s (θ(k), e(k)) dWs, θk ∧ T ≤ t ≤ T ,

admits a solution (Ỹ k(θ(k), e(k)), Z̃
k(θ(k), e(k))) ∈ S ∞

F
[θk ∧ T ,T ] × L2

F
[θk ∧ T ,T ].

Using Proposition 2.1 of [22], we get

sup
(θ(k),e(k))∈Δk×Ek

∥∥Ỹ k(θ(k), e(k))
∥∥

S ∞[θk∧T ,T ] < ∞.

Then, since g̃k ≥ gk and since gk is Lipschitz continuous, we get from the com-

parison theorem for BSDEs that Ỹ k ≥ Y k . Hence, (Ỹ k, Z̃k) is solution to BSDE
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(5.7). Notice then that we can choose Ỹ k (resp. Z̃k) as a P M(F) ⊗ B(Δk) ⊗ B(Ek)

(resp. P (F) ⊗ B(Δk) ⊗ B(Ek))-measurable process. Indeed, these processes are
solutions to quadratic BSDEs and hence can be written as the limit of solutions
to Lipschitz BSDEs (see [22]). Using Proposition C.1 with X = Δk × Ek and
dρ(θ, e) = γ0(θ, e) dθ de we see that the solutions to Lipschitz BSDEs are P (F) ⊗
B(Δk) ⊗ B(Ek)-measurable and hence Ỹ k (resp. Z̃k) is P M(F) ⊗ B(Δk) ⊗ B(Ek)

(resp. P (F) ⊗ B(Δk) ⊗ B(Ek))-measurable.
Step 2. We now prove the uniqueness of a solution to BSDE (5.4). Let (Y 1,Z1,U1)

and (Y 2,Z2,U2) be two solutions of BSDE (5.4) in S ∞
G

[0, T ] × L2
G
[0, T ] × L2(μ).

Applying an exponential change of variable, we see that (Ỹ i , Z̃i , Ũ i) defined for
i = 1,2 by

Ỹ i
t = exp

(
αY i

t

)
,

Z̃i
t = αỸ i

t Z
i
t ,

Ũ i
t (e) = Ỹ i

t−
(
exp

(
αUi

t (e)
) − 1

)
,

for all t ∈ [0, T ], are solution in S ∞
G

[0, T ] × L2
G
[0, T ] × L2(μ) to the BSDE

Ỹt = exp(αB) +
∫ T

t

f̃ (s, Ỹs , Z̃s, Ũs) ds −
∫ T

t

Z̃s dWs −
∫ T

t

∫

E

Ũs(e)μ(de, ds),

where the generator f̃ is defined by

f̃ (t, y, z, u) := inf
π∈C

{
α2

2
|πσt |2y − απσt (z + ϑty)

+
∫

E

[
e−απβt (e)

(
u(e) + y

) − y
]
λt (e) de

}
.

We then notice that
• f̃ satisfies (HUQ1) since it is an infimum of linear functions in the variable z,
• f̃ satisfies (HUQ2). Indeed, from the definition of f̃ we have

f̃
(
t, y, z, u(.) − y

) − f̃
(
t, y′, z, u(.) − y′)

≥ inf
π∈C

{(
y − y′)

(
ϑt + α

2
πσt

)
απσt

}
− (

y − y′)
∫

E

λt (e) de,

for all (t, z, u) ∈ [0, T ] × R × Bor(E,R) and y, y′ ∈ R. Since C is compact, we get
from (HBI) the existence of a constant C such that

f̃ (t, y, z, u − y) − f̃
(
t, y′, z, u − y′) ≥ −C

∣∣y − y′∣∣.

Inverting y and y′ we get the result.
• f̃ satisfies (HUQ3). Indeed, since 0 ∈ C , we get from (HBI) the existence of a

constant C such that

f̃ (t, y, z, u) ≤ C

(
|y| +

∫

E

∣∣u(e)
∣∣λt (e) de

)
,

for (t, y, z, u) ∈ [0, T ] × R × R × Bor(E,R). We get from (HBI), there exists a
positive constant C s.t.
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f̃ (t, y, z, u) ≥ inf
π∈C

{
α2

2
|πσt |2y − απσt (z + ϑty)

}

+ inf
π∈C

{∫

E

e−απβt (e)
(
u(e) + y

)
λt (e) de

}
− C|y|.

