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Abstract We generalize the exponential family of probability distributions. In our
approach, the exponential function is replaced by a ϕ-function, resulting in a ϕ-family
of probability distributions. We show how ϕ-families are constructed. In a ϕ-family,
the analogue of the cumulant-generating function is a normalizing function. We de-
fine the ϕ-divergence as the Bregman divergence associated to the normalizing func-
tion, providing a generalization of the Kullback–Leibler divergence. A formula for
the ϕ-divergence where the ϕ-function is the Kaniadakis κ-exponential function is
derived.

Keywords Exponential family of probability distributions · Musielak–Orlicz
spaces · Bregman divergence
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1 Introduction

Let (T ,�,μ) be a σ -finite, non-atomic measure space. We denote by Pμ =
P (T ,�,μ) the family of all probability measures on T that are equivalent to the
measure μ. The probability family Pμ can be represented as (we adopt the same
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symbol Pμ for this representation)

Pμ = {
p ∈ L0 : p > 0 and E[p] = 1

}
,

where L0 is the linear space of all real-valued, measurable functions on T , with equal-
ity μ-a.e., and E[·] denotes the expectation with respect to the measure μ.

The family Pμ can be equipped with a structure of C∞-Banach manifold, us-
ing the Orlicz space L�1(p) = L�1(T ,�,p · μ) associated to the Orlicz function
�1(u) = exp(u)−1, for u ≥ 0. With this structure, Pμ is called the exponential statis-
tical manifold, whose construction was proposed in [15] and developed in [3, 5, 14].
Each connected component of the exponential statistical manifold gives rise to an
exponential family of probability distributions Ep (for each p ∈ Pμ). Each element of
Ep can be expressed as

ep(u) = eu−Kp(u)p, for u ∈ Bp, (1)

for a subset Bp of the Orlicz space L�1(p). Kp is the cumulant-generating functional
Kp(u) = log Ep[eu], where Ep[·] is the expectation with respect to p · μ. If c is a
measurable function such that p = ec, then (1) can be rewritten as

ep(u) = ec+u−Kp(u)·1T , for u ∈ Bp, (2)

where 1A is the indicator function of a subset A ⊆ T . A generalization of expression
(1) was given in [13], where the exponential function is replaced by a κ-exponential
function. In our generalization, we make use of expression (2).

In the ϕ-family of probability distributions F ϕ
c , which we propose, the exponen-

tial function is replaced by the so called ϕ-function ϕ:T ×R → [0,∞]. The function
ϕ(t, ·) has a “shape” which is similar to that of an exponential function, with an
arbitrary rate of increasing. For example, we found that the κ-exponential function
satisfies the definition of ϕ-functions. As in the exponential family, the ϕ-families are
the connected component of Pμ, which is endowed with a structure of C∞-Banach
manifold, using ϕ in the place of an exponential function. Let c be any measurable
function such that ϕ(t, c(t)) belongs to Pμ. The elements of the ϕ-family of proba-
bility distributions F ϕ

c are given by

ϕc(u)(t) = ϕ
(
t, c(t) + u(t) − ψ(u)u0(t)

)
, for u ∈ Bϕ

c , (3)

for a subset Bϕ
c of a Musielak–Orlicz space L

ϕ
c . The normalizing function ψ : Bϕ

c →
[0,∞) and the measurable function u0:T → [0,∞) in (3) replaces Kp and 1T in (2),
receptively. The function u0 is not arbitrary. In the text, we will show how u0 can be
chosen.

We define the ϕ-divergence as the Bregman divergence associated to the normaliz-
ing function ψ , providing a generalization of the Kullback–Leibler divergence. Then
geometrical aspects related to the ϕ-family can be developed, since the Fisher in-
formation (on which the Information Geometry [1, 9] is based) is derived from the
divergence. A formula for the ϕ-divergence where the ϕ-function is the Kaniadakis’
κ-exponential function [6, 11] is derived, which we called the κ-divergence.

We expect that an extension of our work will provide advances in other areas, like
in Information Geometry or in the non-parametric, non-commutative setting [4, 12].
The rest of this paper is organized as follows. Section 2 deals with the topics of
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Musielak–Orlicz spaces we will use in the construction of the ϕ-family of proba-
bility distributions. In Sect. 3, the exponential statistical manifold is reviewed. The
construction of the ϕ-family of probability distributions is given in Sect. 4. Finally,
the ϕ-divergence is derived in Sect. 5.

2 Musielak–Orlicz Spaces

In this section we provide a brief introduction to Musielak–Orlicz (function) spaces,
which are used in the construction of the exponential and ϕ-families. A more detailed
exposition about these spaces can be found in [7, 10, 16].

We say that �:T × [0,∞] → [0,∞] is a Musielak–Orlicz function when, for
μ-a.e. t ∈ T ,

(i) �(t, ·) is convex and lower semi-continuous,
(ii) �(t,0) = limu↓0 �(t,u) = 0 and �(t,∞) = ∞,

(iii) �(·, u) is measurable for all u ≥ 0.

Items (i)–(ii) guarantee that �(t, ·) is not equal to 0 or ∞ on the interval (0,∞).
A Musielak–Orlicz function � is said to be an Orlicz function if the functions �(t, ·)
are identical for μ-a.e. t ∈ T .