Then, from (HS1), (HS2), and the compactness of C , we get

f̃ (t, y, z, u) ≥ −C

(
1 + |y| + |z| +

∫

E

∣∣u(e)
∣∣λt (e) de

)
,

for all (t, y, z, u) ∈ [0, T ] × R × R × Bor(E,R).
• f̃ satisfies (HUQ4) since at time t it is an integral of the variable u w.r.t. λt ,

which vanishes on the interval (τn,∞).
Since f̃ satisfies (HUQ1), (HUQ2), (HUQ3), and (HUQ4), we get from Theo-

rem 4.2 that (Ỹ 1, Z̃1, Ũ1) = (Ỹ 2, Z̃2, Ũ2) in S ∞
G

[0, T ] × L2
G
[0, T ] × L2(μ). From

the definition of (Ỹ i , Z̃i , Ũ i) for i = 1,2, we get (Y 1,Z1,U1) = (Y 2,Z2,U2) in
S ∞

G
[0, T ] × L2

G
[0, T ] × L2(μ).

Step 3. We check that M(π̂) is a BMO-martingale. Since C is compact, (HS1) holds
and U is bounded as the jump part of the bounded process Y , it suffices to prove that∫ .

0 Zs dWs is a BMO-martingale.
Let M denote the upper bound of the uniformly bounded process Y . Applying

Itô’s formula to (Y − M)2, we obtain for any stopping time τ ≤ T

E

[∫ T

τ

|Zs |2 ds

∣∣∣∣Gτ

]
= E

[
(ξ − M)2

∣∣Gτ

] − |Yτ − M|2

+ 2E

[∫ T

τ

(Ys − M)f (s,Zs,Us) ds

∣∣∣∣Gτ

]
.

The definition of f yields

−ϑtZt − |ϑt |2
2α

− 1

α

∫

E

λt (e) de ≤ f (t,Zt ,Ut ),

for all t ∈ [0, T ]. Therefore, since (HBI) and (HS4) hold, we get

E

[∫ T

τ

|Zs |2 ds | Gτ

]
≤ C

(
1 + E

[∫ T

τ

|Zs + 1|ds

∣∣∣
∣Gτ

])

≤ C + 1

2
E

[∫ T

τ

|Zs |2 ds

∣∣∣
∣Gτ

]
.

Hence,
∫ .

0 Zs dWs is a BMO-martingale for k = 0, . . . , n.
Step 4. It remains to show that R(π) is a supermartingale for any π ∈ A. Since

π ∈ A, the process E(M(π)) is a positive local martingale, because it is the Doleans–
Dade exponential of a local martingale whose the jumps are grower than −1. Hence,
there exists a sequence of stopping times (δn)n∈N satisfying limn→∞ δn = T , P-a.s.,
such that E(M(π)).∧δn is a positive martingale for each n ∈ N. The process A(π) is

nondecreasing. Thus, R
(π)
t∧δn

= R0E(M(π))t∧δn exp(A
(π)
t∧δn

) is a supermartingale, i.e.
for s ≤ t

E
[
R

(π)
t∧δn

∣∣Gs

] ≤ R
(π)
s∧δn

.
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For any set A ∈ Gs , we have

E
[
R

(π)
t∧δn

1A

] ≤ E
[
R

(π)
s∧δn

1A

]
. (5.10)

On the other hand, since

R
(π)
t = − exp

(−α
(
X

x,π
t − Yt

))
,

we use both the uniform integrability of (exp(−αX
x,π
δ )) where δ runs over the set of

all stopping times and the boundedness of Y to obtain the uniform integrability of
{
R(π)

τ : τ stopping time valued in [0, T ]}.
Hence, the passage to the limit as n goes to ∞ in (5.10) is justified and it implies

E
[
R

(π)
t 1A

] ≤ E
[
R(π)

s 1A

]
.

We obtain the supermartingale property of R(π).
To complete the proof, we show that the strategy π̂ defined by (5.5) is optimal.

We first notice that from Lemma 5.1 we have π̂ ∈ A. By definition of π̂ , we have
A(π̂) = 0 and hence, R

(π̂)
t = R0E(M(π̂))t . Since C is compact, (HS1) holds and U is

bounded as jump part of the bounded process Y , there exists a constant δ > 0 s.t.

ΔM
(π̂)
t = M

(π̂)
t − M

(π̂)

t− ≥ −1 + δ.