Define the functional I�(u) = ∫
T

�(t, |u(t)|) dμ, for any u ∈ L0. The Musielak–
Orlicz space, Musielak–Orlicz class, and Morse–Transue space, are given by

L� = {
u ∈ L0 : I�(λu) < ∞ for some λ > 0

}
,

L̃� = {
u ∈ L0 : I�(u) < ∞}

,

and

E� = {
u ∈ L0 : I�(λu) < ∞ for all λ > 0

}
,

respectively. If the underlying measure space (T ,�,μ) have to be specified, we write
L�(T ,�,μ), L̃�(T ,�,μ) and E�(T ,�,μ) in the place of L�, L̃� and E�, respec-
tively. Clearly, E� ⊆ L̃� ⊆ L�. The Musielak–Orlicz space L� can be interpreted
as the smallest vector subspace of L0 that contains L̃�, and E� is the largest vector
subspace of L0 that is contained in L̃�.

The Musielak–Orlicz space L� is a Banach space when it is endowed with the
Luxemburg norm

‖u‖� = inf

{
λ > 0 : I�

(
u

λ

)
≤ 1

}
,

or the Orlicz norm

‖u‖�,0 = sup

{∣∣∣∣

∫

T

uv dμ

∣∣∣∣ : v ∈ L̃�∗
and I�∗(v) ≤ 1

}
,

where �∗(t, v) = supu≥0(uv − �(t,u)) is the Fenchel conjugate of �(t, ·). These
norms are equivalent and the inequalities ‖u‖� ≤ ‖u‖�,0 ≤ 2‖u‖� hold for all
u ∈ L�.
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If we can find a non-negative function f ∈ L̃� and a constant K > 0 such that

�(t,2u) ≤ K�(t,u), for all u ≥ f (t),

then we say that � satisfies the 	2-condition, or belong to the 	2-class (denoted
by � ∈ 	2). When the Musielak–Orlicz function � satisfies the 	2-condition, E�

coincides with L�. On the other hand, if � is finite-valued and does not satisfy the
	2-condition, then the Musielak–Orlicz class L̃� is not open and its interior coin-
cides with

B0
(
E�,1

) =
{
u ∈ L� : inf

v∈E�
‖u − v‖�,0 < 1

}
,

or, equivalently, B0(E
�,1) � L̃�

� B0(E
�,1).

3 The Exponential Statistical Manifold

This section starts with the definition of a Ck-Banach manifold [8]. A Ck-Banach
manifold is a set M and a collection of pairs (Uα,xα) (α belonging to some indexing
set), composed by open subsets Uα of some Banach space Xα , and injective mappings
xα:Uα → M , satisfying the following conditions:

(bm1) the sets xα(Uα) cover M , i.e.,
⋃

α xα(Uα) = M ;
(bm2) for any pair of indices α,β such that xα(Uα) ∩ xβ(Uβ) = W �= ∅, the sets

x−1
α (W) and x−1

β (W) are open in Xα and Xβ , respectively; and

(bm3) the transition map x−1
β ◦ xα:x−1

α (W) → x−1
β (W) is a Ck-isomorphism.

The pair (Uα,xα) with p ∈ xα(Uα) is called a parametrization (or system of co-
ordinates) of M at p; and xα(Uα) is said to be a coordinate neighborhood at p.

The set M can be endowed with a topology in a unique way such that each xα(Uα)

is open, and the xα’s are topological isomorphisms. We note that if k ≥ 1 and two
parametrizations (Uα,xα) and (Uβ,xβ) are such that xα(Uα) and xβ(Uβ) have a
non-empty intersection, then from the derivative of x−1

β ◦ xα we see that Xα and Xβ

are isomorphic.
Two collections {(Uα,xα)} and {(Vβ,xβ)} satisfying (bm1)–(bm3) are said to be

Ck-compatible if their union also satisfies (bm1)–(bm3). It can be verified that the
relation of Ck-compatibility is an equivalence relation. An equivalence class of Ck-
compatible collections {(Uα,xα)} on M is said to define a Ck-differentiable structure
on X.

Now we review the construction of the exponential statistical manifold. We con-
sider the Musielak–Orlicz space L�1(p) = L�1(T ,�,p · μ), where the Orlicz func-
tion �1: [0,∞) → [0,∞) is given by �1(u) = eu − 1, and p is a probability den-
sity in Pμ. The space L�1(p) corresponds to the set of all functions u ∈ L0 whose
moment-generating function ûp(λ) = Ep[eλu] is finite in a neighborhood of 0.

For every function u ∈ L0 we define the moment-generating functional

Mp(u) = Ep

[
eu

]
,

and the cumulant-generating functional
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Kp(u) = logMp(u).

Clearly, these functionals are not expected to be finite for every u ∈ L0. Denote by
Kp the interior of the set of all functions u ∈ L�1(p) whose moment-generating
functional Mp(u) is finite. Equivalently, a function u ∈ L�1(p) belongs to Kp if
and only if Mp(λu) is finite for every λ in some neighborhood of [0,1]. The closed
subspace of p-centered random variables

Bp = {
u ∈ L�1(p) : Ep[u] = 0

}

is taken to be the coordinate Banach space. The exponential parametrization
ep: Bp → Ep maps Bp = Bp ∩ Kp to the exponential family Ep = ep(Bp) ⊆ Pμ,
according to

ep(u) = eu−Kp(u)p, for all u ∈ Bp.

ep is a bijection from Bp to its image Ep = ep(Bp), whose inverse e−1
p : Ep → Bp can

be expressed as

e−1
p (q) = log

(
q

p

)
− Ep

[
log

(
q

p

)]
, for q ∈ Ep.