Applying the Kazamaki criterion to the BMO martingale M(π̂) (see [21]) we find that
E(M(π̂)) is a true martingale. As a result, we get

sup
π∈A

E
(
R

(π)
T

) = R0 = V (x).

Using that (Y,Z,U) is the unique solution of the BSDE (5.4), we obtain the expres-
sion (5.3) for the value function. �

Remark 5.1 Concerning the existence and uniqueness of a solution to BSDE (5.4),
we notice that the compactness assumption on C is only need for the uniqueness.
Indeed, in the case where C is only a closed set, the generator of the BSDE still
satisfies a quadratic growth condition which allows to apply Kobylanski existence
result. However, for the uniqueness of the solution to BSDE (5.4), we need C to be
compact to get Lipschitz continuous decomposed generators w.r.t. y. We notice that
the existence result for a similar BSDE in the case of Poisson jumps is proved by
Morlais in [24] and [25] without any compactness assumption on C .
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Appendix A: Proof of Lemma 2.1(ii)

We prove the decomposition for the progressively measurable processes X of the
form

Xt = Jt +
∫ t

0
Us(e)μ(de, ds), t ≥ 0,

where J is P (G)-measurable and U is P (G) ⊗ B(E)-measurable. To prove the de-
composition (2.2), it suffices to prove it for the process J and the process V defined
by

Vt =
∫ t

0
Us(e)μ(de, ds), t ≥ 0.

• Decomposition of the process J .

Since J is P (G)-measurable, we can write

Jt = J 0
t 1t≤τ1 +

n∑

k=1

J k
t (τ(k), ζ(k))1τk<t≤τk+1 ,

for all t ≥ 0, where J 0 is P (F)-measurable, and J k is P (F) ⊗ B(Δk) ⊗ B(Ek)-
measurable, for k = 1, . . . , n. This leads to the following decomposition of J :

Jt = J 0
t 1t≤τ1 +

n∑

k=1

J̄ k
t (τ(k), ζ(k))1τk≤t<τk+1 ,

where

J̄ k
t (θ(k), e(k)) = J k

t (θ(k), e(k)) + (
J k−1

t (θ(k−1), e(k−1)) − J k
t (θ(k), e(k))

)
1t=θk

,

for k = 1, . . . , n and (θ(k), e(k)) ∈ Δk × Ek . Since J k is P (F) ⊗ B(Δk) ⊗ B(Ek)-
measurable for all k = 0, . . . , n, we find that (J̄ k

t )t∈[0,s] is Fs ⊗ B([0, s]) ⊗ B(Δk) ⊗
B(Ek)-measurable for all s ≥ 0.

• Decomposition of the process V .

Since U is P (G) ⊗ B(E)-measurable, we can write

Ut(.) = U0
t (.)1t≤τ1 +

n∑

k=1

Uk
t (τ(k), ζ(k), .)1τk<t≤τk+1 ,

for all t ≥ 0, where U0 is P (F) ⊗ B(E)-measurable, and Uk is P (F) ⊗ B(Δk) ⊗
B(Ek) ⊗ B(E)-measurable, for k = 1, . . . , n. This leads to the following decomposi-
tion of V :

Vt =
n∑

k=1

Uk−1
τk

(τ(k−1), ζ(k))1τk≤t

=
n∑

k=1

(
k∑

j=1

Uj−1
τj

(τ(j−1), ζ(j))1τj ≤t

)

1τk≤t<τk+1

=
n∑

k=1

V k
t (τ(k), ζ(k))1τk≤t<τk+1 ,
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where V k is defined by V 0 = 0 and

V k
t (θ(k), e(k)) =

k∑

j=1

U
j−1
θj

(θ(j−1), e(j))1θj ≤t , t ≥ 0, (θ(k), e(k)) ∈ Δk × Ek,

for k = 1, . . . , n. We now check that, for all s ≥ 0, (V k
t (.))t∈[0,s] is Fs ⊗ B([0, s]) ⊗

B(Δk) ⊗ B(Ek)-measurable. Since Uj is P (F) ⊗ B(Δj ) ⊗ B(Ej )-measurable, we

see that (U
j
t (.))t∈[0,s] is Fs ⊗ B([0, s]) ⊗ B(Δj ) ⊗ B(Ej )-measurable. Therefore

(t, θ(j), e(j)) ∈ [0, s] × Δj × Ej �→ U
j−1
θj

(θ(j−1), e(j))1θj ≤t is Fs ⊗ B([0, s]) ⊗
B(Δj )⊗ B(Ej ) for j = 0, . . . , n. From the definition of V k we see that (V k

t (.))t∈[0,s]
is Fs ⊗ B([0, s]) ⊗ B(Δk) ⊗ B(Ek)-measurable.