Since Kp(u) < ∞ for every u ∈ Kp , we find that ep can be extended to Kp . The
restriction of ep to Bp guarantees that ep is bijective.

Given two probability densities p and q in the same connected component of Pμ,
the exponential probability families Ep and Eq coincide, and the exponential spaces
L�1(p) and L�1(q) are isomorphic (see [14, Proposition 5]). Hence, Bp = e−1

p (Ep ∩
Eq) and Bq = e−1

q (Ep ∩ Eq). The transition map e−1
q ◦ ep : Bp → Bq , which can be

written as

e−1
q ◦ ep(u) = u + log

(
p

q

)
− Eq

[
u + log

(
p

q

)]
, for all u ∈ Bp,

is a C∞-function. Clearly,
⋃

p∈Pμ
ep(Bp) = Pμ. Thus the collection {(Bp, ep)}p∈Pμ

satisfies (bm1)–(bm2). Hence Pμ is a C∞-Banach manifold, which is called the ex-
ponential statistical manifold.

4 Construction of the ϕ-Family of Probability Distributions

The generalization of the exponential family is based on the replacement of the ex-
ponential function by a ϕ-function ϕ:T × R → [0,∞] that satisfies the following
properties, for μ-a.e. t ∈ T :

(a1) ϕ(t, ·) is convex and injective,
(a2) ϕ(t,−∞) = 0 and ϕ(t,∞) = ∞,
(a3) ϕ(·, u) is measurable for all u ∈ R.

In addition, we assume a positive, measurable function u0:T → (0,∞) can be found
such that, for every measurable function c:T → R for which ϕ(t, c(t)) is in Pμ, we
have

(a4) ϕ(t, c(t) + λu0(t)) is μ-integrable for all λ > 0.
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The choice for ϕ(t, ·) injective with image [0,∞] is justified by the fact that
a parametrization of Pμ maps real-valued functions to positive functions. More-
over, by (a1), ϕ(t, ·) is continuous and strictly increasing. From (a3), the function
ϕ(t, u(t)) is measurable if and only if u:T → R is measurable. Replacing ϕ(t, u) by
ϕ(t, u0(t)u), a “new” function u0 = 1 is obtained, satisfying (a4).

Example 1 The Kaniadakis’ κ-exponential expκ : R → (0,∞) for κ ∈ [−1,1] is de-
fined as

expκ (u) =
{(

κu + √
1 + κ2u2

)1/κ
, if κ �= 0,

exp(u), if κ = 0.

The inverse of expκ is the Kaniadakis’ κ-logarithm

lnκ (u) =
{

uκ−u−κ

2κ
, if κ �= 0,

ln(u), if κ = 0.

Some algebraic properties of the ordinary exponential and logarithm functions are
preserved:

expκ (u) expκ (−u) = 1, lnκ(u) + lnκ

(
u−1) = 0.

For a measurable function κ:T → [−1,1], we define the variable κ-exponential
expκ :T × R → (0,∞) as

expκ(t, u) = expκ(t)(u),

whose inverse is called the variable κ-logarithm:

lnκ(t, u) = lnκ(t)(u).

Assuming that κ− = ess inf |κ(t)| > 0, the variable κ-exponential expκ satisfies (a1)–
(a4). The verification of (a1)–(a3) is easy. Moreover, we notice that expκ(t, ·) is
strictly convex. We can write for α ≥ 1

expκ(t, αu) =
(
κ(t)αu + α

√
1/α2 + κ(t)2u2

)1/κ(t)

≤ α1/|κ(t)|(κ(t)u +
√

1 + κ(t)2u2
)1/κ(t)

≤ α1/κ− expκ (t, u).

By the convexity of expκ(t, ·), we obtain for any λ ∈ (0,1)

expκ (t, c + u) ≤ λ expκ

(
t, λ−1c

) + (1 − λ) expκ

(
t, (1 − λ)−1u

)

≤ λ1−1/κ− expκ(t, c) + (1 − λ)1−1/κ− expκ(t, u).

Thus any positive function u0 such that E[expκ(u0)] < ∞ satisfies (a4).

Let c:T → R be a measurable function such that ϕ(t, c(t)) is μ-integrable. We
define the Musielak–Orlicz function

�(t,u) = ϕ
(
t, c(t) + u

) − ϕ
(
t, c(t)

)
,
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and denote L�, L̃� and E� by L
ϕ
c , L̃

ϕ
c and E

ϕ
c , respectively. Since ϕ(t, c(t)) is

μ-integrable, the Musielak–Orlicz space L
ϕ
c corresponds to the set of all functions

u ∈ L0 for which ϕ(t, c(t) + λu(t)) is μ-integrable for every λ contained in some
neighborhood of 0.

Let Kϕ
c be the set of all functions u ∈ L

ϕ
c such that ϕ(t, c(t) + λu(t)) is μ-

integrable for every λ in a neighborhood of [0,1]. Denote by ϕ the operator acting
on the set of real-valued functions u:T → R given by ϕ(u)(t) = ϕ(t, u(t)). For each
probability density p ∈ Pμ, we can take a measurable function c:T → R such that
p = ϕ(c). The first import result in the construction of the ϕ-family is given below.

Lemma 2 The set Kϕ
c is open in L

ϕ
c .

Proof Take any u ∈ Kϕ
c . We can find ε ∈ (0,1) such that E[ϕ(c + αu)] < ∞ for

every α ∈ [−ε,1 + ε]. Let δ = [ 2
ε
(1 + ε)(1 + ε

2 )]−1. For any function v ∈ L
ϕ
c in the

open ball Bδ = {w ∈ L
ϕ
c : ‖w‖� < δ}, we have I�(v

δ
) ≤ 1. Thus E[ϕ(c + 1

δ
|v|)] ≤ 2.

Taking any α ∈ (0,1 + ε
2 ), we denote λ = α

1+ε
. In virtue of

α

1 − λ
= α

1 − α
1+ε

≤ 1 + ε
2

1 − 1+ ε
2

1+ε

= 2

ε
(1 + ε)

(
1 + ε

2

)
= 1

δ
,

it follows that

ϕ
(
c + α(u + v)

) = ϕ

(
λ

(
c + α

λ
u

)
+ (1 − λ)

(
c + α

1 − λ
v

))

≤ λϕ

(
c + α

λ
u

)
+ (1 − λ)ϕ

(
c + α

1 − λ
v

)

≤ λϕ
(
c + (1 + ε)u

) + (1 − λ)ϕ

(
c + 1

δ
|v|

)
. (4)

For α ∈ (− ε
2 ,0), we can write

ϕ
(
c + α(u + v)

) ≤ 1

2
ϕ(c + 2αu) + 1

2
ϕ(c + 2αv)

≤ 1

2
ϕ(c + 2αu) + 1

2
ϕ
(
c + |v|). (5)

By (4) and (5), we get E[ϕ(c + α(u + v))] < ∞, for any α ∈ (− ε
2 ,1 + ε

2 ). Hence the
ball of radius δ centered at u is contained in Kϕ

c . Therefore, the set Kϕ
c is open. �

Clearly, for u ∈ Kϕ
c the function ϕ(c+u) is not necessarily in Pμ. The normalizing

function ψ : Kϕ
c → R is introduced in order to make the density

ϕ
(
c + u − ψ(u)u0

)

contained in Pμ, for any u ∈ Kϕ
c . We have to find the functions for which the nor-

malizing function exists. For a function u ∈ L
ϕ
c , suppose that ϕ(c + u − αu0) is

μ-integrable for some α ∈ R. Then u is in the closure of the set Kϕ
c . Indeed, for any

λ ∈ (0,1),
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ϕ(c + λu) = ϕ

(
λ(c + u − αu0) + (1 − λ)

(
c + λ

1 − λ
αu0

))

≤ λϕ(c + u − αu0) + (1 − λ)ϕ

(
c + λ

1 − λ
αu0

)
.

Since the function u0 satisfies (a4), we see that ϕ(c + λu) is μ-integrable. Hence the
maximal, open domain of ψ is contained in Kϕ

c .

Proposition 3 If the function u is in Kϕ
c , then there exists a unique ψ(u) ∈ R for

which ϕ(c + u − ψ(u)u0) is a probability density in Pμ.

Proof We will show that if the function u is in Kϕ
c , then ϕ(c + u + αu0) is

μ-integrable for every α ∈ R. Since u is in Kϕ
c , we can find ε > 0 such that

ϕ(c + (1 + ε)u) is μ-integrable. Taking λ = 1
1+ε

, we can write

ϕ(c + u + αu0) = ϕ

(
λ

(
c + 1

λ
u

)
+ (1 − λ)

(
c + 1

1 − λ
αu0

))

≤ λϕ

(
c + 1

λ
u

)
+ (1 − λ)ϕ

(
c + 1

1 − λ
αu0

)
.

Thus ϕ(c + u + αu0) is μ-integrable. By the Dominated Convergence Theorem, the
map α �→ J (α) = E[ϕ(c+u+αu0)] is continuous, tends to 0 as α → −∞, and goes
to infinity as α → ∞. Since ϕ(t, ·) is strictly increasing, it follows that J (α) is also
strictly increasing. Therefore, there exists a unique ψ(u) ∈ R for which ϕ(c + u −
ψ(u)u0) is a probability density in Pμ. �

The function ψ : Kϕ
c → R can take both positive and negative values. However,

if the domain of ψ is restricted to a subspace of L
ϕ
c , its image will be contained

in [0,∞). We denote by ϕ′+ the operator acting on the set of real-valued functions
u:T → R given by ϕ′+(u)(t) = ϕ′+(t, u(t)), where ϕ′+(t, ·) is the right-derivative
of ϕ(t, ·). Define the closed subspace

Bϕ
c = {

u ∈ Lϕ
c : E

[
uϕ′+(c)

] = 0
}
,

and let Bϕ
c = B

ϕ
c ∩ Kϕ

c . By the convexity of ϕ(t, ·), we have

uϕ′+
(
t, c(t)

) ≤ ϕ
(
t, c(t) + u

) − ϕ
(
t, c(t)

)
, for all u ∈ R.

Hence, for any u ∈ Bϕ
c , we get

1 = E
[
uϕ′+(c)

] + E
[
ϕ(c)

] ≤ E
[
ϕ(c + u)

]
< ∞.