Appendix B: Proof of Proposition 2.1

We first give a lemma which is a generalization of a proposition in [12]. Throughout
the sequel, we denote

E F,i,k
t (G)(θ(i−1), e(i−1))

=
∫

Δk−i+1×Ek−i+1
1θi>tE

[
G(θ(k), e(k)) | Ft

]
dθi . . . dθk dei . . . dek,

for any F∞ ⊗ B(Δk) ⊗ B(Ek)-measurable function G and any integers i and k such
that 1 ≤ i ≤ k ≤ n.

Lemma B.1 Fix t, s ∈ R+ such that t ≤ s. Let X be a positive Fs ⊗ B(Δn)⊗ B(En)-
measurable function on Ω × Δn × En, then

E
[
X(τ(n), ζ(n))

∣∣Gt

] =
n∑

i=0

1τi≤t<τi+1

E F,i+1,n
t (Xγs)(τ(i), ζ(i))

E F,i+1,n
t (γt )(τ(i), ζ(i))

.

Proof Let H be a positive and Gt -measurable test random variable, which can be
written

H =
n∑

i=0

Hi(τ(i), ζ(i))1τi≤t<τi+1,

where Hi is Ft ⊗ B(Δi)⊗ B(Ei)-measurable for i = 0, . . . , n. Using the joint density
γt (θ, e) of (τ, ζ ), we have on the one hand

E
[
1τi≤t<τi+1HX(τ(n), ζ(n))

]

= E

[∫

(0,t]i∩Δi×Ei

dθ(i) de(i)H
i
t (θ(i), e(i))E F,i+1,n

t (Xγs)(τ(i), ζ(i))

]
.

On the other hand, we have
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E

[
1τi≤t<τi+1H

E F,i+1,n
t (Xγs)(τ(i), ζ(i))

E F,i+1,n
t (γt )(τ(i), ζ(i))

]

= E

[
1τi≤t<τi+1H

i(τ(i), ζ(i))
E F,i+1,n

t (Xγs)(τ(i), ζ(i))

E F,i+1,n
t (γt )(τ(i), ζ(i))

]

= E

[∫

(0,t]i∩Δi×Ei

dθ(i) de(i)H
i
t (θ(i), e(i))

E F,i+1,n
t (Xγs)(θ(i), e(i))

E F,i+1,n
t (γt )(θ(i), e(i))

× E F,i+1,n
t (γt )(θ(i), e(i))

]

= E
[
1τi≤t<τi+1HX(τ(n), ζ(n))

]
. �

We now prove Proposition 2.1. To this end, we prove that for any nonnegative
P (G) ⊗ B(E)-measurable process U , any T > 0 and any t ∈ [0, T ], we have

E

[∫ T

t

∫

E

Us(e)μ(de, ds)

∣∣∣∣Gt

]
= E

[∫ T

t

∫

E

Us(e)λs(e) de ds

∣∣∣∣Gt

]
, (B.1)

where λ is defined by (2.3).
We first study the left hand side of (B.1). From Lemma 2.1 and Remark 2.1, we

can write

Ut(e) =
n∑

k=0

1τk<t≤τk+1U
k
t (τ(k), ζ(k), e), (t, e) ∈ [0, T ] × E,

where Uk is a P (G)⊗ B(Δk)⊗ B(Ek+1)-measurable process for k = 0, . . . , n. More-
over, since U is nonnegative, we can assume that Uk , k = 0, . . . , n, are nonnegative.
Then, from Lemma B.1, we have

E

[∫ T

t

∫

E

Us(e)μ(de, ds)

∣∣∣∣Gt

]

=
n∑

k=1

E
[
1t<τk≤T Uk−1

τk
(τ(k−1), ζ(k))

∣∣Gt

]

=
n∑

k=1

n∑

i=0

1τi≤t<τi+1

E F,i+1,n
t (1t<θk≤T Uk−1

θk
(θ(k−1), e(k))γT (θ, e))(τ(i), e(i))