Thus it follows that ψ(u) ≥ 0 in order to find that ϕ(c + u − ψ(u)u0) is in Pμ.
For each measurable function c:T → R such that p = ϕ(c) is the probability

density in Pμ, we associate a parametrization ϕc: Bϕ
c → F ϕ

c that maps any function
u in Bϕ

c to a probability density in F ϕ
c = ϕc(Bϕ

c ) ⊆ Pμ according to

ϕc(u) = ϕ
(
c + u − ψ(u)u0

)
.
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Clearly, we have Pμ = ⋃{F ϕ
c : ϕ(c) ∈ Pμ}. Moreover, the map ϕc is a bijection from

Bϕ
c to F ϕ

c . If the functions u,v ∈ Bϕ
c are such that ϕc(u) = ϕc(v), then the difference

u − v = (ψ(u) − ψ(v))u0 is in B
ϕ
c . Consequently, ψ(u) = ψ(v) and then u = v.

Suppose that the measurable functions c1, c2:T → R are such that p1 = ϕ(c1) and
p2 = ϕ(c2) belong to Pμ. The parametrizations ϕc1

: Bϕ
c1 → F ϕ

c1 and ϕc2
: Bϕ

c2 → F ϕ
c2

related to these functions have transition map

ϕ−1
c2

◦ ϕc1
:ϕ−1

c1

(
F ϕ

c1
∩ F ϕ

c2

) → ϕ−1
c2

(
F ϕ

c1
∩ F ϕ

c2

)
.

Let ψ1: Bϕ
c1 → [0,∞) and ψ2: Bϕ

c2 → [0,∞) be the normalizing functions associated
to c1 and c2, respectively. Assume that the functions u ∈ Bϕ

c1 and v ∈ Bϕ
c2 are such

that ϕc1
(u) = ϕc2

(v) ∈ F ϕ
c1 ∩ F ϕ

c2 . Then we can write

v = c1 − c2 + u − (
ψ1(u) − ψ2(v)

)
u0.

Since the function v is in B
ϕ
c2 , if we multiply this equation by ϕ′+(c2) and integrate

with respect to the measure μ, we obtain

0 = E
[
(c1 − c2 + u)ϕ′+(c2)

] − (
ψ1(u) − ψ2(v)

)
E

[
u0ϕ

′+(c2)
]
.

Thus the transition map ϕ−1
c2

◦ ϕc1
can be expressed as

ϕ−1
c2

◦ ϕc1
(w) = c1 − c2 + w − E[(c1 − c2 + w)ϕ′+(c2)]

E[u0ϕ
′+(c2)] u0, (6)

for every w ∈ ϕ−1
c1

(F ϕ
c1 ∩ F ϕ

c2). Clearly, this transition map will be of class C∞ if we
show that the functions w and c1 − c2 are in L

ϕ
c2 , and the spaces L

ϕ
c1 and L

ϕ
c2 have

equivalent norms. It is not hard to verify that if two Musielak–Orlicz spaces are equal
as sets, then their norms are equivalent (see [10, Theorem 8.5]). We make use of the
following:

Proposition 4 Assume that the measurable functions c̃, c:T → R satisfy
E[ϕ(t, c̃(t))] < ∞ and E[ϕ(t, c(t))] < ∞. Then L

ϕ
c̃ ⊆ L

ϕ
c if and only if c̃ − c ∈ L

ϕ
c .

Proof Suppose that c̃ − c is not in L
ϕ
c . Let A = {t ∈ T : c̃(t) < c(t)}. For λ ∈ [0,1],

we have

E
[
ϕ
(
c + λ(̃c − c)

)] = E
[
ϕ
(
c + λ(̃c − c)

)
1T \A

] + E
[
ϕ
(
c + λ(̃c − c)

)
1A

]

≤ E
[
ϕ
(
c + (̃c − c)

)
1T \A

] + E
[
ϕ(c)1A

]

≤ E
[
ϕ(̃c)

] + E
[
ϕ(c)

]
< ∞.

Since c̃ − c /∈ L
ϕ
c , for any λ > 0, there holds E[ϕ(c − λ(̃c − c))] = ∞. From

E
[
ϕ
(
c − λ(̃c − c)

)] = E
[
ϕ
(
c − λ(̃c − c)

)
1T \A

] + E
[
ϕ
(
c − λ(̃c − c)

)
1A

]

≤ E
[
ϕ
(
c + λ(c − c̃)

)
1A

]
,

we see that (c − c̃)1A does not belong to L
ϕ
c . Clearly, (c − c̃)1A ∈ L

ϕ
c̃ . Consequently,

L
ϕ
c̃ is not contained in L

ϕ
c .

Conversely, assume c̃ − c ∈ L
ϕ
c . Let w be any function in L

ϕ
c̃ . We can find ε > 0

such that E[ϕ(̃c + λw)] < ∞, for every λ ∈ (−ε, ε). Consider the convex function
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g(α,λ) = E
[
ϕ
(
c + α(̃c − c) + λw

)]
.

This function is finite for λ = 0 and α in the interval (−η,1], for some η > 0. More-
over, g(1, λ) is finite for every λ ∈ (−ε, ε). By the convexity of g, we see that g is
finite in the convex hull of the set 1 × (−ε, ε) ∪ (−η,1] × 0. We find that g(0, λ) is
finite for every λ in some neighborhood of 0. Consequently, w ∈ L

ϕ
c . Since w ∈ L

ϕ
c

is arbitrary, the inclusion L
ϕ
c̃ ⊆ L

ϕ
c follows. �

Lemma 5 If the function u is in Kϕ
c and we denote c̃ = c + u − ψ(u)u0, then the

spaces L
ϕ
c and L

ϕ
c̃ are equal as sets.