E F,i+1,n
t (γt )(τ(i), e(i))

=
n−1∑

k,i=0
i≤k

1τi≤t<τi+1

E F,i+1,n
t (1t<θk+1≤T Uk

θk+1
(θ(k), e(k+1))γθk+1(θ, e))(τ(i), e(i))

E F,i+1,n
t (γt )(τ(i), e(i))

=
n−1∑

k,i=0
i≤k

1τi≤t<τi+1

× E F,i+1,k+1(1t<θk+1≤T Uk
θk+1

(θ(k), e(k+1))γ
k+1
θk+1

(θ(k+1), e(k+1)))(τ(i), e(i))

E F,i+1,n(γt )(τ(i), e(i))
.

We now study the right hand side of (B.1):
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E

[∫ T

t

∫

E

Us(e)λs(e) de ds

∣∣∣∣Gt

]

=
n−1∑

k=0

E

[∫ T

t

∫

E

1τk<s≤τk+1U
k
s (τ(k), ζ(k))λ

k+1
s (e, τ(k), ζ(k)) de ds

∣∣∣∣Gt

]

=
n−1∑

k=0

n∑

i=0

1τi≤t<τi+1

× E F,i+1,n
t

(∫ T

t

∫

E

1θk<s≤θk+1U
k
s (θ(k), e(k))λ

k+1
s (e′, θ(k), e(k))γs(θ, e) de′ ds

)

× (τ(i), ζ(i))

E F,i+1,n
t (γt )(τ(i), e(i))

=
n−1∑

k,i=0
i≤k

1τi≤t<τi+1

× E F,i+1,k
t

(∫ T

t

∫

E

1θk<sU
k
s (θ(k), e(k))λ

k+1
s (e, θ(k), e(k))γ

k
s (θ(k), e(k)) de′ ds

)

× (τ(i), ζ(i))

E F,i+1,n
t (γt )(τ(i), e(i))

=
n−1∑

k,i=0
i≤k

1τi≤t<τi+1

E F,i+1,k
t (

∫ T

t

∫
E

1θk<sU
k
s (θ(k), e(k))γ

k+1
s (θ(k), s, e(k), e

′) de′ ds)

E F,i+1,n
t (γt )(τ(i), e(i))

,

where the last equality comes from the definition of λk . Hence, we get (B.1).

Appendix C: Measurability of Solutions to BSDEs Depending on a Parameter

C.1 Representation for Brownian Martingale Depending on a Parameter

We consider X a Borelian subset of R
p and ρ a finite measure on B(X ). Let

{ξ(x) : x ∈ X } be a family of random variables such that the map ξ : Ω × X → R

is FT ⊗ B(X )-measurable and satisfies
∫

X E|ξ(x)|2ρ(dx) < ∞. In the following re-
sult, we generalize the representation property as a stochastic integral w.r.t. W of
square-integrable random variables to the family {ξ(x) : x ∈ X }. The proof follows
the same lines as for the classical Itô representation Theorem which can be found e.g.
in [26]. For the sake of completeness we sketch the proof.

Theorem C.1 There exists a P (F) ⊗ B(X )-measurable map Z such that∫
X

∫ T

0 E|Zs(x)|2ds ρ(dx) < ∞ and

ξ(x) = E
[
ξ(x)

] +
∫ T

0
Zs(x) dWs, P ⊗ ρ-a.e. (C.1)
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As for the standard representation theorem, we first need a lemma which provides
a dense subset of L2(FT ⊗ B(X ),P ⊗ ρ) generated by easy functions.

Lemma C.1 Random variables of the form

exp

(∫ T

0
ht (x) dWt − 1

2

∫ T

0

∣∣ht (x)
∣∣2

dt

)
, (C.2)

where h is a bounded B([0, T ]) ⊗ B(X )-measurable map span a dense subset of
L2(FT ⊗ B(X ),P ⊗ ρ).

Sketch of the Proof Let Λ ∈ L2(FT ⊗ B(X ),P ⊗ ρ) orthogonal to all functions of
the form (C.2). Then, in particular, we have

G(α1, . . . , αn) =
∫

X
E

[
Λ exp(α1Wt1 + · · · + αnWtn)

]
dρ = 0,

for all α1, . . . , αn ∈ R and all t1, . . . , tn ∈ [0, T ]. Since G is identically equal to zero
on R

n and is analytical it is also identically equal to 0 on C
n. We then have for any

B(X ) ⊗ B(Rp)-measurable function φ such that φ(x, .) ∈ C∞(Rn) with compact
support for all x ∈ X

∫

X
E

[
Yφ(x,Wt1 , . . . ,Wtn)

]
dρ(x)

=
∫

Rn×X
φ̂(x,α1, . . . , αn)

× E
[
Λ exp(α1Wt1 + · · · + αnWtn)

]
dρ(x)dα1 . . . dαn = 0,

where φ̂(x, .) is the Fourier transform of φ(x, .). Hence, Λ is equal to zero since it is
orthogonal to a dense subset of L2(FT ⊗ B(X )). �

Sketch of the Proof of Theorem C.1 First suppose that ξ has the following form:

ξ(x) = exp

(∫ T

0
ht (x) dWt − 1

2

∫ T

0

∣∣ht (x)
∣∣2

dt

)
,

with h a bounded B([0, T ])⊗ B(X )-measurable map. Then, applying Itô’s formula to
the process exp(

∫ .

0 ht (x) dWt − 1
2

∫ .

0 |ht (x)|2 dt), we find that ξ satisfies (C.1) where
the process Z is given by

Zt(x) = ht (x) exp

(∫ t

0
hs(x) dWs − 1

2

∫ t

0

∣∣hs(x)
∣∣2

ds

)
, (t, x) ∈ [0, T ] × X .

Now for any ξ ∈ L2(FT ⊗ B(X ),P ⊗ ρ), there exists a sequence (ξn)n∈N such that
each ξn satisfies

ξn(x) = E
[
ξn(x)

] +
∫ T

0
Zn

s (x) dWs, P ⊗ ρ-a.e.

and (ξn)n∈N converges to ξ in L2(FT ⊗ B(X ),P ⊗ dt ⊗ ρ). Then, using Itô’s
Isometry, we see that the sequence (Zn)n∈N is Cauchy and hence converges in
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L2(P (F) ⊗ B(X ),P ⊗ dt ⊗ ρ) to some Z. Using again the Itô Isometry, we find
that (ξn)n∈N converges to E[ξ(x)] + ∫ T

0 Zs(x) dWs in L2(FT ⊗ B(X ),P ⊗ ρ). Iden-
tifying the limits, we get the result. �

Corollary C.1 Let M be a P (F) ⊗ B(X )-measurable map such that (Mt(x))0≤t≤T

is a martingale for all x ∈ X and
∫

X E|MT (x)|2ρ(dx) < ∞. Then, there exists a

P (F) ⊗ B(X )-measurable map Z such that
∫ T

0

∫
X E|Zs(x)|2ρ(dx)ds < ∞ and

Mt(x) = M0(x) +
∫ t

0
Zs(x) dWs.

The proof is a direct consequence of Theorem C.1 as in [26] so we omit it.

C.2 BSDEs Depending on a Parameter

We now study the measurability of solutions to Brownian BSDEs whose data depend
on the parameter x ∈ X . We consider

– a family {ξ(x) : x ∈ X } of random variables such that the map ξ : Ω × X → R is
FT ⊗ B(X )-measurable and satisfies

∫
X E|ξ(x)|2ρ(dx) < ∞,

– a family {f (., x) : x ∈ X } of random maps such that the map f : Ω × [0, T ] ×
R × R

d × X → R is P (F) ⊗ B(R) ⊗ B(Rd) ⊗ B(X )-measurable and satisfies∫ T

0

∫
X E|f (s,0,0, x)|2ρ(dx)ds < ∞.

We then consider the BSDEs depending on the parameter x ∈ X :

Yt (x) = ξ(x) +
∫ T

t

f
(
s, Ys(x),Zs(x), x

)
ds

−
∫ T

t

Zs(x) dWs, (t, x) ∈ [0, T ] × X . (C.3)

Lemma C.2 Assume that the generator f does not depend on (y, z) i.e. f (t, y, z, x)

= f (t, x). Then, BSDE (C.3) admits a solution (Y,Z) such that Y and Z are P (F)⊗
B(X )-measurable.

Proof Consider the family of martingales {M(x) : x ∈ X }, where M is defined by

Mt(x) = E

[
ξ(x) +

∫ T

0
f (s, x) ds

∣
∣∣∣Ft

]
, (t, x) ∈ [0, T ] × X .