Proof The inclusion L
ϕ
c̃ ⊆ L

ϕ
c follows from Proposition 4. Since u ∈ Kϕ

c , we have

E
[
ϕ(̃c + λu)

] ≤ E
[
ϕ
(
c + (1 + λ)u

)]
< ∞,

for every λ in a neighborhood of 0. Thus c − c̃ = −u + ψ(u)u0 belongs to L
ϕ
c̃ . From

Proposition 4, we obtain L
ϕ
c̃ ⊆ L

ϕ
c . �

By Lemma 5, if we denote c1 + u − ψ1(u)u0 = c̃ = c2 + v − ψ2(v)u0, we find
that the spaces L

ϕ
c1 , L

ϕ
c̃ and L

ϕ
c2 are equal as sets. In (6), the function w is in L

ϕ
c2 and

consequently c1 − c2 is in L
ϕ
c2 . Therefore, the transition map ϕ−1

c2
◦ ϕc1

is of class
C∞.

Since ϕ−1
c2

◦ϕc1
is of class C∞, the set ϕ−1

c1
(F ϕ

c1 ∩ F ϕ
c2) is open B

ϕ
c1 . The ϕ-families

F ϕ
c are maximal in the sense that if two ϕ-families F ϕ

c1 and F ϕ
c2 have non-empty

intersection, then they coincide.

Lemma 6 For a function u in Bϕ
c , denote c̃ = c + u − ψ(u)u0. Then F ϕ

c = F ϕ
c̃ .

Proof Let v be a function in Bϕ
c . Then there exists ε > 0 such that, for every λ ∈

(−ε,1 + ε), the function ϕ(c + λv + (1 − λ)u) is μ-integrable. Consequently, ϕ(̃c +
λ(v − u)) is μ-integrable for all λ ∈ (−ε,1 + ε). Thus the difference v − u is in Kϕ

c̃

and

w = v − u − E[(v − u)ϕ′+(̃c)]
E[u0ϕ

′+(̃c)] u0 (7)

belongs to Bϕ
c̃ . Let ψ̃ : Bϕ

c̃ → [0,∞) be the normalizing function associated to c̃. Then
the probability density ϕ(̃c + w − ψ̃(w)u0) is in F ϕ

c̃ . This probability density can be
expressed as ϕ(c+v − ku0) for a constant k. According to Proposition 3, there exists
a unique ψ(u) ∈ R such that the probability density ϕ(c + v − ψ(v)u0) is in F ϕ

c .
Therefore, F ϕ

c ⊆ F ϕ
c̃ .

Using the same arguments as in the previous paragraph, we obtain c = c̃ + w −
ψ̃(w)u0, where the function w ∈ Bϕ

c̃ is given in (7) with v = 0. Thus F ϕ
c̃ ⊆ F ϕ

c . �

By Lemma 6, if we denote c1 + u − ψ1(u)u0 = c̃ = c2 + v − ψ2(v)u0, then we
have the equality F ϕ

c1 = F ϕ
c̃ = F ϕ

c2 .
The results obtained in these lemmas are summarized in the next proposition.
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Proposition 7 Let c1, c2:T → R be measurable functions such that the probability
densities p1 = ϕ(c1) and p2 = ϕ(c2) are in Pμ. Suppose F ϕ

c1 ∩ F ϕ
c2 �= ∅. Then the

Musielak–Orlicz spaces L
ϕ
c1 and L

ϕ
c2 are equal as sets, and have equivalent norms.

Moreover, F ϕ
c1 = F ϕ

c2 .

Thus we can state:

Proposition 8 The collection {(Bϕ
c ,ϕc)}ϕ(c)∈Pμ

satisfies (bm1)–(bm2), equipping
Pμ with a C∞-differentiable structure.

5 Divergence

In this section we define the divergence between two probability distributions. The
entities found in Information Geometry [1, 9], like the Fisher information, connec-
tions, geodesics, etc., are all derived from the divergence taken in the considered
family. The divergence we will found is the Bregman divergence [2] associated to the
normalizing function ψ : Kϕ

c → [0,∞). We show that our divergence does not depend
on the parametrization of the ϕ-family F ϕ

c .
Let S be a convex subset of a Banach space X. Given a convex function f :S → R,

the Bregman divergence Bf :S × S → [0,∞) is defined as

Bf (y, x) = f (y) − f (x) − ∂+f (x)(y − x),

for all x, y ∈ S, where ∂+f (x)(h) = limt↓0(f (x + th) − f (x))/t denotes the right-
directional derivative of f at x in the direction of h. The right-directional derivative
∂+f (x)(h) exists and defines a sublinear functional. If the function f is strictly con-
vex, the divergence satisfies Bf (y, x) = 0 if and only if x = y.

Let X and Y be Banach spaces, and U ⊆ X be an open set. A function f :U → Y

is said to be Gâteaux-differentiable at x0 ∈ U if there exists a bounded linear map
A:X → Y such that

lim
t→0

1

t

∥∥f (x0 + th) − f (x0) − Ah
∥∥ = 0,

for every h ∈ X. The Gâteaux derivative of f at x0 is denoted by A = ∂f (x0). If
the limit above can be taken uniformly for every h ∈ X such that ‖h‖ ≤ 1, then the
function f is said to be Fréchet-differentiable at x0. The Fréchet derivative of f at
x0 is denoted by A = Df (x0).

Now we verify that ψ : Kϕ
c → R is a convex function. Take any u,v ∈ Kϕ

c such
that u �= v. Clearly, the function λu + (1 − λ)v is in Kϕ

c , for any λ ∈ (0,1). By the
convexity of ϕ(t, ·), we can write

E
[
ϕ
(
c + λu + (1 − λ)v − λψ(u)u0 − (1 − λ)ψ(v)u0

)]

≤ λE
[
ϕ
(
c + u − ψ(u)u0

)] + (1 − λ)E
[
ϕ
(
c + v − ψ(v)u0

)] = 1.

Since ϕ(c + λu + (1 − λ)v − ψ(λu + (1 − λ)v)u0) has μ-integral equal to 1, we can
conclude that the following inequality holds:

ψ
(
λu + (1 − λ)v

) ≤ λψ(u) + (1 − λ)ψ(v).
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So we can define the Bregman divergence Bψ from to the normalizing function ψ .
The Bregman divergence Bψ : Bϕ

c × Bϕ
c → [0,∞) associated to the normalizing

function ψ : Bϕ
c → [0,∞) is given by

Bψ(v,u) = ψ(v) − ψ(u) − ∂+ψ(u)(v − u).

Then we define the divergence Dψ : Bϕ
c × Bϕ

c → [0,∞) related to the ϕ-family F ϕ
c as

Dψ(u, v) = Bψ(v,u).

The entries of Bψ are inverted in order that Dψ corresponds in some way to the
Kullback–Leibler divergence DKL(p, q) = E[p log(

p
q
)]. Assuming that ϕ(t, ·) is con-

tinuously differentiable, we will find an expression for ∂ψ(u).

Lemma 9 Assume that ϕ(t, ·) is continuously differentiable. For any u ∈ Kϕ
c , the

linear functional fu:Lϕ
c → R given by fu(v) = E[vϕ′(c + u)] is bounded.

Proof Every function v ∈ L
ϕ
c with norm ‖v‖�,0 ≤ 1 satisfies I�(v) ≤ ‖v‖�,0. Then

we obtain

E
[
ϕ
(
c + |v|)] = I�(v) + E

[
ϕ(c)

] ≤ 2.

Since u ∈ Kϕ
c , we can find λ ∈ (0,1) such that E[ϕ(c + 1

λ
u)] < ∞. We can write

(1 − λ)E
[|v|ϕ′(c + u)

] ≤ E
[
ϕ
(
c + u + (1 − λ)|v|)] − E

[
ϕ(c + u)

]

= E

[
ϕ

(
λ

(
c + 1

λ
u

)
+ (1 − λ)

(
c + |v|)

)]
− E

[
ϕ(c + u)

]

≤ λE

[
ϕ

(
c + 1

λ
u

)]
+ (1 − λ)E

[
ϕ
(
c + |v|)]

− E
[
ϕ(c + u)

]
.

Thus the absolute value of fu(v) = E[vϕ′(c + u)] is bounded by some constant for
‖v‖�,0 ≤ 1. �

Lemma 10 Assume that ϕ(t, ·) is continuously differentiable. Then the normalizing
function ψ : Kϕ

c → R is Gâteaux-differentiable and

∂ψ(u)v = E[vϕ′(c + u − ψ(u)u0)]
E[u0ϕ′(c + u − ψ(u)u0)] . (8)

Proof According to Lemma 9, the expression in (8) defines a bounded linear func-
tional. Fix functions u ∈ Kϕ

c and v ∈ L
ϕ
c . In virtue of Proposition 4, we can find ε > 0

such that E[ϕ(c + u + λ|v|)] < ∞, for every λ ∈ [−ε, ε]. Define

g(λ, k) = E
[
ϕ(c + u + λv − ku0)

]
,

for any λ ∈ (−ε, ε) and k ≥ 0. Since Kϕ
c is open, there exist a sufficiently small α0 > 0

such that u + λv + α|v| is in Kϕ
c for all α ∈ [−α0, α0]. We can write
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g(λ + α, k) − g(λ, k)

α
= E

[
1

α

{
ϕ
(
c + u + (λ + α)v − ku0

)

− ϕ(c + u + λv − ku0)
}]

.

The function in the expectation above is dominated by the μ-integrable function
1
α0

{ϕ(c + u + λv + α0|v| − ku0) − ϕ(c + u + λv − ku0)}. By the Dominated Con-
vergence Theorem,

E

[
1

α

{
ϕ
(
c + u + (λ + α)v − ku0

) − ϕ(c + u + λv − ku0)
}]

→ E
[
vϕ′(c + u + λv − ku0)

]
, as α → 0,

and, consequently,

∂g

∂λ
(λ, k) = E

[
vϕ′(c + u + λv − ku0)

]
.

Since vϕ′(c+u+λv − ku0) is dominated by the μ-integrable function |v|ϕ′(c+u+
ε|v| − ku0), we obtain for any sequence λn → λ,

E
[
vϕ′(c + u + λnv − ku0)

] → E
[
vϕ′(c + u + λv − ku0)

]
, as n → ∞.