Then, from Corollary C.1, there exists a P (F) ⊗ B(Rd)-measurable map Z such that∫ T

0

∫
X E|Zs(x)|2ρ(dx)ds < ∞ and

Mt(x) = M0(x) +
∫ t

0
Zs(x) dWs, (t, x) ∈ [0, T ] × X .

We then easily check that the process Y defined by

Yt (x) = Mt(x) −
∫ t

0
f (s, x) ds, (t, x) ∈ [0, T ] × X ,

is P (F) ⊗ B(X )-measurable and that (Y,Z) satisfies (C.3). �
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We now consider the case where the generator f is Lipschitz continuous: there
exists a constant L such that

∣∣f (t, y, z, x) − f
(
t, y′, z′, x

)∣∣ ≤ L
(∣∣y − y′∣∣ + ∣∣z − z′∣∣), (C.4)

for all (t, y, y′, z, z′) ∈ [0, T ] × [R]2 × [Rd ]2.

Proposition C.1 Suppose that f satisfies (C.4). Then, BSDE (C.3) admits a
P (F) ⊗ B(X )-measurable solution (Y,Z) such that E

∫ T

0

∫
X (|Ys(x)|2 + |Zs(x)|2)

× ρ(dx)ds < ∞.

Proof Consider the sequence (Y n,Zn)n∈N defined by (Y 0,Z0) = (0,0) and for n ≥ 1

Yn+1
t (x) = ξ(x) +

∫ T

t

f (s, Y n
s (x),Zn

s (x)) ds

−
∫ T

t

Zn+1
s (x) dWs, (t, x) ∈ [0, T ] × X .

From Lemma C.2, we see that (Y n,Zn) is P (F) ⊗ B(X )-measurable for all n ∈
N. Moreover, since f satisfies (C.4), the sequence (Y n,Zn)n∈N converges (up to a
subsequence) a.e. to (Y,Z) solution to (C.3) (see [27]). Hence, the solution (Y,Z) is
also P (F) ⊗ B(X )-measurable. �

Appendix D: A Regularity Result for the Decomposition

Proposition D.1 Let p ≥ 1 and (ft (x))(t,x)∈[0,T ]×Rp be a P (G)⊗B(Rp)-measurable
map. Suppose that ft (.) is locally uniformly continuous (uniformly in ω ∈ Ω). Then
f k

t (., θ(k), e(k)) is locally uniformly continuous (uniformly in ω ∈ Ω) for θk ≤ t and
k = 0, . . . , n.

Proof For sake of clarity, we prove the result without marks, but the argument easily
extends to the case with marks. Fix k ∈ {0, . . . , n} and for R > 0, denote by mc

f
R

the modulus of continuity of f on BRp (0,R). Then for any θ̃k > · · · > θ̃1 > 0 and
h1, . . . , hn > 0 we have from the definition of mc

f
R and (HD)

1

h1 · · ·hk

E
[∣∣ft (x) − ft

(
x′)∣∣1⋂

�≤k{θ̃�−h�≤τ�≤θ̃�<t≤τ�+1}
∣∣Ft

]

≤ mc
f
R(ε)

1

h1 · · ·hk

∫ θ̃1

θ̃1−h1

dθ1 . . .

∫ θ̃k

θ̃k−hk

dθk

(∫
γt (θ) dθk+1 . . . dθn

)
,

for x, x′ ∈ BRp (0,R) s.t. |x − x′| ≤ ε. Using the decomposition of f we have

1

h1 · · ·hk

E
[∣∣ft (x) − ft

(
x′)∣∣1⋂

�≤k{θ̃�−h�≤τ�≤θ̃�<t≤τ�+1}
∣∣Ft

]

= 1

h1 · · ·hk

∫ θ̃1

θ̃1−h

dθ1 . . .

∫ θ̃k

θ̃k−h

∣
∣f k

t (x, θ(k)) − f k
t

(
x′, θ(k)

)∣∣

×
(∫

γt (θ, e) dθk+1 . . . dθn

)
dθk.



J Theor Probab (2014) 27:683–724 723

Sending each h� to zero we get
∣∣f k

t (x, θ̃(k)) − f k
t

(
x′, θ̃(k)

)∣∣ ≤ mc
f
R(ε). �
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