Thus ∂g
∂λ

(λ, k) is continuous with respect to λ. Analogously, it can be shown that

∂g

∂k
(λ, k) = −E

[
u0ϕ

′(c + u + λv − ku0)
]
,

and ∂g
∂k

(λ, k) is continuous with respect to k. The equality g(λ, k(λ)) = E[ϕ(c + u +
λv − k(λ)u0)] = 1 defines k(λ) = ψ(u + λv) as an implicit function of λ. Notice
that ∂g(0,k)

∂k
< 0. By the Implicit Function Theorem, the function k(λ) = ψ(u + λv)

is continuously differentiable in a neighborhood of 0, and has derivative

∂k

∂λ
(0) = − (∂g/∂λ)(0, k(0))

(∂g/∂k)(0, k(0))
.

Consequently,

∂ψ(u)(v) = ∂ψ(u + λv)

∂λ
(0) = E[vϕ′(c + u − ψ(u)u0)]

E[u0ϕ′(c + u − ψ(u)u0)] .
Thus the expression in (8) is the Gâteaux-derivative of ψ . �

Lemma 11 Assume that ϕ(t, ·) is continuously differentiable. Then the divergence
Dψ does not depend on the parametrization of F ϕ

c .

Proof For any w ∈ Bϕ
c , we denote c̃ = c + w − ψ(w)u0. Given u,v ∈ Bϕ

c , select
ũ, ṽ ∈ Bϕ

c̃ such that ϕc̃ (̃u) = ϕc(u) and ϕc̃ (̃v) = ϕc(v). Let ψ̃ : Bϕ
c̃ → [0,∞) be the

normalizing function associated to c̃. These definitions provide

c̃ + ũ − ψ̃ (̃u)u0 = c + u − ψ(u)u0,

and
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c̃ + ṽ − ψ̃ (̃v)u0 = c + v − ψ(v)u0.

Subtracting these equations, we obtain
[−ψ̃ (̃v) + ψ̃ (̃u)

]
u0 + (̃v − ũ) = [−ψ(v) + ψ(u)

]
u0 + (v − u)

and, consequently,

ψ̃ (̃v) − ψ̃ (̃u) − E[(̃v − ũ)ϕ′(̃c + ũ − ψ̃ (̃u)u0)]
E[u0ϕ′(̃c + ũ − ψ̃ (̃u)u0)]

= ψ(v) − ψ(u) − E[(v − u)ϕ′(c + u − ψ(u)u0)]
E[u0ϕ′(c + u − ψ(u)u0)] .

Therefore, Dψ̃ (̃u, ṽ) = Dψ(u, v). �

Let p = ϕc(u) and q = ϕc(v), for u,v ∈ Bϕ
c . We denote the divergence between

the probability densities p and q by

D(p ‖ q) = Dψ(u, v).

According to Lemma 11, D(p ‖ q) is well-defined if p and q are in the same ϕ-
family. We will find an expression for D(p ‖ q) where p and q are given explicitly.
For u = 0, we have D(p ‖ q) = Dψ(0, v) = ψ(v), and then

D(p ‖ q) = E[(−v + ψ(v)u0)ϕ
′(c)]

E[u0ϕ′(c)] .

Therefore, the divergence between probability densities p and q in the same ϕ-family
can be expressed as

D(p ‖ q) =
E[ϕ−1(p)−ϕ−1(q)

(ϕ−1)′(p)
]

E[ u0
(ϕ−1)′(p)

] . (9)

Clearly, the expectation in (9) may not be defined if p and q are not in the same
ϕ-family. We extend the divergence in (9) by setting D(p ‖ q) = ∞ if p and q are
not in the same ϕ-family. With this extension, the divergence is denoted by Dϕ and
is called the ϕ-divergence. By the strict convexity of ϕ(t, ·), we have the inequality
ϕ−1(t, u) − ϕ−1(t, v) ≥ (ϕ−1)′(t, u)(u − v) for any u,v > 0, with equality if and
only if u = v. Hence Dϕ is always non-negative, and Dϕ(p ‖ q) is equal to zero if
and only if p = q .

Example 12 With the variable κ-exponential expκ(t, u) = expκ(t)(u) in the place of
ϕ(t, u), whose inverse ϕ−1(t, u) is the variable κ-logarithm lnκ (t, u) = lnκ(t)(u), we
rewrite (9) as

D(p ‖ q) =
E[ lnκ (p)−lnκ (q)

ln′
κ (p)

]
E[ u0

ln′
κ (p)

] , (10)

where lnκ (p) denotes lnκ(t)(p(t)). Since the κ-logarithm lnκ (u) = uκ−u−κ

2κ
has

derivative ln′
κ(u) = 1

u
uκ+u−κ

2 , the numerator and denominator in (10) result in
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E

[
lnκ (p) − lnκ (q)

ln′
κ (p)

]
= E

[ pκ−p−κ

2κ
− qκ−q−κ

2κ

1
p

pκ+p−κ

2

]
= 1

κ
Ep

[
pκ − p−κ

pκ + p−κ
− qκ − q−κ

pκ + p−κ

]

and

E

[
u0

ln′
κ (p)

]
= Ep

[
2u0

pκ + p−κ

]
,

respectively. Thus (10) can be rewritten as

Dκ(p ‖ q) = 1

κ

Ep[pκ−p−κ

pκ+p−κ − qκ−q−κ

pκ+p−κ ]
Ep[ 2u0

pκ+p−κ ] ,

which we called the κ-divergence.
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